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Abstract

Physicists have suggested what I call symmetry fundamentalism: the view that
symmetries are fundamental aspects of physical reality and that these aspects are
more fundamental than what one might ordinarily think of as the fundamental
building blocks of the world, such as elementary particles. The goal of this paper
is to develop an ontology for classical particle mechanics that provides a precise
instance of symmetry fundamentalism.

1 Introduction
In the second half of the 20th century, fundamental physics experienced a major break-
through: physicists noticed the incredible power of the notion of symmetry. Just on the
basis of claims about symmetries, physicists were able to infer claims about the nature
of physical properties as well as about the nature and behaviour of matter—claims that
were of unprecedented empirical accuracy.

This paradigm shift towards symmetries gives rise to an intriguing metaphysical
vision. When an entity plays a central role in the inferential practice of physics, we
are used to entertaining the hypothesis that this entity is metaphysically fundamental.
The truth of such a hypothesis would be a particularly compelling vindication of this
practice: the relevant entities are inferentially significant precisely because of their
metaphysical fundamentality. In this vein, physicists have suggested what I refer to
as symmetry fundamentalism: the view that symmetries are fundamental aspects of
physical reality, whereas the physical entities that we would ordinarily have thought of
as the fundamental building blocks of the physical world—such as elementary particles
or fields—are ontologically derivative of these aspects. For example, Steven Weinberg
has argued that “symmetries are fundamental”1 and thus that “at the deepest level,
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all we find are symmetries and responses to symmetries,”2 whereas “matter [...] loses
its central role in physics.”3 According to Werner Heisenberg, we should “replace the
concept of a particle” with “the concept of a fundamental symmetry”, and “what we
have to look for are not fundamental particles but fundamental symmetries.”4

There are serious obstacles to making sense of this view. Symmetries are part of the
mathematical apparatus used to describe the physical world. But symmetry fundamen-
talism is not the idea that physical reality is literally made of mathematical objects
like sets and functions. It is a thesis about the physical constituents of fundamental
reality. To give precise content to symmetry fundamentalism, we therefore need to
articulate an ontology which identifies the physical entities (such as objects, properties
and relations) that correspond to mathematical symmetry transformations and which
makes transparent how particles and fields can be regarded as ontologically derivative of
these entities.5 The goal of this paper is to do just that.

I will focus on the example of classical particle mechanics: the theory whose standard
ontology consists of point particles evolving according to Newton’s equations of motion.
Call this the individualistic ontology. Taking inspiration from the symmetry structure of
the theory, I articulate an alternative ontology that vindicates symmetry fundamentalism.
But this paper is not primarily intended as a contribution to the metaphysics of classical
mechanics. Rather, the case study illustrates symmetry-fundamentalist ontological
theorizing by appeal to a familiar example and serves as a guide for the development
of corresponding ontological proposals for quantum theory—a project I carry out in
another paper.6

My goal in this paper is not to give a systematic defense of symmetry fundamentalism,
but rather to develop a precise account of what it would be for symmetry fundamentalism
to be true at a world consisting of classical point particles. In other words: the aim
is to detail a classical-mechanical world whose constituent particles are ontologically
derivative on the fundamental ontological counterparts of symmetries. This is a substan-
tive challenge: when we are told that entities of one kind are ontologically derivative of
entities of another kind, we expect an account that details how every relevant proposition
about the former is entailed by some proposition about the latter. One of the main tasks
of this paper is therefore to show that, for every proposition about particles statable
in the individualistic theory, there is some fundamental proposition about the physical
counterparts of symmetries that entails it. Indeed, I will show something even stronger:
that every proposition about particles statable in the individualistic theory is equivalent
to some fundamental proposition.

2(Weinberg, 1987, p. 80).
3(Weinberg, 1992, pp. 138-9). Steven Weinberg has confirmed in personal correspondence that these

remarks were intended as claims about fundamental physical reality, rather than merely about the
epistemic or pragmatic significance of symmetry techniques.

4(Heisenberg, 1973, p. 273). Cf. Heisenberg (1976, p. 924) and Ne’eman and Sternberg (1991, p. 327)
5For the purposes of this paper, an ‘ontology’ is a hypothesis about the physical constituents (such

as objects, properties and relations) of fundamental physical reality according to some physical theory.
Moreover, I take it for granted in this paper that entities of any ontological type—such as objects,
properties, relations—can be fundamental.

6(Schroeren, 2020).
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The centrality of symmetries in modern physics has also served as a key inspiration
for ontic structural realism, an influential intellectual tradition in the philosophy of
science according to which physical reality is fundamentally ‘structural’ in a way that is
to be explicated at least in part by appeal to symmetries.7 A discussion that does justice
to the rich and vibrant structuralist literature on the topic is beyond the scope of this
paper. For present purposes, I want to point out two things. First of all, the approach I
will pursue does not respect the constraint, expressed by some ontic structuralists as
well as other metaphysicians, that an account of fundamental physical reality must not
involve first-order individuals: the kind of entity that individual constants refer to or that
first-order quantifiers range over.8 Second, the ontic structuralist project has been quite
controversial: for example, a common complaint is that the operative notion of ‘structure’
has not been satisfactorily clarified.9 Although I am in agreement with ontic structural
realists about the metaphysical importance of symmetries in physics, in this paper I will
explore whether symmetry fundamentalism can be put on a sound ontological footing
without committing to controversial structural realist assumptions. This is a project
that should be of interest even to those who favour an ontic structuralist approach.

Here is the plan. Section 2 introduces the notion of symmetry that is involved in symme-
try fundamentalism, explains why classical particle mechanics is well-suited as a testbed
for symmetry-fundamentalist ontological theorizing and highlights a key advantage of the
symmetry-fundamentalist approach. Sections 3 and 4 develop a symmetry-fundamentalist
ontology for classical particle mechanics. I conclude in section 5.

2 State-Space Symmetries
Symmetry is a notion of which we have an intuitive grasp. A round dinner plate is
symmetric under rotations: when I rotate the plate about a specific axis, it looks the
same as before. The basic idea is that a symmetry of an object corresponds to ways of
changing the object that preserve certain salient features of that object. This basic idea
is also reflected in the physical notion of symmetry, albeit in a more abstract form: here,
symmetries are mathematical functions (also known as transformations) that preserve
certain important features of the mathematical description of the world.

