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Abstract 

 An increasing number of arguments for causal pluralism invoke empirical psychological 

data. Different aspects of causal cognitionspecifically, causal perception and causal 

inferenceare thought to involve distinct cognitive processes and representations, and they 

thereby distinctively support transference and dependency theories of causation, respectively. 

We argue that this dualistic picture of causal concepts arises from methodological differences, 

rather than from an actual plurality of concepts. Hence, philosophical causal pluralism is not 

particularly supported by the empirical data. Serious engagement with cognitive science reveals 

that the connection between psychological concepts of causation and philosophical notions is 

substantially more complicated than is traditionally presumed.   
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1. Introduction 

Imagine a billiard ball rolling into a stationary ball, immediately followed by movement of 

the latter ball. Now imagine a healthy person who brushes against a plant and develops a rash an 

hour later. While both seemingly causal, these two sequences differ along many dimensions 

(e.g., timeframe, domain, reliability). In response, cognitive science research arguably points 

towards at least two distinct concepts of causation, one driven chiefly by perceptual features, the 

other statistical (e.g., Lombrozo 2010). At the same time, many philosophers of causation have 

argued—explicitly or otherwise—that the metaphysics of causation should depend partly on its 

psychological plausibility (e.g., Woodward 2011a, 2011b; Hitchcock 2012). These arguments are 

not simplistic inferences from psychological to metaphysical reality, but rather an observation 

that, for example, our causal concepts should be defeasibly anchored in actual relations in the 

world. The result of these two lines of work is a pluralistic metaphysical picture in which 

causation not only appears differently, but also comes in “basic and fundamentally different 

varieties” (Hall 2004, 1; see also Hitchcock 2003).  

At a high level, the general argument-schema that unifies many different proposals of causal 

pluralism can be understood as:  

(1) Our lay concept(s) of causation are defeasibly correlated or connected with the 

metaphysical or scientific relation(s) of causation in the world 

(2) Cognitive science tells us that we have multiple distinct lay concepts of causation, 

realized through distinct cognitive processes and representations 

⇒ (Conclusion) Metaphysical or scientific causal pluralism is defeasibly correct 

One way to resist this argument is to challenge premise (1) by arguing that our lay concepts 

need not have any connection with metaphysical or scientific relations. In this paper, we instead 
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challenge premise (2): we argue that the appearance of multiple causal concepts in human 

cognition can be explained by methodological variations between communities of cognitive 

scientists. Moreover, we show that there are empirical data in support of complex interactions 

between the perceptually- and statistically-driven concepts of causation, thereby suggesting a 

single (perhaps complex) lay concept of causation. We conclude by showing how different 

empirically possible theories of causal cognition have different metaphysical implications, and so 

the need for philosophically-motivated cognitive science to resolve these issues. 

 

2. Causal Pluralism in Cognitive Science 

One cannot help but see a flying baseball break the window (not just be correlated with the 

breakage), or a person running at top speed because of (and not just in conjunction with) a 

barking dog. The standard cognitive science account of these phenomena (Michotte 1963) is that 

such impressions of causation result from a perceptually driven concept characterized by 

signature spatiotemporal features (e.g., spatiotemporal contiguity between purported cause and 

effect). The resulting causal perception exhibits a set of distinctive features: automatic, 

phenomenologically instantaneous, unamenable to top-down influences, and highly sensitive to 

spatiotemporal features. Causal perception has largely been studied through variations on the 

direct launching paradigm (Michotte 1963; Scholl and Tremoulet 2000): a stationary object A is 

on screen; a moving object B enters the screen and moves until it contacts object A; at that point, 

object B stops while object A moves until it disappears from screen. In ordinary circumstances, 

participants invariably claim that the moving object kicked, pushed, or launched the stationary 

object. Notably, a delay between contact and motion, or a gap between the two object at 

movement onset, destroys any impression of causality. Different spatiotemporal features can 
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signal different causal processes, though in all cases, causal perception emerges automatically 

without explicit reasoning.  

In contrast, so-called causal inference1 involves learning about causal relations from 

information about covariation, contingency, and other statistical information. This information 

might come from observed correlations (Rottman and Keil 2012) or interventions (Steyvers et al. 

