
Extending List’s Levels

Neil Dewar, Samuel C. Fletcher, and Laurenz Hudetz

Abstract Christian List [24] has recently proposed a category-theoretic model of a
system of levels, applying it to various pertinent metaphysical questions. We mod-
ify and extend this framework to correct some minor defects and better adapt it to
application in philosophy of science. This includes a richer use of category theoretic
ideas and some illustrations using social choice theory.

1 List’s descriptive, explanatory, and ontological levels

In general, a system of levels for List [24] is a preordered class: that is, a class L
equipped with a reflexive and transitive binary relation≤. The elements of L are to
be interpreted as levels, and the binary relation ≤ as the relation of supervenience:
L ≤ L′ means L′ supervenes on L. Thus, requiring that ≤ be a preorder amounts
to assuming that every level supervenes upon itself, and if the level L1 supervenes
on the level L2, and L2 on the level L3, then L1 supervenes on L3. In requiring
only these characteristics, List is deliberately opting for a fairly weak conception
of supervenience. For instance, it is possible to have two distinct levels within the
system, neither of which supervene upon the other, or to have two distinct levels
both of which supervene upon the other.
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This framework gives us the resources to consider certain relationships between
systems of levels. Given two systems of levels L and L ′, a function f : L →L ′

is a monotonic map if it preserves the order relation: i.e., for any levels L1,L2 ∈
L , if L1 ≤ L2 then f (L1) ≤ f (L2). If there are monotonic maps f : L →L ′ and
f ′ : L ′ → L that are mutually inverse to one another, then L and L ′ are said
to be isomorphic, or structurally equivalent. If L ⊆ L ′ and there is some map
f : L →L ′ such that L1 ≤ L2 if and only if f (L1)≤ f (L2), then L is a subsystem
of L ′.

Such is List’s general framework. There is one significant difference between
our presentation of this framework so far and his: we have not yet mentioned cat-
egories at all. Although we will start to use category-theoretic language below, we
have avoided it so far to make clear that the abstract framework in his [24] can be
understood without category theory.

Let us now turn to more specific kinds of systems of levels. First, consider the
case of a system of ontological levels. In such a system, each level is associated
(or identified) with a set of possible worlds for that level. If one level supervenes
upon another, then there is a (unique) supervenience map from the subvenient level
to the supervenient level; this map is required to be surjective.1 We also impose the
following two requirements:

1. for any level L, the identity map is the supervenience map from L to itself; and
2. if σ is the supervenience map from L1 to L2, and σ ′ is the supervenience map

from L2 to L3, then σ ′ ◦σ is the supervenience map from L1 to L3.

More compactly stated, a system of ontological levels forms a concrete posetal
category in which every function is surjective. To say that it is a concrete category
means that it is a class of sets, equipped with functions between those sets that are
closed under composition and include all identity functions. To say that it is a posetal
category means that between any two sets, there is at most one function. Although
this compact description uses category-theoretic apparatus, it only does so in the
form of appeal to concrete categories (i.e., categories of sets and functions). This
means that the category-theoretic language provides a convenient way to express
our requirements, rather than being an indispensable tool; if desired, we could do
everything purely in set-theoretic terms, as our initial description of a system of
levels in terms of a preordered class evinces.2

Two specific kinds of systems of ontological levels are worth mentioning. The
first is what List calls a system of levels of grain. For this, we take as given a set Ω

of “possible worlds”. Each level in the system is given by some partition of Ω : one
such partition supervenes upon another just in case every cell of the former is a union
of cells of the latter, with the supervenience map taking each “fine-grained” cell to
the “coarse-grained” cell of which it is a part. Since any such map is guaranteed to

1 In section 3 we will consider whether this requirement is justified.
2 Of course, there is a sense in which this is true for any application of category-theoretic apparatus,
at least insofar as one can represent a category as a set-theoretic structure. But this trivial sense is
not the one we have in mind here.
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be surjective, it follows that a system of levels of grain is an ontological system of
levels.

List [24, p. 10] claims that even though “a system of ontological levels is for-
mally more general than a system of levels of grain, there exists a functor from any
system of ontological levels to some system of levels of grain.” In case the system
of ontological levels has a lowest level—a level on which all others supervene—the
desired functor maps that level bijectively onto a class representing the lowest-level
possible worlds, and all other levels are mapped to partitions of these worlds induced
by the supervenience maps of the system of ontological levels. In case there is no
lowest level, List proposes to construct one formally using an inverse limit of the on-
tological levels. “For a posetal category,” he writes, “an inverse limit can always be
constructed, though we need not interpret it as anything more than a mathematical
construct.”

This last statement must be qualified, however. Inverse limits are defined only
for posetal categories each pair of whose elements has a greatest lower bound [1,
p. 194],3 so an inverse limit can be constructed in a system of ontological levels
when any two levels have a common level on which they both supervene that itself
supervenes on all such common subvenient levels. A simple example of a system
of levels in which this does not occur consists of two levels, L1 and L2, that only
supervene on themselves. No inverse limit can be constructed for this system, and it
does not mirror any system of levels of grain.

Perhaps there is some other construction that allows one to exhibit a functor from
a large class of—if not any—system of ontological levels to some system of levels
of grain. In the previous simple example, for instance, it is quite natural to define a
system of levels that adds a new level to L1 and L2, whose worlds are the Cartesian
product of the worlds of each of those two levels, and a pair of supervenience maps
for the two components’ projection maps.4 This could then be generalized to any
system of ontological levels that has a set-sized number of “lowest levels,” and might
be given a category theoretic expression using enriched categories. But as systems of
ontological levels are currently defined, they includes systems with a (proper) class
of lowest levels, whose worlds cannot be so combined into a set-sized Cartesian
product.