Here is an example. We are familiar with the idea that Euclidean space has symmetries,
such as rigid spatial shifts and rigid rotations. These transformations count as symmetries
because they preserve what one might think of as the characteristic structural feature of
Euclidean space: the Euclidean metric. Symmetries of Euclidean space are transformations
that preserve this structure, also known as Euclidean isometries.

This example illustrates something important: abstractly, a symmetry of a structured
mathematical space is always defined as a transformation of that space which preserves

7(Ladyman, 1998; Castellani, 1998; Brading and Castellani, 2003; Kantorovich, 2003; Ladyman et al.,
2007; Roberts, 2011; French, 2014; McKenzie, 2014; Brading et al., 2017).

8(French and Ladyman, 2003; Ladyman et al., 2007; French, 2010). Other metaphysicians who have
developed proposals for dispensing with first-order individuals include Shamik Dasgupta (2009) and
Andrew Bacon (2019).

9For example, (Dorr, 2010; Wolff, 2011; Arenhart and Bueno, 2015); cf. (McKenzie, 2017).
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the characteristic structure of that space.10 The symmetries that are involved in symmetry
fundamentalism are symmetries in this more abstract sense: they are symmetries of
whatever mathematical space corresponds to the state space of the world according to
the theory in question. Symmetries of this sort are known as state-space symmetries.11

Before I explain why state-space symmetry is the notion of symmetry operative in
symmetry fundamentalism, let me tell you what a state-space symmetry is. First of all,
a proposition is the instantaneous state of a world at a time iff it is a maximally specific
and exhaustive description of the values of the variable fundamental physical quantities
at that time: that is, the physical quantities whose values possibly vary between instants
of time and whose values at some instant of time, taken together, determine the values
of all other physical quantities at that instant. The fact that states are exhaustive and
maximally specific entails that states are incompatible: the world cannot be in more than
one state at any given instant of time. However, the world is necessarily in some state
at every instant of time. States therefore have some similarities to possible worlds.12

For example, consider classical (Newtonian) N -particle mechanics: the theory that
describes the temporal evolution of N point particles in three-dimensional Euclidean
space according to Newton’s laws of motion. The default ontology for this theory is
what I call individualism: the view that fundamental reality consists in point particles
instantiating the values of certain fundamental quantities. A common choice for these
quantities is position and momentum. Figure 1 is a schematic illustration of a world
with two particles.

Figure 1: Schematic illustration of a two-particle world at some instant of time.

Call a proposition the complete individualistic profile of a classical particle world at
some instant of time iff it fixes the positions and momenta of all particles at that time.

10In this way, we can think of structured mathematical spaces as individuated by their symmetries
along the lines of the Erlanger Programm (Klein, 1893, 1910); cf. (Wallace, 2019) for a more recent
statement of this idea.

11The notion of a state-space symmetry (also known as a ‘Wigner symmetry’) is well-entrenched
in physics (Wigner, 1931, 1968; Strocchi, 2005; Moretti, 2013). State-space symmetries have also been
recognized as a distinctive kind of symmetry in the philosophical literature; e.g. (Earman, 2003, p. 341)
and (Kochen, 1996, p. 242).

12For more on the connection between states and possible worlds, see (Williamson, 2016).
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The complete individualistic profile at some time entails the values of all other physical
quantities at that time. According to individualism, instantaneous states are complete
individualistic profiles. (I will later propose an ontology for classical particle mechanics
according to which instantaneous states and individualistic profiles come apart.)

State space is just the space of all instantaneous states of the world: in the case
of classical particle mechanics, the space of all possible combinations of positions and
momenta of every particle. In this setting, the mathematical spaces used to characterize
state spaces are called phase spaces, illustrated in figure 2.13

Figure 2: Each point in phase space (shown on the left) corresponds to a situation as
shown on the right.

This brings us to the notion of a state space symmetry. Just as a transformation
of Euclidean space is a symmetry of Euclidean space iff it preserves the characteristic
structural feature of Euclidean space—the Euclidean metric—a transformation of phase
space is a symmetry of phase space iff it preserves the characteristic structural feature of
phase space: the symplectic form. We won’t need the technical definition of this notion
in what follows;14 to a first approximation, you can think of the symplectic form as a
mathematical object that determines the volumes of phase space regions, and of phase
space symmetries as transformations that preserve the volumes of such regions.15 This
is illustrated in figure 3. An example of state-space symmetry are shifts of individual
particles in position and momentum, as illustrated in figure 4.

The notion of a state-space symmetry is distinct from the notion of a dynamical
symmetry. For present purposes, think of the dynamical law of a classical particle world
as a fact about which curves in state space count as the dynamically allowed histories of
this world. Mathematically, the dynamically allowed histories correspond to what’s called
a flow on phase space: a family of phase space curves such that every phase space point

13The present case study is limited to classical worlds whose state spaces can be described in terms
of even-dimensional phase spaces. This assumption can be relaxed; an example is the formalism known
as ‘Nambu mechanics’ (Nambu, 1973).

14In technical terms, a symplectic form on a smooth manifoldM is a closed non-degenerate differential
2-form on M . Roughly, a differential n-form on M is a map from n-tuples of smooth vector fields on M
to smooth functions on M . A differential 2-form ω on M is closed iff its exterior derivative vanishes;
dω = 0. ω is non-degenerate iff the existence of an X such that ω(X,Y ) = 0 for all Y implies X = 0.

15The reason why this is only a first approximation is that, although every transformation that
preserves the symplectic form also preserves the volumes of phase space regions, the converse is not true.
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Figure 3: The map that corresponds to the black arrow is a symmetry of phase space
only if the two shaded regions are of equal volume.

Figure 4: Illustration of the effect of a spatial shift symmetry on a particular state.

is intersected exactly once by exactly one curve in this family. A state-space symmetry
is a dynamical symmetry iff it maps dynamically allowed flow lines to other dynamically
allowed flow lines.16 But although every dynamical symmetry is a state-space symmetry,
the converse is not true.17,18

I should therefore explain why it is the notion of a state-space symmetry that is
operative in symmetry fundamentalism, rather than the notion of a dynamical symmetry.