2003). For example, one often needs some data or trial-and-error to infer that an infant is crying 

because of a rash rather than hunger. Direct spatiotemporal connection is not a useful guide for 

this type of causal cognition (though see below). Strength judgments of a causal relation are 

sensitive to the degree of covariation between a purported cause and its effect (Shanks and 

Dickinson 1987; Buehner, Cheng, and Clifford 2003). Statistics also support causal structure 

learning or the ability to determine how different causal variables relate to one another (Griffiths 

and Tenenbaum 2005; Lu et al. 2008). In contrast with causal perception, causal inference is: 

cognitively effortful, has non-salient phenomenology, is largely independent of spatiotemporal 

features, and strongly amenable to top-down cognitive influences (Buehner and May 2002).  

The different behavioral manifestations of the perceptual and statistical concepts of 

causation—causal perception and causal inference, respectively—are often taken to suggest that 

these concepts rely on distinct cognitive processes or systems. This suggestion is further 

supported by a behavioral study (Schlottmann and Shanks 1992), in which participants 

anecdotally reported that they “knew the collision was not necessary for Object B to move, but 

                                                           
1 The name is somewhat unfortunate, as causal perception arguably also involves some 

inferences. Nonetheless, ‘causal inference’ is the term used in cognitive science to refer to this 

kind of statistics-driving causal learning. 



5 
 

that it just looked as if it should be” (338). Further evidence for causal pluralism comes from 

neuroscientific research, which demonstrates a clear differentiation in the brain networks 

activated during causal perception and causal inference. The perception of causal launching 

events, compared to that of non-causal launching events, was accompanied by a higher activation 

level in bilateral V5/MT/MST, the superior temporal sulcus and the left intraparietal sulcus 

(Blakemore et al. 2001). These areas are involved in complex visual processing, which suggests 

that causal perception might involve the recovery of causal structures in an event from motion 

cues (Fugelsang and Dunbar 2009). In contrast, inferential or statistical tasks with causation 

involved the activation of prefrontal and occipital cortices, precentral gyrus, and 

parahippocampal gyrus when the data conformed to participants’ expectations. A slightly 

different networkthe anterior cingulate, left dorsolateral prefrontal cortex, and the 

precuneuswas activated when the data were incongruent with expectations (Fugelsang and 

Dunbar, 2005). Notably, all of these brain areas are typically associated with ‘higher’ cognition, 

such as decision-making, conflict resolution, and information integration. Additionally, patients 

who had a corpus callosotomy (severing the connection between brain hemispheres, usually to 

treat epilepsy) exhibited a double dissociation between causal perception (seemingly) localizing 

in the right hemisphere and causal inference (seemingly) in the left hemisphere (Roser et al. 

2005). Insofar as one commits to the thesis that different brain network activations imply 

different brain mechanisms, these neuroscientific results all seem to imply that causal perception 

and causal inference recruit two different learning mechanisms. 

On top of all of these results, causal perception and causal inference also seem to develop at 

different points during childhood. Humans develop sensitivity for rudimentary cues to causality 

such as spatial contiguity between 4 and 5½ months of age (Cohen and Amsel 1998), and 
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perceive direct launching as a causal event based on the appropriate causal roles between 6½ and 

10 months of age (Leslie and Keeble 1987; Oakes and Cohen 1990). By 15 months, infants can 

perceive a three-object causal chain (in which the first object launches the second, which in turn 

activates the third) as involving a causal relationship between the first and third object (Cohen et 

al. 1999). In contrast, humans do not successfully solve the blicket detector task—a classic 

paradigm in causal inference research—until roughly two years of age (Gopnik et al. 2004; Sobel 

and Kirkham 2006). Children develop more complex causal reasoning abilities, such as the 

ability to infer unobserved causes (Schulz and Sommerville 2006) and integrate base rates 

(Griffiths et al. 2011), by four years of age, significantly later than all of the causal perception 

capacities. The different developmental timelines lend further empirical support to the initial 

claim that causal perception and causal inference result from two different cognitive processes 

and representations, which in turn depend on distinct psychological concepts of causation. 

 

3. Causal Pluralism in Philosophy 

Many metaphysical accounts of causation can be organized into two clusters of theories: 

transference and dependency. Transference theorists typically define causation by a transfer of 

energy or a conservation of quantities through transformation (e.g., Salmon 1984; Dowe 1992, 

2000), all of which have signature spatiotemporal properties. For example, in a collision event 

between two billiard balls, spatiotemporal contiguity during contact enables a transfer of 

momentum from each ball to the other. In contrast, dependency accounts of causation 

characterize (though not necessarily define) a causal relation between two factors by their 

statistical relationship: generative causes make their effect more likely; preventative causes make 

their effect less likely. This statistical dependency is then grounded in different ways by different 
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authors, such as counterfactuals, hypothetical interventions, or statistical differences in 

appropriate reference classes (e.g., Lewis 1973; Woodward 2009).  

