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Abstract

“Signals” are a conceptual apparatus in many scientific disciplines. Bi-

ologists inquire about the evolution of signals, economists talk about

the signaling function of purchases and prices, and philosophers dis-

cuss the conditions under which signals acquire meaning. However,

little attention has been paid to what is a signal. This paper is an

attempt to fill this gap with a definition of signal that avoids reference

to form or purpose. Along the way we introduce novel notions of “in-

formation revealing” and “information concealing” moves in games.

In the end, our account offers an alternative to teleological accounts

of communication.
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1 Introduction

“Clouds mean rain”

“The word ‘dog’ means dog”

Distinguishing between the two senses of the verb ‘to mean’ in the above

sentences has occupied a central place in the philosophical discussion of lan-

guage. The difference was captured by Peirce’s distinction between indices

— those signs which naturally correlate to the object they represent — and

symbols — those signs that represent an object because of a certain arbitrary

choice by a linguistic community [12].

This distinction is carried forward in Grice’s definition of non-natural

meaning [6]. Non-natural meaning is present when the speaker intends to

communicate and intends that the listener recognize this intention, while

natural meaning can exist without either of these. The second part of this

account—that the speaker intends for the hearer to recognize her intention

to communicate—is critical because it distinguishes between cases where the

hearer merely observes an action that is performed for some purpose other

than communicating. So while one might infer from my carrying an umbrella

that it will rain, my carrying an umbrella is not the same as my telling you

it will rain. In ordinary cases where I carry an umbrella, I do not intend to

communicate anything nor do care what you infer from it, whereas when I

say to you directly: “It will rain,” one supposes that I do.

Grice’s notion of non-natural meaning is related to the distinction between

conventional and non-conventional behaviors. Starting with [9], conventional

behaviors are defined (loosely) as those which are done exclusively because
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others do them. Language features many conventional choices: I say “It

will rain” when I think it will rain only because other people also use those

words in that way. If people used words differently, I would say something

different. Carrying an umbrella, on the other hand, is not conventional: I do

it because it keeps me dry irrespective of whether other people do it. Many

conventional linguistic behaviors contain Gricean non-natural meaning.1

A similar issue arises in biology. Many biologists are interested in dis-

tinguishing between signals—those phenotypes which have evolved solely to

transmit information—and cues—those phenotypes that transmit informa-

tion, but evolved for some other purpose [10].2 Gricean intentions will not

do the trick here, however. While primates might perhaps be said to have

intentions, it is less obvious that bees do and highly likely that bacteria do

not. Biologists would appreciate a distinction which accounts for all cases of

the transmission of information between, and even within, organisms. Re-

searchers who tackle this problem have, in one way or another, relied on a

notion of biological function. Stated loosely, signals evolved because of their

effectiveness in transmitting information while cues did not.

The biological way of capturing this distinction has been brought back

into the philosophy in various guises. Dretske [3] and Skyrms [16] have

used it in epistemology. In the philosophy of language, several authors

have attempted to ground meaning in various amalgamations of information-

theoric concepts and notions of evolutionary history or biological function.

1While often conventionality is equated with arbitrariness, it need not [15]. The term

‘conventional’ also has a complex history in biology [7].
2Maynard Smith and Harper used an idiosyncratic definition of ‘index’ that is incom-

patible with the Peircean terminology. Here we stick to Peirce’s definitions
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In this later camp are the teleosemantic theories of Millikan [11], Harms

[8], Stegmann [18], Birch [1], and Shea, Godfrey-Smith, and Cao [14]. Un-

der this description, one can view the teleosemantic enterprise as replacing

Grice’s intentions with biological or cultural function.3

Finally, the same set of problems emerges in the study of economic behav-

ior. Since Spence’s work [17] in the 1970’s economists have come to recognize

that many economic actions like setting prices or paying for celebrity en-

dorsements might function to convey information from one party to another.

Here, too, a critical distinction arises between those actions that are taken

for the purpose of conveying information and those that convey information

only incidentally. This distinction separates those economic behaviors which

are truly signals from those that have another economic motivation. The

study of “signaling games” has become a significant enterprise in economic

thought. Even more radically, there is some recent interest in so-called “self-

signaling” where an economic action — like donating to a charity — is taken

to purportedly send a signal to oneself at a future time [4].

