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Abstract One of the best known arguments against the connectionist approach
to artificial intelligence and cognitive science is that neural networks are black
boxes, i.e., there is no understandable account of their operation. This difficulty
has impeded efforts to explain how categories arise from raw sensory data. More-
over, it has complicated investigation about the role of symbols and language in
cognition. This state of things has been radically changed by recent experimental
findings in artificial deep learning research. Two kinds of artificial deep learning
networks, namely the Convolutional Neural Network (CNN) and the Generative
Adversarial Network (GAN) have been found to possess the capability to build in-
ternal states that are interpreted by humans as complex visual categories, without
any specific hints or any grammatical processing. This emergent ability suggests
that those categories do not depend on human knowledge or the syntactic struc-
ture of language, while they do rely on their visual context. This supports a mild
form of empiricism, while it does not assume that computational functionalism
is true. Some consequences are extracted regarding the debate about amodal and
grounded representations in the human brain. Furthermore, new avenues for re-
search on cognitive science are open.

Keywords deep learning · visual categories · machine learning · cognitive science

1 Introduction

Artificial neural networks have been regarded for decades as a typical example of a
black box among machine learning methods (Benitez et al, 1997, p. 1156; Tu, 1996,
p. 1226). It was claimed that it was impossible to understand how the networks
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transform their inputs into their outputs (Butz and Kutter, 2017, p. 61; Berkeley,
2019, p. 201). It was further emphasized that their functionality was distributed
among the units of the network so that it was impossible to identify which parts
of the network were responsible for learning specific categories. They have been
depicted as the epitome of unintelligibility due to the difficulty of decomposing
the operation of the networks into understandable steps (Carabantes, 2019, p. 6).
This criticism was typical in the old shallow networks era, where the paradigmatic
artificial neural networks had three neural layers at most and was inherited by
the new deep networks, which typically contain dozens of layers. Their learning
algorithms are understandable, but the specific process which makes a network
yield an output for a particular input is exceptionally complex since it involves
tracing millions of connections. This additional structural complexity means that
deep networks lack functional transparency (Creel, 2020). Building on this draw-
back, it was possible to argue that the outstanding successes of deep learning
did not have any resemblance to the concept based operation of human reasoning
(Gomes, 2014). Nevertheless, demonstrations of concept acquisition by shallow
networks have been produced for some decades, where concepts are associated
with regions in the input spaces of their hidden units (Clark, 1993, pp. 95-98).
These attempts have been impeded by the difficulties of assigning meaning to the
dimensions of such spaces (Gärdenfors, 2000, section 7.1.4).

This situation has completely changed recently due to the efforts of researchers
to analyze the operation of deep networks (Chollet, 2018, p. 160). The networks
that are analyzed in this work employ supervised learning. This means that a
human supervisor establishes a target (desired) output, and then the parameters
(synaptic weights) of the network are adjusted by a learning algorithm to attain
that goal. Typically, the human supervisor labels the image of a scene with its class,
for example, dining room, kitchen, park, airport, or forest, so that the training set
is made of images of scenes. Convolutional neural networks (CNNs) trained to
recognize types of natural scenes, and Generative Adversarial Networks (GANs)
trained to generate realistic scenes, have been found to contain individual units
(neurons) which learn distinct high level (complex) visual categories of objects
within the scenes such as floor, chair, airplane, table, or tree (Bau et al, 2019, Qin
et al, 2018, p. 173). These visual categories are learned without any hint about
them from humans, i.e., the networks are not provided any information about how
many categories may exist. For example, the human supervisor marks which images
correspond to dining rooms, but she does not provide any indication about chairs,
tables, or any other object that may appear in a dining room. The units associated
with high level categories appear in specific layers within the deep architecture. It
must be noted that the CNNs analyze while the GANs synthesize (Section 4). Deep
networks were already known to be able to recognize or generate instances of object
classes already defined by a human who serves as the supervisor of the learning
system, but these new experiments are entirely different. The emergent visual
concepts are learned spontaneously by the deep networks because they are useful
as intermediate steps towards the resolution of the final goal established by the
human supervisor. Therefore, these intermediate categories are grasped without
any human provided information or assistance since they appear spontaneously
during the operation of the learning algorithm. In this work, I investigate the
consequences of the emergence of internal states in some deep neural networks
that are interpreted as visual categories by humans, as detailed in Section 2. I do
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not address the issue of neural network transparency for other applications such
as decision making for medical diagnosis and judiciary systems, which are most
relevant for the general public (Creel, 2020).

The emergent visual categories learned by the deep networks comprise the
object themselves and their surroundings. That is, the relevant context of an object
type is learned along with the visual aspect of the instances of the object at hand.
This is particularly evident for the GANs when interventions are made, after the
training is completed, in some units which spontaneously learn categories. It is
possible to insert an object artificially somewhere in an image generated by a GAN,
by forcing one or more units associated with that kind of object to activate1. When
such an intervention is made, a freshly generated, new instance of the object class
learned by the unit appears in the generated output image, and the vicinity of the
new object is modified so that it is visually coherent with the inserted object. It is
interesting to note that the network often refuses to insert an object out of place,
such as a door in the middle of the sky (Bau et al, 2018, p. 10). Therefore, the GANs
learn the shapes associated with an object class, the relative positions of objects of
other classes in the scene, and the visual coherence among them. For example, they
can even generate reflections on other objects present in a room when a window
is inserted. Also, sometimes they change textures while leaving the same kinds of
objects. If the unit associated with a category is manually deactivated, a previously
existing instance of the associated object class may vanish from the scene, leaving a
visually coherent background. As seen, the learned visual categories comprise high
level patterns and constraints, i.e., they are not just a miscellaneous collection of
low level primitive features. For example, a deep network can learn the pattern
that a chair has legs and a seat, and the constraint that the seat is above the legs.
Hence there is a true category acquisition rather than a mere adaptation to raw
visual similarities (Buckner, 2015, p. 317). This capability resembles the operation
of the ventral stream of the human brain (Buckner, 2018, p. 5366).