16More precisely: a phase space symmetry T is a dynamical symmetry iff for every dynamically
allowed flow line h, there is another dynamically allowed flow line h′ such that every phase space point
on h gets mapped by T to a unique phase space point on h′.

17An example of a state-space symmetry that isn’t a dynamical symmetry are momentum shifts of
individual particles. Suppose that the Hamiltonian of the two-particle world is that of a free system:
H = 1

2m
(p2

A + p2
B), where pA and pB denote the momentum coordinate functions of particles A and B,

respectively. Shifts in the momentum of particle A are generated by its position coordinate function qA.
Moreover, shifts in the momentum coordinate of A are a dynamical symmetry only if {qA, H} = 0. But
{qA, H} = pA

m
, so momentum shifts of A are not a dynamical symmetry.

18Note: the fact that not every state-space symmetry is a dynamical symmetry entails that not every
state-space symmetry satisfies the constraint that symmetry-related states are indistinguishable from
one another; cf. (Dasgupta, 2016). Intuitively: there are lots of ways of shifting only one particle in
physical space that do not result in an indistinguishable situation.
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The main reason is that, whether a given state-space symmetry is also a dynamical
symmetry plays no role in the relevant symmetry-based inferences; and if a dynamical
symmetry figures in such an inference, it does so only in virtue of the fact that it is a
state-space symmetry. Perhaps the best illustrations of this can be found in quantum
theory, where state space is characterized by Hilbert space: a vector space endowed with
an inner product, a function you can roughly think of as an assignment of lengths to
vectors. In this context, state-space symmetries are Hilbert space transformations that
preserve the inner product.19 A full discussion of the quantum case is beyond the scope
of this paper.20 Here, I’ll just note two important examples. First, the only symmetry-
related premise in the characterization of spin in non-relativistic quantum mechanics
is that rotations are state-space symmetries.21 Similarly, the only symmetry-related
premise in the classification of elementary particle kinds in terms of mass and spin is that
relativistic boosts, rotations, and shifts (also known as Poincaré transformations) are
state-space symmetries.22 Both are paradigmatic examples of symmetry-based inferences
that motivate the symmetry-fundamentalist vision expressed by Weinberg and others;
but neither requires an assumption about whether the state-space symmetries in question
also count as dynamical symmetries.

In this context, it is important to point out why it might be tempting to conflate
state-space symmetries with dynamical symmetries: standard introductions of symmetry
techniques in physics often focus on physical systems whose dynamical and state-space
symmetries coincide.23 An example of such a system is a classical Newtonian particle
world that contains exactly one particle in three-dimensional Euclidean space and whose
dynamics are governed by a Hamiltonian of the form H = p2

2m + V (x), where V (x)
is a spherically symmetric potential. In this world, rotations are symmetries of both
kinds: they are state-space symmetries (since they preserve the symplectic form); and
they are dynamical symmetries (because they leave H invariant). But this coincidence
breaks down in worlds that contain multiple particles. In such a world, rotations of
an individual particle count as state-space symmetries but generally do not count as
dynamical symmetries: for example, any multi-particle Hamiltonian whose potential
term depends on particle distances is not invariant under such transformations.24

We are now in a position to understand why the classical setting is adequate as a
testbed for symmetry-fundamentalist ontological theorizing. State-space symmetries are
central to virtually every theory of fundamental physics developed since the time of
Heisenberg and Schrödinger, including quantum field theory—the theoretical framework
that inaugurated the paradigm shift towards symmetry techniques and that underlies
the wildly successful ‘standard model of particle physics’—and influential proposals for

19Hilbert space transformations that preserve the inner product are known as unitary and anti-unitary
transformations; cf. (Wigner, 1931; Weinberg, 1995).

20A symmetry-fundamentalist ontology for quantum mechanics is developed in (Schroeren, 2020).
21For example, the fact that spin is discrete follows from the Peter-Weyl theorem on the assumption

that rotations are state-space symmetries (i.e. unitary transformations); this is the only symmetry-related
assumption required by the theorem (Folland, 2015, p. 136).

22This classification is due to Eugene Wigner (1939).
23For example, (Ballentine, 2000, pp. 77).
24Both electrostatic and Newtonian gravitational potentials are of this form.
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a quantum theory of gravity.25 For example, as can be confirmed by consulting standard
textbooks on the subject, virtually any transformation that is called a ‘symmetry’ in
quantum field theory is at least a state space symmetry.26 Indeed, the continuing and
thoroughgoing utility of symmetry techniques in modern physics is likely what inspired
physicists like Weinberg to suggest that symmetries should be regarded as corresponding
to fundamental aspects of reality. Now, state-space symmetries aren’t just an important
part of modern quantum physics, but also play a crucial role in the seemingly antiquated
setting of classical particle mechanics—specifically, in its Hamiltonian formulation. This
means that we find ourselves in the rather fortunate situation of being able to make
progress on the ontology of a wide range of cutting-edge physical theories without
getting sidetracked by their mathematical complexities. We can use classical particle
mechanics as a testbed for symmetry-fundamentalist ontological theorizing without loss
of generality.

This highlights a key strength of my approach. Although the predictions of current
fundamental physics are more accurate than ever before, there is good reason to think
that none of our current best theories provide a true and exhaustive description of
fundamental physical reality. For ontological theorizing about existing physics to give us
insight into the fundamental structure of the actual world (rather than some possible
world in which existing physics is exactly true), we should have good reason to think that
the results of our theorizing are likely to apply to more exact and complete future physical
theories, or at least that they allow us to discern general strategies for developing an
ontology for such theories. This is precisely what seems to be the case for the approach
in this paper: since state-space symmetries have been and continue to be at the heart
of a wide range of proposals for fundamental physics, the symmetry-fundamentalist
approach has a good claim to be capable of delivering candidate ontologies for future
fundamental physics as well.

In this section, we’ve familiarized ourselves with the notion of a state-space symmetry.
In the remainder of the paper, I will develop an ontology according to which the physical
counterparts of state-space symmetries are fundamental and which details how every
relevant proposition about particles can be derived from some fundamental proposition.

3 State-Space-First Metaphysics
For individualists, state space is nothing over and above complete individualistic profiles:
for the world to be in some state at some instant of time just is for some complete
individualistic profile to be true.