The second specific kind of system of ontological levels that List considers is a
system of descriptive levels—roughly, a system of ontological levels in which each
level is the set of worlds describable in a specific language. More precisely, a lan-
guage L is defined as a set of elements—formal expressions called sentences—that
are equipped with a negation operator ¬ : L→ L and a bifurcation of the power set
P(L) into two, labeled “consistent” and “inconsistent.” It is required in particular
that:

3 In more detail, an inverse limit in a category C can be characterized as the limit of a functor from
a partially ordered set, considered as a small category, to C, and such limits exist when C has small
products and equalizers [9, Theorem 2.8.1]. Posetal categories trivially always have equalizers, but
their products are just greatest lower bounds.
4 Thanks to Christian List for this suggestion. Note that the Cartesian product is the product in the
category of sets, not in a posetal category—see footnote 3.
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1. any set containing a sentence and its negation is inconsistent;
2. inconsistency is preserved by taking supersets;
3. ∅ is consistent; and
4. every consistent set is contained in a maximal consistent set (i.e., a consistent set

containing, for every sentence φ ∈ L, either φ or ¬φ ).

The ontology for L, denoted ΩL, is defined as the set of all maximal consistent
subsets of L. Each such subset (i.e., each element of ΩL) is a world. A sentence
φ ∈ L is said to be true at a world w ∈ ΩL if φ ∈ w, and the propositional content
of φ , denoted [[φ ]], is defined as the set of all worlds at which φ is true.

A system of descriptive levels is thus a system of ontological levels, each of
which is the ontology of some language. Within such a system, a higher-level sen-
tence φ ′ ∈ L′ is defined (by List) to be reducible to a lower-level sentence φ ∈ L if
and only if the propositional content of φ is the inverse image of φ ′ under σ , the
supervenience map from ΩL to ΩL′ . And he defines the higher level of description
L′ to be reducible to the lower level of description L if every sentence of the higher
level’s associated language L′ is reducible to some sentence of the lower level’s
associated language L.

Note that, so defined, not every system of descriptive levels will be one in which
the higher levels reduce to the lower levels: as List observes, this provides a sense
in which supervenience does not entail reduction. For a concrete example [13], let
L′ be the propositional language for level L′ whose only sentence-letter is F , and let
L be the propositional language for level L with sentence-letters {P0,P1, . . .}, each
equipped with the standard notion of consistency. ΩL′ only contains two worlds:
ωF , which contains F , and ω¬F , which contains ¬F . Let ω ∈ ΩL be the world
containing every Pi. Define σ : ΩL→ΩL′ as follows: for any ω̃ ∈ΩL,

σ(ω̃) :=

{
ωF if ω̃ = ω,

ω¬F otherwise.

Then the levels ΩL and ΩL′ equipped with the maps σ , IdΩL , and IdΩL′
constitute a

system of descriptive levels.
Now observe that σ−1([[F ]]) = {ω}. But {ω} is not a definable subset of ΩL

since there is no sentence φ ∈ L such that [[φ ]] = {ω}.5 So the sentence F ∈ L′ is
not reducible to any sentence in L; thus, L′ is not reducible to L. We will discuss
in section 2, however, what sort of conditions we could place on supervenience that
would associate it with reduction.

5 Proof. Suppose for reductio that [[φ ]] = {ω}. Since φ is a finite sentence, not every sentence
letter can occur in it. So suppose Pi does not occur in φ . Then since ω |= φ , it must be the case that
ω ′ |= φ , where ω ′ is just like ω save that Pi 6∈ ω ′ (as the truth value of a sentence in propositional
logic is dependent only on the truth values of the sentence letters occurring in it). But then ω ′ ∈
[[φ ]], although ω ′ 6= ω , so we have a contradiction. ut
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2 Supervenience and reduction

As discussed in section 1, for List, supervenience need not entail reduction, in the
sense that there can be systems of levels of description in which the levels are not
reducible to one another. In this section, we look at how, by imposing certain as-
sumptions on the system of descriptive levels, we can recover this entailment.

Before we begin, one preliminary observation is in order. For List, the worlds in
a system of levels of description are identified as maximally consistent sets of sen-
tences of a formal language, where the notion of a “language” is left very abstract.
In this section’s analysis, we will assume that the languages we are working with are
first-order languages; this will play an important role when we invoke Beth’s theo-
rem. However, the languages may be many-sorted. We will also identify the worlds
with models of the language, rather than maximal consistent sets of sentences—
note that maximal consistent sets of sentences correspond to equivalence classes
of elementarily equivalent models. This assumption is more for convenience than
anything else; we do not believe that anything of great significance hangs on it.

Now, consider two levels of description L and L′ associated with languages L
and L′, respectively. Let σ be a supervenience map from L to L′. We assume two
conditions on the relationship between these levels. First, we assume that they are
compatible with respect to σ , in the sense that if the vocabularies of L and L′ inter-
sect, then for any ω ∈ ΩL, ω|L∩L′ = σ(ω)|L∩L′ . This has the consequence that for
any ω ∈ΩL, we can define a unique expansion to a structure of signature L∪L′: let
ω +σ(ω) be the structure such that for any symbol S in the vocabulary of L∪L′
(including sort symbols),

Sω+σ(ω) =

{
Sω if S ∈ L,
Sσ(ω) if S ∈ L′.

