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Abstract

Some researchers argued that in the non-existence proof of hidden vari-
ables, the existence of a common common-cause of multiple correlations
is tacitly assumed and that the assumption is unreasonably strong. Ac-
cording to their idea, it is sufficient if the separate common-cause of each
correlation exists. However, for such an idea, various no-go results are al-
ready known. Recently, Higashi showed that there exists no local separate
common-cause model for the correlations that appear in Hardy’s famous
argument. In this paper, I give another simple and suggestive proof of
the same content. First, I will show that there exists no local common
common-cause model of the correlations that appear in Hardy’s argument.
Second, taking the proof as a hint, following almost the same steps, I will
show the non-existence of a local separate common-cause model for those
correlations. Finally, based on the argument in the previous sections, I
will discuss what we can conclude about the issue of reducibility from a
separate common-cause model to a common common-cause model. It will
be concluded that it is “irreducible” at least by a usual method.

1 Introduction

The conventional view is that there exists no common cause of quantum cor-
relations (e.g. [1, 2]). Because, when we assume the existence of a common
cause, Bell’s inequalities are derived and the violation of the inequalities has
been repeatedly confirmed by the experiments (e.g. [3]). On the other hand,
some researchers [4, 5, 6] argued that in the derivations of Bell’s inequalities,
it is tacitly assumed that there exists a common common-cause in multiple
correlations and the assumption is a too strong requirement. They consider
what is needed to explain the quantum mechanical correlation is a separate
common-cause for each correlation. Although this idea is very interesting, var-
ious no-go theorems for separate common-cause approaches are already known
[7, 8, 9, 10, 11, 12, 13, 14].

Graßhoff et al. [7] showed that there exists no local separate common-cause
model in the maximally entangled states. In addition, Higashi [14] recently used
Hardy’s famous argument to show that, in any non-maximally entangled state,
there exists no local separate common-cause model. Therefore, it became clear
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that, in any entangled state, there exists no local separate common-cause model.
In this paper, I present another simple and suggestive proof of the mathematical
fact which Higashi proved (see Fact 6 in [14]).

First, in Sect. 3.1, I will show that there exists no local common common-
cause model for multiple correlations that appear in Hardy’s argument. After
that, in Sect. 3.2, I will show that there exists no local separate common-cause
model for those correlations in a similar way to in Sect. 3.1. By comparing
these two proofs, it will be clear how effective (or non-effective) the strategy to
weaken the requirement for a common common-cause to the one for a separate
common-cause for each correlation. Finally, in Sect. 4, I will discuss whether
non-existence proof of the separate common-cause is reduced to non-existence
proof of the common common-cause, based on the analysis in Sect. 3. This is
the issue raised and discussed by Hofer-Szabó [10, 11, 12] and recently discussed
by Wroński et al. [13].

2 Background

2.1 Hardy Relations

Let HL⊗HR be a tensor product Hilbert space composed of two 2-dimensional
Hilbert spaces HL and HR of the left and right systems, respectively. For any
pure state in HL ⊗ HR, the following mathematical fact holds (for proof, see
e.g. [15]).

Schmidt decomposition For any pure state ϕ in HL ⊗HR, there exists an
orthonormal basis {e1, e2} for HL, and an orthonormal basis {f1, f2} for HR

such that
ϕ = α e1 ⊗ f1 + β e2 ⊗ f2,

where α, β are non-negative real numbers satisfying α+β = 1 known as Schmidt
coefficients.

Schmidt decomposition is unique (ignoring the phase factor) if and only if
all Schmidt coefficients are distinct (i.e. α ̸= β in 2-dimensional case). When
more than one Schmidt coefficients of a state are non-zero (i.e. α, β ̸= 0), we
call the state an entangled state. In particular, when all Schmidt coefficients
are identical (i.e. α = β), it is called a maximally entangled state (e.g. the
singlet state). We call entangled states other than maximally entangled states
non-maximally entangled states. Hardy [16] showed that for any non-maximally
entangled state ψ in HL ⊗HR, there exist projection operators AL, BL on HL

and AR, BR on HR that satisfy the following four relations A1-4. (Below, we
abbreviate the projections AL ⊗ I,BL ⊗ I, I ⊗ AR, I ⊗ BR on HL ⊗ HR as
AL, BL, AR, BR, respectively.)