All the methods for drawing the distinction create complexities for those

interested in determining whether a particular sign is an index or a signal.

One must determine the provenance of a sign by finding either the intentions

that were present at its production or the evolutionary processes that resulted

in its fixation. In some cases this may be possible, but in other situations it

3Skyrms [16] is somewhat difficult to categorize as clearly teleosemantic or otherwise.

He does not attempt to develop a distinction between signals and cues. He does, however,

develop a theory of misinformation and deception which uses properties of the entire

population. A signal is roughly speaking misinformation for Skyrms if it normally is used

to communicate about state S but in this case is used in a different state.
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might be difficult. For instance, in studies of animal behavior scientists may

not know the evolutionary history leading to the production of a sign, but at

the same time they may lack the means to construct an account in terms of

intentionality. Nevertheless, they often wish to talk meaningfully about an

animal sending a signal or even deceiving another organism. In these difficult

situations it would be very useful to have a method by which one could draw

the distinction between signals and indices without relying on evolutionary

history or speakers’ intentions.

In the present paper we develop an alternative methodology for capturing

the distinction between signals and signs, a methodology which relies solely

on the game-theoretic structure of the interaction. Utilizing the canonical

two-person models of communication that are studied in philosophy, biol-

ogy, and economics, we define an “informational move.” We say a move

is informational when you would not do it if the other party already knew

everything you do. By making this notion precise we will be able to distin-

guish between signals and indices without relying on teleology in one guise

or another. Formalizing the notion of informational moves also allows us to

uncover a communicative flip-side to the production of signals. In contrast

to typical signals that serve to reveal information, we describe this new class

of behaviors as “information concealing”.

This represents two improvements on existing theories. First, in some

cases it may be easier to determine whether or not something counts as a

signal—namely, when the evolutionary or intentional provenance of a behav-

ior may be empirically inaccessible. Second, it is simpler. Most teleosemantic

theories require an understanding of the strategic situation (the game being
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played), as does our approach. But we do not require the kind of knowledge

of evolutionary history that is part and parcel of teleosemantics.

2 Signals

Peacocks vary in quality; some are desirable mates for peahens while others

are not.4 Peahens want to mate with the good males and avoid the bad ones,

whereas both high and low quality males would like to mate with a peahen.

High quality males have an interest in finding a way to communicate their

quality to peahens that cannot be imitated by their low quality rivals.

This example illustrates a general problem faced by human and non-

human animals alike: receivers and some signalers would benefit from honest

communication, but other signalers have incentives to be deceptive. How can

honest communication be ensured? The canonical solution to this problem,

called Costly Signaling Theory, was developed independently in biology and

economics and employs the formal tools of game theory.5

Consider a simple model. Nature flips a (potentially biased) coin to de-

termine the quality of the peacock: either high or low. The peacock learns

his quality and takes one of two actions: he can either grow a big tail or

grow a small tail. Growing a big tail requires substantial energetic expense,

4This is a standard story in biology. But it is important to note that it should not be

taken as a formal natural history of peacocks and peahens. For simplicity we use teleo-

logical language throughout; ‘peahens want x’ is our shorthand for ‘peahens are selected

to. . . ’
5In biology, the germ of the idea is ascribed to Zahavi [19]. A game theoretic foundation

was later provided by Grafen [5]. In economics, the first models of signaling were developed

by Spence [17].
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although the expense is considerably larger for the low quality peacock than

it is for the high quality one. The peahen, who cannot directly observe the

quality of the male, observes the size of the male’s tail and decides whether

to mate with him. The peahen has no intrinsic interest in the peacock’s tail,

only an interest in mating with the high quality male.

This story is summarized in the extensive form game pictured in figure 1.

Here the benefit of mating for the male peacock is 1, but growing a large tail

has a cost of c for the high quality male or d for the low quality male. For

the female, mating with the high quality male pays 1 while mating with the

low quality male pays 0.

If the cost for the low quality peacock to grow a big tail (d) is sufficiently

large, and if the cost for the high quality peacock to grow a big tail (c) is

sufficiently small, then a Nash equilibrium exists in which the high quality

male grows a long tail and the low quality male does not and in which the

female chooses only to mate with males with long tails.6 In this situation,

biologists would say that the high quality peacock is signaling his quality to

the female.