Let ΩL +ΩL′ := {ω +σ(ω) : ω ∈ΩL}. This can be viewed as the union of the two
levels relative to the supervenience map σ . Note that when its antecedent is satisfied,
this assumption entails that ω and σ(ω) share a domain: or, in other words, that the
lower-level theory already asserts the existence of higher-level objects (but without
explicitly saying what they are like). Such an assumption is reasonably plausible if
(for instance) we take the lower-level theory to include some kind of mereological
theory that asserts the existence of mereological sums or fusions. Alternatively, one
could seek to weaken this assumption by invoking methods for defining new sorts;6

although such a project would be interesting, we do not undertake it here.
Our second assumption is that this class is characterizable, in the sense that there

is a set of sentences T such that ΩL +ΩL′ = Mod(T ). This means that the union of
the two levels comprises worlds that can be characterized as those in which certain
sentences in the union of their languages are true. This assumption is reasonably
strong: in the context of psychology and physics, for example, it amounts to the
assertion that there is some joint psycho-physical theory such that a distribution of

6 See, in particular, [2] and [6].
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psychological and physical facts is possible if and only if it is in accord with the joint
theory. However, it is still nontrivially distinct from directly assuming reducibility.
One way to obtain such a joint theory would be to conjoin our psychological and
physical theories with a set of bridge laws connecting them; but the assumption of
characterizability does not presume that the joint theory takes this “pre-reduced”
form. Note further that, in general, assuming characterizability will mean that the
antecedent of the first assumption is satisfied: that is, that there is at least one sort
of object that both levels describe (and so, per the first assumption, about which
they agree). This is plausible for realistic cases, in which we expect the two levels
of description to share at least some vocabulary (e.g., empirical or observational
terms).

Given these assumptions, it follows that the vocabulary of the higher level L′ is
implicitly defined by T in terms of the lower-level vocabulary L: that is,

Proposition 1. For any models ω̃1 and ω̃2 of T , if ω̃1|L = ω̃2|L then ω̃1 = ω̃2.

Proof. Suppose that ω̃1|L = ω̃2|L. By the assumption of characterizability, there
are ω1,ω2 ∈ ΩL such that ω̃1 = ω1 +σ(ω1) and ω̃2 = ω2 +σ(ω2). It follows that
ω̃i|L = ωi and ω̃i|L′ = σ(ωi) (for i = 1,2). Hence,

ω̃2|L′ = σ(ω2) = σ(ω̃2|L) = σ(ω̃1|L) = σ(ω1) = ω̃1|L′ .

Thus, ω̃1 = ω̃2. ut

Next, by Beth’s theorem, it follows that L′ is explicitly defined by T in terms of
L.7 In the case of single-sorted languages, this means that for any (n-place) relation
symbol R of L′, there is an L-formula τR such that T ` ∀x1 . . .∀xn(Rx1 . . .xn ↔
τR(x1, . . . ,xn)) and similarly for other kinds of symbols. The case of many-sorted
languages is a bit more complex.8 But it follows in either case that for every L′-
sentence φ ′, there is an L-sentence φ such that T ` (φ ′↔ φ). So φ ′ reduces to φ .
Hence, it follows that L′ reduces to L.

Thus, although supervenience maps between different levels (in general) are not
associated with reduction, any supervenience map which fulfills our assumptions of
compatibility and characterizability will be so associated.

An alternative way of establishing a relationship between supervenience and re-
duction proceeds not by imposing constraints on the supervenience map between
levels, but rather by treating supervenience as a feature of sets of properties rather
than worlds. Note that this is more in line with how supervenience is often defined
in the literature: for example, as the Stanford Encyclopedia of Philosophy’s entry
on Supervenience [26] begins, “A set of properties A supervenes upon another set B
just in case no two things can differ with respect to A-properties without also differ-
ing with respect to their B-properties.” In other words, the A-properties supervene
upon the B-properties if any two possible worlds which have the same distribution
of B-properties also have the same distribution of A-properties.

7 For discussion of Beth’s theorem, see [17].
8 For a generalisation of Beth’s theorem to many-sorted logics, see [2].
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To make things more precise, let us focus on the notion of strong global su-
pervenience [26, §4.3.2]: the A-properties strongly globally supervene upon the B-
properties if and only if for any worlds w1 and w2, any B-preserving isomorphism
between w1 and w2 is an A-preserving isomorphism between them.9 Let us sup-
pose that the A-properties are those expressed by a higher-level language L′, and
the B-properties are those expressed by a lower-level language L. And suppose that
our worlds (structures of signature L∪L′) are characterizable, where this means the
same thing as before: there is a theory T , such that the worlds are the models of the
theory. It then follows that

Proposition 2. The A-properties strongly globally supervene on the B-properties if
and only if T implicitly defines L′ in terms of L.

Proof. From left to right, suppose that the A-properties supervene upon the B-
properties: that is, that for any worlds (models of T ) ω1 and ω2, if f is an isomor-
phism from ω1|L to ω2|L, then f is an isomorphism from ω1 to ω2. Now suppose
further that we have two models ω1 and ω2 such that ω1|L = ω2|L. Clearly, then,
the identity is an isomorphism between ω1|L and ω2|L, and hence must be an iso-
morphism between ω1 and ω2; it follows that ω1 = ω2. So T implicitly defines L′
in terms of L.

From right to left, suppose that T implicitly defines L′ in terms of L, and let
ω1 and ω2 be models of T such that f is an isomorphism from ω1|L to ω2|L. For
reductio, suppose that f is not an isomorphism from ω1 to ω2, so for some R ∈ L′,
f [Rω1 ] 6= Rω2 . But now define ω ′1 as follows: it has the same domain as ω2, and
for every P ∈ L∪L′, Pω ′1 = f [Pω1 ]. By construction, f is an isomorphism from
ω1 to ω ′1.10 So ω ′1 is a model of T . And since f is an isomorphism from ω1|L to
ω2|L, it follows that ω ′1|L = ω2|L, and so that ω ′1 = ω2. But then it follows that
Rω ′1 = f [Rω1 ] = Rω2 , so we have obtained a contradiction. Hence, f must be an
isomorphism from ω1 to ω2. ut

From here, the analysis goes as before (i.e. via Beth’s theorem): hence, if the
higher-level properties supervene upon the lower-level properties, then (at least for
one natural way of formalizing what this means) it will be accompanied by a reduc-
tion from the higher level to the lower level.