A1 Qψ(ALAR) > 0,

A2 Qψ(BR | AL) = 1,
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A3 Qψ(BL | AR) = 1,

A4 Qψ(BLBR) = 0,

where Qψ( · ) represents the quantum mechanical probability in a state ψ. We
call these four relations Hardy relations.

Hardy argued that there exists no truth-value assignment that satisfies A1
to A4. His argument goes as follows. Suppose AL ∧AR is true (this is possible
by A1). Then, using A2 and A3, BL ∧ BR is true. However, this contradicts
with A4.

If the four events corresponding respectively to the four projections AL, BL,
AR, BR exist in the Boolean algebra of a classic probability space, and the
quantum mechanical probabilities Qψ( · ) are assigned to those events respec-
tively, then Hardy’s argument holds. However, when the quantum mechanical
probabilities are regarded as conditional probabilities given the setting of the
measuring device, it is known that those probabilities can be expressed in the
classical probability space [17, 18]. To express the quantum probabilities from
A1 to A4 as such conditional probabilities, we introduce the following notations.

L1: the apparatus L is set to measure AL.
L1+: the result of AL-measurement is +1.
L2: the apparatus L is set to measure BL.
L2+: the result of BL-measurement is +1.
R1: the apparatus R is set to measure AR.
R1+: the result of AR-measurement is +1.
R2: the apparatus L is set to measure BR.
R2+: the result of BR-measurement is +1.

Then, Hardy relations A1-A4 are rewritten as follows:

B1 Pr(L1+R1+ | L1R1) > 0,

B2 Pr(R2+ | L1R2L1+) = 1,

B3 Pr(L2+ | L2R1R1+) = 1,

B4 Pr(L2+R2+ | L2R2) = 0.

Where to simplify the notation, “∧” is omitted. (If not omitted, for example,
B1 is Pr(L1+ ∧R1+ | L1 ∧R1).) Similarly, omit “∧” in the following.

In this way when the quantum probability is regarded as a conditional prob-
ability, the quantum mechanical correlation is expressed in the following form:

Corr(Li+, Rj+) ≡ Pr(Li+Rj+ | LiRj)− Pr(Li+ | LiRj) · Pr(Rj+ | LiRj) ̸= 0.

Also hereinafter, when not only there exists a correlation, but also Pr(Li+ |
Rj+LiRj) = 1 (0) and Pr(Rj+ | Li+LiRj) = 1 (0) hold, the correlation is called
perfect (anti-)correlation.
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In this paper, we discuss only the common causal explanation of the cor-
relations Corr(L1+, R2+) and Corr(L2+, R1+) in Hardy relations. Because it
is sufficient to consider these two correlations to derive the contradiction with
Hardy relations.

It may not be immediately obvious that L1+ and R2+ are correlated (i.e.
Corr(L1+, R2+) ̸= 0) even if Hardy relations hold. Indeed, we cannot derive
Corr(L1+, R2+) ̸= 0 from A2 alone. However, as will be confirmed below, when
A2-4 hold, we get Corr(L1+, R2+) ̸= 0. Suppose that A2 and Corr(L1+, R2+) =
0 hold in an entangled state ϕ in HL ⊗HR.

1 Then, Qϕ(BRAL) = Qϕ(AL) and
Qϕ(BRAL) = Qϕ(BR) · Qϕ(AL) hold and so we get Qϕ(BR) = 1. Because ϕ
is the entangled state in a tensor product Hilbert space composed of two 2-
dimensional Hilbert spaces, BR is the identity operator on HR. Then, from A4,
we get Qϕ(BL) = 0 however, this is incompatible with A3.

2.2 Screening-off Factors of Correlation

Suppose there exists a correlation between two events E and F (i.e. Pr(EF ) ̸=
Pr(E) · Pr(F )). If there is no direct causal relation between those two events,
that is, when one event is not the cause of the other event, it is natural to
think that a common cause C of the correlated events exists and satisfies the
following:2

• Pr(EF | C) = Pr(E | C) · Pr(F | C),

• Pr(EF | C⊥) = Pr(E | C⊥) · Pr(F | C⊥).