From a philosophical point of view, these developments are extremely relevant.
Since the networks are not provided with any prior knowledge about those high
level categories, it follows that the networks learn those categories by themselves.
In other words, those categories are naturally present in the image datasets. Here
naturalness means that they are not human made categories because humans do
not supply the networks with any information about them. Humans interpret the
categories as cognitively relevant, but this interpretation is made only after the
network has finished its training process. Therefore, these categories represent
structures that are intrinsic to visual datasets. That is, high level visual categories
like chair, tree or table are not arbitrary, although the signs (words) that are used
to name them are.

In this work, I adhere to the deflated notion of a concept advocated in (Buckner,
2018, p. 5341). That is, the focus is on how artificial deep learning neural networks
successfully learn representations of categories of objects, where those categories
have not been supplied to the networks by humans. Therefore, the question of
whether those visual categories fulfill objective criteria of correctness and inter-
subjective agreement is not addressed here. Such criteria are associated with more
demanding notions of concept.

1 An online demonstration is available at http://ganpaint.io/
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The CNNs and the GANs do not perform any structured linguistic processing
at all. Therefore, their acquisition of high level visual categories is made without
the participation of any linguistic structures. This suggests that those categories
are independent of grammar. In other words, visual categories do not need to be
embedded in the syntactic structures which make human language. This position
matches the fact that visual information processing is more primitive from the bio-
logical evolution point of view and earlier from the child development perspective,
than linguistic abilities.

The ability of CNNs and GANs to grasp visual categories from raw image
data entails fundamental consequences for the debate between empiricism and
rationalism in the philosophy of the mind and sheds some light on the role of
language and other prior human knowledge in the formation of visual categories.
These aspects are treated in Section 7. Finally, Section 8 concludes this paper
with some considerations about possible future developments in cognitive science
research.

2 Concepts versus categories

The prevalent notion of concept in cognitive science and psychology states that
concepts are bodies of knowledge that are employed to classify entities (Chin-
Parker and Ross, 2002, p. 353). Concepts are a primary tool that is used by our
cognitive processes (Machery, 2005, p. 446). I will note concepts in boldface. In
a strict sense, natural concepts are mental representations of classes that arise in
nature, i.e., those that are not related to human activity such as elephants or
emeralds (Ross, 2001). In a broader sense, natural concepts are those which are
amenable to inductive generalization (Machery, 2005, p. 445), because they com-
prise a set of properties which are commonly found in the members of the class
captured by the concept (Gärdenfors, 2000, section 3.4). In this work, we adhere
to the notion of visual category as a set of visual patterns that a human would
associate with a visual concept. I will note categories in normal text, as opposed
to concepts. The evaluation of the semantic relevance of the classification carried
out by a network must be done by a human (Cantwell Smith, 2019, p. 62). In
other words, the association of a visual category with a visual concept can only
be made by a human. A concept is a body of knowledge that is amenable to con-
stitute an elementary block of human cognitive processing. We acknowledge that
many concepts sharply differ in their structure and their suitability for inductive
reasoning (Machery, 2005, p. 465). The debate about the nature of concepts is out
of the scope of our investigation since we focus on what we will call natural visual
categories:

Definition 1 A natural visual category is a class of possible visual stimuli whose
associated concept is useful for human cognitive processing.

Under the above definition, possible examples of natural visual categories are door,
bird, bed, sky, and person, where each of these categories is understood as a class
of visual depictions of exemplars of the class. In other words, the door category
comprises the infinite set of all possible visual images of doors, both real and
imaginary. Of course, the boundaries of such a set are fuzzy and not crisp, i.e.,
something could look more or less like a door depending on the observer. But the
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key point is that natural visual categories are suitable for cognitive processing of
the visual information coming from the physical world.

It is worth noting that there is nothing in Definition 1 that requires that a
structured linguistic definition is provided for a natural visual category. In order
to have a door category, there is no need that a linguistic description of the defin-
ing properties of the door concept is supplied. A class of visual patterns defines
the category, and it is understood that at the boundaries of the class, there are
exemplars of visual patterns that have a partial degree of membership to the class.
This absence of a linguistic definition and the fuzziness of the boundaries of the
class agree with the kind of categories that CNNs and GANs learn. As mentioned
in Section 4, neither of these networks perform any symbol processing, since their
learning consists in extracting relevant visual patterns from the input images.
This does not preclude these networks from learning high level categories since
they grasp high level categories by the composition of low level details. Another
difference with respect to the categories of the classic approach to cognitive sci-
ence is that there is a large amount of redundancy since typically several slightly
different versions of the same category are acquired by various units of the same
network (Section 5). In contrast, the classic account of categories involves unique
and sharp linguistic definitions with little room for inconsistencies.

The high level categories learned by CNNs and GANs are natural visual cate-
gories in the sense of Definition 1. The interpretable unit detection procedure and
the subsequent validation (Section 5) ensure that the classes of visual stimuli that
are captured by the networks are meaningful and relevant for humans. Therefore,
those categories are amenable to human cognitive processing, as required by Def-
inition 1. The category associated with a given interpretable unit can be defined
as follows:

Definition 2 The natural visual category associated with an interpretable unit is
the set of visual stimuli for which the unit is active, where activation means that
the output of the unit is higher than some predefined threshold. If more than one
category surpasses the threshold, then the unit is associated with the category for
which the activation is the highest.

This way, a category is understood as a region of the input space of a unit. Deep
learning neural networks do not learn prototypes, but regions. In other words,
deep learning categories are region based, and not prototype based. As explained
in Section 5, typically, a given category is learned by several interpretable units of
the network, which may belong to the same or different neural layers. Each unit is
activated by a slightly different set of visual stimuli. Hence the representation that
the network makes of the category is fuzzy and not crisp. That is, for examples that
are at the boundaries of the category, not all the interpretable units will activate.
In contrast, for more typical examples, almost all interpretable units associated
with the category will agree.