Under traditional definitions of a signal, if one is to justify such claims

about the signaling nature of this game, one must know either the intentions

behind the production of the long tail or the evolutionary history of this

phenotype. We believe that this distinction can be drawn without reference

to either.

Notice that had the peahen been aware—directly—of the peacock’s qual-

6A Nash equilibrium of a game is a stable state where each individual player is doing

the best she can given how the other player(s) are behaving.
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High qualityLow quality  

big tail 

small tail

  

mate  don’t

  

mate  don’t

mate  don’t mate  don’t

  

PEACOCK

PEAHEN

PEAHEN

NATURE

 1-d,0   -d,1   -c,0    1-c,1

           0,1               1,0 0,0    1,1  

big tail 

small tail

Figure 1: Shown in extensive form, a costly signaling game in which a peacock

signals his quality to a peahen. Double lines indicate equilibrium play for the

signaling equilibrium that exists when c < 1 < d. At this equilibrium, the

size of the tail conveys reliable information about the quality of the peacock.
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High qualityLow quality  

big tail 

small tail

  

mate  don’t

  

mate  don’t

mate  don’t mate  don’t

  

PEACOCK

PEAHEN

PEAHEN

NATURE

 1-d,0   -d,1   -c,0    1-c,1

           0,1               1,0 0,0    1,1  

big tail 

small tail

Figure 2: The peacock “comparator game”

ity, the peacock would not have bothered to grow a long tail. He grows a

long tail because it communicates his quality, but only because it does this.

In order to make this informal idea somewhat more precise, we introduce

a modified version of the peacock game where the peahen is aware of the

peacock’s type. This game is pictured in figure 2.

In this “comparator game,” the peahen is aware of the peacock’s quality.

As a result neither the high nor the low quality peacock will grow a long tail

— doing so would expend resources for no purpose. So, although there is
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a Nash equilibrium in the original game that involves high quality peacocks

producing a large tail, there is no such equilibrium in this comparator game

where the peahen starts off just as well informed as the peacock.

This observation identifies what we call an informational move:

First gloss. A move m by player 1 is purely informational if it is

performed when player 1 knows things that are unknown to player

2, but not performed when player 2 has all of the information that

was available to player 1 when player 1 chose m.

We will make this notion mathematically precise in section 5, but first we

will turn to another example.

3 Information concealing moves

In their (now classic) discussion of signaling games Cho and Kreps [2] describe

a scenario known as the beer and quiche game. A traveler finds himself with

no choice but to have breakfast at a particularly rough bar. Visitors often

end up at this bar for breakfast and the locals occasionally challenge the

visitors to a fight. Some of the visitors are surly fellows who would prefer to

drink beer for breakfast. Beyond their culinary preferences, surly fellows are

dangerous to fight and the locals would prefer to avoid them. Not all visitors

are surly, however. Some are wimpy. Wimpy visitors have a preference for

quiche for breakfast, and are exactly the sort of people that the locals would

like to fight. Importantly like the example of the peacocks before, the locals

cannot directly observe whether the visitor is surly or wimpy.
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       Surly 
     (p=0.9)

   Wimp 
  (p=0.1)  

  beer 

quiche

  

 don’t  fight

  

don’t  fight

don’t    fight don’t    fight

  

Player A

Player B

Player B

NATURE

  2,0     0,1    1,0    3,1

           1,1               3,0 0,0   2,1  

beer 

   quiche

Figure 3: The beer and quiche game
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       Surly 
     (p=0.9)

   Wimp 
  (p=0.1)  

  beer 

quiche

  

 don’t  fight

  

don’t  fight

don’t    fight don’t    fight

  

Player A

Player B

Player B

NATURE

  2,0     0,1    1,0    3,1

           1,1               3,0 0,0   2,1  

beer 

   quiche

Figure 4: The beer and quiche “comparator game”

This game is illustrated in figure 3. In this game there is a Nash equi-

librium where both the wimpy and surly visitors choose to drink beer. The

surly individuals drink beer because they prefer beer. The wimpy individu-

als, however, cannot afford to choose quiche despite their preference for it,

because by doing so they would reveal that they are wimpy and would then

be challenged to a fight. Instead, even the wimpy individuals drink beer in

order to disguise their fighting abilities.