But there is an alternative view of state space, one that is key to the symmetry-
fundamentalist ontology I’m about to develop. According to this state-space-first view,

25One important example is loop quantum gravity, where the fundamental physical entities are
mathematically characterized in terms of spin networks: graphs whose links are each endowed with a
Hilbert space that is acted upon by a unitary representation of the rotation group SU(2)—i.e. by a
group acting in terms of state-space symmetries. Moreover, the fundamental physical quantities (area
and volume) are defined in terms of the generators of those state-space symmetries; (Rovelli, 2011).

26For example, (Weinberg, 1995, p. 51).
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there are fundamental entities (called primitive states) and some appropriate fundamental
notion of ‘actuality’ which satisfies the constraint that, necessarily, for every instant of
time there is exactly one primitive state that is actual at that instant. Primitive states
have the structure of the individualistic state space and are in one-to-one correspondence
with complete individualistic profiles. Although the state-space-first metaphysician agrees
with the individualist about which complete individualistic profile is true at any given
instant of time, they deny that primitive states are complete individualistic profiles: on
the state-space-first view, particles are ontologically derivative and so do not figure in
the bottom-line story of physical reality. Primitive states are therefore quite different
from their individualistic counterparts: as opposed to individualistic states, when two
primitive states are distinct, this is not so by virtue of disagreeing about any particular
particle; they are primitively distinct.27 This means that, on the state-space-first view,
the constraint that no more than one state can be actual at any given instant of time
is quite different in nature than it is on the individualistic view. On the individualistic
picture, the fact that at most one complete individualistic profile can be true at any
given instant of time is a logical consequence of the fact that individualistic profiles
are maximally specific and exhaustive, and therefore mutually exclusive. Since the
state-space-first metaphysician regards states as primitive entities that are distinct from
complete individualistic profiles, they must implement this constraint as a basic law
governing the actuality relation.

Since the state-space-first view entails that particles are ontologically derivative, the
main challenge for this view is to show that every complete individualistic profile is
entailed by some fundamental proposition about primitive states.

It is clear that the requisite fundamental propositions cannot just say which primitive
states are actual. Recall: according to the individualist, the proposition that some indi-
vidualistic state is actual at some instant of time determines the complete individualistic
profile at that instant. Since primitive states do not have individualistic structure, the
state-space-first metaphysician must deny the corresponding claim: the proposition that
some primitive state is actual at some instant of time does not determine which complete
individualistic profile is true at that time. The state-space-first picture requires additional
fundamental entities whose pattern is detailed by the relevant propositions, such as
properties of and relations among states. So, whereas individualistic states determine
complete individualistic profiles in isolation, primitive states determine these profiles
only collectively. While individualistic states may have some resemblance to possible
worlds, primitive states clearly do not. (I say more about the modal status of primitive
states near the end of this paper.)

27(Bacon, 2019) develops a version of state-space-first metaphysics, albeit for somewhat different
philosophical purposes: he deploys state-space theoretic reasoning to illustrate a general strategy aimed
at the more ambitious goal of articulating a purely qualitative account of the fundamental—one
that dispenses with individuals in a broader logical sense of first-order individuals. By contrast, the
individualism to which state-space-first metaphysics is opposed is the view that fundamental physical
reality consists in individuals of a more specific, physical sort: objects like elementary particles. My kind
of state-space-first metaphysics is consistent with the more general kind of individualism that is the
target of Bacon’s work. The view proposed in (North, 2009) merely entails that state space is a real
physical space, but not that it is fundamental.
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To identify the physical entities whose pattern is detailed in the relevant fundamental
propositions, we need to specify the state-space-first view in more detail. An immediate
question concerns the ontological category of primitive states. This is a subtle choice
point for the state-space-first approach. One option is state-space substantivalism, the
view that primitive states are first-order individuals. In addition to primitive states,
this view posits instants of time: first-order individuals that bear a fundamental dyadic
actuality relation to states. This relation can be paraphrased as “... is actual at...” and
satisfies the constraint that, necessarily, for every instant of time t there is some state s
such that s is actual at t.28 An alternative view conceives of primitive states as dyadic
relations between instants of time and a single first-order individual—‘the world’—such
that necessarily, for every instant of time, there is some relation that the world bears
to that instant.29 Another alternative regards primitive states as monadic properties
of instants of time such that necessarily, for every instant of time there is some such
property instantiated by it.30 Although I focus on the substantivalist option in this
paper, my main conclusions do not depend on this choice. The core of the view I propose
is that primitive states are fundamental physical entities that figure in the fundamental
propositions that entail complete individualistic profiles. This view is indifferent to
whether states are conceived of as first-order individuals, first-order relations between
the world and instants of time, or as monadic properties of instants of time.31

In addition to states, times, and the actuality relation, we also need to posit properties
and relations that confer symplectic structure on primitive states and temporal structure
on instants of time. I will not say more about these ontological primitives here, except for
the following. First, the literature contains successful proposals for an intrinsic account
of temporal structure.32 Second, an intrinsic account of the properties and relations that
confer symplectic structure is tantamount to the nominalization of symplectic geometry.
This project is beyond the scope of this paper; for present purposes, it will suffice to
refer to the symplectic structure in mathematical terms.

A few paragraphs ago, I noted that the complete individualistic profile at an instant
of time is determined by a proposition that does not just say which primitive state
is actual at that time, but that also details the pattern in certain properties of and
relations among primitive states. Are the properties and relations that confer symplectic
structure sufficient for this task?

The answer is no. State spaces of classical particle worlds can agree about the entities
28The explicit quantification over instants of time means that state-space substantivalism has a

distinctively B-theoretic flavour. It is fairly straightforward to articulate an A-theoretic version of the
view—a version which does not quantify over instants of time—by replacing the actuality relation with
a monadic property ‘...is actual’, and introducing primitive propositional tense operators such as ‘it will
always be the case that...’, ‘it will at some time be the case that...’ and so on.

29The A-theoretic version of this view regards primitive states as monadic properties of the world
such that necessarily, the is always some such property instantiated by the world.

30The A-theoretic version of this view conceives of states as zero-place properties: i.e. propositions
such that necessarily, there is always some such proposition that is true.

