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Abstract

Contemporary scientific perspectivism is primarily viewed as a methodological framework of how we
obtain and form scientific knowledge of nature, through a broadly perspectivist process, especially,
with reference to quantum mechanics. In the present study, this is implemented by representing cat-
egorically the global structure of a quantum algebra of events in terms of structured interconnected
families of local Boolean probing frames, realized as suitable perspectives or contexts for measuring
physical quantities. The essential philosophical meaning of the proposed approach implies that the
quantum world can be consistently approached and comprehended through a multilevel structure
of locally variable perspectives, which interlock, in a category-theoretical environment, to form a
coherent picture of the whole in a nontrivial way.
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1 Contemporary Perspectivism as a Methodological

Framework of Scientific Inquiry

Contemporary scientific perspectivism, invigorated initially in the work of Ronald Giere
[2006], is primarily viewed in the present study as a methodological framework of how we
obtain and form scientific knowledge of nature, through a broadly perspectivist process, con-
stituting arguably a distinct part in scientific inquiry. In relation to philosophical matters,
scientific perspectivism occupies a middle ground between the extremes of the context-free
universals of metaphysical objectivism, the rigid reductive methodology favored by posi-
tivist considerations of science, and the inherent relativism entailed by certain sociological
accounts of science (for instance, Giere [2006], Massimi [2012]). Especially, in the proposed
form, scientific perspectivism amply recognizes the existence of a mind-independent world
as being logically prior to experience and knowledge, constituting the overarching condi-
tion for the possibility of knowledge. It emphasizes, however, that scientific knowledge of
the world can never be pure, direct or unmediated, since it requires pre-conceptualization
or structural organization; it requires the adoption of a perspective. Any knowledge and
comprehension of something, either through a process of perception and classification or
of normative structuring or purposeful acting, any attempt of combining individual ex-
perimental data or incorporating phenomena under generic patterns, etc., necessitates the
endorsement of a conceptual-interpretative scheme and the selection of specific perspec-
tives. In this respect, a context-free and interpretation-free access to reality as such seems
an illusion. The ‘book of nature’ proves too subtle and complex to be determined by just
reading off reality. In our view, therefore, scientific perspectivism provides an alternative
middle path at the philosophical spectrum that keeps a firm grasp on reality, but does not
accept that the human mind mirrors nature or that access to the world, particularly for
scientific purposes, is possible independently of any prior conceptualization.

Contemporary scientific perspectivism is often subsumed under the thesis that knowl-
edge of nature is possible only within the boundaries of historically well-defined scientific
perspectives comprised by data analysis, theoretical models and principles relative to the
perspective adopted, so that one may refer, for instance, to the Newtonian perspective,
the Maxwellian perspective, etc. (Giere [2006]). Alternatively, in a weaker sense, scientific
perspectivism is viewed as a means for assessing or evaluating, at the same time, rival mod-
eling practices or incompatible research programmes which may give rise to perspectival
knowledge (Rueger [2005]). Consequently, the usual sense attributed to the notion of a
“perspective” refers to the actual scientific practices of scientific communities either within
the same historical period (synchronic version of perspectivism) or in different historical
periods in which those scientific practices belong (diachronic version of perspectivism). De-
spite dissimilarities in the rationale for embracing the synchronic or diachronic version of
perspectivism, the foregoing notion of a “perspective” is applicable to both variants. Being
anchored to the actual scientific practices, the ordinary understanding of a perspective is
broadly taken to include: firstly, the body of knowledge claims advanced by the scientific
community at a given time, secondly, the community’s resources available at the time for
reliably generating such claims, and, thirdly, second-order assertions concerning the justi-
fication of the knowledge claims so advanced (Massimi [2018], p. 2).

In the present study, by closely associating contemporary perspectivism to a method-
ology of scientific inquiry, we introduce a complementary notion of “perspective” of an
endo-theoretic/interactive nature, conceived as the primary vehicle of tracing and investi-
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gating the world, as the principal unit of probing the natural world. Thus, the proposed
conception should be also differentiated from the common pictorial understanding of a per-
spective as a visual metaphor involving a viewing projection, which, by itself, depicts the
process of knowing as a passive activity. Instead, according to the proposed methodologi-
cal framework of scientific perspectivism, a perspective is characterized endo-theoretically,
namely, within a specific discipline, by a set of variables that are used to describe systems
or to partition objects into parts, which together give a systematic account of a domain of
phenomena. The indicated conception of “perspective”, broadly defined at this stage, is
rigorously formulated in Section 3.3.

It is worth noting that in view of the considered perspectivist methodology, the sepa-
ration between the knowing subject and the object to be known, the partition between the
observer and the observed, required for an objective description of phenomena, is neither
absolute nor catholic as Cartesian-like epistemological approaches advocate, thus promoting
an allegedly context-free account of the world. The subject-object partition is accomplished
upon the condition of the adopted perspective. The choice to adopt a particular perspective
signifies also the approval of a conceptual scheme on the basis of which one may isolate which
of the many available properties do, and which do not count for the purposes of description,
since the world does not come with one preferred system of description. Consequently, sci-
entific observation may be regarded as perspectival in the sense that claims about what is
observed cannot be completely detached, in all circumstances, from the context of observa-
tion. The significance of this point is particularly pertinent to quantum theory due to the
existence of incompatible physical quantities, represented by corresponding non-commuting
self-adjoint operators, pertaining to any nontrivial quantum system; measuring apparatuses
of such quantities cannot be held simultaneously in quantum mechanics. Thus, each mode
of observation of incompatible quantum mechanical quantities gives rise in an ineliminable
way to a particular kind of representation, encoding, or description of the system (Section
2).

Especially, in relation to empirical testing of theories in contemporary physics, theo-
retical and methodological considerations specify the perspective from which we articulate
the elementary yes-no experimental propositions or questions associated with properties of
physical systems, in the sense that, on the one hand, they supply with a well-defined mean-
ing the question that is put to nature, and, on the other hand, they specify the kind of the
operations to be performed in order to ascertain particular answers to them (Karakostas
[2014]). In this sense, it is legitimate to say that the perspectival nature of experimen-
tal/empirical knowledge is an essential characteristic of acquiring scientific knowledge.

Accordingly, the proposed methodological framework of scientific perspectivism consists
of the following broad desiderata, to be further specified when applied to particular scien-
tific domains of physical systems, concrete theoretical models and actual scientific practices.
Let us first note that a single perspective provides, by definition, a partial/local and, thus,
an incomplete description of the system to which it applies. Yet, the systematization of
knowledge requires that perspectives associated with all aspects of a system can be cor-
related forming a synthesized unity, but they cannot be simply combined as independent
integral parts of a third perspective. Hence, a perspective of all perspectives or, equiva-
lently, a panoptical perspective from nowhere does not exist. It is crucial, however, that
a full-fledged analysis of a successful framework of perspectivism in science ought to pro-
vide a syntax of perspectives, illustrating how locally shared perspectives can (or cannot)
be meaningfully combined at a higher theoretical level (Section 3). Consequently, nature
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can be grasped scientifically, through structured multitudes of local variable perspectives,
forming a coherent multilevel theoretical structure, exemplified by experimental procedures
that render possible specific access to specific aspects of physical reality. Precisely this de-
manding task is accomplished by our category-theoretic perspectivist approach to quantum
mechanics (Section 4).

The paper is organized as follows. In Section 2 we provide succinct argumentation,
on the basis of fundamental structural features of quantum theory, revealing the theory’s
affinity to perspectivist reasoning. Furthermore, we specify, through the endemic feature
of quantum contextuality, the endo-theoretic notion of perspective in the case of Hilbert-
space quantum mechanics. Taking a more general categorical standpoint of which the above
notion is an instance, in Section 3 we advance the view that an object of inquiry in a category
can be completely specified by the network of all possible relations, thought of as partial
or local perspectives, targeting the object under investigation. Consequently, we develop in
Section 3.3 a general methodology constitutive of the notion of a perspective as a primary
unit of resolving a targeted object or, generally, of probing the physical world. On this
account, the perspectivist synthesis of the investigated object, subject to natural normative
requirements, is based on a multiplicity of intertwined local perspectives covering the object
entirely under their joint action. In section 4 we implement the proposed perspectivist
methodology to quantum mechanics by representing categorically the global structure of a
quantum algebra of events in terms of structured interconnected families of Boolean probing
frames, realized as locally variable perspectives on a quantum system, being capable of
carrying jointly all the information encoded in the former. The crucial conceptual and
technically distinguishing feature of the foregoing representation is based on the categorical
notion of an adjunction, formed by a pair of adjoint functors, which has been proved to hold
between the category of quantum event algebras and the category of presheaves of Boolean
event algebras. This pair of adjoint functors formalizes categorically a bi-directional process
of encoding information from the quantum to the Boolean level of event structure, and
conversely, decoding back. As demonstrated in Section 4.3, it is precisely this category
theoretic fact that makes the application of the proposed perspectivist methodology to the
quantum case novel in the literature, by linking in perspectivist terms the variable and local
Boolean with the quantum global level of structure of quantum systems. Finally, Section
5 epitomizes the philosophical bearing of the considered approach on an overall picture of
quantum mechanics, offering further insights of conceptual and methodological nature in
relation to scientific theorizing.

2 The Affinity of Perspectivist/Contextual Reasoning to

Quantum Mechanics

Standard quantum mechanics is formulated on a separable, complex Hilbert space associ-
ated to a physical system. In this framework, quantum events or elementary propositions,
that is, true/false questions concerning values of physical quantities, are represented by
orthogonal projection operators {P̂i} on the system’s Hilbert space H or, equivalently, by
the closed linear subspace HP̂i

of H upon which the projection operator P̂i projects. The
one-to-one correspondence between the set of all closed linear subspaces of H and the set
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of all projection operators, denoted by LH , allows a translation of the lattice structure of
the subspaces of Hilbert space into the algebra of projections with the appropriate lat-
tice theoretic characterizations (Varadarajan [2007]). Then, a quantum algebra of events is
identified with the algebraic structure of all projection operators on Hilbert space, ordered
by inclusion and carrying an orthocomplementation operation, thus forming a complete,
atomic, orthomodular lattice. In effect, a non-classical, non-Boolean logical structure is
induced which has its origin in quantum theory.