3 Connectionism and artificial neural networks

The classic perspective in cognitive science viewed the human mind as a symbolic
processor which manipulates linguistic elements or symbols according to specific
rules. These rules include syntactic constraints (Horgan and Tienson, 1996 p. 23).
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That is, syntactic structures formed by symbols are passed through some trans-
formation rules to produce other syntactic structures. The dominant symbolic
approach to artificial intelligence matched this perspective. Therefore, symbol ma-
nipulating Turing machines served both as models of digital computers and human
brains (Horgan and Tienson, 1996 p. 24; Butz and Kutter, 2017, pp. 39-40). It was
postulated that mental processes are framed in a cognitive architecture that is
analogous to a computer programming language so that a language of thought is
responsible for the functional characteristics of the brain (Dawson, 2004, p. 110;
Piccinini and Scarantino, 2011, p. 14). The characteristics of this postulated men-
tal language were to be determined by cognitive research. Under this framework,
computation is equivalent to the manipulation of sequences of symbols that are
syntactically valid sentences in the language of thought (Piccinini and Scarantino,
2011, p. 8; Salisbury and Schneider, 2019, p. 311).

However, it has become evident that the individual neurons of the human brain
do not process symbols. Consequently, the fundamental assumption of the classic
approach has not been properly linked to biological evidence. This is known as
the symbol grounding problem (Butz and Kutter, 2017, p. 53), which comes from
the difficulty of specifying where mental symbols get their reference (Salisbury
and Schneider, 2019, p. 310). Based on this observation, and further supported
by the success of artificial neural networks in solving practical problems in science
and engineering (Bechtel, 1993, p. 120), the connectionist approach was proposed
as an alternative to the classic one. Connectionism draws on artificial neural net-
works as models of the brain (Horgan and Tienson, 1996 p. 49), which implies that
many cognitive tasks are not related to grammar processing. In particular, pattern
recognition and categorization might be carried out without any logical reasoning
(Bechtel, 1993, p. 126). Therefore, the formation of categories is not necessarily
associated with the syntactic manipulation of symbols that represent them. This
contrasts with the classical approach, where the manipulation of symbols is typi-
cally done according to syntactic rules that preserve the structure of the symbolic
representations. From the connectionist point of view, categories are not clear cut
and exceptionless linguistic definitions, but fuzzy and robust collections of patterns
(Horgan and Tienson, 1996 p. 142). As seen, there is a strong contrast between
the classic theories, which are based on crisp categories sequentially manipulated
according to rules based on grammars and logic (Newell and Simon, 1976, p. 116),
and the connectionist ones, which rely on fuzzy categories which are processed by
distributed networks of units (Piccinini and Scarantino, 2011, p. 2; Mayor et al,
2014, p. 1; Buckner and Garson, 2019, p. 80). The latter notion of fuzzy categories
agrees with the views of psychologists who think that definitions of everyday cat-
egories cannot be completely sharp (Buckner, 2018, p. 5346; Brainerd and Reyna,
2002, p. 164).

Nowadays, distributed, non symbolic representations are directly observed in
the human brain. As a consequence of this, a large part of the connectionist re-
search program has already been integrated into the standard approach to cogni-
tive science (Piccinini and Scarantino, 2011, p. 15; Mayor et al, 2014, p. 2) and
current psychotherapy methodologies (Neudeck and Wittchen, 2012, p. 4). Nev-
ertheless, the lack of interpretability of artificial neural networks has been singled
out as a limit to the chances of connectionism to become an overarching model
of the brain (Dawson, 2004, p. 239). It is interesting to note that artificial neu-
ral networks do not necessarily learn decomposable representations (Buckner and
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Garson, 2019, p. 82). That is, the representation of a high level category does not
necessarily contain interpretable representations of low level categories of the parts
of the main category.

When connectionism was first proposed, artificial neural networks were typi-
cally shallow. This means that they comprised few neural layers, where the neurons
of one layer were connected to those of the previous and next layers. In most cases,
there were just three layers: the input layer, the hidden layer, and the output layer.
Networks with two, three, or four layers were also employed. Still, the performance
gain diminished as more hidden layers were added, up to a point where more layers
decreased the performance. It was speculated that more layers could furnish better
functionality (Buckner, 2018, p. 5351), but it was not known how. In recent years,
new activation functions and more advanced learning algorithms have been devel-
oped, so that deep networks with tens or hundreds of layers can be successfully
trained. These deep architectures share many characteristics of the shallow ones,
such as non symbolic, parallel, and distributed processing. Consequently, many of
the postulates of connectionism can be applied to deep networks.

For our discussion, a notion of levels of description is considered where low
level objects are parts of high level ones (Elber-Dorozko and Shagrir, 2019, p.
211, 213). Hence the objects at different levels differ in their size and complexity:
higher level means larger and more complex objects. It has been argued that this
compositional hierarchy of levels facilitates the issue of defining abstract categories
(Buckner, 2019, p. 9). It seems the compositional hierarchy of levels of categories
only emerges when the neural architecture has a certain kind of structure, i.e.,
other neural architectures learn to accomplish the task (recognize or generate
scenes), but they do it without learning high level categories (Qin et al, 2018, p.
173).

Now it is time to clarify the notion of emergence that is employed in this work
since its usage varies depending on the discipline. For cognitive science purposes,
emergence is conceived as a complex system behavior that comes from the inter-
action of simple subsystems (Dawson, 2004, p. 63; Stephan, 2006, p. 486). In this
sense, the acquisition of high level visual categories from the interaction of the
units of a deep neural network can be regarded as emergent (see Section 6). This
is a form of self organization since a global pattern arises from the local interaction
of a multitude of simple processing units. Alternatively, it can be said that the
learning of visual categories is an example of structural unpredictability (Stephan,
2006, p. 496) because the existence of units that represent visual categories of a
very complex structure cannot be inferred from the principles of artificial neural
computation. It must be noted that the goals which the deep networks are set to
accomplish refer to images of scenes with no provided internal structure. That is,
the images are supplied to the networks without any indication of which objects
might be present on them, i.e., the images are just matrices of pixel values. There-
fore, the occurrence of units that comprise structurally complex visual categories
is not expected from the optimization of such goals.

4 Two deep learning artificial neural networks

Next, we outline the main characteristics of the two kinds of deep artificial neural
networks where the emergence of high level visual categories has been experimen-
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tally found, namely CNNs and GANs. Both of them share some critical charac-
teristics. First of all, they are feed forward neural networks. This means that the
information always flows from the input to the output, without any feedback loop
(Ketkar, 2017, pp. 19-20). In other words, the output of the network depends on
the current input only, and not on the past inputs. Consequently, these networks
have no internal memory, and they do not process sequences of inputs since all the
required inputs are provided simultaneously. They do not do linguistic processing.
Instead of this, they are oriented to image processing. They comprise convolu-
tional neural layers, which adapt to specific visual features by learning from a set
of training images.