31See (Bacon, 2019) for a discussion of some foundational issues raised by this choice point.
32For example, Arntzenius and Dorr (2012, pp. 223) proceed in terms of temporal betweenness and

temporal congruence; cf. Field (1980, Chpt. 6).
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that confer symplectic structure while disagreeing about particle number. A twelve-
dimensional phase space can be used to characterize the state space of two particles in
three spatial dimensions as much as it can be used to describe the state space of three
particles in two spatial dimensions. Complete individualistic profiles aren’t determined
by symplectic structure alone; additional physical structure is needed. As I will explain
shortly, central among these primitives are relations among states that correspond to
state-space symmetries.

In this section, I contrasted individualism—the default ontology for classical particle
mechanics—with the state-space-first approach. The next task is to introduce the
ontological primitives whose patterns determine complete individualistic profiles. There
will be no more than four primitives, two of which correspond to state-space symmetries.
This will demonstrate that state-space-first metaphysics is an instance of symmetry
fundamentalism.

4 Individualistic Profiles from Primitive States
I will introduce the relevant primitives by their individualistic paraphrases; but it is
important to emphasize that these individualistic characterisations are not metaphysical
definitions: as primitives, these items cannot be characterized or defined in more basic
terms. Any individualistic characterisation is a mere conceptual crutch that we must
ultimately kick away to be replaced by a full account of individualistic talk in state-
space-first terms. This is a familiar aspect of metaphysical theorizing: when making
unfamiliar metaphysical posits, we need to defend them by presenting a theory in which
they figure and by showing how that theory is inferentially and explanatorily connected
to notions we already understand. This is precisely what I will do momentarily: I will
explain how the ontological primitives I introduce figure in the fundamental propositions
that entail complete individualistic profiles.

I already mentioned some of the fundamental posits of state-space-first metaphysics.
On the state-space substantivalist version of this approach, we posit states, instants of
time, the actuality relation, as well as symplectic and temporal structure. (For ease of
exposition, in this section I will refer to primitive states simply as ‘states’.) There are
four additional primitives; here are the first three:33

1. Position-Almost-Sameness. A dyadic relation. Relates two states iff
they agree about the momenta of all particles and about the positions of all
but one particle.
2. Momentum-Almost-Sameness. A dyadic relation. Relates two states
iff they agree about the positions of all particles and about the momenta of
all but one particle.
3. Degeneracy. A monadic property. Picks out a 6-dimensional subspace of
state space consisting of states at which all particles have the same position
and the same momentum.

33The following is inspired by (Dorr, 2018).
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Before we can introduce the fourth primitive, we need to do some work using the other
primitives. There are four steps.

First, position-almost-sameness picks out a range of subspaces such that any two
elements are position-almost-same; similarly for momentum-almost-sameness. Call these
subspaces the position-almost-same subspaces and the momentum-almost-same subspaces,
respectively.

Second, observe that the points in a given position- or momentum- almost-same
subspace differ about the position or momentum of the same particle, respectively. The
reason is that two states y, z can be (say) position-almost-same to some state x without
being position-almost same to each other. The fact that x, y and x, z are position-almost-
same, respectively, implies the position-almost-sameness of y and z only if the differences
between x, y and x, z concern the same particle.

The position- and momentum-almost-same subspaces are characterized in terms of
certain specific state-space symmetries: the position and momentum shift flows, i.e. the
transformations which (on the individualistic picture) correspond to shifts of individual
particles in position or momentum. Recall: a phase-space flow is a family of curves such
that every phase space point is intersected exactly once by exactly one curve in this
family. For any triple of spatial coordinate axes, there is a triple of phase space flows
that corresponds to shifting some specific particle along these three axes. Of course,
there is a continuum infinity of such triples—one for every coordinate system—each of
which is equally well-suited for describing the almost-same subspaces. This is as it should
be: differences between coordinate systems are a paradigm instance of mathematical
differences without corresponding metaphysical distinctions.

Here is the third step. We can define physical counterparts of level surfaces of
coordinate functions in terms of almost-same subspaces. The level surfaces of a coordinate
function on phase space are regions of phase space in which that function is of constant
value. Level surfaces may be familiar from hiking maps where they are known as contour
lines: regions of constant height. See figure 5 for an illustration.

The physical counterparts of level surfaces are what I refer to as position and
momentum foliations. We can give them the following individualistic characterization:
any two states on a leaf of a position foliation agree about the position of some particle
while possibly disagreeing about the positions of all other particles and about the
momenta of all particles; similarly, any two states on a leaf of a momentum foliation
agree about the momentum of some particle while possibly disagreeing about the
momenta of all other particles and about the positions of all particles. Position and
momentum foliations are equivalence relations with leaves as equivalence classes; and
two states x, y are on the same leaf of (say) a position foliation Q iff Qxy.

Position and momentum foliations are mathematically represented by the level surfaces
of phase-space coordinate functions. The subspace of phase space that corresponds to a
given leaf of a position foliation is the subspace such that, for any two phase space points
s, s′ in this subspace, for some particle, for every triple of spatial coordinate functions of
that particle, and for some triple of level surfaces of these functions, s lies on those level
surfaces iff s′ does. Differently put: any two points in a subspace of phase space that
corresponds to a given leaf of a position foliation agree about the level surfaces of all
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pA

pB

qA

Figure 5: An illustration of the phase space of two particles (here labeled by A and B)
in one spatial dimension. Axes are labeled by the coordinate functions for the position
of particle A (qA), the momentum of A (pA), and the momentum of B (pB); the axis
corresponding to the position of B (qB) is suppressed. The shaded regions are segments
of the level surfaces of pA. (More precisely: the shaded regions are the intersections of
the three-dimensional level surfaces of pA with some specific three-dimensional level
surface of qB).

spatial coordinate functions of some particle.
The goal is now to replace the individualistic characterization of position and momen-

tum foliations with a definition in terms of position- and momentum-almost-sameness.
This definition involves the symplectic structure of state space. As I said before, for
present purposes it will be sufficient to refer to this structure in mathematical terms. The
key thing to note, then, is that position and momentum foliations can be defined in terms
of the position- and momentum-almost-sameness relations at the level of mathematical
description: that is, the level surfaces of a given coordinate function can be defined in
terms of a specific phase space flow.