Here, the reason for requiring not only the first condition but also the second
condition is that if it is not satisfied, it is necessary to explain the correlation
conditional on C⊥.

In the above explanation, we considered {C, C⊥} as a set of common-causal
events, however, there is no reason to restrict a set of events that explain the
correlation only to such a set of two events. If there exists a logical partition
that satisfies the next relation

Pr(EF | Ci) = Pr(E | Ci) · Pr(F | Ci),

those events would be candidates for a cause of the correlation. Therefore, we
call the candidate for the cause of quantum correlation Corr(Lia, Rjb) ̸= 0 the
screening-off factors and define it as follows.

Definition 1. Suppose Lia and Rjb are correlated (i.e. Corr(Lia, Rjb) ̸= 0).

We call the events {Cijk }k∈Kij
which satisfy the following conditions screening-

off factors of Corr(Lia, Rjb).

(a) If l ̸= m (l,m ∈ Kij), then C
ij
l ∧ Cijm = ∅.

1It is not necessary to limit to the non-maximally entangled state.
2This idea of requiring a common cause originated from Reichenbach [19].
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(b) Pr(Cijk ) ̸= 0 for any k ∈ Kij.

(c)
∑
k∈Kij

Pr(Cijk ) = 1.

(d) Pr(LiaRjb|LiRjCijk ) = Pr(Lia|LiRjCijk ) · Pr(Rjb|LiRjCijk ).

In the following, for simplicity of discussion, I assume an index set of screening-
off factors is finite.

Note the following about this definition. In the notation of the screening-off
factors {Cijk }k∈Kij of the correlation Corr(Lia, Rjb), a and b do not appear. As
can be easily ascertained, if there exist screening-off factors of one correlation
(e.g. Corr(Li+, Rj+)), they are also screening-off factors of the other correlations
(Corr(Li+, Rj−), Corr(Li−, Rj+), and Corr(Li−, Rj−)). Therefore, we do not
need to specify a value of a and b in the notation of the screening-off factors.

Suppose that for events X, Y, and Z, Pr(XY | Z) = Pr(X | Z) ·Pr(Y | Z).
Then, as easily verified, if Pr(Y Z) ̸= 0, then Pr(X | Y Z) = Pr(X | Z).
Therefore, the following fact holds for screening-off factors.

Fact 1. When the events {Cijk }k∈Kij
are screening-off factors of the correlation

Corr(Lia, Rjb) ̸= 0,

(i) if Pr(LiRjLiaC
ij
k ) ̸= 0, then Pr(Rjb | LiRjLiaCijk ) = Pr(Rjb | LiRjCijk ).

(ii) if Pr(LiRjRjbC
ij
k ) ̸= 0, then Pr(Lia | LiRjRjbCijk ) = Pr(Lia | LiRjCijk ).

3 On Common Cause Model of Hardy Relations

3.1 Common Common-Cause

Before discussing the possibility of separate common cause model, in this sec-
tion, I will show the non-existence of the local common common-cause model.
After that, in Sect. 3.2, referring to the proof method in this section, I will show
the non-existence of a local separate common cause model similarly. Compar-
ing these proofs will reveal whether the strategy of weakening the requirement
for common common-cause to the requirement for a separate common-cause is
effective or not.

As with many textbooks (e.g. [1, 2]), we require the following as the condi-
tions that the local common common-cause model should satisfy.

C1 There exist common screening-off factors {Ck}k∈K for the correlations
Corr(L1+, R2+) and Corr(L2+, R1+).

3

C2-1 Pr(Li+ | LiRjCk) = Pr(Li+ | LiRj′Ck).

C2-2 Pr(Rj+ | LiRjCk) = Pr(Rj+ | Li′RjCk).

3{Ck}k∈K is common screening-off factors for the two correlations, so the superscript of
screening-off factors in Definition 1 is omitted.
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C3 Pr(Ck | LiRj) = Pr(Ck).