An immediate path for revealing the affinity of the perspectivist/contextual reasoning
to quantum mechanics is provided through Kochen-Specker’s celebrated theorem and its
recent ramifications (for example, Karakostas and Zafiris [2017], Svozil [2017]). In view of
the latter, for any quantum system associated to a Hilbert space of dimension greater than
two, there does not exist a two-valued homomorphism or, equivalently, a truth-functional
assignment h : LH → {0, 1} on the set of projection operators, LH , interpretable as quantum
mechanical propositions, preserving the lattice operations and the orthocomplement, even
if these lattice operations are carried out among commuting elements only. The essence of
the theorem, when interpreted semantically, asserts the impossibility of assigning definite
truth values to all propositions pertaining to a physical system at any one time, for any of
its quantum states, without generating a contradiction.

The Kochen-Specker result shows, in physical terms, that in a system represented by a
Hilbert space of three or more dimensions, there exist projection operators {P̂i} such that
it is not always possible to assign truth values 0 and 1 to all corresponding propositions
pertaining to the system, so that the following conditions are fulfilled:

(i) For any orthogonal i−tuple of projection operators, {P̂i}, the assignment satisfies∑
i h(P̂i) = h(Î) = 1, that is, one projection operator is mapped onto 1 (‘true’) and

the remaining i− 1 projection operators are mapped onto 0 (‘false’) (completeness of
the basis condition).

(ii) If a projection operator, P̂k, belongs to multiple complete orthogonal bases, then, it
is consistently assigned the same value in all bases (noncontextuality condition).

The initial proof of Kochen and Specker establishes that no such assignment of 1’s and
0’s is possible for a special case restricted to a finite sublattice of projection operators
on a three-dimensional Hilbert space, associated to a spin-1 quantum system, in a way
that preserves the noncontextuality condition. The ingenuity of the proof, essentially of
a geometrical nature, and its far reaching consequences have gradually generated an over-
whelming production of theoretical and experimental research on foundational issues in
quantum mechanics related to the contextual character of the theory as a structural feature
of the quantum mechanical formalism itself (see Cabello et al. [2010], Howard et al. [2014]).

A failure of the noncontextuality condition means that the value assigned to a quantum
mechanical observable A, whose representing self-adjoint operator Â is analyzed in terms
of spectral projections P̂i, depends on the context in which it is considered. An equivalent
way of expressing the above is to say that the value of A depends on what other compatible
observables are assigned values at the same time; i.e., it depends on a choice that concerns
operators that commute with Â. This dependence captures the endemic feature of quantum
contextuality and may be highlighted by using an explicit example. Let us consider, for
reasons of simplicity, a triad of observables {A,B,C} representing physical quantities of a
quantum system S. According to quantum theory, it is possible to simultaneously measure
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a set of observables reliably if and only if the corresponding operators are commutative.
Let us, then, assume that the operator Â pertaining to system S commutes with operators
B̂ and Ĉ ([Â, B̂] = 0 = [Â, Ĉ]), not however the operators B̂ and Ĉ with each other
([B̂, Ĉ] 6= 0). Then, due to the non-commutativity of the last pair of operators, the result
of a measurement of observable A depends on whether the system had previously been
subjected to a measurement of B or a measurement of C or in none of them. Thus, the
value of the observable A depends upon the set of mutually compatible observables one may
consider it with, that is, the value of A depends upon the selected context of measurement.
In other words, the value of the observable A cannot be thought of as pre-fixed, as being
independent of the experimental context actually chosen, as specified, in our example, by
the {Â, B̂} or {Â, Ĉ} frame of mutually commuting operators. It is worth noting that the
formalism of quantum theory does not imply how such a contextual valuation might be
obtained on the set LH of all projection operators on a Hilbert space or what properties it
should possess.

To this end, we resort to the powerful methods of category theory, which directly cap-
tures the idea of structures varying over contexts, thus providing a natural setting for
investigating multilevel structures and studying contextual phenomena. In the proposed
category-theoretic perspectival representation of a quantum algebra of events,1 developed
in Section 4, the notion of perspective that is applied on a quantum system is tantamount
to a set of mutually compatible physical quantities, as in the preceding example, or, more
precisely, to a complete Boolean algebra of commuting projection operators generated by
this set. It should be underlined that such a complete Boolean algebra of projection oper-
ators bears the status of a logical structural invariant characterizing a whole commutative
algebra of observables that can be simultaneously spectrally resolved and hence be co-
measurable (Radjavi and Rosenthal [2003]). Since in the lattice of quantum events there
exist incompatible physical magnitudes non-commuting with any considered commutative
algebra of observables, there exists a multiplicity of possible Boolean algebras of projections
furnishing an invariant of this kind only at the local level of discourse. Therefore, although
a quantum event structure is globally non-Boolean, it can be qualified spectrally, and hence
be accessed experimentally, only in terms of Boolean event structures operating locally as
logical structural invariants of co-measurable families of physical magnitudes (cf. Svozil
[2018], Section 12.9.11). Consequently, a complete Boolean algebra of projection operators
furnishes the role of a Boolean probing frame with respect to which a quantum event can
be qualified and lifted to the empirical level. Thus, the consideration of each local Boolean
frame at any temporal moment serves as a natural pre-condition for establishing a local
invariant logical structure for the event evaluation of all co-measurable observables forming
this context. Due to the absence of a global, uniquely defined Boolean frame over a quan-
tum event structure, it is necessary to consider all possible local ones together with their

1Categorical or topos-theoretic approaches to the foundations of quantum mechanics have also been
considered, from a different viewpoint, for instance, by Isham and Butterfield [1998], Döring and Isham
[2011], Abramsky and Brandenburger [2011], Heunen et al. [2011]. Apparently, this is not the appropriate
place for reviewing the variety of categorical approaches appearing in the literature in relation to quantum
mechanical considerations. Suffice it here to point out that the category-theoretic approach employed in the
paper is based on the notion of a categorical adjunction for relating structured families of Boolean probing
frames to quantum event algebras, whereas, none of the aforementioned categorical approaches make any
use of this notion for expressing the Boolean-quantum relation (see, especially, Section 4.3). For a detailed
technical comparison of this kind involving all major categorical approaches, the interested reader may
consult the Appendix in (Zafiris and Karakostas [2013], pp. 1112-21).
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interrelations.
This naturally leads, by extension, to a horizon of perspectives on the structure of quan-

tum events with respect to a multiplicity of various Boolean frames realized as experimental
contexts for measuring physical quantities. Be sure, no single context or perspective can
deliver a complete picture of the quantum system, but, by applying category theoretic rea-
soning, it is possible to combine them suitably in an overall structure that will capture
the entire system. It is also of great importance how the various contexts or contextual
perspectives relate to each other. Categorically speaking, this consideration is naturally
incorporated into our scheme, since the category theoretic representation of quantum event
algebras in terms of Boolean probing contexts can be described by means of a multilevel
structure, mathematically known as a topos, which stands for a category of sheaves of vari-
able, overlapping and interconnected families of local Boolean frames, capable of carrying
all the information encoded in the former.

3 The Categorical Imperative: A Novel Mode of Object

Specification in Perspectivist Terms

3.1 Categorical principles and prerequisites

Category theory provides a general theoretical framework for the study of structured sys-
tems in terms of their mutual relations and admissible transformations. Contrary to the
atomistic approach of set theory, which crucially depends on the concept of elements-points
and the membership relationship of a variable x in a set X, x ∈ X, in category theory the
notion of morphism or arrow undertakes primary role. A morphism, for instance, f : A→ B
in a category C expresses one of the many possible ways in which the object A relates to
the object B within the context of category C. Thus, an incoming morphism to B from
any other object A in category C may be considered as a perspective targeting B whose
source is A in the same category. The category theoretic mode of thinking incorporates
internally the very nature of “pointing at” or “viewing from”. In this vein, the notion of
structure does not exclusively refer to a fixed universe of sets of pre-determined elements,
but acquires a variable reference (Bell [2008]).

Concomitantly, category theory is suitably equipped to deal successfully with highly
complex structural problems in the natural sciences, since, besides the consideration of
morphisms between objects in a category, there also exist, at the next higher level, struc-
ture preserving mappings between categories, namely functors, and, further on, mappings
between functors called natural transformations. It is apparent that the theory of categories
proceeds inherently in an hierarchical manner. It is able to formally define and operate with
both structures of systems and structures of structures encompassing layers of increasing
abstraction and complexity. Thus, essential categorical notions and constructions present
themselves in ascending levels of generality and depth: category, functor, natural trans-
formation, adjointness, higher-order categories, etc. The innovative conceptual spirit of
category theory provides the framework from within we can capture and analyze the shared
structure existing between different kinds of complex systems in terms of the structure pre-
serving transformations between them. The basic categorical principles that we adopt in
the subsequent analysis are summarized as follows.
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(i) To each kind of mathematical structure used to represent a system, there corresponds
a category whose objects have that structure and whose morphisms or arrows preserve
it.

A category C is an aggregate consisting of the following:

(a) A class Ob(C), whose elements A,B, . . . are called objects. For each object A an
element idA : A→ A is distinguished; it is called the identity morphism for A.

(b) A class Hom(C), whose elements f, g, . . . are called morphisms or arrows. Each
morphism f : A → B is associated with a pair of objects, known as its domain
and codomain respectively. The expression HomC(A,B) denotes the Hom-class
of all morphisms from A to B.

(c) A binary operation ◦, called composition of morphisms, such that, for given
arrows f : A → B and g : B → E, that is, with codomain of f equal to the
domain of g, then f and g can be composed to give an arrow g ◦ f : A → E.
Generally, for any three objects A,B, and E in C, the set mapping is defined as:

HomC(B,E)×HomC(A,B)→ HomC(A,E).

The operation of composition is associative, h ◦ (g ◦ f) = (h ◦ g) ◦ f , for all
f : A → B, g : B → E, h : E → D, satisfying also the property of identity,
f ◦ idA = f = idB ◦ f , for all f : A → B. The operation of composition of
morphisms binds category C as an associatively closed universe of discourse.

For an arbitrary category C the opposite or dual category Cop is defined in the following
way. The objects are the same, but HomCop(A,B) = HomC(B,A), namely, all arrows
are inverted. Hence, the opposite category Cop of a given category interchanges the
source and target of each morphism. A category C is called locally small if for all
objects A,B in C, each class of morphisms HomC(A,B) is a set. Furthermore, if the
class of objects forms a set, then C acquires the status of a small category.

(ii) To any canonical construction2 on structures of one kind, yielding structures of an-
other kind, there corresponds a functor from the category of the first specified kind
to the category of the second by preserving the essential relationships among objects
of the respective categories.