In some sense, CNNs and GANs can be seen as two sides of the same coin. CNNs
perform image analysis, while GANs carry out image synthesis. In other words,
CNNs are discriminative models, while GANs are generative models (Foster, 2019,
ch. 1).

Let us consider CNNs first. They accept an image as input, and they determine
whether the image belongs to a specific class of images. The relevant classes are
defined by a human before training the network, and they may be classes of objects
(dog, cat, person, tree), or classes of scenes (kitchen, living room, church, park,
bedroom). The human supervisor must also provide a set of training images and the
class labels for them, i.e., for each training image, a human must indicate whether
it is a kitchen, a park, or a bedroom. After the CNN is trained with the labeled
images, it can classify other test images which differ from those in the training set.
Convolutional layers in the CNN are responsible for extracting significant features
from the information coming from the previous layer and passing them to the next
layer. As the information flows from the input to the output, the computed features
are higher level (Ketkar, 2017, p. 78), which matches the hierarchical structure of
visual stimuli (Chollet, 2018, p. 123). At the input layer, the raw, low level pixel
data are provided, while at the output layer the final decision is produced about
the class that the whole image belongs. Often the features computed at the earlier
layers are more general, while those extracted at the later layers are more specific
to the classification problem to be solved (Chollet, 2018, p. 155). The computed
features at each neural layer are learned automatically by the network, i.e., no
human intervention is required to define the features that must be extracted from
the data. This overcomes the limitations of other machine learning approaches,
where the features must be handcrafted by a human expert. Figure 1 depicts a
scheme of a CNN.

In contrast to this, the GANs accept a vector of random real numbers as
input, and they output a synthetic but realistic image of a specific class. The
class of images that a GAN generates depends on a set of training images that
must be provided by a human. Typically, a set of training images of the same
style is provided, for example, a collection of images of kitchens, if the GAN is
aimed to generate synthetic images of kitchens. In this case, no class labels are
provided to the network (Langr and Bok, 2019, section 1.4). For each possible
input vector, the GAN outputs a different synthetic image, different from all those
in the set of training images, but of the same style. The internal structure of a
GAN contains two subnetworks. One of them is called the generator, which is
responsible for generating a synthetic image from the random input vector, hence
the adjective ’generative’ of the GAN. The second subnetwork is the discriminator,
which determines whether an image is real or synthetic. According to an art forgery
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Image
Class
vector

Fig. 1 Scheme of a CNN. An image is given as input to the network, which yields as output a
class vector with the likelihoods that the image belongs to each of the predefined object classes.
The succesive neural layers (depicted as rectangular boxes) are smaller, i.e. they contain fewer
units. Information always flows from the input to the output (shown with arrows).

Random
vector

Generator Discriminator

Image Decision

Fig. 2 Scheme of a GAN. A random vector is given as input to the generator, which yields an
image as output. Then the image is supplied to the discriminator, which decides whether the
image is synthetic or real. The succesive neural layers of the generator (depicted as rectangular
boxes) are bigger, i.e. they contain more units. The successive neural layers of the discriminator
(also depicted as rectangular boxes) are smaller, i.e. they contain fewer units. Information
always flows from the input to the output (shown with arrows).

metaphor, the generator is the forger, and the discriminator is the expert (Gulli and
Pal, 2017, ch. 4). This is the reason for the adjective ’adversarial’ of the GAN. Both
networks are trained alternatively (Foster, 2019, ch. 4). First, the discriminator
is adjusted to minimize the classification errors. Then the generator is adapted
to maximize the classification errors. A GAN aims to learn the mathematical
manifold of the images that have a particular style, within the space of all possible
images. Once this manifold is learned, the GAN allows the sampling of realistic
images from that manifold (Chollet, 2018, p. 270). A scheme of a GAN is shown
in Figure 2.

Both CNNs and GANs stand as two of the best known deep learning neural
networks. The CNNs are established as the workhorse of present day computer
vision since they attained superhuman performance on image recognition tasks
(He et al, 2015, p. 1026; Foster, 2019, ch. 1). The GANs have also received a great
deal of attention in recent times due to the ever increasing realism of the images
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that they generate2, which is exploited in creative and artistic endeavors (Foster,
2019, Preface).

Now that the two artificial neural network models which are considered in this
work are described, it is time to investigate in the next section the reports of the
computational experiments that have been carried out with them.

5 The experiments

During the last years, several experimental reports have been published on deep
neural networks about the existence of units that capture human understandable
visual patterns. Low level features like colors, edges, and middle level features
like textures have been routinely found for some years (Chollet, 2018, p. 172;
Qin et al, 2018, p. 163), although this is not particularly interesting because it
does not entail the emergence of any high level (complex) category, i.e., only low
level categories were found. It could be argued that the results of these early
experiments do not imply that the networks are learning any complex categories
since the detected visual patterns are relatively simple. Nevertheless, more recent
reports indicate that units can arise within a deep network that are associated
with highly elaborate kinds of objects.

These units within deep networks have been named interpretable units (Bau
et al, 2017, p. 4; Zhang and Zhu, 2018, p. 35), i.e., artificial neurons which have
learned to represent a specific human understandable complex visual category. The
relevance of these computational experiments is that those interpretable units arise
in networks whose tasks do not explicitly require learning those visual patterns.
That is, the network learns intermediate visual patterns that are relevant to detect
(CNN) or generate (GAN) a more complex kind of object, but humans do not in-
struct the networks on which patterns are relevant or how they should be detected
or generated. For example, let us consider a CNN that is trained to classify images
of places into types such as cafeteria, promenade, cemetery, or conference room.
It is not interesting that the trained CNN contains units specialized in detecting
cafeterias, since the “cafeteria” label has been provided to the CNN by a human
supervisor. The critical point is that interpretable units arise in the trained CNN
which are associated to intermediate visual categories such as “bed,” “car,” or
“tree” which have not been provided by humans to the CNN in any way, as re-
ported in (Bau et al, 2017, p. 6). In other words, there are no human provided
labels about beds, cars, or trees, nor there is any human provided hint regarding
such intermediate visual categories that are relevant to classify images into types
of places.