C2 requires that when the cause of the correlation occurs, the measure-
ment result of one system does not depend on the setting of the measurement
apparatus of the other system. Taking C2-1 as an example, this condition
requires that Pr(L1+ | L1R2Ck) = Pr(L1+ | L1R1Ck) for the correlation
Corr(L1+, R2+) and that Pr(L2+ | L2R1Ck) = Pr(L2+ | L2R2Ck) for the
correlation Corr(L2+, R1+).

C3 requires that settings of the measurement apparatus are independent of
common causes. It is natural to think that the common-cause event of corre-
lation between the events occurring on two spatially separated regions occurs
in the common past of those two regions. Considering that the settings of the
apparatus can be changed even after the events that occurred in the common
past have been completely specified, C3 is a requirement that should be met.

I show that there exists no classical probability space that is consistent with
Hardy relations B1-B4 and that satisfies C1-C3.

Proposition 1. Suppose that there exist common screening-off factors {Ck}k∈K
of the correlations Corr(L1, R2+) and Corr(L2+, R1+) and that C2 and C3
are satisfied for any Ck. Then, a contradiction with Hardy relations B1-B4 is
derived.

Proof. By (a), (b), and (c) of Definition 1,

Pr(LiaRjb | LiRj) =
∑
k

Pr(LiaRjb | LiRjCk) · Pr(Ck | LiRj).

holds for any i, j and a, b. Using C3, we have

Pr(LiaRjb | LiRj) =
∑
k

Pr(LiaRjb | LiRjCk) · Pr(Ck). (1)

Then, from (1) and B1, there exists k′ such that

Pr(L1+R1+ | L1R1Ck′) > 0. (2)

By B2, either Pr(R2+ | L1R2L1+Ck′) = 1 or Pr(L1R2L1+Ck′) = 0 holds.
However, as we will see, we get Pr(L1R2L1+Ck′) ̸= 0. Using C2-1 we have

Pr(L1+R1+ | L1R1Ck′) ≤ Pr(L1+ | L1R1Ck′)

= Pr(L1+ | L1R2Ck′).

From this and (2), we get Pr(L1+ | L1R2Ck′) > 0, then we have Pr(L1R2L1+Ck′) ̸=
0. Therefore,

Pr(R2+ | L1R2L1+Ck′) = 1. (3)

From Fact 1 (i) and C2-2, we get

Pr(R2+ | L1R2L1+Ck′) = Pr(R2+ | L1R2Ck′)

= Pr(R2+ | L2R2Ck′).
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From this and (3),
Pr(R2+ | L2R2Ck′) = 1. (4)

Also, starting with B3, as a result of the same derivation as in the previous
paragraph, we get

Pr(L2+ | L2R2Ck′) = 1. (5)

Then, from (4) and (5)

Pr(L2+R2+ | L2R2Ck′) = 1, (6)

therefore, by (1),
Pr(L2+R2+ | L2R2) > 0. (7)

However, (7) contradicts with B4.

As mentioned above, when a two-particle system is in a maximally entangled
state, there exist four projections satisfying Hardy relations. When a pair of
particles is in such a state, by Proposition 1, there exists no local common
common-cause model consistent with quantum mechanical predictions.

3.2 Separate Common-Cause

Higashi [14] showed that there exists no local separate common cause model
consistent with Hardy relations. In this section, I will give another simple proof
of the same content. The proof proceeds similarly to the no-go proof for common
common-causes in Sect. 3.1.

As in Higashi [14], we require the following conditions which the local sepa-
rate common-cause model should satisfy.

S1 There exist screening-off factors {C12
k }k∈K and {C21

l }l∈L for the correlations
Corr(L1+, R2+) and Corr(L2+, R1+) respectively.

S2-1 Pr(Li+ | LiRjCijm) = Pr(Li+ | LiRj′Cijm).

S2-2 Pr(Rj+ | LiRjCijm) = Pr(Rj+ | Li′RjCijm).

S3 Let C be the Boolean subalgebra generated by {C12
k }k∈K ∪{C21

l }l∈L. Then,
for any element Z of C,

Pr(Z|Li ∧Rj) = Pr(Z) (i, j = 1, 2).