3 Extensions: partial and non-surjective maps

The first extension to List’s framework we consider will be to partial supervenience
maps. To motivate it, consider the case of a system of ontological levels as described
in section 1. These levels consist of possible worlds, each of which provides a full

9 As McLaughlin and Bennett [26] discuss, there are other notions of global supervenience one
can define. For a compelling case that strong global supervenience is the most appropriate precisi-
fication of the intuitive notion of global supervenience, see Shagrir [32].
10 This is an instance of what Button and Walsh [11] call the “push-through” construction.
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specification of the facts particular to that level. List takes the maps between levels,
representing supervenience relations, to be functions, explaining that

Supervenience means that each lower-level world determines a corresponding higher-level
world: the lower-level facts, say the physical ones, determine the higher-level facts, say the
chemical ones. By fixing all physical properties, we necessarily fix all chemical properties,
in this example. [24, p. 7]

However, the glosses before and after the colon are not equivalent: that the chemical
facts, say, may supervene on the physical facts just means that there cannot be any
difference between two chemical worlds without a difference between the physical
worlds in the chemical worlds’ supervenience bases—the preimages of the superve-
nience map on the two chemical worlds. But this is entirely compatible with there
being some physical worlds that do not determine any non-trivial chemical worlds—
worlds for which the empty set is not a logical model of any of their descriptions.
Indeed, we expect there not to be any non-trivial chemical facts at all determined
by those of a roiling quantum vacuum, or any non-trivial biological facts at all de-
termined by the chemical facts of the atmosphere of Venus. Insofar as each of these
is respectively a way a physical and chemical world could be, there can be physi-
cal worlds on which no non-trivial chemical world supervenes, chemical worlds on
which no non-trivial biological world supervenes, etc.

List [24, p. 9] already cites approvingly a similar remark by Kim11 regarding the
difficulties of entity-based (rather than world-based) conceptions of levels, so this
small extension seems welcome. Indeed, one can easily integrate into the definition
of a system of ontological levels its consequence that the supervenience maps need
only be partial: their domains of definition needn’t be all the worlds at a level. (This
doesn’t by itself conflict with any of the formal properties defining a system of
levels as a posetal category, but one must decide exactly how to model a category
with partial morphisms: see, e.g., Cocketta and and Lackb [12, §1] for references
to a number of options.) Since a system of levels of description is just a system of
ontological levels with added structure, the same conclusion applies for them. The
procedure for embedding, via a functor, a system of ontological levels into a system
of levels of grain also remains the same; the image under the functor of any partial
supervenience map will have some equivalence class of worlds in its lower-level
domain that will just not have any image in the higher-level codomain within the
system of levels of grain.

One way to regain totality for the supervenience maps would be to introduce a
null world at each level, a world devoid of non-trivial facts. Then one can extend
each previously partial supervenience function by mapping all the elements previ-
ously outside its domain of definition to the null world in its codomain. For consis-
tency, the image of any null world under a supervenience map would then have to
be a null world. This is coherent with the interpretation of the maps: a world devoid
of non-trivial physical facts determines a world devoid of non-trivial chemical facts,

11 Namely, that “not every ‘complex’ of ‘lower-grade’ entities will be a higher entity; there is no
useful sense in which a slab of marble is a higher entity than the smaller marble parts that make it
up” [20, p. 11].
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and there can be no difference in the latter without a difference in the former—i.e.,
without the introduction of some non-trivial physical facts or other. However, such
null worlds should be interpreted cautiously: if one wants the worlds at a level to be
models of a theory describing that level, the null world will not be included if the
theory has any existentially quantified axioms. So it probably should receive a fixed
interpretation as a technical convenience rather than as a genuine possible world.

This second extension is to non-surjective supervenience maps. Now, List claims
surjectivity just follows from the meaning of supervenience:12

To say that the chemical level supervenes on the physical, or that the biological supervenes
on the chemical, is to say that the class S of supervenience mappings contains one such
mapping, σ : Ω → Ω ′, from the relevant lower level to the high one, where σ maps each
lower-level world ω ∈ Ω to the higher-level world ω ′ ∈ Ω ′. We then call ω a lower-level
realizer of ω ′. The surjectivity of σ means that there are no possible worlds at the higher
level that lack a possible lower-level realizer. [24, p. 8]

So it does; but why should the formal apparatus of a system of levels necessarily
commit to the metaphysical thesis that the whole higher level does so supervene?
Even though we take the supervenience of levels to be plausible, we do not think
that characterizing systems of levels require assuming it. Indeed, dropping this as-
sumption, one finds the interpretation of the levels, the worlds comprising them,
and the supervenience maps between them to be hardly different.

The key insight for this is that a supervenience map relates collections of facts
at a lower level to facts at a higher level, hence need not relate all worlds at either
level at all. If a supervenience map is not surjective, then there will be at least some
higher level world that does not supervene on any lower level world in the map’s
domain. But still the map characterizes exactly which higher-level properties (and
worlds) supervene on lower-level ones. That it is not surjective is just to indicate
precisely which of these higher-level properties do not so supervene. The map rep-
resents a higher level supervening on a lower level if and only if it is surjective. This
is important for applications in philosophy of science: When the worlds of levels
are models of empirical theories, the failure of surjectivity indicates that the pos-
sibilities that a higher-level theory describes outstrip those that one committed to
level-supervenience would expect. This can motivate revising the higher-level the-
ory by restricting what it allows as possible, or generalizing the lower-level theory to
allow more possibilities that could provide new supervenience bases for higher-level
possibilities.