We can again consider our test for informational moves. Suppose now
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that the locals can observe directly whether the visitor is surly or wimpy. In

this situation (shown in figure 4) the surly visitor continues to drink beer –

it is his preferred breakfast after all – while the wimpy visitor now consumes

quiche. Under our test, proposed in the previous section, the consumption

of beer by the wimpy visitor is an informational move while the consumption

of beer by the surly visitor is not.

This informational move is somewhat different from the case of the pea-

cocks presented in the preceding section. A peacock’s long tail carries some-

thing like Grice’s non-natural meaning. One might reasonably say that the

long tail non-naturally means that the the male is of high quality. In the beer

and quiche game, the converse occurs. Here the consumption of beer by the

wimpy guy is not to convey non-natural meaning, but rather to conceal nat-

ural meaning. Drinking beer remains in some respects a communicative act,

but of a very different sort from growing a long tail in the peacock scenario.

We use the label information concealing moves for actions like drinking beer

despite preferring quiche.

At this point, it is instructive to compare our notion of “information

concealing” moves to other notions of misinformation and deception in games.

Skyrms [16], for example, defines a signal as misinformation if it raises the

probability of a state which is not actual.7 Notice that in the beer and

quiche game, the action of ordering beer has no effect on the probabilities

of the visitor being wimpy or surly. So rather than being misinformation,

7Skyrms is not the only theorist who draws a distinction between informative and

misinformative signaling. A similar distinction could be made with other definitions of

deception/misinformation.
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ordering beer is no-information. This is why we have opted to use the term

information concealing rather than deception or misinformation—we believe

these are genuinely distinct concepts.8

4 Generalizing to non-generic games

The signals we considered in the previous section have production costs that

are related to their meanings. High quality peacocks can produce long tails at

lesser expense than low-quality birds; surly fellows actually enjoy a breakfast

of beer instead of quiche. A short tail cannot come to “mean” that the male

is of high quality; eating quiche cannot come to “mean” that a diner is surly.

In their purest form, conventional signals have no relation between mean-

ing and production cost [7]. The signals referred to in the previous sections

would probably not be considered (fully) conventional—the structure of the

interaction prohibits the reversal of the signals. The paradigmatic case of

conventional meaning arises in a Lewis signaling game [9]. As in a costly

signaling game, this kind of game has two players, a sender and a receiver.

The sender observes the state of the world and sends a signal. The re-

ceiver responds to the signal by choosing an act. Unlike the costly signaling

case, there is complete common interest between the sender and the receiver.

Moreover, sending a signal is cost-free.

If there are two states, two signals and two acts, the extensive form of

the Lewis signaling game is as in Figure 5, where εA and εB are zero. The

8Notice that case of outright lying, like telling a friend that his karaoke singing is

beautiful, is under our definition a “signal” even if it is a misinformative or deceptive one.
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State BState A  

signal b 

signal a  
  

signal a  

signal b 

  

BA

  

BA

BA BA

  

SENDER

RECEIVER

RECEIVER

NATURE

-εA ,0 1-εA, 1 1-εA, 1-εA ,0 

-εB ,0 1-εB, 1 1-εB, 1-εB ,0 

Figure 5: The generic Lewis signaling game
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choices of moves indicated in the figure constitute a signaling system. In

this signaling system, the sender chooses signal a in response to state A, and

the receiver chooses the appropriate act for that state. Similarly, in state

B the sender signals b and the receiver chooses the appropriate response.

What makes this kind of signaling purely conventional is that a and b have

neither any intrinsic meaning nor any structural properties that prevent their

means from being reversed. As indicated by the payoffs, the sender might as

well choose b in state A and a in state B. As long as the receiver responds

correctly, they are as successful as before.