Let C, D be categories. A covariant functor F : C → D is a class mapping that:

(a) Associates to each object A ∈ C an object F(A) ∈ D.

(b) Associates to each morphism f : A→ B ∈ C a morphism F(f) : F(A)→ F(B) ∈
D.

(c) Preserves identity morphisms and compositions, i.e., F(idA) = idF(A) and F(g ◦
f) = F(g) ◦ F(f).

2In category theoretic language the term “canonical” is used in this context to specify that a categor-
ical construction, for instance, a categorical relation, explanation, proof, etc., is realized without making
arbitrary choices. For an intuitive example, independently of category theory, consider the isomorphism
between a finite dimensional vector space and its double dual; the latter isomorphic relation is “canonical”
in the sense that no arbitrary choices are needed in order to define it. In other words, in the example on
vector spaces, the specification of the isomorphism does not depend on a particular representational scheme
or on ad hoc assumptions about the choice of a vector basis.
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A contravariant functor F̂ : C → D is, by definition, a covariant functor F : Cop → D.
A functor, therefore, is a type of mapping between categories that associates to every
object of one category an object of another category and to every morphism in the first
category a morphism in the second by preserving domains and codomains, identity
morphisms, and composition of morphisms. Thus, a functor F : C → D provides a
sort of ‘picture’ of category C in D by preserving the structure of C.

(iii) To each natural translation between two functors having identical domains and codomains,
there corresponds a natural transformation.

Let C, D be categories, and let further F, G be functors from the category C to the
category D. A natural transformation τ from F to G, τ : F → G, is a mapping
that assigns to each object A in C a morphism τA : F(A) → G(A) in D, called the
component of τ at A, such that for every arrow f : A→ B in C the following diagram
in D commutes:

F(A)
τA qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G(A)

F(f)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

G(f)

F(B)
τB qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G(B)

That is, for every arrow f : A→ B in C, we obtain: G(f)◦τA = τB ◦F(f) . Thus, natu-
ral transformations define structure preserving mappings of functors, while respecting
the internal structure of the categories involved. Pictorially, one may think of this
situation as follows. If the parallel functors F : C → D and G : C → D, having both
the same domain and codomain categories, are conceived of as projecting a ‘picture’
of category C in D, then a natural transformation is a way to transform globally or
systematically the ‘picture’ defined by F onto the ‘picture’ defined by G. The speci-
fication “natural”, particularly, in the notion of natural transformations refers to the
comparison of two functorial processes, sharing the same source and target categories,
in a way that captures the shared structure or generic common properties existing in
different contexts. No doubt, the key concept of natural transformations acquires in
category theory the status of a principle, analogous to general covariance in physics,
that penetrates deeper than is initially discernible.

(iv) To any natural bi-directional functorial correlation between two kinds of mathematical
structures, there corresponds an adjunction, consisting of a pair of adjoint functors
between the corresponding categories.

Let F : C → D and G : D → C be functors. We say that F is left adjoint to G
(correspondingly, G is right adjoint to F), if there exists a bijective correspondence
between the arrows F(C)→ D in D and C → G(D) in C, which is natural in both C
and D:

F : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

D : G.

This means that the objects of the categories C and D are related with each other
through natural transformations. Then, the above pair of adjoint functors constitutes
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a categorical adjunction. The latter concept is of fundamental logical and mathemat-
ical importance contributed to mathematics by category theory (Goldblatt [2006], p.
438).

3.2 Perspectivity functors and representability of objects

The category theoretic framework signifies a remarkable conceptual change in the way of
conceiving the form and function of mathematical objects, departing from the atomistic set-
theoretic approach of analyzing objects in terms of pre-determined or pre-distinguishable
elements endowed with some particular externally imposed structure. The emphasis now is
placed on the specification of objects in terms of the relations they bear with other objects
of the same category. However counterintuitive it may initially appear, in category theory
the nature of the objects is a derivative aspect of the patterns described by the morphisms
or mappings that connect the objects. In this respect, it is not the objects, but rather the
relationships between them that determine the essence of any category.

A pertinent problem in this general setting refers to the category theoretic expression of
the relations that any depicted object A of a category A bears with all other objects in A.
According to the preceding, for any object of a category it is essential to consider the class
of all incoming morphisms to this object, or dually, the class of all outgoing morphisms from
this object to any other object of the same category. If we consider that these classes are
sets in both cases, so that our category A is a small category at least locally, it is necessary
to define the notion of a covariant functor (or dually, a contravariant functor) from the
category A of the depicted object to the category of sets, denoted hereafter as Set. Let
us recall that a covariant functor is a functor which preserves in the target category the
directionality of an arrow in the domain category, whereas dually, a contravariant functor
is a functor which reverses it.

Regarding the posed problem, we address the following functorial characterization of
the relations that any object A of a category A bears with all other objects in A. As argued
in the sequel, it is of primary significance to the philosophy of scientific perspectivism that
within the categorical framework the object of inquiry can be equivalently replaced by its
associated functorial representation consisting of all morphisms coming into (or going out
of) the object concerned.

Proposition 3.2.1. Each object A in a category A gives rise to a covariant functor of

morphisms emanating from A, denoted by yA : A → Set, called the covariant HomA-

functor, represented by A.

The covariant functor yA describes how a fixed object A sees all other objects of the
category in which it belongs.

Definition 3.2.1. The covariant HomA-functor, yA : A → Set, from the source category

A to the evaluation category of sets is defined as follows:

(1) For all objects X in A, yA(X) := HomA(A,X);

(2) For all morphisms f : X → Y in A,

yA(f) := HomA(A, f) = HomA(A,X)→ HomA(A, Y ) (3.1)

is defined as post-composition with f , viz., yA(f)(g) := f ◦ g.
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The covariant representable functor, yA : A → Set, can be thought of as constructing
an image of A in the category of sets in a covariant way. Only set-valued functors, that is,
functors with codomain Set can be representable (Johnstone [2002], Volume 1).

Corollary 3.2.1. A functor G : A → Set is representable if it is naturally isomorphic

to yM for some object M in A. A representation of G is a choice of an object M in A
together with a natural isomorphism of functors yM

∼= G.

Thus, G is representable if and only if such a representing object exists. Notice that
representations of set-valued functors are unique up to a unique isomorphism (Mac Lane
[1998]).

Now, let us dually consider the opposite category Aop, and let A be an object in A.

Proposition 3.2.2. Each object A in a category A gives rise to a contravariant functor

of morphisms targeting A, denoted by yA : Aop → Set, called the contravariant HomA-

functor, represented by A.

The contravariant functor yA expresses how a fixed object A is seen by all other objects
of the category in which it is placed.

Definition 3.2.2. The contravariantHomA-functor, yA : Aop → Set, is defined as follows:

(1) For all objects B in A, yA(B) := HomA(B,A);

(2) For all morphisms f : C → B in A,

yA(f) := HomA(f,A) = HomA(B,A)→ HomA(C,A) (3.2)

is defined as pre-composition with f , viz., yA(f)(g) := g ◦ f .

The contravariant representable functor, yA : Aop → Set, can be thought of as con-
structing an image of A in the category of sets in a contravariant way.

Corollary 3.2.2. A functor F : Aop → Set is representable if it is naturally isomorphic to

yK for some object K in A. A representation of F is a choice of an object K in A together

with a natural isomorphism of functors yK ∼= F.

The contravariant HomA-functor represented by A, yA : Aop → Set, is alternatively
called the functor of generalized elements (incoming morphisms) of A (Awodey [2010]).
Dually, the covariant HomA-functor represented by A, yA : A → Set, is called the functor
of generalized co-elements (outgoing morphisms) of A. The functors of the form yA (equiv-
alently, yA), for all objects A of A, provide us with a tool for determining the properties
of the objects of a category A.

At a provisional stage, if we consider an object A in A, we may think of an incoming
morphism to A from any other object X in A as a perspective targeting A whose source
is X in the same category. This is a quite broad idea, since, as argued in Section 3.3,
a full-fledged notion of a perspective applicable to contemporary science is admissible to
further restrictive normative requirements. Moreover, if one confines attention to a singleton
perspective, only the set-theoretic aspect can be seen, thus concealing the full structure of
the category of local compositions. Recall, in this respect, that an object A in A gives rise
to a contravariant functor of morphisms targeting A, i.e., the contravariant representable
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HomA-functor, which is represented by the object A, denoted by yA : Aop → Set, bearing
in this manner the semantics of what may naturally be called the perspectivity functor on
the object A. For, the functor yA can be thought as a function whose variable argument
runs over all objects of the category A, such that its evaluation at each one of these objects
results in the set of all partial perspectives emanating from this object and always targeting
A in the same category. Due to the representability of the functor yA by the object A, we
obtain an assignment A 7→yA. The crucial observation, attributed to Yoneda, is that this
assignment can be extended to the embedding functor y, defined as follows.

Definition 3.2.3. Let A be a locally small category. The Yoneda embedding of A is the

functor

y : A → SetAop
, (3.3)

defined on objects A by

A 7→yA, (3.4)

and on morphisms f by

(f : A→ B) 7→ (yf : yA 7→yB), (3.5)

where yf is the natural transformation between yA and yB.

The functor y is called the Yoneda embedding, since it embeds the category A into the
functor category SetAop

. This fact allows one to investigate category A in a wider context
with no loss of information.

At the next stage, we may consider an arbitrary natural transformation of contravariant
functors κ : yA → F. Then, the naturality requirement reads as follows:

yA(A)
κA qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F(A)

yA(f)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F(f)

yA(B)
κB qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq F(B)

Let idA be the identity element at the object A in yA(A) := HomA(A,A). Taking into
account that for all morphisms f : B → A in A,

yA(f) := HomA(f,A) = HomA(A,A)→ HomA(B,A)

is defined as pre-composition with f , evaluation at idA yields yA(f)(idA) := idA ◦f . Thus,
we finally obtain:

κB(idA ◦ f) = F(f)(κA(idA)).

Hence, the natural transformation κ is in fact completely determined by the element κA(idA)
in F(A). In turn, this sets up a bijection between the elements of F(A) and the natural
transformations κ : yA → F. The obtained proposition is called the Yoneda lemma,
formulated as follows.
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Lemma 3.2.1 (Yoneda). Let A be a locally small category and F : Aop → Set a contravari-

ant set-valued functor. Then, for any object A in A, there is an isomorphism,

F(A) ∼= Nat(yA,F) := HomSetAop (yA,F) , (3.6)

which is natural in both A and F, where Nat(yA,F) denotes the set of natural transforma-

tions of contravariant functors yA → F in the functor category SetAop
.