Furthermore, examples of non-surjective supervenience maps can be found in
systems of different geometric levels, each of which is able to describe a wide range
of geometric possibilities.13 Let us focus on the metric and the topological levels.
There is a robust sense in which topological properties (such as being an open set
or being a continuous function) supervene on metric properties (distances between
points). Every metric naturally induces a topology and isometric metric spaces in-

12 For emphasis we have italicized the word “each” in the passage.
13 For a philosophical investigation of the notion of geometric possibility and its role in the
relationism-substantivalism debate, see Belot [7].
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duce homeomorphic topological spaces. So in the jargon of possible worlds, same-
ness of worlds on the subvening metric level entails sameness of worlds on the
supervening topological level. However, the supervenience map from the metric to
the topological level (which sends each metric space to the topological space in-
duced by it) is not surjective because not all topological spaces are metrizable. The
topological level of description is essentially more general than the metric level, but
nonetheless there is a supervenience map between them. Dropping the constraint of
surjectivity enables us to capture such cases of supervenience. Thus, the framework
gains expressive power without losing any advantages.

One further consequence of dropping surjectivity for the supervenience maps
concerns List’s argument for the possibility of mutually supervening but non-
identical levels in a system of ontological levels. Suppose that in such a system
σ : Ω → Ω ′ and σ ′ : Ω ′ → Ω are supervenience maps. Then by the definition of
a category, the maps are closed under associative composition, so σ ◦σ ′ : Ω → Ω

is a supervenience map. But because the category is posetal, there can be at most
map with domain and codomain Ω , namely the identity 1Ω . Hence σ ◦σ ′ = 1Ω .
It follows that σ and σ ′ must be total and surjective.14 Moreover, if σ and σ ′ are
total and surjective then σ ◦σ ′ = 1Ω . This is as expected: two ontological levels
are isomorphic in a system of levels if and only if they supervene on the other as a
whole. So if a supervenience map is ever identified as non-surjective (or partial), the
levels it relates cannot be isomorphic.

Like with the first extension to partial maps, these insights about systems of onto-
logical levels apply equally to systems of levels of description, although the applica-
tion to systems of levels of grain requires a bit more work—it also requires adopting
the first extension. To do this, one must consider the partition at each level to include
one special equivalence class, the class of worlds not included at that level. Then, if
two levels of grain are related by a supervenience map, that map must exclude the
equivalence class of worlds not included at the level of its domain within its domain
of definition. (Of course, other equivalence classes could fall outside its domain of
definition, too.) Moreover, instead of requiring the domain of the map to be at least
as fine-grained as the codomain, one only requires that the domain of definition be
at least as fine-grained as the image of the map. Outside the image, the elements of
the codomain need bear no relationship of refinement to those of the domain.

4 Levels as categories

Another way of extending List’s framework is to give a richer account of the internal
structure of levels of description. In particular, it can be fruitful to view levels of
description as categories of structures.15 As we will see below, this account is more

14 If σ were not total, then 1Ω could not be; if σ ′ were not surjective, then 1Ω could not be. The
same reasoning applies mutatis mutandis to σ ′ ◦σ = 1Ω ′ . Hence, each of σ and σ ′ is both total
and surjective.
15 So on this account, systems of levels of description can be viewed as categories of categories.
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suitable to capture important scientific levels of description and it establishes a close
connection between List’s work and current developments in philosophy of science.

More precisely, our proposal is to represent a level of description, L, as a pair
〈L,Ω〉 consisting of a description language, L, and a category, Ω , of L-structures.16

This account differs from List’s own account of levels of description in two ways.

1. The objects in Ω are L-structures rather than maximally consistent sets of L-
sentences. This is not a big difference. But, among other things, it allows one
to apply model-theoretic notions (such as homomorphism, embedding, isomor-
phism, etc.) without further ado.

2. Ω is a category rather than a bare class. So to specify a level of description, one
does not only specify its structures but also the morphisms (admissible transfor-
mations) between these structures. Which morphisms to choose is in general not
determined by the language L alone. The choice of morphisms in Ω is linked
to an interpretive choice concerning the description language. It reflects which
expressions of L are taken to be meaningful within the level L. The idea is that
an L-expression is only meaningful within L if its extension is invariant under
the morphisms in Ω .

A major advantage of this account is that it enables us to deal with levels of de-
scription on which there is a non-trivial distinction between meaningful and non-
meaningful expressions. Levels of description of this kind are prevalent both in the
natural and social sciences because scientific languages often contain auxiliary vo-
cabulary or use numerical descriptions that may be transformed according to certain
rules without changing in content.

Let us consider an example from social choice theory: descriptions of individual
welfare along the lines of Sen [31]. In contrast to Arrow’s ordinal framework [3],
Sen’s framework rests on a numerical description of the welfare of individuals under
given alternatives. We reconstruct a level of description of welfare Lwf = 〈Lwf,Ωwf〉
along these lines to illustrate the proposed account.

The language Lwf comprises the following descriptive symbols: (1) a sort symbol
I for individuals, (2) a sort symbol A for alternatives, and (3) a function symbol W of
type I×A→R. If i and a are terms of the sorts I and A, respectively, then Wi(a) is a
term of sort R. It stands for the degree of i’s welfare under alternative a. Of course,
the language also has mathematical auxiliary symbols such as R,+, ·,<, etc. More-
over, we assume that the language has the usual logical vocabulary (connectives,
quantifiers, and variables) and formation rules for formulas.

An object in Ωwf is an Lwf-structure that consists essentially of a finite set of
individuals, a finite set of alternatives, and a welfare profile for these individuals and
alternatives. To put it more rigorously, the objects in Ωwf are those Lwf-structures,
ω , such that (a) ω expands the standard model of the auxiliary mathematical part
of the vocabulary (including the field of real numbers), and (b) Iω and Aω —the sets
associated to I and A in the structure ω—are both finite.