S2 is a rewrite of the condition C2 for the common common-cause model to a
condition for the separate common-cause model. Taking S2-1 as an example, the
condition requires that Pr(L1+ | L1R2C

12
k ) = Pr(L1+ | L1R1C

12
k ) for the cor-

relation Corr(L1+, R2+) and that Pr(L2+ | L2R1C
21
l ) = Pr(L1+ | L2R2C

21
l )

for the correlation Corr(L2+, R1+).
S3 requires that apparatus settings are completely independent of the sub-

algebra of common causes of various correlations. 4 As stated for the condition

4In Higashi [14], this requirement is stated in a different form (called C-independence)
however, they are mathematically equivalent.
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C3 for the common common-cause, it is natural to think that common cause
events occur in the common past, and furthermore we can change the measure-
ment settings even after the events in the common past have been completely
specified. Then, S3 is a requirement to be satisfied.

I show that there exists no classical probability space that is consistent with
Hardy relations B1-B4 and that satisfies S1-S3.

Proposition 2. Suppose that there exist screening-off factors {C12
k }k∈K and

{C21
l }l∈L for the correlations Corr(L1+, R2+) and Corr(L2+, R1+) respectively

and that S2 and S3 are satisfied for any C12
k and C21

l . Then, a contradiction
with Hardy relations B1-B4 is derived.

Proof. Using the screening-off factors {C12
k }k∈K and {C21

l }l∈L, we define the
following set of events:

S ≡ {C12
k C

21
l : k ∈ K, l ∈ L,Pr(C12

k C
21
l ) > 0}.

Clearly, by Definition 1 and the definition of S

Pr(LiaRjb | LiRj) =
∑
S
Pr(LiaRjb | LiRjC12

k C
21
l ) · Pr(C12

k C
21
l | LiRj)

where,
∑

S denotes the summation of the value of Pr(LiaRjb | LiRjC12
k C

21
l ) ·

Pr(C12
k C

21
l | LiRj) over all the events belonging to the set S.

Using S3, we have

Pr(LiaRjb | LiRj) =
∑
k,l∈S

Pr(LiaRjb | LiRjC12
k C

21
l ) · Pr(C12

k C
21
l ). (8)

Then, from (8) and Hardy relation B1, for some k′ and l′

Pr(L1+R1+ | L1R1C
12
k′ C

21
l′ ) > 0. (9)

From the inequality (9), we have

Pr(L1+R1+ | L1R1C
12
k′ ) > 0. (10)

In the proof of Proposition 1, using B2 and C2, we obtained (4) from (2). Using
S2 instead of C2, as a result of the same derivation, from (10) we get

Pr(R2+ | L2R2C
12
k′ ) = 1. (11)

From (9), we can get also

Pr(L1+R1+ | L1R1C
21
l′ ) > 0.

Then, for the same reason as stated in the previous paragraph, using B3 and
C2, we get

Pr(L2+ | L2R2C
21
l′ ) = 1. (12)
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From (11) and (12) we have

Pr(L2+R2+ | L2R2C
12
k′ C

21
l′ ) = 1. (13)

Then, by (8) and (13),

Pr(L2+R2+ | L2R2) > 0. (14)

However, (14) contradicts B4.

When a pair of particles is in a maximally entangled state, by Proposition
2, there exists no local separate common-cause model consistent with quantum
mechanical predictions.

3.3 Summary

In Proposition 1, I showed that there exists no local common common-cause
model of Hardy relations. If such a model exists, there must exist an event that
satisfies (2) among the common screening-off factors. When there exists at least
one event that satisfying (2), a contradiction with B4 is derived. In Proposition
2, I showed that there exists no local separate common-cause model of Hardy
relations. The proof-method of Proposition 2 was almost the same as when
Proposition 1 was shown. We can construct an event satisfying (9) from the
screening-off factors of each correlation. When at least one event satisfying (9)
exists, a contradiction with B4 is derived.