As an immediate corollary of the Yoneda lemma, we observe that if the contravariant
set-valued functor F is of the representable form F = yX : Aop → Set for some object X
in A, then

yX(A) ∼= Nat(yA,yX),

or equivalently,
HomA(A,X) ∼= Nat(yA,yX).

Corollary 3.2.3. For any locally small category A, the Yoneda embedding is full and

faithful. Equivalently, the functor

y : A → SetAop
(3.7)

constructs a full and faithful image of the category A into the functor category SetAop
.

Bearing in mind that the Yoneda embedding of a category A into the category SetAop

sends each object A of A to its associated perspectivity functor, i.e., the contravariant
HomA-functor represented by A, Corollary 3.2.3 gives rise to the following proposition.

Proposition 3.2.3. Let A, B be objects in a category A. Suppose we are given an iso-

morphism of their associated perspectivity functors: yA ∼= yB. Then there exists a unique

isomorphism of the objects themselves, that is A ∼= B, which gives rise to this isomorphism

of functors.

Henceforth we arrive at the following result, which is of central significance for scientific
perspectivism.

Proposition 3.2.4. The information contained in an arbitrary object A of a category

A is entirely classified and retrieved by its associated perspectivity functor yA, i.e., the

representable functor of generalized elements-perspectives on A.

We conclude that, according to the category-theoretic modeling framework, an object
A of a category A, describing a species of structure, is completely specified by the network
of all incoming morphisms, thought of as partial perspectives, targeting this object by all
other objects in A. In other words, an object in a category can be completely classified
and retrieved by all internalized structure-respecting relations targeting it within the same
category. The complete classification asserted by this proposition refers to the fact that the
whole network of targeting morphisms determines the object uniquely up to canonical iso-
morphism. Thus, it provides the universal means of specification of the object in relation to
its categorial species, in the sense that this specification is unique up to equivalence, estab-
lished by an explicitly demonstrable isomorphism, not being dependent on the particular
objects and morphisms considered.
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The ground breaking consequence of this proposition is that the investigated object can
be legitimately subjugated or even conceptually substituted by the network of all internal-
ized structure-respecting relations targeting it within the same category. In this manner, the
object constitutes a perspectival representation of the whole network of relations directed to
it within its categorial species, and inversely, this network becomes uniquely representable
up to equivalence by the targeted object.

3.3 Structural adaptability of probes and methodological

norms of perspectivism

In practice, the specification of an object in a category by the network of all possible
relations directed to it within the same category is physically redundant. The underlying
idea is that on the basis of theoretical, experimental or computational reasons, a category of
probes is always delineated in relation to an investigated object of some categorial species.
This category of probes may have the status of a subcategory of the category in which the
investigated object is structurally placed, but generally speaking, the category of probes is
not required to be a subcategory. It is of utmost importance, on the contrary, that the action
of a probe can be structurally adapted as an internalized and, therefore, structure-respecting
directed morphism within the category of the investigated object. Henceforth, it is exactly
this qualification of a probing relation that preconditions the notion of a perspective on an
investigated object of some category.

In this generalized setting, what is basic for the function of perspectivism is that the
specification of an object of a particular structural species can be enunciated in terms of
certain relations it bears with objects of another structural species, which are thought of as
partial probing frames or resolving units of the former, under the proviso that these relations
can be appropriately internalized within the former category and eventually interpreted as
perspectives targeting this object (Section 4.1).

It is precisely this possibility that we consider fundamental for a consistent, fruitful re-
evaluation of the norms of scientific perspectivism in relation to the novel mode of object-
specification induced by the development of category theory in mathematical thinking.
More precisely, on account of Section 1, the notion of a perspective on an object of inquiry
is conceived as the principal means of probing or resolving this object. In view of the
categorical framework, such a kind of a resolving probe may be formulated independently
of any a priori requirement of analysis of the object in its set-theoretic elements. This is
the case because the notion of a perspective is not subordinate to a set-theoretic function
between a probe and an object but, on the contrary, subsumes a well-defined structural
characterization derived from the internalization of a probing relation within the category
deciphering the species of the object under investigation.

Proposition 3.3.1. A probing relation is qualified as a potential perspective on an object

of a category if and only if it can be internalized within this category, so that it can be

expressed as a structure-respecting morphism targeting the object of inquiry.

An immediate consequence of this characterization results in the following corollary.

Corollary 3.3.1. The domain of a probing relation in its functionality to act as a probe

of an object of a category should be structurally adaptable to the species of the investigated

object.
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The notion of structural adaptability is fundamental not only for clarifying what should
be considered as a perspective on an object of some categorial species, but it essentially
characterizes what should be qualified as a probe that constitutes the structural domain
of a perspective. The pertinent issue arising in this state of affairs is the detection of the
conditions that cast a probe structurally adaptable to the object of inquiry, so that it can
function as a source of a perspective on this object. Intuitively, since a probe should furnish
a unit of resolution of the investigated object, this unit can be structurally adapted to the
species of the object if and only if it encodes some structural invariant feature pertaining
to the level of resolution of the investigated object with respect to the employed unit. In
other terms:

Proposition 3.3.2. A probe as the source of a potential perspective on an object of some

categorial species is structurally adaptable to this species if and only if it encodes a struc-

turally invariant context, grouping together all information that can be delineated from the

investigated object in terms of the probe’s resolving power.

This is an essential requirement for the expression of the norms pertaining to the con-
stitution of a perspective in coordination with the framework of category theory. The
requirement of structural adaptability qualifies a perspective as a local or partial frame of
analysis of the investigated object by virtue of the structurally invariant context of resolu-
tion this analysis is based on.

Definition 3.3.1. A perspective on an object of some categorial species is a structurally

adaptable probing relation to this species bearing an invariant context of resolution.

Corollary 3.3.2. A perspective on an object of some categorial species is co-extensive to

a local or partial cover of this object if its covering capacity is, firstly, compatible under the

operation of restriction to subcovers and, secondly, stable under pulling back or overlapping.

Concomitantly, the action of a probe, engulfed in an applied perspective on an object of
inquiry, is co-extensive to a local or partial cover of this object only under the natural con-
straints of cover compatibility under restriction to subcovers and stability. As an immediate
consequence of the preceding considerations, we obtain the following proposition.

Proposition 3.3.3. A perspective on an object of some categorial species, qualified as a

local or partial cover of this object, instantiates a partial or local structural congruence of

the corresponding probe source with the target object.

It is worthy to underline that the implicated notion of localization with respect to
a perspective on an object of a categorial species is derived internally and intrinsically
merely from the specific invariant capacity of the probe source in its function as a local
cover, and not from any spatial embedding environment of any external form. In view of
Proposition 3.3.3, a single perspective, although incomplete in its capacity to resolve the
investigated object globally or in its entirety, shapes the target locally or partially in a
structurally adaptable and congruent manner, so that, beyond its compatible restriction,
it can be internally extended as well, under the proviso that overlaps compatibly with
some other perspective deciphering another local cover of the investigated object. A crucial
feature of this local perspectival schematism of an object in a category is that it does not
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assume or require the existence of an all-encompassing perspective, meaning that local
perspectives should not be thought of as independent parts of an overall perspective. In
contradistinction, the perspectival schematism or formation of an object is based on the
idea of a multiplicity of possible local perspectives, covering the object entirely only under
their joint action, which is only constrained by the normative requirement of compatible
interconnection on their pairwise overlaps whenever this is the case (Section 4.2).

It may be also instructive to point out that a multiplicity of local perspectives covering
jointly a target object is not merely a set of local perspectives. In category theoretic
terms, it may be thought of as a colimit (or inductive limit) object, which is synthesized
jointly, in a compatible manner, out of all local perspectives directed towards it, without
admitting them as independent parts. Rather, it may be visualized as a multi-layered
granulation sieve of intertwined local perspectives, whose variable concatenated openings
comprise the resolving power of the corresponding probes, and which becomes structurally
congruent to the targeted object as a colimit object by virtue of the joint covering action
of all involved local perspectives3 (Section 4.3). In view of the preceding analysis the
validity of Proposition 3.2.4, concerning object-specification in perspectivist terms, remains
intact, but refined substantially. In this respect, the central importance of the perspectivist
methodology advanced in Section 1 can be condensed, in the process of its formulation from
the standpoint of category theory, in the following proposition.

Proposition 3.3.4. An object of a categorial species can be specified, classified, and re-

trieved in a universal way by the colimit assemblage of all local perspectives directed towards

it and jointly covering it in a compatible manner uniquely up to equivalence.

Most significantly, Proposition 3.3.4 does not exclude the inter-level determination of
objects belonging to distinct categorial species, under the condition that there exists a bi-
directional functorial correlation between them, formulated in the language of adjunctions.
It is precisely the latter development that gradually introduced into category theory a
paradigm change in understanding structures of general types and paved the way for forming
bridges between seemingly unrelated mathematical disciplines, revealing, at the same time,
the philosophical significance of category theory.4 As analyzed in Section 4, it is indeed the
categorical notion of adjunction, consisting of a pair of adjoined functors, that allows us to
produce a perspectival representation of a quantum event algebra by linking appropriately
the Boolean and the quantum structural levels.

4 Perspectival Representation of a Quantum Event

Structure via Adjunction of Boolean Frames

The conceptual basis of the proposed perspectival representation of a quantum structure of
events L in terms of interconnected families of Boolean probing frames, realized as suitable
perspectives on L, relies on the physically significant fact that it is possible to analyze or

3For readers not familiar with the categorical construction of colimits we note that their existence ex-
presses in category-theoretic language the basic intuition that a complex object may be conceived as arising
from the interconnection of partially or locally defined informational units within a category. In a nutshell,
colimits may be viewed as binding factors ‘gluing’ parts together.