The technique which is employed to find out interpretable units in deep net-
works is called network dissection (Qin et al, 2018, p. 170). First of all, the network
is trained to accomplish its goal, detection (CNN) or generation (GAN) of images
according to a given training set. The network dissection procedure is carried out
on the network in its final trained state. It is necessary to have some test images
along with their ground truth segmentation masks, which are annotations made
by humans where the objects which appear in each image are marked with their

2 GANs have been called “the coolest idea in deep learning in the last 20 years” (Metz,
2017) by Yann LeCun, recipient of the Turing award, the computer science equivalent to the
Nobel prize.
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class labels. For example, for an image of a park, its ground truth segmentation
mask indicates which regions of the image correspond to a tree, the grass, a per-
son, a dog, and so on. Each unit of the network has a varying activation strength
depending on the regions of each test image. Then for each unit of the network,
it is determined whether its high activation strength regions are correlated to the
regions associated with a single class of object in the ground truth segmentation
masks. If this is the case and the correlation is strong enough, then the unit is likely
to represent that class of object, so that a candidate interpretable unit has been
found. It must be highlighted that the semantic relevance of the human made re-
gion annotations and the correlation threshold required to associate regions affect
the identification of interpretable units.

To confirm the results of the candidate interpretable unit detection process, a
subsequent validation procedure is conducted (Zhou et al, 2014, p. 6; Bau et al,
2017, p. 4). The validation starts by automatically determining the receptive field
of a candidate interpretable unit for the test images, i.e., the region of the image
that most strongly activates the unit. Then those receptive fields, which are regions
of the test images, are provided to several human workers who do not interact with
each other. Furthermore, these workers are distinct from those who created the
ground truth segmentation masks for the previous network dissection procedure.
Each worker is asked which category is best represented by the set of image regions,
without providing a dictionary of possible categories to avoid biases. The workers
are also asked to identify which image regions do not associate with the category.
Then the precision of the unit is computed as the fraction of image regions that
do associate with the category. Finally, the candidate interpretable units whose
precision is higher than a given threshold, and such that the category identified
by the workers agrees with the category of the ground truth segmentation, are
declared as interpretable. It has been reported that for some networks, most of
their units are interpretable in this sense (Bau et al, 2017, p. 4). It is worth noting
that not all human workers agree on the category that the image regions represent.
Therefore, the distinction between interpretable and not interpretable units is not
clear cut, since it depends on the visual evaluation of the image regions by the
human workers, and the degree of intersubjective agreement that is required to
validate the interpretability of a unit. Moreover, it must be highlighted that for a
given network and a category, several interpretable units capture that particular
category, i.e., there is always redundancy in the learning of the categories. This
is typical of artificial neural networks, whose robustness and resilience to errors
come from such redundancy.

Reports include interpretable units in classifier networks that detect objects
that are parts of the classes to be recognized. For example, wheel detecting units
to classify bicycles and face detecting units to classify cats (Gonzalez-Garcia et al,
2018, p. 488). Networks trained to classify scenes contain interpretable units that
detect legs or lamps (Zhou et al, 2014, p. 7). Interpretable units specialized in the
generation of people, or train tracks appear in networks trained to generate videos
(Vondrick et al, 2016, p. 8). The kinds of objects that these units specialize are ex-
ceedingly complex to be learned by any simple combination of low level geometric
features. In other words, these units contain high level semantic information.

The procedure to determine which units are interpretable must be carefully
analyzed since it must be ascertained whether it can lead to some self deception.
The researchers might wrongly think that an understandable category emerges in



12 Ezequiel López-Rubio

the network without human help. This may be due to contamination of human
supplied information about the purportedly emergent categories, or an erroneous
interpretation of what the network does. On the one hand, the network training
process does not involve any information transfer from humans to the networks
about the objects which might appear in the images or their classes. This implies
that the training process does not seem to have any danger of contamination. On
the other hand, the subsequent interpretation of the final state of the trained net-
work depends on human categories expressed in natural language by the human
evaluators. It is not possible that the degree of interpretability of the network sur-
passes the degree of agreement among the human evaluators about the linguistic
labels assigned to the objects. Given the high proportion of interpretable units
found, the strong agreement among the ground truth segmentations and the sub-
sequent validations, and the lack of communication among the human evaluators,
it can be said with a high degree of confidence that the interpretations are plau-
sible according to many human evaluators. That is, the networks have learned
understandable complex visual categories without any cues from humans.

Nevertheless, another confusion is still possible, namely that no subset of units
is responsible for learning a specific category. This might happen if all units work
together to learn the same category so that no set of units can be identified as
the only one responsible for the acquisition of the category. In other words, there
are causal connections among the units which collectively explain the observed
acquisition of the category, and these causal connections might span the entire
network. If this were the case, the network would still have found a category,
but such knowledge would be spread all over the network. This kind of causality
analysis requires intervention on the subject of study (Pearl and Mackenzie, 2018,
ch. 1), in this case, the trained network. These interventions have already been
carried out in GANs, whose results support the claim that identifiable subsets
of units learn specific categories (Bau et al, 2018, p. 8). It has been found that
typically a small set of units, such as 20 units out of 512 in a layer, are responsible
for a given category like “curtain” in a GAN trained to generate conference room
images (Bau et al, 2018, p. 9). If the units of this set are ablated (deactivated) one
by one, the number of instances of the learned category diminishes progressively.
That is, the more curtain representing units are deactivated, the fewer curtains
which appear in the generated synthetic images, while the rest of the objects of
the scene occur with the same frequencies. Unit ablation can also be employed to
enhance the appearance of the generated scenes in case that artifacts arise because
such artifacts are often created by defective units (Bau et al, 2018, section 4.2).
Conversely, inserting extra units that are associated with a given category increases
the proportion of instances of that category which appear in the output images,
leaving the ratios of the frequencies of the other categories equal. It must also
be highlighted that the network often refuses to remove all instances of objects
which are essential for the kind of scene at hand, such as chairs in a conference
room. It also usually refuses to insert objects out of place, such as doors on trees
(Bau et al, 2018, p. 9). Moreover, the removal and insertion of objects respect the
visual coherence of their surroundings (Bau et al, 2019, p. 8). This implies that the
semantic knowledge about the relative positions of the instances of the categories
is also acquired by the GANs. It must be pointed out that the interventions are
not always successful. That is, sometimes, the insertion of units associated with a
given category does not result in the appearance of any object. Nevertheless, such
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insertions never result in the appearance of an object of a different category, i.e.,
you never obtain a tree by inserting units associated with domes.