4 Reducible or Irreducible?

4.1 The Issue of Reducibility

As stated in Sect. 1, there are various no-go theorems that showed the non-
existence of the separate common-cause model. In the papers except for Higashi
[14] and this paper, it was showed that there exists no local common-cause model
for the correlations that appear in Bell-type inequalities (Bell correlations). One
of the most influential of those papers is that of Graßhoff et al. [7]. They showed
the non-existence of a local separate common-cause model in situations where
various combinations of spin quantities, including three pairs with perfect (anti-
)correlation, could be measured (e.g. the situation where various combinations of
spin quantities including three parallel settings are measurable for a pair of spin
1/2 particles in the singlet state). With respect to the proof given by Graßhoff
et al. Hofer-Szabó [10] analyzed that although their proof does not presuppose
the existence of common screening-off factors for multiple correlations, in fact,
their assumptions for the separate common-cause model imply the existence of
the common common-cause model. More specifically, in the particular situation
they used to prove (i.e. the singlet state and three parallel settings), if for each
correlation, there exist separate screening factors satisfying S2 and S3, we can
construct common screening-off factors satisfying C2 and C3.
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First, as far as necessary in the following discussion, let us review Hofer-
Szabó’s analysis. Suppose that there exist screening-off factors {Ciijii}jii∈Jii (i =
1, 2, 3) of three pairs of perfect (anti-)correlations Corr(Lia, Rib) (i = 1, 2, 3),
respectively, which satisfy S2 and S3. As is well known (e.g. [20]), when there is
a perfect (anti) correlation, the determinism in the following sense holds for the
conditional probability given any event belonging to the screening-off factors.

Pr(Lia | LiRiCiijii) = 1 or 0 ; Pr(Rib | LiRiCiijii) = 1 or 0.

This is a non-local determinism in which the probability of the measurement
result for one system depends on the apparatus setting for the other system,
however, using S2, we get the following local determinism:

Pr(Lia | LiCiijii) = 1 or 0 ; Pr(Rib | RiCiijii) = 1 or 0.

In general, for any two events E and F , if Pr(F | E) = 1 (0) holds, then
Pr(F | EG) = 1 (0) holds for any event G such that Pr(EG) ̸= 0. Thus,
for any event C11

j11
C22
j22
C33
j33

constructed from the screening-off factors of each

correlation, if Pr(C11
j11
C22
j22
C33
j33

) ̸= 0, then we get

Pr(Lia | LiC11
j11C

22
j22C

33
j33) = 1 or 0 ; Pr(Rib | RiC11

j11C
22
j22C

33
j33) = 1 or 0.

When this form of determinism holds, we can easily prove that the events

T ≡ {C11
j11C

22
j22C

33
j33 : j11 ∈ J11, j22 ∈ J22, j33 ∈ J33, P r(C

11
j11C

22
j22C

33
j33) ̸= 0}

are common screening-off factors of all correlations and that they satisfy C2.
(Note that C3 is immediately derived from S3.) Then, for example, Pr(L1+R2+ |
L1R2) is factorized as follows:

Pr(L1+R2+ | L1R2) =
∑
i∈I

Pr(L1+ | L1Ci)Pr(R2+ | R2Ci)Pr(Ci) (15)

(where T was rewritten as T = {Ci}i∈I). After that, Bell-type inequalities are
derived in a well-known way.

In short, as Hofer-Szabó [10] correctly pointed out, in the particular situation
where a pair of particles in a maximally entangled state are measured under
settings including three parallel settings, the non-existence proof of the local
separate common-cause model is reduced to the non-existence proof of the local
common common-cause model. In this situation, the existence of a local separate
common-cause model implies the existence of a local common common-cause
model. Therefore, there is no practical meaning in weakening a requirement for
a common common-cause to a separate common-cause.

By the way, is the non-existence proof of the local separate common-cause
model that satisfies Hardy relations also reduced to the proof of the non-
existence of the local common common-cause model similarly? If “reduction”
is attempted in the same way as in the case of Bell correlations, the following
two points need to be discussed.
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1. As confirmed above, in the case of Bell correlations, the reduction of non-
existence proof required a logical partition, 5 i.e. common screening-off
factors for multiple correlations (see T and the equation (15)). On the
other hand, Proposition 1 and 2 respectively hold even if there exists only
one event satisfying the inequality (2) and (9).