Rather than arguing for one type of metaphysical account to the exclusion of the other, causal 

pluralists argue for the co-existence of transference and dependency as distinct kinds of 

causation that govern different phenomena (Godfrey-Smith 2009). Although arguments for these 

accounts can be purely metaphysical, a significant subset derive force from the empirical 

plausibility of these accounts (e.g., Hitchcock 2003; Woodward 2006, 2011a, 2011b; Hall 2004; 

Lombrozo 2010). The empirical observation that humans exhibit different behaviors and shift 

their criteria for causation in different scenarios, as presented above, is ostensibly a natural 

consequence of distinct philosophical causal concepts. For example, there is a straightforward 

mapping between the signature criteria for causation in many transference accounts and the 

specific spatiotemporal conditions encoded in the perceptually realized concept of causation. In 

particular, the immediacy and experiential richness of causal perception is inexplicable by many 

existing dependency theories of causation, but is more readily explained if causation involves 

transference (Wolff 2008; Beebee 2009). In the other direction, causal inference can often take 

place even in the absence of any obvious transfer of force or quantity between agent and 

recipient, such as cases of prevention in which there is no direct physical connection at all. This 

kind of causal cognition is often taken to support a dependency notion of causation (Woodward 

2009). Causal pluralism seems to explain a wide variety of human causal intuitions—those of 

both laypeople and philosophers—at the cost of only a slightly more crowded ontology.  

 

4. Causal Pluralism in Cognitive Science: A Methodological Analysis 
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The previous sections presented the “standard view” in cognitive science of causal learning 

as consisting of two distinct cognitive processes and representations, and noted the important 

role that it plays in philosophical arguments about the nature of causation. In this section, we 

challenge the premise that the standard (cognitive science) view is well-supported. In particular, 

we contend that there are three key methodological differences between causal perception and 

causal inference experiments, and those differences can explain the differences in observed 

phenomena without appeal to multiple cognitive processes. 

First, the presentation formats and response measures drastically differ between causal 

perception and causal inference experiments. In the former, participants usually watch a single 

event and answer questions about that particular event (Scholl and Nakayama 2002). 

Additionally, participants typically answer a forced-choice question of whether a causal relation 

exists, or give a quantitative rating of the extent to which a purported causal relation exists in this 

particular event. In contrast, causal inference experiments involve trial-by-trial presentations of 

cases (Fernbach and Sloman 2009) or a contingency table summarizing those cases (Hagmayer 

and Waldmann 2002). Moreover, the typical causal inference measures include (but are not 

limited to): ratings of proportions in sets of counterfactuals; numeric ratings of the strength of the 

cause; a categorical choices between causal models; construction or drawing of causal graphs; 

measures of intervention choices or post-intervention predictions; and more. Neuroscientific and 

developmental research on causal perception and causal inference typically use the same kinds of 

stimuli and measures as the corresponding cognitive/behavioral studies. Hence, the stimuli and 

measures lead directly to phenomenological and behavioral differences without any strong 

empirical justification, and—as we show next—vastly divergent theories.  
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Second, our theories of causal perception and causal inference aim to explain judgments 

about different things, but without directly considering whether they are distinct processes. 

Causal inference theories aim to explain participant judgments that are based on multiple cases, 

and that generalize to future instances. In contrast, causal perception theories aim to explain 

judgments about single cases with no expectation of generalization. That is, causal perception 

judgments are about token events whereas causal inference judgments are about types. The very 

construction of the theories thus precludes direct comparison, since they do not attempt to 

explain the same phenomena. Moreover, the focus of each theory closely correlates with its 

experimental methods: experientially rich, automatic causal perception can only be captured by 

judgments of singular events; explicit statistical causal inference can only occur in judgments of 

multiple instances. The appearance of empirical difference between causal perception and causal 

inference can be explained by these methodological and focus divergences without any need to 

appeal to underlying differences in concepts or representations. 

A third set of issues arises for the neuroscientific studies, which one might have thought to be 

immune from the other two worries. Those studies all relied on subtraction methods in which the 

brain activation map of a null condition is subtracted from that of the experimental conditions. 

This calculation reveals areas that are uniquely activated in the experimental conditions, yet 

omits areas that are commonly activated across conditions. Additionally, that an area activates 

more strongly during causal inference does not mean it is unactivated during causal perception, 

and vice versa. Cognitive scientists need a thorough investigation of the common areas of 

activation and the interactions between different brain regions during causal perception and 

causal inference. Liberal interpretations of early neuroimaging data without sensitivity to these 
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nuances could produce an overstated conclusion about distinct underlying brain networks for 

causal perception and causal inference.  