With these payoffs, the Lewis signaling game is a non-generic game in

extensive form. This means that some of a player’s payoffs at terminal nodes

are equal. Non-genericity turns out to be a problem for our definition of

an informational move. Recall that the basic idea of an informational move

is that a player would not make that move in the comparator game. This

is strictly speaking not true for the Lewis signaling game. In the compara-

tor game, the receiver is fully informed about the states of nature and, in

equilibrium, takes the appropriate act. This makes the sender indifferent be-

tween sending one signal or the other. There are, therefore, equilibria in the

comparator game where both signals are sent, but this occurs only because

of the presence of payoff ties. Should one of the signals posses the slightest

of costs, no matter how small, this would no longer be true. As a result, this

fact depends critically on something that is unstable to tiny modifications of

the game’s payoffs.9

9While some of the earlier games we described are also non-generic, they are so in an

innocuous way since this problem does not arise.

16



State BState A  

signal b 

signal a  
  

signal a  

signal b 

  

BA

  

BA

BA BA

  

SENDER

RECEIVER

RECEIVER

NATURE

-εA ,0 1-εA, 1 1-εA, 1-εA ,0 

-εB ,0 1-εB, 1 1-εB, 1-εB ,0 

Figure 6: The generic Lewis “comparator game”

17



There is a simple and time-honored solution to this problem. In a first

step, it requires us to turn the Lewis signaling game into a generic game.

This can be done in the game of Figure 5 by choosing different values for

the ε’s. The comparator game of this generic version of the Lewis signaling

game is shown in Figure 6. Now signal b is clearly an informational move by

the sender because she would not choose b in the comparator game.

Notice that this idea does not depend on how small the epsilons are that

we choose in order to make a generic Lewis signaling game. This suggests

the following definition:

Second gloss. In a non-generic game, a move by player 1 is

purely informational if there exists a sequence of generic games

with payoffs converging to the payoffs of the non-generic game

such that player 1’s move is informational in each of the generic

games of the sequence.

This definition allows us to apply our idea of informational moves to

extensive form games even if their payoff structure is not generic. The idea

is essentially the same as the one that underlies Reinhard Selten’s concept

of a trembling hand perfect equilibrium [13], where one requires of a Nash

equilibrium to be the limit of the Nash equlibria of a sequence of payoff-

perturbed games.10

10We can create one sequence that makes signal A informational and another sequence

that can make signal B informational. So, on our definition both come out as informational

in the original non-generic game.
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5 Core theory

We begin by introducing the basics of extensive form games. (Unfamiliar

readers should consult any introductory textbook on game theory for more

precise definitions.)

A game in extensive form begins with a rooted tree, a special kind of

mathematical graph which has a beginning node and has no cycles. A node

that is not at the end of the tree is called a decision node and is labeled with

a player who moves at that node. “Nature” is treated as a player who makes

moves with some fixed probability – these represent non-strategic decisions

which influence the outcome of the game. Every node that is at the end

of the tree is called a terminal node and is assigned a payoff value for each

player – these represent the various ways that the game might end.

Some nodes may be collected together in information sets. These infor-

mation sets represent ignorance by a player. If nodes n and n′ are both in

the same information set, we interpret this as indicating that the player is

not informed whether she resides at n or n′. There are various constraints on

information sets that formally prevent one information set from containing

nodes of more than one player, that prevent players from forgetting some-

thing they learned earlier in the game, and that prevent players from being

ignorant of their own actions.

Because of the complexity of games in extensive form, we will restrict our-

selves to a certain class of games known as “action-response games.” These

games are essentially games where nature chooses from a set of options with

a fixed probability. One player is (potentially) given some information about

the state chosen by nature. This player can then take a move. A second
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player (potentially) observes some information about the state and (poten-

tially) some information about the first player’s action and then takes an

action herself. After this the game terminates. Formally, an action-response

game is any game with two players plus a move by nature such that every

potential path through the game tree features first a move by nature, second

a move by player 1, and finally a move by player 2—no more and no less.

A game G is generic if there is a unique payoff at each terminal node (i.e.,

there are no payoff ties). For the first part of this section, we will restrict

ourselves to considering generic games.

We now wish to consider whether a particular move m by player 1 is an

informational move in a generic action-response game G. To do so, we must

specify how to construct the appropriate comparator game. Given the formal

constraints on information sets alluded to above, the information sets create

a partition on each players decision nodes. Let I1 be the partition of the first

player’s decision nodes induced by first player’s information sets. Let I2 be

the partition induced on the second player’s decision nodes induced by the

second player’s information sets.