4Philosophical considerations of category theory and their application to a variety of contexts have been
given recently, for instance, by Halvorson [2019], Eva [2017] and Landry [2017].
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‘coordinatize’ the information contained in a quantum event algebra by means of struc-
ture preserving morphisms B → L, having as their domains locally defined Boolean event
algebras B. As alluded to in Section 2, any single map from a Boolean domain to a
quantum event algebra does not suffice for a complete determination of the latter’s infor-
mation content. In fact, it contains only the amount of information related to a particular
Boolean frame, prepared for a specific kind of measurement, and inevitably is constrained
to represent exclusively the abstractions associated with it. This problem is confronted
by employing a sufficient amount of maps, organized in terms of covering sieves, from the
coordinatizing Boolean domains to a quantum event algebra so as to cover it completely.
These maps furnish the role of local Boolean covers for the filtration of the information
associated with a quantum structure of events, in that, their domains B provide Boolean
coefficients associated with typical measurement situations of quantum observables. The
local Boolean covers capture, in essence, separate complementary features of the quantum
system under investigation, thus providing a structural decomposition of a quantum event
algebra in the descriptive terms of Boolean probing frames. In turn, the incomplete and
complementary local Boolean descriptions, arising from a multiplicity of locally variable
perspectives, can be smoothly pasted or glued together, by demanding the satisfaction of
partial compatibility between overlapping local Boolean covers, so that one may arrive at
the synthesis and actual determination of the global quantum event algebra itself. The
implementation of the perspectival representation of a quantum event algebra in terms of
structured multitudes of interconnected Boolean probing frames requires distinct notions of
Boolean and quantum categorical event structures, respectively. The methodology involved
in the realization of the suggested approach necessitates the application of categorical sheaf
theory5 to quantum structures.

4.1 Categories of Boolean and Quantum event structures

Definition 4.1.1. A Boolean categorical event structure is a small category, denoted by

B, which is called the category of Boolean event algebras. The objects of B are complete

Boolean algebras of events and the morphisms are the corresponding Boolean algebraic

homomorphisms.

Definition 4.1.2. A quantum categorical event structure is a locally small co-complete cat-

egory, denoted by L, which is called the category of quantum event algebras. The objects of

L are quantum event algebras and the morphisms are quantum algebraic homomorphisms.

A quantum event algebra L in L is defined as an orthomodular σ-orthoposet (Chiara et
al. [2004]), that is, as a partially ordered set of quantum events, endowed with a maximal
element 1 and with an operation of orthocomplementation [−]∗ : L→ L, which satisfy, for
all l ∈ L, the following conditions: [a] l ≤ 1, [b] l∗∗ = l, [c] l ∨ l∗ = 1, [d] l ≤ ĺ ⇒ ĺ∗ ≤ l∗,
[e] l⊥ĺ⇒ l ∨ ĺ ∈ L, [f] for l, ĺ ∈ L, l ≤ ĺ implies that l and ĺ are compatible, where 0 := 1∗,
l⊥ĺ := l ≤ ĺ∗, and the operations of meet ∧ and join ∨ are defined as usually. The σ-
completeness condition, meaning that the join of countable families of pairwise orthogonal

5For a systematic introduction to category-theoretic sheaf theory, the reader may consult, for instance,
Mac Lane and Moerdijk [1992], Borceux [1994/2008], and Johnstone [2002, Volume 2].
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events exists, is required in order to have a well defined theory of quantum observables over
L.

Definition 4.1.3. A quantum algebraic homomorphism is a morphism H : K → L, which

satisfies, for all k ∈ K, the following conditions: [a] H(1) = 1, [b] H(k∗) = [H(k)]∗, [c]

k ≤ ḱ ⇒ H(k) ≤ H(ḱ), [d] k⊥ḱ ⇒ H(k ∨ ḱ) ≤ H(k) ∨ H(ḱ), [e] H(
∨
nkn) =

∨
nH(kn),

where k1, k2, . . . countable family of mutually orthogonal events.

It is important to note that any arbitrary pair of events l and ĺ, belonging to a quantum
event algebra L in L are compatible, if the sublattice generated by {l, l∗, ĺ, ĺ∗} is a Boolean
algebra, namely, if it is a Boolean sublattice of L. In perspectivist terms, and in view
of Section 3.3, this indicates that a Boolean event algebra is structurally adaptable to a
quantum event algebra, since it encodes a structurally invariant context of co-measurable
observables by means of their joint compatible spectral resolution. Furthermore, as pointed
out in Section 2, the global orthomodular structure of a quantum event algebra is rendered
empirically inert without the adjunction of such local spectral invariants to it. The role
of these invariants is to induce partial or local structural congruences with Boolean event
structures pertaining to all typical contexts of measurement. The multiplicity of applicable
local Boolean frames allows the filtration and separation of several resolution sizes and types
of quantum observable grain depending on the qualification of the corresponding spectral
projection operators.

Consequently, the objective is to derive the non-directly accessible quantum kind of
event structure in terms of all possible partial structural congruences with the directly ac-
cessible Boolean kind of event structure, via the literal adjunction of local spectral invariants
as probing frames to the former. In this setting, the major role is subsumed by all possible
structural relations allowed among the probing Boolean frames, the spectra of which may
be disjoint or nested or overlapping and interlocking together nontrivially. The necessity of
providing a solution to the posed problem in functorial terms, i.e., non-dependent on the
artificial choice of particular Boolean frames adjoined to a quantum event algebra, requires
a category-theoretic interpretative framework based on the aforementioned notion of partial
structural congruence between the distinct kinds of Boolean and quantum categorical event
structures.

It is natural, therefore, to consider a Boolean categorical event structure B as a category
of probes for the quantum categorical event structure L. The structural adaptability of the
category of Boolean event algebras B to the category of quantum event algebras L gives
rise to the Boolean probing or shaping functor of L by B.

Definition 4.1.4. A Boolean probing or shaping functor of a quantum categorical event

structure L, M : B → L, assigns to each Boolean event algebra in B the underlying quan-

tum event algebra from L, and to each Boolean homomorphism the underlying quantum

algebraic homomorphism.

The shaping functor M : B → L is technically a forgetful functor. Let us note, in this
respect, that any Boolean event algebra may be thought of as a quantum event algebra of
commuting projection operators. Thus, the functor M qualifies functorially the requirement
of structural adaptability of the category B of Boolean probes to the category of quantum
event algebras L. Moreover, a quantum algebra of events forms a weaker structure than
a Boolean event algebra. In the former case, for instance, only an orthocomplementation
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operation is properly defined, whereas, in the latter case a complementation operation is in
order, giving rise to the double negation property. Obviously, a complementation operation
is also trivially an orthocomplementation operation as well. In this sense, for every Boolean
event algebra there exists by default an underlying quantum event algebra, which views
complementation as merely orthocomplementation. Hence, the shaping functor M : B → L
acts as a forgetful functor, not taking into account the extra Boolean structure of B.

Corollary 4.1.1. The quantum algebraic homomorphism, ψB : M(B) → L, constitutes a

Boolean frame of a quantum event algebra L, or, equivalently, a Boolean perspective on L

whose source is the Boolean probe B.

The foregoing corollary is a consequence of the existence of the shaping functor M
that renders the category of Boolean event algebras structurally adaptable to the category
of quantum event algebras, and the consideration of essential features of the quantum
mechanical formalism, for instance, the factor that a normalized unit vector in Hilbert
space, representing the physical state of a quantum system, is completely analyzed and thus
specified by the determination of a basis on the state Hilbert space of the system. We note
that the consideration of a basis on a system’s Hilbert space — be it an orthonormal basis
of eigenvectors of a selected observable to be measured, or, more generally, an orthonormal
basis of common eigenvectors of a set of mutually compatible observables — always gives rise
to a Boolean event algebra B, viewed as a special quantum event algebra M(B) within the
quantum categorical event structure L. The special structures of the type M(B) function
as variable local Boolean frames of a quantum event algebra L in L, under their intended
physical interpretation as probing frames or perspectives on L for the manifestation and
subsequent classification (or contextualization) of quantum events.

Proposition 4.1.1. The Boolean probing or shaping functor of a quantum categorical event

structure L, M : B → L, is not invertible, i.e., there is no opposite-directing functor from

L to B.

The proof of the above proposition follows immediately from Kochen-Specker’s theorem,
analyzed in Section 2, and, according to which, there does not exist a global Boolean two-
valued truth-functional assignment pertaining to a quantum event algebra.

Because of the fact that an opposite-directing functor from L to B is not feasible, since
a quantum event algebra cannot be realized within any Boolean event algebra, we seek for
an extension of B into a larger categorical environment where such a realization becomes
possible. This extension is expected to conform with the intended perspectivist semantics of
adjoining a multiplicity of Boolean probing frames to a quantum event algebra, understood
equivalently as Boolean perspectives on the latter. For this reason, it is necessary to extend
the categorical level of B to the categorical level of diagrams in B, such that the global
information encoded in a quantum event algebra may be recovered in a structure preserving
way by an appropriate sheaf-theoretic construction gluing together categorical diagrams of
locally variable Boolean frames.6 In view of Section 3.2, this is accomplished by means
of the categorical technique of Yoneda’s embedding y : B → SetBop , which is a full and
faithful functor.

6In general, a diagram X = ({Xi}i∈I , {Fij}i,j∈I) in a category C is defined as an indexed family of objects
{Xi}i∈I and a family of morphisms sets {Fij}i,j∈I ⊆ HomC(Xi, Xj).
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4.2 Functor of Boolean frames and pasting maps

It is apparent, therefore, that the realization of this extension process requires the construc-
tion of the functor category, SetBop , called the category of presheaves of sets on Boolean
event algebras, where Bop is the opposite category of B.

Definition 4.2.1. The functor category SetBop has objects all contravariant functors P :

Bop → Set and morphisms all natural transformations between such functors.

Each object P in the functor category SetBop is a contravariant set-valued functor on
B, called a presheaf of sets on B (Borceux [1994/2008], p. 195). In order to obtain a clear
understanding of the structure of the functor category SetBop , it is useful to think of a
presheaf of sets P in SetBop as a right action of the category B on a set of events, which
is partitioned into a variety of Boolean spectral kinds parameterized by the Boolean event
algebras B in B.7 Such an action P is equivalent to the specification of a diagram in B, to
be thought of as a B-variable set forming a presheaf P(B) on B.

For each Boolean algebra B of B, P(B) is a set, and for each Boolean homomorphism
f : C → B, P(f) : P(B)→ P(C) is a set-theoretic function, such that, if p ∈ P(B), the value
P(f)(p) for an arrow f : C → B in B is called the restriction of p along f and is denoted
by P(f)(p) = p · f . From a physical viewpoint, the purpose of introducing the notion
of a presheaf P on B, in the environment of the functor category SetBop , is to identify an
element of P(B), that is, p ∈ P(B), with an event observed by means of a physical procedure
over a Boolean domain cover for a quantum event algebra. As demonstrated in Proposition
4.2.2, this identification forces the interrelation of observed events, over all Boolean probing
frames of the base category B, to fulfil the requirements of a uniform and homologous fibred
structure.