The experiments suggest that the number of layers (depth) and the number
of units per layer (width) of the networks influence the number of emergent cat-
egories. Counting the number of emergent categories is done by establishing a
reference image dataset containing human annotated image regions, where each
region is labeled with a normalized category name. Each category name is an En-
glish word (Bau et al, 2017, p. 2). It seems that deeper networks are more amenable
to finding high level categories (Bau et al, 2017, p. 5). Also, adding units in the
layers where high level categories arise often increases the number of learned cat-
egories, up to a certain point where no extra categories appear (Bau et al, 2017,
p. 8). The overall picture which can be extracted from these results is that the
emergence of high level categories is easier in neural architectures whose depth
and width are within some ranges.

From the above, it can be seen that the experimental evidence on the ability of
CNNs and GANs to learn high level visual categories is overwhelming. In the next
section, it is argued that visual categories emerge in these networks, in a sense
defined in Section 3.

6 The emergence of natural visual categories

Next, it is argued that the learned natural visual categories are emergent (Section
3). CNNs and GANs are composed of thousands of relatively simple units. The
cooperation among the units enables the learning of progressively higher (CNNs)
or lower (GANs) level categories in the structure. It is worth noting that units of
separate layers have the same structure, while they learn categories of different
levels depending on their location within the neural architecture. That is, there
is nothing specific in the units which directs them towards learning one category
or another. Hence, it is the interaction among units that enables the emergence
of the natural visual categories in the neural architecture. Furthermore, structural
unpredictability is also found here. The CNNs are trained to recognize several
kinds of scenes so that the goal which is set up for their training is maximizing the
classification accuracy for the classes of scenes defined by the human supervisor.
Therefore, the training goal is not explicitly related to learning any intermediate
natural visual categories (door, tree, sky), since the goal only refers to the scene
level classification (park, bedroom, kitchen). Similarly, the goal of the GANs is to
generate scenes of a specified kind that are maximally realistic. Again this training
goal does not imply the generation of intermediate categories whose combination
yields the overall scene. Hence the human supervisor does not supply any hints
about the visual structure of the scenes.

In other words, for the CNNs and the GANs the training goals do not refer to
any objects, but to the overall image of a scene, which implies that the acquisition
of natural visual categories is an unexpected effect of the application of the training
algorithms to maximize such goals. The training algorithms do not contain any
reference to objects, either. Therefore, the emergence of the categories can not
be derived from first principles, as required by structural unpredictability. The
emergent categories have a level of specificity (Gärdenfors, 2014, section 2.3) that
is higher than geometric primitives such as edges, while they are lower level than
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the category that comprises the overall kind of scene which is modeled by the
network (kitchen, church, bedroom).

7 Discussion

In this section, the implications of the emergence of natural visual categories in
artificial deep networks for cognitive science and artificial intelligence are inves-
tigated. Four conclusions are extracted from this investigation, which summarize
the novelties which derive from the above described experimental findings. As
mentioned in Section 1, these visual categories are not understood as full fledged
concepts that are consistent according to universal, objective criteria of correct-
ness. Our visual categories are associated with fuzzy sets of images that vary from
one subject to another.

The multiplicity of interpretable units that learn the same high level cate-
gory can be related to perspectivism in conceptual spaces, which emphasizes the
importance of alternative views on the same conceptual space (Kaipainen and
Hautamäki, 2015, p. 249). For CNNs and GANs this occurs because each neural
layer of each neural network defines a different conceptual space to represent the
same kind of sensory data, i.e., the images. The dimensionality of the space varies
for each neural layer since the dimension is the number of neurons of that layer.
Under the perspectivist approach, category construction starts from an onto-space
formed by dimensions that are associated with observable features. In our case,
the onto-space would be the space of all possible images, so that the dimensions
of the onto-space are the raw pixel levels of the image. Then a perspective to
the onto-space could be defined as a transformation to a representation space
where object recognition is more manageable (Kaipainen and Hautamäki, 2015,
p. 251). For CNNs and GANs, this transformation is given by the composition of
the transformations carried out by the neural layers of the artificial deep network.

The interpretation that is advocated in this work about deep learning is com-
patible with but does not assume, a connectionist type of computational func-
tionalism of the kind described in (Buckner and Garson, 2019, p. 79; Piccinini
and Bahar, 2013, p. 479; Piccinini and Scarantino, 2011, p. 12), which states that
artificial deep neural networks are a good model of the human brain. The two
possibilities are:

– If artificial deep networks are good models of the human brain, i.e., connection-
ist computational functionalism is true, then the emergence of natural visual
categories in artificial networks might be caused by the cognitive abilities of
the neural structure shared by the human brain and the artificial deep net-
works. This does not preclude those visual categories from arising in other
artificial cognition systems. That is, the possibility that visual categories are
not exclusive of brain like structures can not be ruled out.

– If artificial deep networks are not good models of the human brain, i.e., con-
nectionist computational functionalism is false, then the emergence of natural
visual categories is not specific to human like cognitive structures. Hence ar-
tificial deep networks and the human brain capture the same high level visual
categories independently, i.e., they employ different cognitive processes to find
such categories. Again, other artificial or biological entities with entirely differ-
ent cognitive structures might also be capable of learning the same categories.
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Empiricism is supported by the ability of CNNs to recognize objects given human
provided class labels (Buckner, 2018, p. 5341) since such ability shows that high
level knowledge can be abstracted from raw visual data. This ability depends on
the supervision by humans, because the CNN is provided a training dataset where
each image is accompanied by a class label given by a human supervisor.