Move m is a move by player 1 in G, and s is the information set where

the first player can chose action m. The information set s represents all

the information that player 1 has about the move by nature when he has

the option to take move m. Let D(m) be the two-element partition of 2’s

moves such that all moves which come after the information set s in the tree

will be in one element of D(m) and the remaining nodes will be in another.

Essentially s and D(m) represent the same information; s in terms of what

player 1 knows about his own choices and D(m) in terms about what player
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1 knows about what player 2 can do. Like s, D(m) represents exactly the

information that player 1 has when he has an option to take move m. From

the perspective of player 2 the two elements of D(m) represent the state

of knowledge: “we are in state s” or “we are not in state s”, where the

later contains no more information than we are in some state other than s.

Importantly, D(m) does not represent anything counterfactual about player

1, it does not represent what information player 1 might have had if he had

been able to take another action in a different part of the game tree. In other

words D(m) represents exactly what player 1 knows is the case at information

set s from what he knows is not the case at that information set.

We now construct the comparator game C(G,m) so that the second player

knows everything he knew in the original game, plus everything that the first

player knows when he makes the move m. To do this, we keep the tree, nodes,

and payoffs the same as in G. We also keep the information sets of the first

player the same. We alter the information sets of the second player, such

that they become the join I2 ∨ D(m), i.e., the coarsest common refinement

of I2 and D(m). That is, we add the knowledge “we are in state s” to player

2’s information set in the most minimal way possible (without telling them

anything else in any other state).

A consequence of this procedure is that the comparator game is defined

relative to a particular move m. When evaluating different moves, different

comparator games will be constructed that will have different informational

structures. With this in hand, we can now provide a formal definition of an

informational move in a generic game:

Definition Let G be a generic action response game in extensive
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form. A move m by player 1 in G is an informational move if m is

performed with positive probability in some Nash equilibrium of

G but is not performed with positive probability in any subgame

perfect Nash equilibrium in C(G,m).

This definition is, again, satisfied by the peacock example. In the original

game there is a subgame perfect Nash equilibrium where the peacock grows

a long tail, but no subgame perfect Nash equilibrium where the peacock does

so in the comparator game. Similarly for the other games we have discussed.

As can be seen from our informal definitions above, this way of under-

standing informational moves has a certain counterfactual quality to it. One

can think of G as representing the situation in the actual world and C(G,m)

as representing the closest possible world where player 2 has all the informa-

tion available to player 1 when player 1 chose m.

With this interpretation in hand, we will now discuss some of the as-

sumptions that underly our definition of informational moves. First, we are

presuming that in the actual world we are considering a situation where all

players are in a Nash equilibrium when they play this game. Undoubtedly

there are many situations in this world where players are out of equilibrium.

Because of the relatively weak assumptions of Nash equilibrium, in order to

be out of equilibrium the players must either be irrational or have incorrect

assumptions about one another’s behavior. In the biological context, to be

out of equilibrium means that the population must be subject to change due

to natural selection.

We do not think the notion of informational moves in out-of-equilibrium

situations are particularly helpful, because it might be the case that player
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1 thought she was sending information to player 2, but player 2 thought

otherwise. Here we believe there is not a clear fact of the matter regarding

the informational status of the situation.

Second, we argue that the game C(G,m) characterizes the strategic situ-

ation facing the players in the closest possible worlds where player 2 has all

the information available to player 1 when she takes move m. Here we equate

“closest possible world” with minimum modification of the game tree. While

there might be situations where this isn’t true, we believe that it should be

uncontroversial for most situations of interest.

Finally, we presume that in the closest possible world C(G,m) players are

playing a subgame perfect Nash equilibrium. Subgame perfect equilibria are

a refinement of Nash equilibria where players are not making non-credible

threats—they are not promising to take moves that, if forced to, would be

irrational.

We utilize this more restrictive solution concept because in a number of

cases that we consider the informational move might continue to be played

but only because player 2 is threatening to harm both herself and the other

player if the move is not taken. We do not believe that such irrational

commitments are plausible, nor are they helpful in uncovering the phenomena

with which we are concerned. That we do not use this more restrictive

notion when considering play in the actual world should not be taken as a

negative comment against this equilibrium notion, but rather a preference

for mathematical generality.