Definition 4.2.2. The Boolean realization functor of a quantum categorical event structure

L in SetBop , namely, the functor of generalized elements of L in the environment of the

category of presheaves on Boolean event algebras, is defined as

R : L → SetBop , (4.1)

where the action on a Boolean algebra B in B is given by

R(L)(B) = HomL(M(B), L). (4.2)

The presheaf functor R(L)(−) = HomL(M(−), L) constitutes the image of R in SetBop

and is called the functor of Boolean frames or functor of Boolean perspectives on a quantum

7It is instructive to notice that the reasoning deployed at this point is of a general nature and originates
from the analogy between groups and categories, since a group may be considered as a category with a
unique object, corresponding to the unity of the group. In an analogous manner that we consider the right
action of a group G on a set, to get the notion of a G-set, we may consider the right action of a category
C on a set, to get the notion of a variable C-set, i.e., a set which is variable with respect to the objects of
C. All variable sets over the objects of C are not disjoint, but they are interrelated under the operation of
pulling-back, or equivalently, under the operation of presheaf restriction, to obtain a (contravariant) functor
from C to the category of sets. This is equivalent to a presheaf of sets on C and thus clearly every presheaf
gives rise to such a right action. Accordingly, all these variable sets together with their pull-back relations
form a diagram in C, appearing as an object of the category SetC

op

of presheaves of sets on C, which is
comprehended as a generalization of the notion of a G-set.
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event algebra L in L. Since the physical interpretation of the presheaf functor R(L)(−)
refers to the functorial realization of a quantum event algebra L in L in terms of structured
multitudes of local Boolean frames adjoined to it, intuitively, it is natural to think of
R(L)(−) as comprising the network of relationships that L has with all admissible Boolean
frames-perspectives on L.

Proposition 4.2.1. The Boolean frames-perspectives on a quantum event algebra L,

ψB : M(B)→ L, (4.3)

being instantiated by the evaluation of the functor R(L)(−) at each B in B, are interrelated

by the operation of presheaf restriction.

The functor of Boolean frames R(L) of a quantum event algebra L in L is actually
an object in the category of presheaves SetBop , representing L in the environment of the
topos of presheaves over the base category of probes B. Thus, for a fixed quantum event
algebra L, the evaluation of R(L)(−), at each Boolean event algebra B in B, instantiates
locally a Boolean probing frame of L, or equivalently, a (B-shaped) Boolean perspective
on L, denoted by ψB : M(B) → L. Importantly, since R(L)(−) is a presheaf functor
in SetBop , all resultant structured multitudes of local Boolean frames, adjoined to L, are
not ad hoc, but they are interrelated by the functorial operation of presheaf restriction.
In relation to the latter, it is sufficient to observe that for each Boolean homomorphism
f : C → B, R(L)(f) : R(L)(B)→ R(L)(C) is a function between sets of Boolean frames of
L in the opposite direction, such that, if ψB ∈ R(L)(B) is a Boolean frame of L, the value
of R(L)(f)(ψB), or equivalently, the corresponding Boolean frame ψC : M(C)→ L is given
by the restriction or pullback of ψB along f , denoted by R(L)(f)(ψB) = ψB · f = ψC .

Corollary 4.2.1. For a fixed quantum event algebra L in L, the set of all pairs (B,ψB),

where B is a Boolean event algebra and ψB : M(B) → L a Boolean probing frame of L

defined over B, has the structure of a category.

On the basis of Definition 4.2.2, the functor of Boolean frames R(L) of a quantum event
algebra L in L forms a presheaf of sets on Boolean event algebras B in B. Thus, we can
legitimately consider the category of elements corresponding to the functor R(L), denoted
by

∫
(R(L),B), and specified as follows: it has objects all pairs (B,ψB) and morphisms

(B́, ψB́)→(B,ψB) are those Boolean homomorphisms u : B́→B of category B for which
ψB · u = ψB́, that is, the restriction or pullback of the Boolean frame ψB along u is ψB́.
This category is naturally called the category of Boolean frames of L, or, equivalently, the
category of Boolean perspectives on L.

Proposition 4.2.2. For a fixed quantum event algebra L in L, the category of Boolean

frames of L induces a split, discrete and uniform fibration of L over its Boolean probes,

where B is the base category of the fibration.

By projecting on the second coordinate of the category of Boolean frames of L,
∫

(R(L),B),
we obtain a functor,

∫
R(L) :

∫
(R(L),B)→B, as in the diagram below:
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∫
(R(L),B)

∫
R(L)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

B
R(L) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Set

We first note that, in the case under study, the fibers are categories in which the only
arrows are identity arrows and, thus, the fibration induced by the presheaf functor R(L)(−)
of Boolean frames of L is discrete. If B is a Boolean probe in B, the inverse image under∫

(R(L),B) of B is simply the set of Boolean frames of L, i.e. R(L)(B), although its
elements are written as pairs (B,ψB) so as to form a disjoint union. The emergence of a
measurement event q ∈M(B) with respect to the Boolean frame ψB : M(B)→ L amounts
to the choice of a projection q ∈ B. In this sense, the Boolean frame ψB becomes a pointed
one. Therefore, choice of projections effected by measurement procedures with respect to
Boolean frames of L make the fibration split. Finally, the fibration is uniform over the base
category B because for any two measurement events over the same Boolean event algebra,
the structure of all Boolean frames that relate to the first event cannot be distinguished in
any possible way from the structure of Boolean frames relating to the second. Henceforth,
all possible events with respect to any particular Boolean frame are uniformly equivalent
to each other. Accordingly, the fibration

∫
R(L) :

∫
(R(L),B)→B amounts to a partitioning

of a quantum event algebra L into partially congruent Boolean perspectives parameterized
by the Boolean probes of the base category B of the fibration.

Consequently, the explicit representation of a quantum event algebra L in L in terms
of coherently interconnected families of Boolean probing frames, capable of carrying all
the information encoded in the former, requires the formulation of a covering scheme of L
induced by these local Boolean frames. For this purpose, we initially consider restricted
families of Boolean frames in R(L), distinguished qualitatively by their function as local
Boolean covers of L. The requirements qualifying such restricted families of Boolean frames
as local Boolean covers of L are the following: First, they should constitute a minimal
generating class of Boolean frames, instantiating a subfunctor T of the functor of Boolean
frames R(L) of L. Second, they should jointly form an epimorphic family covering L entirely
on their overlaps. Third, they should be compatible under refinement operations or, more
generally, pullback conditions in L. Fourth, they should be transitive, such that, subcovers
of covers of L can be qualified as covers themselves. We proceed to the formulation of
the preceding conditions in functorial terms and thus independently of arbitrary choices of
Boolean frames, as follows.

Definition 4.2.3. A functor of Boolean coverings for a quantum event algebra L in L is

defined as a subfunctor T of the functor of Boolean frames R(L) of L, i.e., T ↪→ R(L).

Corollary 4.2.2. For each probe B in B, the set of Boolean frames ψB : M(B) → L in

T(B) ⊆ [R(L)](B) are called Boolean covers of L.

Proposition 4.2.3. A functor T ↪→ R(L) of Boolean coverings for a quantum event algebra

L can be expressed in the form of a right ideal T . R(L) consisting of Boolean covers ψB :

M(B)→ L of L.
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This means that Boolean covers of L are characterized by the following property, fitting
them into right ideals: If [ψB : M(B) → L] ∈ T(B) and M(v) : M(B́) → M(B) is a
quantum homomorphism in L via M : B → L, for v : B́ → B in B, then [ψB ◦ M(v) :
M(B́) → L] ∈ T(B). Consequently, if ψB is qualified as a Boolean cover of L, then the
composite ψB ◦M(v) is also qualified as a Boolean cover of L.

Definition 4.2.4. A functor T ↪→ R(L) of Boolean coverings for a quantum event algebra

L is equivalently called a spectral sieve of L.

A spectral sieve adjoined to a quantum event algebra L can be intuitively conceived of
as consisting of ‘filtering holes’ M(B), specified structurally by variable Boolean probing
frames targeting L, permitting separation of several resolution sizes of observable grain, as
well as their compatibility relations. For instance, if ψB : M(B) → L denotes a Boolean
frame of L belonging to a sieve T(L) adjoined to L, then any other Boolean frame of L whose
spectral resolving power is coarser than ψB belongs to this sieve as well. Thus, spectral
sieves adjoined to L encapsulate the process of multilayered sorting of the informational
content of L via the ‘filtering holes’ M(B), for each probe B in B. Consequently, spectral
sieves of this form act primarily as the carriers of networks of internal relations among
probing Boolean frames with respect to which the targeted quantum event structure is
expected to be consistently and completely covered.

Proposition 4.2.4. A family of Boolean covers ψB : M(B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L, B in B, is the generator

of a spectral sieve of Boolean coverings T, if and only if, this sieve is the smallest among

all containing that family.

The spectral sieves of Boolean coverings for a quantum event algebra L in L constitute
a partially ordered set under inclusion. The inclusion operation refers to subfunctors of the
functor of Boolean frames R(L) of L. The minimal sieve is the empty one, T(B) = ∅ for all
B in B, whereas the maximal sieve is the functor of Boolean frames R(L) of L itself.

The ordering relation between any two equivalence classes of Boolean frames in the set
[R(L)](B), for variable B in B, requires the existence of pullback compatibility conditions
between the corresponding Boolean frames. Thus, if we consider a functor of Boolean
coverings T(L) for a quantum event algebra L, we require that the generating family of
Boolean covers they belong to is compatible under pullbacks.

Definition 4.2.5. The pullback or categorical overlap of any pair of Boolean covers ψB :

M(B) → L, B in B, and ψB́ : M(B́) → L, B́ in B, with common codomain a quantum

event algebra L, consists of the common refinement M(B)×LM(B́) together with the two

arrows ψBB́ and ψB́B, called projections, as shown in the diagram:
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M(
´́
B)

@
@
@
@
@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

u

HHH
HHH

HHH
HHH

HHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

h

A
A
A
A
A
A
A
A
A
A
A
A
AAqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

g M(B)×LM(B́)
ψB,B́ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq M(B)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ψB́,B

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ψB

M(B́)
ψB́ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L

Proposition 4.2.5. If the Boolean covers ψB and ψB́ of L are injective, then their pullback

is given by their intersection.