 

5. Cognitive Science in Support of Causal Monism 

A careful look at the cognitive science not only undermines the putative inference for 

pluralism in causal cognition, but actually provides some positive evidence for monism in causal 

cognition. In particular, consider causal inference and reasoning studies that use both mechanical 

and statistical information. For example, Kushnir and Gopnik (2007) tested 4-year-old children 

with a modified blicket detector task in which (i) statistical information matched standard blicket 

studies in which children infer causality; but (ii) objects were held over the machine rather than 

placed on it. Children in that task were more inclined to say that such objects were not related to 

the machine’s activation; they smoothly integrated spatiotemporal information and constraints 

into a (seeming) causal inference task. Similarly, Schlottmann (1999) introduced 5-, 7-, 9-, and 

10-year-old children to two systems whose inner mechanisms were hidden from view, but 

described as different. The experimenter dropped one ball (A) into one end of the system, 

followed by another ball (B) after 3 seconds; the bell rang roughly 1 second after that (i.e., the 

observed sequence was A-pause-B-bell). The experimenter then showed children the system 

mechanisms: the fast system had a two-arm seesaw system that rings the bell almost 

immediately; the slow system had a downward ramp along which the ball had to roll. Intuitively, 

the children should make different inferences about which ball caused the bell ring: ball A in the 

slow system and ball B in the fast system. Most children could diagnose the likely mechanism 

when only one ball was dropped, but 5- and 7-year-old children had difficulty predicting a delay 

in ringing even when they saw that the slow mechanism was at work. That is, children’s causal 
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learning and inference up to 7 years of age depended on both statistical data accumulated over 

trials and the spatiotemporal contiguity cues of the events. 

Spatiotemporal contiguity shapes causal judgments even among adults. In a series of 

experiments, Buehner and May (2002) tested the effect of prior knowledge about the time course 

of a causal relation on their causal judgments of observed contingencies. Participants were given 

two scenarios: either a light switch immediately causes a light bulb to turn on, or a grenade 

launch leads to detonation only after a delay. Experiment 1 used a within-subjects design, 

meaning that participants completed all experimental conditions. Prior experimentation 

suggested that these two scenarios produced different explicit assumptions about the causal time 

course, but results showed almost no difference between participants’ causal ratings of the light 

switch and of the grenade launcher: as the delay period between purported cause and effect 

increased, participants’ causal ratings of the cause decreased regardless of the domain or cover 

story. Buehner and May’s preferred explanation is that the ‘pull’ of the temporal contiguity in the 

light switch scenario was so strong that it skewed participants’ ratings and overshadowed their 

assumptions about delayed timeframes in the grenade condition. Even if their explanation is 

incorrect, spatiotemporal cues clearly play a significant role in adult causal inference. 

If the previous section provides methodological reasons for doubting the empirical 

distinction between the perceptual and statistic concepts of causation, this section offers evidence 

that these concepts are more interconnected than previously thought. We suggest that a pluralism 

of psychological causal concepts is currently unwarranted by the data, and cautiously propose 

that monism should again be a feasible theoretical candidate. This monism clearly must allow 

different types of input, ranging from spatiotemporal cues to frequency and contingency 

information, but those could lead to distinct behaviors in light of variation in information and 
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task demands. Admittedly, many details remain to be provided about this kind of monism, but 

premise (2) in the original argument-schema clearly does not hold as straightforwardly as has 

been assumed in the philosophical literature. We now turn to the philosophical import of 

different possible ways of developing a monist account of causal cognition and learning.  

 

6. Philosophical Implications of Alternative Cognitive Accounts 

If we do not accept the standard view of pluralism in causal cognition, then we should 

consider some plausible alternatives. First, we could prioritize the developmental data, which 

suggest that the perceptual notion of causation develops first, and then the statistical or 

dependency notion emerges from it. As young learners gain perceptual exposure to simple causal 

events such as collision or pulling, their mental representations of these events include relevant 

perceptual features. Further exposure to new instances can result in automaticity of processing, 

which thereby manifests behaviorally as causal perception. For more complex causal events, 

some of the causal representations might not bear the same perceptual characteristics as those 

previously learned. Patterns of characteristics over multiple token perceptions can provide input 

to the later-developing statistical notion of causation, which are originally grounded in 

abstraction over spatiotemporal features. The resulting two concepts might develop to be distinct 

in adults; the developmental story underdetermines the final number of causal concepts in adults. 