The recently observed emergence of natural visual categories without human
supervision, which is the topic of our work, goes well beyond in its philosophi-
cal consequences. This time the human supervisor does not provide hints about
the intermediate categories that should be learned towards the recognition of the
human supplied class of scenes. For example, let us consider a CNN to classify
rooms. The human supervisor provides the class labels associated with each full
image of a room, such as “kitchen,” “bedroom,” or “sitting room.” But the human
supervisor does not supply the network with any hints of the objects that appear
in the images of the rooms nor their categories, such as “chair,” “lamp,” “bed,”
or “table.” These intermediate categories are found by the networks as learning
progresses. While it must be acknowledged that no machine learning model can
work without any prior knowledge, i.e. pure empiricism is out of the question, the
debate should focus on how much knowledge is provided to the network and to
which extent the network abstracts the knowledge from data (Buckner, 2019, pp.
11-12). Moreover, the absence of linguistic processing in the operation of CNNs
and GANs downplays the importance that rationalism gives to linguistic reasoning,
which has been associated with the classic approach to cognitive science (Section
3).

We summarize our findings of the operation of CNNs and GANs described in
Section 5 in the following claims:

Claim (1) Many natural visual categories are universal and not arbitrary, i.e., they
can be learned without any human provided information about them.

The main justification of this claim is that no human supervision is employed
to supply the CNNs or the GANs with any information about the categories of
objects that appear in the images of the scenes, although the human supervisor
does provide the labels for the categories of scenes. Moreover, different units of
different networks learn the same category, with small variations, without any
information exchange among the networks.

It must be pointed out that the networks are supplied some knowledge in
the form of the human provided class labels, the convolution operation (Silver
et al, 2017, p. 354; Marcus, 2018, pp. 7-9), the learning algorithm, the activation
function, and the architecture of the network which comprises the number of layers
and the number of units of each layer. Next, I analyze which prior knowledge is
provided to the network by these means.

The convolution operation provides translation invariance (Marcus, 2018, p.
7; Chollet, 2018, p. 321; Gulli and Pal, 2017, ch. 3; Buckner, 2018, p. 5354). For
the experiments described in Section 5, this amounts to saying that the network
is told that the same object can appear at different positions in the image. This is
a general constraint that applies to all kinds of objects, so there is no information
concerning any particular visual category here. The learning algorithm tells the
network how to adjust its synaptic weights so that the error measure is minimized.
The learning algorithms employed in deep learning are variations of gradient de-
scent on the error surface (Langr and Bok, 2019, subsection 2.7; Chollet, 2018, p.
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50). These learning algorithms do not provide any insights about specific visual
categories. The activation functions employed in deep learning, such as the recti-
fier linear function, are aimed to facilitate the operation of the gradient descent
algorithm by producing stable gradients (Ketkar, 2017, p. 30). Again, this does
not supply any information concerning individual visual categories. The architec-
ture of the network has been found to influence the number of emergent categories
(Section 5). Still, there is no evidence that changing the number of layers or the
number of units in each layer is correlated with finding a particular visual category.

As seen above, the network does not start in a completely blank state. The gen-
eral notion of an object is inserted into the network architecture by a human. This
implies that pure empiricism is not supported by Claim 1. Still, the human knowl-
edge which is injected into the network is not related to the intermediate visual
categories which emerge from the network, i.e., those emergent object categories
which do not correspond with any human supplied class labels in the training set
of images.

Finally, it must be highlighted that the exact same network, comprising the
same convolution operators, activation functions, neural architecture, and learning
algorithm, finds completely different emergent visual categories depending on the
kind of scenes that it is trained on (Bau et al, 2017, p. 6; Bau et al, 2019, p. 5).
That is, the same network finds the table category if it is trained with images of
kitchens, the bed category if it is trained with bedrooms, and the tree category if
it is trained with parks. This strongly suggests that the knowledge that humans
inject into the network does not contain any information about specific visual
categories.

Claim (2) If connectionist computational functionalism is true, then the innate
structure of the human brain spontaneously captures natural visual categories,
independently from human knowledge and culture.

Artificial deep networks might be good models of the human brain, i.e., connec-
tionist computational functionalism might be true. If that is the case, so that the
processes that underlie visual category formation in CNNs and GANs are similar
to the ones in human brains, then the emergence of natural visual categories in
these networks would imply, by Claim 1, that such categories are captured by the
mind irrespective of human knowledge or culture. It is not completely clear to
which extent artificial neural networks are similar to the human brain. The main
difficulties in drawing analogies among artificial and biological neural networks are
the low biological plausibility of the learning algorithms employed to train artificial
neural networks, particularly the backpropagation of the error mechanism (Buck-
ner, 2018, p. 5364; Butz and Kutter, 2017, p. 60). Also, artificial neural networks
have much more regular architecture than biological ones. Therefore, it is prefer-
able to leave Claim 2 conditioned on the truth of connectionist computational
functionalism.

Claim (3) Some natural visual categories are context dependent, i.e., it is not only
the image of the object itself that makes it a part of the category but also the
objects that surround it.

This claim is supported by the fact that for the GANs the insertion or deletion
of some objects affect their surroundings in a visually coherent way. For example,
when a window is inserted or deleted from a kitchen, the wall and the furniture are
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often adequately modified to accommodate for the change. That is, the surround-
ing objects are modified in a way that humans find consistent with their visual
constraints on how a kitchen must look. Moreover, the addition of out of context
objects, such as a door in the sky, is rejected by the GANs. These experiments
suggest that contextual information is learned and integrated into the conceptual
spaces.

Claim (4) Natural visual categories are independent of the syntactic structure of
language.

This follows from the fact that CNN and GAN deep networks do not perform any
grammatical processing. No sequential computation, internal memory, symbols,
or tree structures are employed whatsoever (Section 4). That is, artificial deep
networks of the CNN and GAN types acquire non syntactic knowledge3. This evi-
dence is against the classic approach to cognitive science and artificial intelligence,
which states that information processing is done through symbol manipulation
according to syntactic rules.

The four claims that have been stated above can be related to one of the
most heated debates in cognitive science about the nature of concepts, namely the
amodality of the representation of concepts in the human brain (Kiefer and Pul-
vermüller, 2012, p. 806). This debate deals with the possible concept representation
and organization schemes that are employed by the mind (Mahon and Caramazza,
2009, p. 28). The grounded representation approach, also known as neo-empiricism,
which adheres to the embodied cognition framework, defends that conceptual con-
tent is sensory and motor (Mahon and Caramazza, 2009, p. 41; Kiefer and Pul-
vermüller, 2012, p. 820). The opposing amodal approach postulates the existence
of a concept representation system that is independent of the sensory system so
that sensorial information is removed before concepts are stored and managed by
linguistic processes (Machery, 2007, p. 21; Kiefer and Pulvermüller, 2012, p. 806).
An intermediate stance is that perceptual representations are required for some
mental tasks, while amodal ones are more suitable for others (Machery, 2007, p.
36).