Note that the square in the preceding diagram commutes and for any Boolean domain

object M(
´́
B) or event algebra

´́
B in B and arrows h and g that make the outer square

commute, there is a unique u : M(
´́
B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq M(B)×LM(B́) that makes the whole diagram

commutative. Hence, we obtain the compatibility condition: ψB́ ◦ g = ψB ◦h. If, therefore,
ψB and ψB́ are injective morphisms, then their pullback is isomorphic with the intersection

M(B) ∩ M(B́). Accordingly, we can define the gluing or pasting map between Boolean
probing frames on their overlap, which is an isomorphism.

Definition 4.2.6. The pairwise gluing isomorphism of the Boolean covers ψB and ψB́ of

L is defined as follows:

ΩB,B́ : ψB́B(M(B)×LM(B́)) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ψBB́(M(B)×LM(B́)), (4.4)

ΩB,B́ = ψBB́ ◦ ψB́B
−1. (4.5)

Proposition 4.2.6. The Boolean coordinatizing maps ψB́B : (M(B)×LM(B́)) → L and

ψBB́ : (M(B)×LM(B́))→ L cover L in a compatible way on their intersection.

An immediate consequence of Definition 4.2.6 is the satisfaction of the following cocycle
conditions:

ΩB,B = 1B 1B : identity of B (4.6)

ΩB,B́ ◦ Ω
B́,

´́
B

= Ω
B,

´́
B

if M(B) ∩M(B́) ∩M(
´́
B) 6= 0 (4.7)

ΩB,B́ = Ω−1
B́,B if M(B) ∩M(B́) 6= 0. (4.8)

Thus, the pairwise gluing isomorphism ΩB,B́ between any two injective Boolean covers in

a spectral sieve T(L) of L assures that ψB́B : (M(B)×LM(B́)) and ψBB́ : (M(B)×LM(B́))
probe L on their common refinement in a compatible way.

This concludes the covering scheme of a quantum event algebra L in L with respect to
a spectral sieve T(L), provided that the family of all Boolean covers ψB : M(B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L, for
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variable B in B, generating this spectral sieve, jointly form an epimorphic family covering
L completely,

TL :
∑

(Bj , ψj :M(Bj)→L)
M(Bj) � L, (4.9)

where TL is an epimorphism in L with codomain a quantum event algebra L.

4.3 The Boolean frames – Quantum adjunction

We constructed in Section 4.2 the Boolean realization functor of a quantum categorical event
structure L, R : L → SetBop , realized for each L in L by its corresponding presheaf functor
of Boolean frames, R(L)(B) = HomL(M(B), L), where the shaping functor M : B → L
fulfills the requirement of structural adaptability of the category of Boolean event algebras
to the category of quantum event algebras, functioning as a category of probes to the
latter. The semantics of the functor R(L) and, concomitantly, of any of its subfunctors
T(L) . R(L) amounts to the notion of a spectral sieve—comprised by an appropriately
interconnected family of partially compatible, local Boolean frames—adjoined to L through
processes of measurement of quantum observables.8 The qualification of a functor T(L) ↪→
R(L) as a spectral sieve adjoined to L, according to Definition 4.2.4, implies that these
processes effectuate a multilayered functorial classification of the informational content
of L via the ‘filtering holes’ M(B), for each probe B in B. In turn, this amounts to
the capacity of separating and sorting compatibly all possible sizes of grain pertaining to
quantum observable behaviour, solely in the perspectivist terms of such a spectral sieve.
Thus, the physical significance of the adjunction of a spectral sieve on L is that it induces
partial or local structural congruence relations between the Boolean and quantum levels of
event structure in functorial terms, i.e., without the invocation of any ad hoc choices.

Importantly, this bi-directional dependence between the local Boolean and the global
quantum structural level admits a rigorous categorical formulation in terms of a pair of
adjoint functors, thus giving rise to a categorical adjunction. It is precisely this attribution
that characterizes uniquely and differentiates conceptually and technically the proposed
categorical approach in comparison to other ones, for instance, Isham and Butterfield [1998],
Döring and Isham [2011], Abramsky and Brandenburger [2011], Heunen et al. [2011]. In a
nutshell, as shown in Section 3.3, although a Boolean context may be intuitively conceived
of as opening up a window on L, this is not sufficient for its unconditional qualification as a
perspective on L. Equivalently, despite the heuristic value of this intuition, the perspectival
qualification of such a context in its function as a local Boolean logical frame of L, with
respect to which results of measurement of quantum observables are being consistently
coordinatized, can be only established as part and parcel of a spectral sieve of L, i.e., only
in functorial terms. The reason is that the notion of local or partial congruence between the
Boolean and quantum levels of event structure pertains to a whole spectral sieve adjoined
to L, and definitely not to ad hoc selected Boolean subalgebras of a quantum event algebra.

Henceforth, in the proposed categorical setting, the problem of establishing a per-
spectival representation of a quantum event algebra L via the appropriate adjunction of
Boolean frames is solved precisely by functorially inverting the Boolean realization functor
R of L, if such an inversion actually exists. This amounts to constructing explicitly the

8In his essay “The Theory of Groups”, Arthur Eddington ([1956/2003], p. 1566) in a little known excerpt
makes the following characteristic assertion: “In Einstein’s theory of relativity the observer is a man who
sets out in quest of truth armed with a measuring rod. In quantum theory he sets out armed with a sieve.”
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opposite-directing, left adjoint functor L : SetBop → L, to the Boolean realization functor
R : L → SetBop . If, therefore, for a fixed quantum event algebra L in L, the right ad-
joint functor R partitions or decomposes L in an orderly manner via the action of Boolean
probing frames ψB : M(B) → L, comprising for variable B in B spectral sieves on L, and
thus functioning as suitable perspectives or contexts for measurement of observables, then,
inversely, the left adjoint functor L provides a perspectival synthesis of a quantum event al-
gebra, in a structure preserving manner, by gluing compatibly together structured families
or diagrams of variable local Boolean frames.

Thus, the existence of the functor L, being the left adjoint to R, gives rise to a categorical
adjunction that has been recently proved to exist between the category of quantum event
algebras L and the category of presheaves SetBop on Boolean event algebras (Zafiris [2006];
see also Zafiris and Karakostas [2013] for a more detailed treatment including in addition the
involved logical aspects). Since the proposed perspectivist interpretation of a quantum event
structure is based on this pair of adjoint functors, it is useful to express their established
bi-directional correspondence in the form of the following theorem.

Theorem 4.3.1. There exists a categorical adjunction between the categories SetBop and L,

called the Boolean frames–quantum adjunction, established by the pair of adjoint functors

L and R, as follows

L : SetBop qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

L : R (4.10)

where, the right adjoint,

R : L → SetBop , (4.11)

is the Boolean realization functor of a quantum categorical event structure L in SetBop,

whereas, the left adjoint,

L : SetBop → L, (4.12)

is the colimit-preserving functor providing the perspectival synthesis of a quantum categorical

event structure by means of diagrams of Boolean frames.

Equivalently, there exists a bijection, which is natural in both P in SetBop and L in L,

HomSetBop (P,R(L)) ∼= HomL(LP, L), (4.13)

abbreviated as

Nat(P,R(L)) ∼= HomL(LP, L). (4.14)

In order to obtain some insight into the functioning of the above adjunction, it is required
to highlight the basic ideas of the proof. To this effect, we consider a natural transformation
τ between the presheaves P and R(L) on the category of probes B in relation to a quantum
event algebra L in L, i.e., τ : P→ R(L). This amounts to a family of maps τB, indexed by
Boolean algebras B in B, for which each τB is a map of sets,

τB : P(B)→HomL(M(B), L), (4.15)

such that the diagram below commutes for each Boolean homomorphism u : B́ → B in B:
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P(B)
τB qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomL(M(B), L)

P(u)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

M(u)∗

P(B́)
τB́ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomL(M(B́), L)

By utilizing the category of elements of the presheaf P, the map τB, defined by relation
(4.15), is identical with the map:

τB : (B, p)→HomL(M ◦
∫

P
(B, p), L). (4.16)

Therefore, the natural transformation τ : P → R(L) can be equivalently represented as a
family of arrows of L targeting L, which is being indexed by objects (B, p) of the category
of elements of the presheaf P, namely

{τB(p) : M(B)→ L}(B,p). (4.17)

Thus, the condition of the commutativity of the preceding diagram is translated into the
condition that for each arrow u the following diagram commutes:

M(B) M ◦
∫
P(B, p)

@
@
@
@
@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

τB(p)

M(u)

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

u∗ L

�
�
�
�
�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

τB́(ṕ)

M(B́) M ◦
∫
P(B́, ṕ)

Consequently, according to the above diagram, the arrows τB(p) form a cocone from the
functor M ◦

∫
P to L. Furthermore, by taking into account the categorical definition of the

colimit, we conclude that each such cocone emerges by the composition of the colimiting
cocone with a unique arrow from the colimit LP to L. Equivalently, we deduce that there
exists a bijection, which is natural in P and L,

HomSetBop (P, HomL(M(−), L)) ∼= HomL(LP, L), (4.18)

HomSetBop (P,R(L)) ∼= HomL(LP, L), (4.19)

abbreviated as follows,
Nat(P,R(L)) ∼= HomL(LP, L), (4.20)

thus capturing the content of Theorem 4.3.1.
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As a consequence, we obtain the following corollary:

Corollary 4.3.1. The left adjoint functor of the Boolean frames–quantum adjunction, L :

SetBop → L, is defined for each presheaf P in SetBop as the colimit L(P), taken in the

category of elements of P:

L(P) = Colim{
∫

(P,B)

∫
P qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B M qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L} . (4.21)

Hence, the Boolean realization functor of a quantum categorical event structure L,
realized for each L in L by the presheaf of Boolean probing frames or perspectives R(L) =
HomL(M(−), L) in SetBop , has a left adjoint functor L : SetBop → L, which is defined
for each presheaf P in SetBop as the colimit L(P), providing the perspectival synthesis of a
quantum categorical event structure by means of diagrams of Boolean frames.