16 We use the term “L-structure” in its usual model-theoretic sense. So an L-structure is an assign-
ment of extensions to the descriptive symbols of L.
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Which morphisms to include in Ωwf depends on which expressions of Lwf one
considers to be meaningful. List [23] gives a concise overview of various positions,
each of which depends on the extent to which interpersonal comparisons of welfare
are considered as meaningful and on which level of measurement (ordinal, interval,
or ratio) welfare data are taken to reside. For instance, many economists (including
Arrow) consider only ordinal intrapersonal comparisons of welfare as meaningful.17

According to this view, the formula “Wi(a) < Wi(a)” is meaningful. In contrast,
the formula “Wi(a) < Wj(a)∧ i 6= j” is not meaningful because it amounts to an
interpersonal comparison of welfare. And “Wi(a) = 2 ·Wi(b)” is also not meaningful
because it goes beyond a comparison of order. On the other end of the spectrum, one
finds the view that full interpersonal comparisons are meaningful and welfare can
be measured on a ratio scale. According to this view, both “Wi(a)<Wj(a)∧ i 6= j”
and “Wi(a) = 2 ·Wi(b)” are meaningful.

Much depends on which descriptions are taken as meaningful. A level of nu-
merical welfare descriptions where only ordinal intrapersonal comparisons count
as meaningful boils down to a purely ordinal level of description of welfare along
the lines of Arrow [3]. The meaningful numerical statements of the form “Wi(a) <
Wi(b)” can be reduced to statements about individual preference orderings of the
form “individual i prefers alternative a to alternative b” (or, in short: “a ≺i b”). In
contrast, a level of numerical welfare descriptions where interpersonal ratio com-
parisons of welfare count as meaningful is an essentially more fine-grained level of
description. Thus, even if levels of description have the same underlying language
and structures, they are not necessarily the same. One also needs to specify what
counts as meaningful to identify a level.

As alluded above, different standards of meaningfulness can be captured in terms
of choices of morphisms. To discuss such choices in our present example, the notion
of a transformation of structures is useful. Given structures ω1,ω2 ∈ Ωwf with the
same set of individuals Ind := Iω1 = Iω2 and the same set of alternatives Alt :=
Aω1 = Aω2 , we call a family { fi}i∈Ind of functions from R to R a transformation of
ω1 into ω2 just in case for all i ∈ Ind,

fi ◦W ω1
i =W ω2

i .

Now the question of which welfare comparisons one considers to be meaningful
boils down to the question of which transformations one considers to be admissible
in the sense that they do not change any meaningful features of welfare profile struc-
tures. The admissible transformation are then taken as morphisms in the category.

To capture the idea that only ordinal intrapersonal comparisons of welfare are
meaningful, one takes all positive monotonic transformations as morphisms (cf. Sen
[31, Chapter 7*]). More precisely, one takes { fi}i∈Ind as a morphism from ω1 to ω2
just in case it is a transformation of ω1 into ω2 such that, for all i ∈ Ind, fi is a
positive monotonic function. To capture the ideas that full interpersonal and ratio
comparisons are meaningful, one takes { fi}i∈Ind as a morphism from ω1 to ω2 just

17 For a discussion of the thesis that interpersonal comparisons of utility are meaningless and the
inference that such comparisons are therefore impossible, see List [22].
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in case it is a transformation of ω1 into ω2 such that for some α > 0, fi(x) = α · x
for all x ∈ R and all i ∈ Ind. Let Ω ONC

wf be the category with the former choice of
morphisms and Ω RFC

wf the category with the latter.18 Then, according to our proposal,
〈Lwf,Ω

ONC
wf 〉 and 〈Lwf,Ω

RFC
wf 〉 are different levels of description. This illustrates

how taking morphisms into account allows us to capture differences between levels
of description even if they have the same underlying language and structures.

Let us now turn to supervenience in the extended framework. Since levels of
description are treated as categories of structures, supervenience relations between
them are best viewed as functors. Note that any functor maps isomorphic objects
to isomorphic objects.19 This coheres with the idea of global supervenience, that
sameness of worlds on the subvening level implies sameness of worlds on the su-
pervening level.

But more importantly, viewing supervenience relations as functors allows us to
shed more light on List’s requirement of surjectivity. First, it is important to dis-
tinguish between surjectivity and essential surjectivity. A functor F : Ω → Ω̃ is
essentially surjective if and only if every object ω̃ in Ω̃ is isomorphic to F(ω) for
some object ω in Ω . From a category-theoretic point of view, essential surjectiv-
ity is a fruitful notion. In contrast, surjectivity simpliciter is much too strict. If a
level of description is such that every structure has several representationally equiv-
alent variants, there is no good reason to require that a supervenience map from
a lower level to this level be surjective. Requiring this would preclude cases of
supervenience where a level on which every structure has several representation-
ally equivalent variants supervenes on a level without (an at least equal number
of) these variants. A given structure ω at the subvening level would correspond to
many representationally equivalent structures at the supervening level. However, a
supervenience map can send ω only to one of those. So the others cannot be in the
image of the map. Ruling out such cases would be a serious limitation. It would,
for instance, make it impossible to capture cases in which non-quantitative descrip-
tions determine corresponding quantitative descriptions up to certain transforma-
tions. But many important cases of supervenience between levels of description are
of this type, especially those given by theorems in measurement theory that exhibit
the existence of numerical representations and their uniqueness up to certain trans-
formations [21, 33, 34].

This suggests that surjectivity has to be given up regardless of the arguments
given in section 3. So even if one would like to adhere to the idea that every world
on the supervening level must have a corresponding world on the subvening level,
one should better explicate this idea in terms of essential surjectivity rather than sur-
jectivity simpliciter. In view of that, it becomes clear that the arguments in section 3
are in fact arguments in favor of dropping even essential surjectivity.