The mathematical details of this definition are quite involved and need not concern
us here.34 It will suffice to note that the definition is based on four mathematical

34The details go as follows. Let (M,ω) be a symplectic manifold, p a smooth real-valued function on
M , expx : TxM →M , v 7→ expx(v) the exponential map and d the exterior derivative. The level surfaces
of p are encoded in the exterior derivative dp of p; and dp uniquely corresponds to the phase space flow

γ : M × R→M,

(x, t) 7→ γ(x, t) = expx(tω−1(dp)|x) (1)
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observations: first, every vector field has a flow; for example, figure 6 shows the gradient
vector field of a momentum coordinate function. Its flow takes us along paths of greatest
increase of this function. Second, there is a one-to-one correspondence between the level

pA

qA

pB

Figure 6: The gradient of pA is everywhere at a right angle to the level surfaces of pA

and its length at a point is proportional to the rate of change of pA around that point.

surfaces of this coordinate function and its gradient: the level surfaces uniquely determine
the gradient and vice versa. Third, for technical reasons, phase spaces generally do not
admit of a gradient vector field, but instead of what’s referred to as a Hamiltonian vector
field: a vector field that differs from the gradient in that it does not point in the direction
of greatest increase of a function but rather along the level surfaces of that function, as
illustrated in figure 7.35 But Hamiltonian vector fields are similar to gradients in the

where ω−1(dp) is the Hamiltonian vector field of p. Since ω−1(dp, dp) = 0, i.e. the rate of change of p
under γ vanishes, γ is confined to the level surfaces of p. Moreover, there is a smooth function q (unique
up to an arbitrary additive constant) such that ω−1(dq, dp) = 1. If p is the momentum coordinate function
of some particle along some axis, then q is the corresponding position coordinate. For the purposes of
ontological theorizing, we can read the identity in (1) as stating a definition of dp (corresponding to an
aspect of a momentum foliation) in terms of γ (corresponding to an aspect of a position-almost-same
subspace).

To be sure, the identity in (1) by itself does not require this reading: there is nothing in the mathematics
that suggests an asymmetry between the two sides of the equality sign. However, we are presently
concerned with ontological theorizing about physics. As I understand this project here, it consists in
the articulation of hypotheses about physical reality in a way that may involve drawing metaphysical
distinctions between mathematically equivalent entities; cf. (Maudlin, 2018).

35The reason is that phase spaces generally do not admit a Riemannian metric, a mathematical entity
that links the level surfaces of a function to gradient vector fields. Instead, as already mentioned, phase
spaces admit of a symplectic form—an entity which links the level surfaces of any smooth real-valued
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pA

pB

qA

Figure 7: The Hamiltonian vector field of pA everywhere points along the level surfaces
of pA. Its length at a point is proportional to the rate of change of pA around that point.

following respect: for every Hamiltonian vector field there is some unique collection of
level surfaces and a unique flow to which it corresponds. Fourth, the level surfaces of
the position coordinate of some particle in some direction uniquely correspond to the
Hamiltonian vector field whose flows are shifts in the momentum coordinate of that
particle in that direction; similarly, the level surfaces of the momentum coordinate of
some particle in some direction uniquely correspond to the Hamiltonian vector field
whose flows are shifts in the position coordinate of that particle in that direction. This
is illustrated in figure 8.

The result is the following: at the level of mathematical description, position folia-
tions are definable in terms of momentum-almost-sameness, and momentum foliations
are definable in terms of position-almost-sameness—in both cases, together with the
symplectic structure of state space.36

The fourth step is to make use of the degeneracy property. The idea is that degenerate
states serve to define surrogates for position and momentum values. We begin with
defining the relations of hereditary position-/momentum almost-sameness as the transitive
closures of the position-/momentum-almost-sameness relations. In other words: any two
hereditarily position-almost-same states agree about the momenta of all particles but

function with some specific Hamiltonian vector field.
36The definitions of position-foliations in terms of momentum-almost-sameness and of momentum-

foliations in terms of position-almost-sameness are a reflection of the correspondence between position
and momentum degrees of freedom, also known as canonical conjugation, that is one of the characteristic
features of the Hamiltonian formulation of classical mechanics.
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pA

pB

qA

Figure 8: The flow lines (dotted) of the Hamiltonian vector field of pA.

possibly disagree about particle positions, and any two hereditarily momentum-almost-
same states agree about the positions of all particles but possibly disagree about particle
momenta. Next, let a position-degenerate subspace be a subspace of points hereditarily
momentum-almost-same to some degenerate point and let a momentum-degenerate
subspace be a subspace of points hereditarily position-almost-same to some degenerate
point. Individualistically speaking, states in position-degenerate subspaces agree about
the spatial location at which all particles coincide but can disagree about particle
momenta, and states in momentum-degenerate subspaces agree about the momentum
value instantiated by all particles but can disagree about particle positions.37

The strategy is now to identify individualistic quantification over particles with
quantification over position- and momentum-foliations, and quantification over posi-
tion/momentum values with quantification over position-/momentum-degenerate sub-
spaces. Here is a first pass at this idea: at t, some particle has spatial location q iff there
is a primitive state x such that x is actual at t, q is a position-degenerate subspace and
there is a position foliation Q such that Qxz for every point z in q.

This is not quite right. Consider the claim that, at t, some particle has spatial location
q and momentum p. The first pass suggests that this claim is equivalent to the proposition
that

1. there is a primitive state x such that x is actual at t and
37When the symplectic manifold that corresponds to state space is a cotangent bundle, position-

degenerate subspaces correspond to certain specific fibres in this bundle and momentum-degenerate
subspaces to certain specific sections.
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2. q is a position-degenerate subspace and p is a momentum-degenerate subspace and

3. for some position foliation Q and some momentum foliation P : Qxy for every y in
q and Pxz for every z in p.