The possible contribution of the above described experimental results to this
debate depends on the validity of a connectionist form of computational func-
tionalism. If artificial deep networks are good models of the human brain, then
the emergence of visual categories in artificial deep networks implies that there
is a grounded, sensory representation of their associated concepts in the human
brain. It must be noted here that the category representation of CNNs and GANs
discussed in this work is perceptual but not motor, since the experiments do not
involve any actions to be executed by the agent. But if artificial deep networks are
not good models of the brain, then the experiments show that there are ways to
learn grounded representations of high level visual concepts, even if those ways do
not exist in the brain.

If we assume connectionist computational functionalism, the above claims
would only rule out a purely amodal representation of visual concepts as defined
in Section 2. A grounded representation would exist, but it could be linked to a

3 There are artificial deep neural networks that do manage sequential linguistic information,
such as Deep Recurrent Neural Networks (DRNNs), including Long Short-Term Memory Units
(LSTMs), but they are not considered in this work.
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more abstract, amodal representation of the same concepts (Dove, 2009, p. 413).
The ability of GANs to generate realistic examples of a learned category can be
seen as an artificial networks model of neural reenactment of past experiences by
biological networks, also called simulation, which constitutes grounded concepts
(Dove, 2009, p. 415; Machery, 2007, pp. 21-22). As required by the grounded repre-
sentation approach (Machery, 2007, p. 23), the simulated examples of each object
class produced by a GAN are not identical to any of the perceived examples in the
training set of the GAN. In other words, the acquisition of an embodied concept
requires that the representation is flexible enough to accommodate previously un-
seen instances of the object class, and the GANs possess such flexibility (Kiefer and
Pulvermüller, 2012, p. 809). Moreover, the contextual knowledge which is acquired
by CNNs and GANs when they learn visual categories provides a plausible mech-
anism for the context sensitivity characteristic of the human conceptual system
(Machery, 2007, p. 30). Visual concepts such as chair, tree, or table, are likely
to have a grounded representation. More abstract concepts like numbers (one,
two, seven) might have none (Dove, 2009, p. 418; Machery, 2007, p. 37), although
even this is disputable due to the existence of specific responses to numbers in the
human visual system (Shum et al, 2013, p. 6709). In other words, concepts differ
in terms of their suitability to be captured by images of exemplars of them (Dove,
2009, p. 426). This points to some kind of hybrid approach (Dove, 2016, p. 1112;
Wajnerman Paz, 2018, p. 5249), where CNNs and GANs might be example models
of grounded representations.

From a computational functionalist perspective, extreme forms of the amodal
theory of concepts, which neglect the existence of grounded concepts, are in conflict
with the emergence of visual categories in artificial deep networks. The offloading
hypothesis (Machery, 2016, p. 1094) states that concepts are amodal, so that per-
ceptual information is offloaded onto sensorial systems in the brain whenever a task
requires it. This contrasts with the emergence of high level categories within purely
visual networks such as CNNs and GANs. Other versions of the amodal theory
acknowledge that sensorial and motor representations interact with amodal repre-
sentations (Leshinskaya and Caramazza, 2016, p. 995), which makes them easier
to accommodate with the emergence of visual categories in artificial networks. The
category representation mechanism of CNNs and GANs can be regarded as a fully
detailed model for grounded concepts in the brain, which contrasts with the ab-
sence of a precise specification of the representation of amodal concepts (Barsalou,
2016, p. 1127).

8 Conclusion

The success of deep learning in solving many decades-long fundamental struggles
in artificial intelligence has sparked a revolution that has affected related disci-
plines such as cognitive science. It is time to analyze what deep learning has to
tell us about the physical world and our minds, ignoring the hype which accom-
panies these extremely popular victories. It is tempting to say that the prophecies
of connectionism have been fulfilled. However, this depends on the validity of ar-
tificial neural networks as models of the human brain, i.e., whether some form of
computational functionalism is true. There are relevant differences between arti-
ficial and biological deep networks, so this line of argumentation is rather risky.
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In this work, we have chosen to leave the computational functionalism question
aside, and focus on the consequences that can be drawn from the most recent
experiments irrespective of its answer.

The emergence of natural visual categories in artificial deep networks is relevant
in itself because it teaches us lessons about the nature of visual concepts even if the
human brain captures them by other processes. In particular, it tells us that the
acquisition of such concepts is not necessarily related to previous human knowl-
edge about those concepts and that they can be acquired without grammatical
processing abilities. A mild form of empiricism is supported by these conclusions
since some visual categories are found by the networks without human hints, but
there are some general visual learning mechanisms which must be provided to the
artificial network by a human to enable the network to find high level categories
by itself from the raw images. Moreover, the way that the emergent categories
interact with each other suggests that visual context is inextricably related to the
category itself.

Our claim that natural visual categories are independent of the syntactic struc-
ture of language is compatible with the language being the vehicle of abstract
mental processes. The experiments which have been discussed here show that ob-
ject categorization is not necessarily attached to structured linguistic definitions,
although it seems obvious that such categorizations are later transformed into
structured linguistic knowledge in the human brain. CNNs and GANs might be
models of grounded representations of visual categories amenable for sensorial and
motor tasks, which could coexist with amodal representations oriented to struc-
tured linguistic processing and abstract reasoning.

One of the most important advantages of the artificial deep networks that have
been discussed in this work is that they allow experimentation with high level
visual categories alone. That is, experimentation on human subjects necessarily
implies the concurrent operation of many other mental processes that operate in
the brain. In contrast to this, CNNs and GANs are entirely focused on managing
visual information, so that other cognitive processes do not complicate the inves-
tigation about high level visual categories. This is the first time in the history of
cognitive science that such a powerful tool is available to researchers, so it can be
expected that surprising revelations will arrive in the near future. New light has
been thrown on black boxes that illuminates the path ahead of us.
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