18 “ONC’ stands for “ordinal measurability with no interpersonal comparability” and “RFC” is
short for “ratio-scale measurability with full interpersonal comparability.” These acronyms are due
to List [23].
19 If F is a functor from the category Ω to the category Ω ′ and ω1 is isomorphic to ω2 in Ω , then
F(ω1) is isomorphic to F(ω2) in Ω ′.
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And it makes sense to go even further. There is no principled reason why a sys-
tem of levels should only incorporate supervenience functors and no other functors
between levels. From the perspective of the proposed extension of List’s account,
it makes sense to include all functors between levels of description as arrows in
the category of system of levels. Then, rather than excluding and thereby neglect-
ing many functors from the start, one may explore and classify the entire zoo of
functors between levels. For example, one may ask which functors should count as
reduction functors and which should be seen merely as supervenience functors. Or
by dropping uniqueness of arrows between levels, one can investigate cases of mul-
tiple reducibility: that is, different ways of reducing a higher level to a lower level
(analogous to different ways of reducing arithmetic to set theory).20

Here is an example to illustrate how this could look like. Political scientists de-
scribe individual preferences on different levels. On one level, one can describe each
individual’s preference scores for the alternatives in question. On another level, one
can describe which alternatives each individual approves of. The structures of the
former level are all logically possible preference profile scores for a set of alter-
natives and a set of individuals. The structures of the latter level are all possible
approval profiles for such sets. Now, one can reduce the level of approval descrip-
tions to the level of preference score descriptions by setting a threshold t such that
all alternatives with a preference score above t are taken as approved of. Thus ev-
ery preference score profile gives rise to an associated approval profile. Relative to
this supervenience map, statements of the form “individual i approves of alternative
a” reduce to statements of the form “individual i’s preference score of alternative
a is above t”. The crucial point is that there are different choices of thresholds that
succeed equally well at reconstructing all approval profiles from preference score
profiles. So there are multiple reductions of the level of approval descriptions to the
level of preference score descriptions. However, a given approval profile will in gen-
eral correspond to different preference score profiles under different reductions. So
there are substantial differences between such reductions. But it is not clear a priori
which reductions are “better” than others and in which respects. In such cases, it
makes sense to investigate a variety of possible reductions within a system of levels
of description.

To sum up, we propose to generalize List’s framework in two ways: (1) we con-
strue levels of description as categories rather than bare classes, and supervenience
relations as functors; (2) we allow all sorts of functors to be included in a system
of levels of description. An advantage of this radical generalization is that it makes
the rich toolbox of category-theoretic concepts available for the analysis of levels of
description and their relations. For example, the concepts of natural transformation,

20 One might seek to model multiple realizability in this way: for example, perhaps one successful
reduction translates “pain” by “firing of C-fibres” whilst another translates “pain” by “firing of
D-fibres” (where, let us suppose, human brains have C-fibres and Martian brains have D-fibres).
However, it is not clear to us what the prospects for this manoeuvre might be; note that neither
translation will map the true higher-level claim “both humans and Martians experience pain” to a
true lower-level claim.
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equivalence, duality, adjunction, and forgetful functor lend themselves well to this
endeavour.

This point also plays an essential role in a new strand of research in philoso-
phy of science which uses these category-theoretic concepts to study relations be-
tween physical theories (where scientific theories are represented as categories of
structures).21 The proposed generalization of List’s framework establishes a close
connection to this new work in philosophy of science. Many results from this liter-
ature can be viewed as results about how certain types of physical descriptions are
related to each other and, thus, how our current system of levels of physical descrip-
tions is structured. But the fruitfulness of the generalized framework is not limited
to physics or the natural sciences. As our examples above indicate, the same meth-
ods may be applied to levels of description that belong to the social sciences (e.g.,
economics or political science). We believe that extending and generalizing List’s
framework makes it better applicable to and, thus, more relevant for philosophy of
science in general.

Let us illustrate how the above-mentioned category-theoretic concepts can be
used to analyze inter-level relations. As pointed out above, welfare can be described
on a quantitative level (in terms of real-valued welfare functions) and on a quali-
tative level (in terms of mere preference orderings). Let 〈Lord,Ωord〉 be the ordinal
level of description. Each object of Ωord is a structure consisting of a finite set of
individuals, a finite set of alternatives and an assignment of a weak ordering over the
alternatives to each individual. To reflect that the identities of alternatives and indi-
viduals are in general significant, Ωord contains only identity morphisms. Suppose
the ordinal level 〈Lord,Ωord〉 supervenes on the quantitative level 〈Lwf,Ω

RFC
wf 〉 via a

supervenience functor F that maps every welfare profile ω in Ω RFC
wf to the induced

profile of preference orderings ω ′ in Ωord and all morphisms between objects ω1
and ω2 in Ω RFC

wf to the identity morphism on F(ω1) = F(ω2) in Ωord. Then there
is a sense in which qualitative descriptions neglect or “forget” some information
available on the quantitative level. This informal idea is captured formally by the
fact that the supervenience functor F is what is called a forgetful functor in cate-
gory theory. In category theory, there is also a way of making precise what a functor
forgets in terms of its formal properties.22 In this case, the supervenience functor is
essentially surjective and also full (i.e., surjective on morphisms). But it is neither
faithful (injective on morphisms) nor essentially injective on objects. In technical
terms, the functor forgets “stuff”—intuitively speaking: the set of possible degrees
of welfare.

But note that this analysis is more subtle than the obvious point that 〈Lwf,Ω
RFC
wf 〉

uses numbers while 〈Lord,Ωord〉 does not. That 〈Lwf,Ω
RFC
wf 〉 uses numbers is not

the point here. The level 〈Lwf,Ω
ONC
wf 〉 of numerical welfare descriptions where only

ordinal intrapersonal comparisons are taken as meaningful also uses numbers but
it should count as equivalent to the purely ordinal level 〈Lord,Ωord〉. And, indeed,

21 See for example Halvorson and Tsementzis [18] and Hudetz [19].
22 Baez, Bartels, and Dolan [4] have developed a classification of functors with respect to whether
they forget structure, properties, or stuff in terms of whether they are full, faithful, or essentially
surjective. For a nice overview and further applications in physics, see Weatherall [36].
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their equivalence can be captured in category-theoretic terms using the notion of
an equivalence of categories. An equivalence between categories C and D is a pair
of functors F : C � D : G that are essentially inverse to each other.23 That there is
an equivalence of categories between 〈Lwf,Ω

ONC
wf 〉 and 〈Lord,Ωord〉 can be demon-

strated easily by invoking the representation theorem for weak preference orderings.
Examples of category-theoretic equivalences abound in the philosophy of physics
literature. See, for example, Barrett’s work [5] on Hamiltonian and Lagrangian de-
scriptions of classical mechanical systems or Weatherall’s work [35, 37] on classical
field theories.