But this is incorrect. The individualistic proposition attributes position and momen-
tum values to the same particle. However, there is no corresponding structure in its
proposed fundamental counterpart: something which serves as the ground for individual-
istic attributions of positions and momenta, an entity in virtue of which the fundamental
structure of the classical symmetry-fundamentalist world is rich enough to give rise
to non-fundamental individualistic profiles. What is missing, in individualistic terms,
is a fundamental notion which ensures that position- and momentum-foliations—the
fundamental surrogates for position and momentum values—belong to the same par-
ticle. The state-space-first metaphysician needs to make an additional posit, and one
straightforward option is the following relation:

4. Particle-Sameness. A dyadic relation which relates a position- and
momentum-foliation iff they belong to the same particle.

The role played by this relation is analogous to imposing a convention that details
which phase-space coordinates belong to which particle. For an N -particle system,
the standard convention is that the first N triples of phase-space coordinates of a
given phase-space point are the position coordinates and the last N triples are the
momentum coordinates, so that coordinates 1, 2, 3 and N + 1, N + 2, N + 3 are the
position and momentum coordinates, respectively, of the same particle. The relation of
particle-sameness is a fundamental posit that captures just this kind of structure at the
fundamental level.

Let me stress again that neither the label nor the individualistic characterization
of particle-sameness should be read as a metaphysical definition of this relation, or
as implying that a state-space-first metaphysics must ultimately reintroduce particles
at the fundamental level. Just like almost-sameness and degeneracy, particle-sameness
is fundamental and so cannot be defined in more fundamental terms. Nonetheless,
this fact does not prevent us from using individualistic language to pin down these
fundamental notions—as long as we ultimately succeed in vindicating such individualistic
characterizations.

Indeed, this is precisely what particle-sameness allows us to achieve. The modified
proposal is as follows: at t, some particle is at position q with momentum p iff

1. there is a primitive state x such that x is actual at t and

2. q is a position-degenerate subspace and p is a momentum-degenerate subspace and

3. for some position foliation Q and some momentum foliation P such that P and Q
belong to the same particle: Qxy for every z in q and Pxz for every z in p.

Let me illustrate this proposal for a world containing two particles in one spatial
dimension. (For ease of exposition, I will label these particles as A and B. Nothing
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of metaphysical significance hangs on these labels.) The state space of this world is
four-dimensional. Figure 9 shows a projection of this space onto a three-dimensional
subspace in which the position of particle B is fixed. In other words, this diagram depicts
some specific leaf of a position-foliation. There are now three things to explain.

First of all, the degenerate states form a two-dimensional subspace. Since one dimen-
sion is suppressed in figure 9, the degenerate states form a one-dimensional subspace.
Since no degenerate state in this diagram can differ about the fixed position of particle
B, this line must intersect the qA-axis at a right angle. Moreover, states in this subspace
agree in the momenta of both particles, so this line is at a 45◦ angle to both the pA and
the pB axes. If a is the state at which qA matches qB, then this subspace is given by the
dashed line.

pA

pB

qA

x

a

b

c

d

e

f

Figure 9: Position- and momentum-degenerate subspaces as well as position- and
momentum-foliations of a two-particle world in one spatial dimension.

Second, position- and momentum-degenerate subspaces are two-dimensional subspaces
of state space, while the leaves of position- and momentum-foliations (or position- and
momentum-leaves, for short) are three-dimensional subspaces. Position- and momentum-
leaves are projected down to two-dimensional surfaces shown in this diagram: the surfaces
spanned by dex and bcx are leaves of momentum-foliations, respectively, and abx is
a leaf of a position foliation. Since the only differences in position between states in
this diagram are differences in the position of A, momentum-degenerate subspaces
are one-dimensional, such as the solid lines intersecting states f and e. By contrast,
position-degenerate subspaces in this diagram are two-dimensional surfaces that (due to
the suppression of one dimension) coincide with leaves of position foliations. An example
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is the surface spanned by abx.
Finally, we can verify the above account of individualistic propositions. At state x, the

position of particle A is the position-degenerate subspace that coincides with abx and
its momentum is the momentum-degenerate subspace through f : the former coincides
with the position-leaf spanned by abx and has the same qA-coordinate as x, the latter is
completely within the momentum-leaf spanned by bcx and has the same pA-coordinate
as x. Similarly, the momentum of particle B is the momentum-degenerate subspace
intersecting e, which lies completely within the momentum-leaf spanned by dex and has
the same pB-coordinate as x. The relation of particle-sameness is not pictured in this
diagram; think of it as fixing the particle labels of the coordinate axes.

The proposal just illustrated is sufficient for specifying the fundamental propositions
that entail the individualistic propositions. Complete individualistic profiles are conjunc-
tions of existentially quantified claims of the form ‘there is some particle at position q
with momentum p’. As we just saw, each of those conjuncts is equivalent to a fundamental
proposition about primitive states and the properties of and relations among states.
We have therefore met the key challenge facing the state-space-first metaphysician:
to specify fundamental propositions (about primitive states and their relations) such
that every complete individualistic profile is entailed by some such proposition. On the
resulting view, the complete individualistic profile of the world at some instant of time is
equivalent to a proposition that details which primitive state is actualized at that time
as well as the pattern in the primitive physical structure on state space. Here is a list of
the ontological primitives of state-space substantivalism:

State-Space Substantivalism
Ontological Primitive Type

Primitive states. A collection of first-order individuals.
Instants of time. A collection of first-order individuals.

Actuality. A single dyadic relation that takes one
primitive state and one instant of time as

arguments.
The properties and relations that confer
symplectic structure on primitive states.

A collection of properties of and relations
among primitive states.

The properties and relations that confer
temporal structure on instants of time.

A collection of properties of and relations
among instants of time.

Position- and
momentum-almost-sameness.

Two dyadic relations among states.

Degeneracy. A single monadic property of states.
Particle-sameness. A single dyadic second-order relation

that takes dyadic relations among states
as arguments.38

38In the language of relational type theory, a first-order property is an entity of type 〈e〉; a first-order
relation is an entity of type 〈e, e〉; and a second-order relation among dyadic first-order relations is an
entity of type 〈〈e, e〉, 〈e, e〉〉; where e is the type of individuals, 〈〉 the type of propositions and for any
types τ1, ..., τn, n ≥ 0, 〈τ1, ..., τn〉 is a type; nothing else is a type. See (Dorr, 2016, pp. 49-52) for details.
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State-space-first proposals like state-space substantivalism give symmetry funda-
mentalism a precise metaphysical underpinning. As mentioned earlier, state-space
symmetries—phase space flows that preserve the symplectic form—correspond to physical
entities, the almost-sameness relations. State-space-first proposals of this kind therefore
make good on the idea that mathematical symmetries correspond to fundamental aspects
of physical reality, whereas things like particles are ontologically derivative of these
aspects.