2. In the case of Bell correlations, the non-existence proof was given in the
specified situation of three (anti-)perfect correlations. As stated above,
in this situation, determinism holds, and so we can construct common
screening-off factors satisfying C2 and C3. Then, are the correlations in
Hardy relations perfect correlations or not?

We will discuss each of these issues below.

4.2 A single event or logical partition?

When there exists at least one event satisfying the inequalities (2) and (9)
respectively, we can show Proposition 1 and 2. Therefore, I initially thought
that in the case of Hardy relations, unlike Bell correlation, which uses logical
partitions for the proof, it is meaningless to discuss the problem of reducibility.
However now I think that idea is too naive. There are two reasons.

First, if it is possible to construct common screening-off factors satisfying
C2 and C3 from separate screening-off factors of each correlation that satisfy
S2 and S3, then by applying Proposition 1 to those events, we can show the
non-existence of the local separate common-cause model. Such a proof is a little
detour however, if truly “reducible”, nothing is mathematically incorrect.

Second, there is another proof that uses a logical partition of events (rather
than a single event) to show the non-existence of the local common-cause model
satisfying Hardy relations. I explain the proof method. The following fact holds.

Fact 2. Suppose there exist common screening-off factors {Ck}k∈K of the cor-
relations Corr(L1+, R2+) and Corr(L2+, R1+) and furthermore that C2 and C3
hold. Then, for any Ck,

Pr(L1+R1+ | L1R1Ck) ≤ Pr(L2+R2+ | L2R2Ck). (16)

Proof. When the value on the left side is 0, (16) clearly holds. Therefore, it is
sufficient to show (16) holds when Pr(L1+R1+ | L1R1Ck) > 0. If Pr(L1+R1+ |
L1R1Ck) > 0, then we get Pr(L2+R2+ | L2R2Ck) = 1 in the same way that we
derived (6) from (2) in the proof of Proposition 1. Then, (16) clearly holds.

By Definition 1 and C3, for any i (i = 1, 2)

Pr(Li+Ri+ | LiRi) =
∑
k∈K

Pr(Li+Ri+ | LiRiCk) · Pr(Ck).

5To be exact, the screening-off factors are not always a logical partition. However, even in
such a case, if one event having probability 0 is added, the logical partition is obtained.
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Then, from Fact 2, we have

Pr(L1+R1+ | L1R1) ≤ Pr(L2+R2+ | L2R2)

and so by B1, 0 < Pr(L2+R2+ | L2R2). That contradicts B4.
Suppose there exist separate screening-off factors {C12

k }k∈K and {C21
l }l∈L

for the correlations Corr(L1+, R2+) and Corr(L2+, R1+), respectively, and those
events meet S2 and S3. If we can construct the common screening-off factors
of Corr(L1+, R2+) and Corr(L2+, R1+) from the separate ones ({C12

k }k∈K and
{C21

l }l∈L), and furthermore if those events satisfy C2 and C3, then using Fact 2,
we can show the non-existence of local separate common-cause model. In short,
the non-existence proof of the local separate common-cause model is reduced
to the non-existence proof of the local common common-cause model. In this
proof, the probabilities of each event in the logical partition are summed, as
in the case of Bell correlation. Even in the case of Hardy relations, It is not
meaningless to discuss the issue of reducibility.

4.3 Perfect Correlation or not?

In this section, let us consider whether the correlations Corr(L1+, R2+) and
Corr(L2+, R1+) in Hardy relations are perfect correlations or not. Because,
as mentioned above, if these are perfect correlations, then determinism holds,
and so common screening-off factors of those correlations can be constructed.
However, we can show that Corr(L1+, R2+) and Corr(L2+, R1+) are not perfect
correlations.

Fact 3. In a pure state ϕ in HL⊗HR, we assume that Hardy relations (17)-(20)
hold and that the correlation Corr(L1+, R2+) is a perfect correlation (i.e. not
only (18) but also (21) holds). Then, (18)-(21) exclude (17) and so a contradic-
tion is derived. For Corr(L2+, R1+), similarly, a contradiction is derived.