On this theory, a transference notion of causation provides the historical basis for all causal 

judgments, and perhaps the actual conceptual basis if the concepts are not independent in adults. 

That is, a true causal relation must involve either a transference of energy or a preservation of 

some quantity from state to state during transformation, where those spatiotemporal features 

might be imputed on a system from statistical data. 
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Second, the order of development of causal cognition could be reversed: humans might 

develop the statistical notion of causation before the perceptual one. In particular, if causal 

inference occurs implicitly, then repeated exposures to a causal relation could enable learners to 

construct a representation of this causal relation that encodes statistical information, such as the 

frequency of occurrence of the purported effect (base rate), the strength of covariation between 

cause and effect, and so on. In practice, many of these relations are highly reliable or completely 

deterministic, and all exhibit reliable spatiotemporal characteristics (e.g., contiguity). Thus, the 

perceptual features of spatiotemporal contiguity might be encoded alongside—and perhaps even 

stand in for—statistical information: seeing that a rolling ball makes contact with a stationary 

ball is sufficient for the prediction that the stationary ball is likely to start moving. A 

philosophical monist account inspired by this psychological picture would take the dependency 

notion of causation as fundamental. Notably, causation in the physical, mechanical world 

typically has (statistically) reliable features such the appearance of determinism, or the ubiquity 

of spatiotemporal contiguity. The dependency framework can thus account for cases that are 

typically characterized by spatiotemporal features alone (such as causal perception): those 

features indicate an underlying, deterministic causal relation (see also Woodward 2011a). 

Third, a unitary concept of causation might underpin all of human causal cognition. 

Importantly, this underlying concept is irreducible to either the perceptual or the statistical 

concept alone, but is rather inferred from features of the seemingly distinct types of cognition. In 

this theory, people infer the existence of an unobserved causal relation using essentially anything 

that might be relevant, whether spatiotemporal constraints, information about mechanisms, or 

reliability of control interventions. One can even imagine other types of information being 

relevant in one’s causal judgment, such as color: the color of a mushroom might suggest its 
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toxicity. These different information sources are integrated to infer the causal connection (if 

any), which could potentially require significant tradeoffs by the cognizer. Critically, in the case 

of events where people have had substantial ‘perceptual practice’ such as collision events, the 

spatiotemporal contiguity of the event might be the most important. In the case of events with 

only statistical information (e.g., determining if the peanuts or the shrimps caused an allergic 

reaction), people can use other types of information to both infer the relation and to suggest 

alternative control actions. On this account, causal perception and causal inference are only 

different behavioral manifestations—in response to different task demands and stimuli types—of 

the same process(es) and mechanisms whose goal is to yield usable representations of the causal 

web of the world. To the extent that a unitary concept of causation is psychologically plausible 

and distinct from the previous two alternatives, the third resulting monistic account of causation 

might plausibly depart from transference and dependency accounts in various ways. Instead of 

solely relying on transference or dependency between cause and effect, causation can be 

characterized by both, and which features are more salient depend on how epistemically 

accessible they are. In the case of billiard balls colliding into each other, the epistemically 

accessible features are the contact between the balls and the immediacy with which they move 

differently upon contact. In the case of prevention (e.g., plugging a hole in the sink prevents the 

leakage), the epistemically accessible features include the absence of leakage after plugging, and 

that leakage continues when one fails to plug the hole.  

 

7. Conclusion 

Many variants of causal pluralism in philosophy, most of which lean on the distinction 

between transference-based and dependency-based causation, map onto the parallel development 
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of two research clusters in cognitive science: the perceptually- and statistically-driven concepts 

of causation, respectively. In this paper, we argued that the foundation of the dualistic research 

program in cognitive science is shaky insofar as it traces an artifactual divergence between 

research paradigms and measures, rather than a natural fault line in the empirical landscape of 

causal cognition. We then discussed how cognitive science might point to a version of causal 

monism that includes interactions between the perceptual and statistical concepts of causation. 

Finally, we sketched three alternative accounts of how the statistical and perceptual concepts of 

causation might relate to each other, and briefly discussed the implications each of those account 

would have on the philosophical picture of causation. This sketch is not an endorsement of any 

particular theory, and the three alternatives are non-exhaustive: There are certainly other 

possibilities that we cannot explore here due to space limits. Rather, the sketch is an invitation 

for philosophers and psychologists alike to consider these un- and under-explored alternatives 

before settling for any particular theory. 
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