Prior to turning to our distinction between information concealing and

revealing moves, we must provide one more definition to handle non-generic
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cases, like the Lewis signaling game.

Definition Let G be a non-generic action-response game in ex-

tensive form. A move m in G is said to be an informational move

if there exists a sequence of generic games Gn such that Gn → G

and m is an informational move in every Gi.

As in the definition of the comparator game, the sequence of games may

be different for different moves m and m′.

6 Information revealing or information con-

cealing?

In our discussions of the peacock game and of the beer and quiche game we

found that some informational moves, such as the peacock’s big tail, can be

information revealing while other informational moves, such as the wimp’s

beer breakfast, can be information concealing. In this section we provide

a formal mechanism for determining whether a given move is information

revealing, information concealing, or neither.

The basic intuition is as follows. A move is information revealing if it

gets you to someplace you wouldn’t go in the comparator game; a move

is information concealing if it avoids going someplace you would go in the

comparator game.

To formalize this, consider an action response game G, a move by player

1, m, in G, and the comparator game C(G,m). Let h be the natural map

from nodes in C(G,m) to nodes in G. Let f be a map from information
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sets in C(G,m) to information sets in G based on h. Suppose node n is in

information set S of the comparator C(G,m). Then h(n) is a node of game

G in some information set T in G, and we set f(S) = T . (Since C(G,m)

has exactly the same information sets as G except for the moves following

m, such a function f is always well-defined.)

Let m be an informational move. Let EG(m) be the set of all information

sets of G reached in a Nash equilibrium of G where m is played. Let EC(m)

be the set of all information sets in C(G,m) reached in some subgame perfect

Nash equilibrium of C(G,m).

Definition A move m is information revealing if an only if (1)

m is informative and (2) f(EC(m)) ⊂ EG(m).

Consider the example of the peafowl with a focal move, m, where the

peacock grows a long tail. In the peafowl game there are two information

sets, the set where the peacock grows a long tail the set where he does

not. There is a Nash equilibrium, the signaling equilibrium, where both

information sets are reached. As a result, EG(m) equals both information

sets.

However, in the comparator game C(G,m) the nodes for the peahen that

occur at the top of the picture, where the peacock grows a long tail, will

never be reached in any subgame perfect Nash equilibrium of C(G,m). As

a result EC(m) will not contain those nodes and the information set at the

top of the picture will not be a member of f(EC(m)).

In order to be an information revealing move, we require that nodes be

reached in the original game that would not be reached in the compara-
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tor. This captures the idea that information is being revealed rather than

concealed. We now turn to that latter type of informational move,

Definition A move m is information concealing if and only if (1)

m is informative and (2) f(EC(m)) ⊃ EG(m).

To illustrate this definition, consider the beer and quiche game. In the

original game, G, the only information set that is reached is the one where

the visitor orders beer for breakfast. But, in the comparator game, both

beer and quiche are ordered. As a result, ordering beer is regarded as an

informational concealing move in the beer and quiche game.

7 Conclusion

Biologists, economists, and researchers in a range of other disciplines com-

monly study signaling games, using the machinery of game theory to model

communication. But what makes a signaling game a signaling game? Or in

other words, where in a signaling game is the signal? Any biologist would

answer this by appealing to whatever story he or she told to motivate the

analysis – “the peafowl game is a signaling game because a high quality pea-

cock has an incentive to communicate his quality to a potential mate.” But

this is not a game-theoretic answer. Game theory is not about the stories

that one tells alongside one’s model; it is the about the analysis of formally

defined mathematical objects called games. These objects are fully described

by the extended form (or even the normal form) of the game. This poses a

problem: it is only meaningful to talk about signaling games if some games

are signaling games and others are not. And if this is the case, we obviously
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have to be able to determine which is which from the extended form game

itself, not from the story that someone spins to go along with it.

This paper presents the start of a theory of informational moves which

avoids the use of intentions, teleology, or motivational stories. While not yet

fully general, our hope is that this approach might evolve into a fully general

theory of signaling in social interaction. This would enable a more clear ar-

ticulation of the distinction between signals and other types of biological and

economic phenomena, and may provide the groundwork for an alternative

theory of meaning. Much work in this direction remains, but we hope that

this provides an important starting point.
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