Proof. The following relations holds for the pure state ϕ in HL ⊗HR.

Qϕ(ALAR) > 0, (17)

Qϕ(BR | AL) = 1, (18)

Qϕ(BL | AR) = 1, (19)

Qϕ(BLBR) = 0, (20)

Qϕ(AL | BR) = 1. (21)

From (18) and (21), we get respectively

BRALϕ = ALϕ, (22)

ALBRϕ = BRϕ. (23)

AL and BR are commutative, and so from (22) and (23), we get

ALϕ = BRϕ. (24)
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From (20),
BLBRϕ = 0, (25)

where 0 is the zero vector. Then, from (24) and (25), BLALϕ = BLBRϕ = 0,
and so we have

BLALϕ = 0. (26)

Using (26), BLA
⊥
Lϕ = BLϕ−BLALϕ = BLϕ (where A⊥

L = I −AL) and so

BLA
⊥
Lϕ = BLϕ. (27)

Using (27) and the commutativity of operators of the left and right system,
BLARϕ = ARBLϕ = ARBLA

⊥
Lϕ = BLA

⊥
LARϕ, and so we have

BLARϕ = BLA
⊥
LARϕ. (28)

Also,
∥BLA⊥

LARϕ∥ ≤ ∥A⊥
LARϕ∥. (29)

Therefore, from (28) and (29), we have ∥BLARϕ∥ ≤ ∥A⊥
LARϕ∥, and so

∥BLARϕ∥2

∥ARϕ∥2
≤ ∥A⊥

LARϕ∥2

∥ARϕ∥2
. (30)

From (19), the left side of (30) is 1, and so the right side also is 1, therefore we
get Qϕ(A⊥

L | AR) = 1. Then,

Qϕ(ALAR) = 0 (31)

and this contradicts (17).

Note two things about this proof.

• Hardy actually constructed projection operators satisfying (17) through
(20). Fact 3 holds for arbitrary projections satisfying (17)-(20), not just
the actually constructed projections.

• As Hardy himself pointed out, Hardy relations only hold for non-maximally
entangled states. However, proof of Fact 3 did not use the distinction be-
tween maximally and non-maximally.

From Fact 3, the correlations Corr(L1+, R2+) and Corr(L2+, R1+) in Hardy
Relations cannot be perfect correlations. Therefore, determinism cannot be
derived. Then, we cannot construct common screening-off factors satisfying C2
and C3 in the way described in Sect. 4.1.
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4.4 Concluding Remark

As we saw in Sect. 4.2, we can rewrite the proof of Proposition 1 into a form
that uses logical partition instead of a single event, just as in the case of Bell
correlations. However, as stated in Sect. 4.3, we can not derive determinism.
Thus, in the way described in Sect. 4.1, we can not construct common screening-
off factors, and even if we can, those events do not necessarily satisfy C2 and
C3.

On the other hand, the following is also true. I have only confirmed that a
particular method constructing common screening-off factors satisfying C2 and
C3 from the separate screening-off factors satisfying S2 and S3 does not work.
However, it may be possible to extend the algebra of separate screening-off
factors to algebra including common screening-off factors satisfying C2 and C3
(e.g. the method Wroński et al. used for Bell-Aspect correlations, 6 see Sect. 5.6
in [13]). To show irreducibility rigorously, not only we confirm that a particular
method does not work, but also we need to show that, no matter what logical
partition is constructed, there exist no common screening-off factors satisfying
C2 and C3. This paper does not answer the issue of reducibility in this strict
sense, and I do not currently know the answer to it.
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L. (eds.) Making It Formally Explicit, pp. 85-107. Springer, Cham (2017)

[14] Higashi, K.: A no-go result on common cause approaches via Hardy rela-
tions. Stud. Hist. Philos. Sci. B 67, 12-19 (2019)

[15] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Informa-
tion. Cambridge University Press, Cambridge (2000)

[16] Hardy, L.: Nonlocality for two particles without inequalities for almost all
entangled states. Phys. Rev. Lett. 71, 1665-1668 (1993)
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