The fundamental functioning of the Boolean frames–quantum adjunction, specified by
the pair of adjoint functors L a R, is made transparent if we consider that it provides a bi-
directional mechanism of encoding and decoding information between diagrams of Boolean
event algebras B and quantum event algebras L via the action of Boolean probing frames or
perspectives ψB : M(B)→ L. Thus, if we think of SetBop as the categorical universe of vari-
able local Boolean frames modeled in Set, and of L as the categorical universe of quantum
event structures, then the left adjoint functor L : SetBop → L signifies a translational code
of information from the level of local Boolean algebras to the level of global quantum event
algebras, whereas the Boolean realization functor R : L → SetBop signifies a translational
code in the inverse direction. In general, the content of the information cannot remain
completely invariant with respect to translating from one categorical universe to another,
and conversely. However, as suggested by Theorem 4.3.1, there remain two alternatives
for a variable set P over local Boolean frames, standing for a presheaf functor P in SetBop ,
to exchange information with a quantum algebra L. Either the content of information is
transferred in quantum terms with the colimit in the category of elements of P translating,
represented as the quantum morphism LP→ L, or the content of information is transferred
in Boolean terms with the functor of Boolean frames of L translating, represented corre-
spondingly as the natural transformation P → R(L). In the first case, from the setting of
L, information is being received in quantum terms, while in the second, from the setting
of P, information is being sent in Boolean terms. Then, the natural bijection of Equation
(4.14) corresponds to the assertion that these two distinct ways of information transfer are
equivalent. Thus, the fact that these two functors are adjoint underlines an amphidromous
dependent variation, safeguarding that the global information encoded in a quantum kind
of event structure is retrievable in a structure-preserving manner by all possible partial
structural congruences with the Boolean kind of event structure.

Importantly, by virtue of the existence of the Boolean frames–quantum adjunction,
L : SetBop qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
L : R, every probing relation from a Boolean event algebra B in B to a

quantum event algebra L in L shaped by the functor M : B → L, or, equivalently, every
Boolean frame-perspective on L, factors uniquely through the category of presheaves of sets
SetBop , as revealed by the following commutative diagram:
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y

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@
@
@
@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

M

SetBop Lp p p p p p p p p p p p p p p p pqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq R L

This epitomizes the fact that there exists an exact solution to the problem of specifying
a quantum event algebra L in perspectivist terms, by means of Boolean probing frames
acting on it, which is provided by the left adjoint colimit functor L : SetBop → L of the
Boolean frames-quantum adjunction. Henceforth, the specification of a quantum event
algebra L in perspectivist terms, firstly, is not subordinate to ad hoc choices of Boolean
frames adjoined to it, and, secondly, it is synthesized in the limit of the joint compatible
action of all Boolean frames-perspectives acting on it.

5 Conceptual and Philosophical Implications

The key philosophical meaning of this approach implies, therefore, the view that the quan-
tum world can be consistently approached and comprehended through a multilevel struc-
ture of overlapping Boolean frames, understood as locally variable perspectives applied on
a quantum system, which interlock, in a category-theoretical environment, to form a coher-
ent picture of the whole in a nontrivial way. In quantum mechanics the relation between
the global theoretical structure and its various empirical sub-structures is indeed such that,
depending on the type of experimental context a quantum system is brought to interact,
different manifested aspects of the system are disclosed, impossible to be combined into a
single picture as in classical physics, although only one type of system is concerned. Thus,
by virtue of the proposed category-theoretic perspectivist approach to quantum mechanics,
a quantum event structure can only be unfolded through structured interconnected families
of Boolean probing frames capable of carrying all the information encoded in the former.
And inversely, the non-directly accessible quantum event structure is uniquely constituted
(up to equivalence) by a multiplicity of intertwined local perspectives directed towards it
and covering the object of inquiry entirely under their joint action via the colimit-gluing
process.

In view of the preceding considerations, and in relation to philosophical commitments
of scientific perspectivism as stated in the introduction, it is worthy to note primarily that
the suggested perspectivist approach to quantum mechanics elevates to an epistemological
dictum the physically significant fact that values of quantum mechanical quantities cannot,
in general, be attributed to a quantum object as inherently possessed, intrinsic properties.
Whereas in classical physics, nothing prevented one from considering as if the phenom-
ena reflected intrinsic properties, in quantum physics, even the as if is precluded. Indeed,
quantum phenomena are not stable enough across series of measurements of non-commuting
incompatible observables in order to be treated as direct reflections of predetermined in-
herent properties. As indicated in Section 2 via the Kochen and Specker theorem, in the
quantum paradigm, it is no longer possible, not even in principle, to assign to a quantum
system non-contextual properties corresponding to all possible measurements. This means
that it is not possible to assign a definite unique answer to every single yes-no experimental
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question, represented by a projection operator, irrespective of which subset of mutually
commuting projection operators one may consider it to be a member. In other words,
within the formalism of Hilbert-space quantum mechanics, projection operators cannot
be interpreted as defining preexistent to their measurement properties, possessing definite
values, regardless of a referential context. Thus, according to the proposed view for quan-
tum mechanics, well-defined values of quantum observables can, in general, be regarded as
pertaining to an object under investigation only within a local Boolean probing frame or
perspective from which the object-system is considered.

Adopting a Boolean probing frame and thus considering a preparatory Boolean environ-
ment for a quantum object to interact with a measuring arrangement does not determine
which event will take place. It does determine, however, the kind of event that will take
place. It forces the outcome, whatever it is, to belong to a certain Boolean sublattice of
events, within the system’s global non-Boolean logical structure, for which the standard
measurement conditions are invariant. Such a set of standard conditions for a definite kind
of measurement constitutes a set of necessary and sufficient conditions for the manifestation
of an event of the selected kind. Upon the fulfillment of the latter conditions, we artic-
ulate meaningful objective statements that the properties attributed to quantum objects
are part of physical reality. This equivalently means in the light of our approach that a
complete Boolean algebra of projection operators in the lattice of quantum events picked
by an observable to be measured instantiates locally a physical context, which serves as a
Boolean reference frame relative to which results of measurement are being coordinatized.
In this respect, Boolean probing frames or instances of concrete experimental arrangements
in quantum mechanics play a role analogous to the reference frames of rods and clocks in
relativity theory in establishing a perspectival aspect to microphysical reality. We further
underline the fact that within the considered categorical scheme the variation of the local
Boolean probing frames in the category B of probes, for each probe B in B, is actually
arising from any experimental praxis aiming to fix or prepare the state of a quantum sys-
tem and corresponds, in this sense, to the variation of all possible Boolean preparatory
contexts pertaining to the system for extracting information about it. Consequently, the
demonstration of the Boolean frames–quantum adjunction makes it possible to constitute,
in perspectivist terms, the global information content of a quantum event algebra from
all possible properties associated with locally variable interconnected families of Boolean
frames-perspectives on a quantum system, which are used in order to probe (or technically
cover) the former.

It is instructive to emphasize in this regard that in the suggested category-theoretic
perspectivist approach to quantum mechanics, a global quantum event structure is not
conceptualized as an a priori existing set-theoretic structure, but it is constituted in a
continuous process of extension from the local to the global level by actualization of new
potential facts with respect to local Boolean frames. For, each quantum event actualized
relative to a particular probing frame serves as a datum for subsequent potential actualiza-
tions, thus instantiating a bundle of potential relations referring to this frame. Importantly,
all these potential relations, namely, all relations among observables at the local level, are
captured by the internal relations among their underlined Boolean reference frames and
are extended to the global quantum level through suitable sheaf-theoretic gluing conditions
of structured families of partially ordered Boolean probing frames. In our view, therefore,
quantum objects are definitely considered as carriers of inherent dispositional properties.
This means that ascribing a property to a quantum object implies recognizing this object
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an ontic potentiality to produce effects whenever it is involved in various possible relations
to other things in nature or whenever it is embedded within an appropriate experimental
context. Thus, in contradistinction to a mechanistic or absolute objectivist perception, the
following general conception of an object in quantum mechanics naturally arises out of our
approach. According to this, a quantum object—as far as its state-dependent properties are
concerned—constitutes a totality defined by all the possible relations in which this object
may be involved.

At the epistemological level, the view that the properties possessed by observed quan-
tum objects are, in general, context-dependent departs from the transcendent metaphysical
vision of a world of self-autonomous objects, realized independently from their environment
or their referential context. Be that as it may, such a view is perfectly compatible with
the objectivity of scientific knowledge. Empirically confirmed manifestations of quantum
systems cannot be meaningfully conceived of as absolute bare particulars of reality, enjoy-
ing intrinsic individuality. Instead, they represent local or partial carriers of patterns or
properties which arise in interchange with their physical environment or, under the system-
atic and controllable procedures of scientific investigation, in interaction with their relevant
experimental context. Thus, the resulting contextual object under study is the quantum
object exhibiting a particular property with respect to a certain experimental situation.
The contextual character of property ascription implies, however, that a state-dependent
property of a quantum object is not a well-defined property that has been possessed prior
to the object’s entry into an appropriate context. This also means that not all contex-
tual properties can be ascribed to an object at once. As already remarked, one and the
same quantum object does exhibit several possible contextual manifestations in the sense
that it can be assigned several definite incommensurable properties with respect to distinct
incompatible quantum observables corresponding to different aspects of reality which, in
principle, may not be considered simultaneously. Thus, according to our proposed view
for quantum mechanics, the simplified assumption that knowledge of an object is achieved
by forming a representation of that object as an immutable substance possessing intrinsic
properties is rejected and, subsequently, replaced by the realistic possibility of formulating
local or partial contextual theoretical structures enabling different or overlapping physical
descriptions, grounded on the same actually existing object. Consequently, although possi-
ble in classical physics, in quantum mechanics we can no longer display the whole of nature
in one view. It would be illusory to search for an overall frame by virtue of which one may
utter ‘this’ or ‘that’, ‘really is’ independently of the adoption of a particular perspective or
a context of reference.

In closing, it is only natural to assert that, in contrast to an Archimedean panopti-
cal “view from nowhere” of the classical paradigm, the general epistemological implication
of quantum theory acknowledges in an essential way a perspectival/contextual character
of knowledge. Furthermore, the considered perspectivist approach to quantum mechanics
provides the appropriate mathematical substratum for developing a post-classical, struc-
tured view of scientific theorizing in the sense of comprehending a theory not just as a
class of empirical models simpliciter, as a structureless set of “models of the data”, but
also establishing mappings between these models allowing thereby their coherent embed-
ding in a global theoretical structure. The aforementioned proposition refers to the actual
scientific theorizing and practice of contemporary science, especially when dealing with
complex trans-perspectival problems, the solution of which requires the use of information
of a multi-scale variety, thus resulting from more than one perspective. The methodological
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framework of scientific perspectivism, developed in the present paper, aims at providing a
suitable guide that is robust, encompassing and effective in the modeling (analysis-synthesis-
representation) of multilevel phenomena and theoretical structures, standing in one-to-many
relation with their multifarious empirical sub-structures, of which the proposed category
theoretic approach to quantum mechanics constitutes a concrete manifestation.
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