But you might think that we could have achieved this much more straightforwardly:
simply by pointing to the mathematical symmetry transformations and declaring that
it is the physical entities to which these transformations correspond—whatever they
might be—that figure in the symmetry fundamentalist ontology. The underlying thought
is that, when specifying an ontology for a physical theory, it is sufficient to identify
certain aspects of the mathematical formulation of that theory as the representationally
significant ones—those that are taken to in some sense ‘correspond to’ parts of physical
reality. On this approach, there is no requirement that the relevant physical entities be
characterized independently of their mathematical representations.

The approach I’ve taken in this paper is more ambitious. I have characterized the
physical entities that correspond to mathematical symmetry transformations in purely
physical terms: that is, in terms which make transparent that they are distinct from their
mathematical representations and which explains the suitability of those mathematical
representations as tools for characterizing the fundamental ontological inventory of
state-space-first metaphysics.39

The advantages of this more ambitious approach should now be clear. First of all,
we saw that the state-space structure that goes beyond symplectic structure can be
captured in terms of just four ontological primitives: two almost-sameness relations, the
monadic degeneracy property, as well as the relation of particle-sameness. This reveals
that the physical structure of state space in classical particle mechanics is significantly
simpler than its mathematical characterization might suggest—a fact that we would
likely have missed had we not gone beyond the mathematical formalism in our ontological
theorizing.

Second of all, the metaphysical insight afforded by our account is unlikely to be
matched by the more modest approach. The reason is that symmetry fundamentalism
is a particularly puzzling claim. We are familiar with fundamentalism about Euclidean
space as a certain specific view about the structure of fundamental physical space. By
contrast, fundamentalism about state-space symmetries is an altogether less familiar
and more puzzling thing. Declaring that a range of symmetry transformations are
representationally significant and that they ‘correspond to’ purely physical entities does
not allow us to see even dimly what these purely physical entities could be. We might

39My approach is inspired by nominalistic constraints on ontological theorizing, according to which
physical ontology must be specified without invoking mathematical entities at all; cf. (Field, 1980;
Arntzenius and Dorr, 2012; Chen, 2018). However, limitations of space prevent me from fully complying
with nominalistic strictures in this paper. Instead, I have provided a nominalistic characterization of
merely one part of the ontology: the part concerned with the fundamental items corresponding to
mathematical symmetry transformations.
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even run the risk of being profoundly misunderstood: to some, it may sound like we’re
proposing a kind of pythagoreanism, according to which physical reality consists (at
least in part) of mathematical objects. Specifying the relevant ontological primitives in
purely physical terms—as I did in this paper—is a way to avoid problems of this kind.

Finally, let me briefly dispel a worry that some readers might have about the kind of
ontology presented in this paper: since states seem to have modal characteristics, the
view that state space is fundamental looks appears to imply a kind of modal realism,
according to which non-actualized, merely possible states are every bit as real as the
actualized state.

Contrary to appearances, state-space substantivalism does not have this implication.
As already noted, individualistic states certainly do have a modal flavour: for every
proposition about the positions and momenta of particles statable in the individualistic
theory, complete individualistic profiles entail either it or its negation. Intuitively, an
individualistic state can be thought of as representing an instantaneous way the world
could be—much like a possible world. But these modal characteristics of individualistic
states are not inherited by their counterparts in the state-space-first ontology, the
primitive states. As I argued earlier, the fact that the world is in some primitive state
at some instant of time by itself does not fix the complete individualistic profile of the
world at that instant; for that, we also need to know the relationships between that
primitive state and other primitive states. According to state-space substantivalism, the
space of primitive states is simply the fundamental space in which the history of the
world unfolds.

To be sure: the fundamental state space does obey the constraint, familiar from
the individualistic setting, that for any instant of time, the world can be in no more
and no less than one state at that instant. But whereas in the individualistic theory,
this constraint follows from the fact that individualistic states are maximally specific
and exhaustive, the state-space fundamentalist theory must add this constraint as a
basic law: there is nothing about the nature of primitive states that guarantees mutual
exclusivity. Any kind of modal status that this constraint may be thought to confer on
primitive states has its source in this basic law rather than in some putative intrinsic
modal property of primitive states.

5 Conclusion
In this paper, I developed an ontology for classical particle mechanics that gives sym-
metry fundamentalism a precise metaphysical underpinning—the view that symmetries
correspond to fundamental aspects of physical reality, whereas the entities we might
ordinarily have thought of as the fundamental building blocks of the world, such as par-
ticles or fields, are ontologically derivative of those aspects. Our investigation illustrates
the way in which symmetry-fundamentalist ontological theorizing does justice to the
paradigm shift towards symmetry techniques in modern physics and serves as a guide
for articulating symmetry-fundamentalist ontological proposals for quantum theory, a
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project I carry out elsewhere.40

Given the absence of coherent ontological alternatives, individualism has so far been
the default option for the ontology of classical particle mechanics. One result of this
paper is that this is no longer the case: the foregrounding of symmetries in metaphysical
theorizing led us to state-space-first views as a range of coherent ontological alternatives
to individualism. It may therefore be worth reopening the question whether individualism
should be regarded as the superior metaphysics for classical particle mechanics. At the
very least, a thorough and systematic evaluation of the strengths and weaknesses of
state-space-first proposals vis-à-vis individualism might improve our grasp of why the
latter is preferable as an ontology for classical particle mechanics. This is a task for
another day.

Finally, there are two general lessons to be drawn from this paper. First, I hope
to have shown what we can achieve when we let go of our preconceptions about what
the world must be like fundamentally. There is lots of progress to be made by taking
inspiration from physicists and from the mathematical formulations of physical theories.

Second, our investigation demonstrates that taking physics itself as the starting point
for metaphysical theorizing isn’t a way of making metaphysics or its methods redundant.
Quite the contrary: doing so showcases the power of metaphysics as a tool for exploring
the full range of ontological options for fundamental physics.
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