Another relation which is naturally captured in category-theoretic terms is that
of duality between levels of description. Categories C and D are dual to each other
if and only if there is an equivalence between C and Dop, where Dop is the opposite
of the category D and it is given by reversing all the morphisms in D. One often
find dualities between algebraic and topological/geometric levels of description. For
example, Rosenstock, Barrett, and Weatherall [29] show that the usual manifold
formulation of general relativity is dual to the algebraic formulation in terms of
Einstein algebras in the sense that these theories have dual categories of structures.

Another important category-theoretic concept is that of adjunction. Although this
notion is hard to grasp on a pre-theoretic level, it may still be fruitful for analyzing
relations between levels of description. In our context, adjunction can be roughly
understood as a special type of supervenience where the supervenience functor is
accompanied by a second functor in the other direction: its adjoint. As Feintzeig
[15] has shown, the concept of adjunction captures the relationship between the
level of infinite (limiting) quantum systems and the level of finite quantum systems
in quantum statistical mechanics. The basic idea is that the properties of infinite
quantum systems are determined in a specific way by the properties of their finite
subsystems. This illustrates that the generalized framework allows one to transfer
technical concepts to new domains of application where they can be used to capture
relations between levels of description for which we would otherwise lack appro-
priate concepts.

5 Conclusions and Prospects

In section 1, we reviewed List’s levels formalism [24], focusing on his account of
systems of ontological levels, in particular systems of levels of grain and systems
of descriptive levels. One of the results of this review was to qualify his claim that
any system of ontological levels can be mapped functorially into some system of
levels grain: this is true only for systems of ontological levels that are downward-
directed, i.e., for which each pair of levels has a common subvienient level that su-
pervenes on all such common levels. In section 2, we examined the relation between
supervenience and reduction in this formalism. We showed that while in general su-

23 This means that their composition FG is naturally isomorphic to the identity functor on C and
GF is naturally isomorphic to the identity functor on D.
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pervenience does not imply reduction, it does so imply it when the levels related by
the supervenience map are compatible and jointly characterizable. Compatibility re-
quires, roughly speaking, that levels of description related by a supervenience map
agree with each other as far as shared vocabulary is concerned. Joint characterizabil-
ity relative to a supervenience map is a strong condition. It holds when the union
of two levels of description relative to a supervenience map admits of a description
itself. But in many cases of supervenience between scientific levels of description,
this can be expected. So it is quite plausible that in many cases of interest, superve-
nience and reduction of levels go hand in hand.

After this analysis, in section 3 we proposed two extensions of systems of onto-
logical levels by weakening List’s characterization of their supervenience maps as
surjective functions. First, we proposed considering merely partial (instead of total)
functions, motivated by the idea that not every lower-level world ought to give rise
to some higher-level world. The totality of the supervenience maps could be recov-
ered by introducing null worlds at each level, but in many cases such worlds would
have to be interpreted with caution, perhaps as just mathematical conveniences. Sec-
ond, we proposed dropping the requirement of surjectivity. While this requirement
is plausible for ontological naturalists, we do not think that it should be encoded into
the definition of a system of levels, which, as a formal tool, ought to be propounded
as neutrally as is feasible regarding substantive philosophical positions. Moreover,
it also fits better with philosophy of science applications, as discussed in section
4, in which it is more fruitful to consider a level not as a bare class (of possible
worlds), but as a category itself whose objects are structures of some language. This
allows to distinguish levels of description even when they have the same language
and the same structures. We illustrated this with an example of two social choice
theories whose models were identical but whose isomorphism classes were distinct.
Moreover, since one may have isomorphic but distinct models in a level, one might
only require that the image of lower-level models under a supervenience map inter-
sect with each isomorphism class of models of the higher level (i.e., the level that is
the codomain of the map). These investigations also follow up on a comment made
briefly in 1, that List’s framework can be well-characterized without the use of cat-
egory theory, which just provides a compact description and interpretive gloss for
it. By contrast, taking levels as categories themselves demands a more robust use of
categorial ideas that could also prove to be more fruitful.

It also suggests accordingly several directions for future research, of which we
mention two. First, more examples should be formalized within the generalized
framework to test its fruitfulness, flexibility, and power. Obvious candidates include
levels described by:

• physical theories, such as thermodynamics and statistical mechanics [14], and
quantum and classical mechanics [8];

• biological theories, such as classical and molecular genetics, levels of selection,
and developmental biology and genetics [10]; and

• theories in political science (and other social sciences) that describe individuals,
on the one hand, and groups, on the other [25].
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Second, as mentioned in section 4, one can generalize the framework of posetal
categories to include many types of functorial relationships between levels besides
supervenience. List already mentions reduction as one sort that can be defined for
systems of levels of description, but the sort of reduction he has in mind (as alluded
in section 2) follows one of the oldest versions of the Nagelian model for reduction
[27], understood as deductibility allowing for definitional extension and bridge laws
induced through the supervenience maps. Already in 1967 Schaffner [30] (fore-
shadowed by Nagel [28] himself) suggested that reduction needs to accommodate
the way different theories (here describing different levels) are related by approxi-
mations. But supervenience maps seem entirely inapt to capture these. Perhaps there
is some more expansive functorial relationship that can capture these notions of re-
duction that seem more central to science, such as those suggested by recent work
on topological (and topologically inspired) structures on models of theories [16].
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