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Abstract. Edmund Landau’s conjecture states that the set #,,; of
primes of the form n?+1 is infinite. Let 8= (((24))!)!, and let @
denote the implication: card(P,:,;) < w = P,2,; S (—c0,F]. We heuristi-
cally justify the statement @ without invoking Landau’s conjecture. The
set X={keN:(B<k)= B, kNP, #0} satisfies conditions (1)-(4).
(1) There are a large number of elements of X and it is conjectured that
X is infinite. (2) No known algorithm decides the finiteness/infiniteness
of X. (3) There is a known algorithm that for every n e N decides
whether or not n € X. (4) There is an explicitly known integer n such that
card(X) < w = X C (—oo,n]. (5) There is an explicitly known integer n such
that card(X) < w = X C (-0, n] and some known definition of X is much sim-
pler than every known definition of X\ (—co,n]. The following problem is
open: Is there a set X C N that satisfies conditions (1)-(3) and (5)? The set
X = P, satisfies conditions (1)-(3). The set X = {k € N : the number of

450
digits of k belongs to #,2,,} contains 1010 consecutive integers and satisfies
conditions (1)-(3). The statement @ implies that both sets X satisfy condi-
tion (5).
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1. Basic definitions and the goal of the article

Logicism is a programme in the philosophy of mathematics. It is mainly character-
ized by the contention that mathematics can be reduced to logic, provided that the
latter includes set theory, see [3, p. 199].

Definition 1. Conditions (1)-(5) concern sets X C N.

(1) There are a large number of elements of X and it is conjectured that X is infinite.
(2) No known algorithm decides the finiteness/infiniteness of X.

(3) There is a known algorithm that for every n € N decides whether or not n € X.
(4) There is an explicitly known integer n such that card(X) < w = X C (—oo,n).

(5) There is an explicitly known integer n such that card(X) < w = X C (—oo,n]
and some known definition of X is much simpler than every known definition of

X\ (=00, n].

Definition 2. We say that an integer n is a threshold number of a set X C N, if
card(X) < w = X C (—oo,n], cf. [8] and [9].

If a set X € N is empty or infinite, then any integer # is a threshold number
of X. If a set X C N is non-empty and finite, then the all threshold numbers of X
form the set [max(X), co) N N.

Edmund Landau’s conjecture states that the set $,2,; of primes of the form
n? + 1 is infinite, see [3] and [6]].

Definition 3. Let @ denote the implication:
Card(P,e,1) < @ = Ppep1 € (00, ((4DH)1]

Landau’s conjecture implies the statement ®. In Section [d] we heuristically
justify the statement @ without invoking Landau’s conjecture.

Statement 1. There is no explicitly known threshold number of P,2.,. It means that
there is no explicitly known integer k such that card(P,2,1) < w = P241 C (—00,k].

Proving the statement @ will falsify Statement [T} Statement [T| cannot be for-
malized in the set theory ZFC because it refers to the current mathematical knowl-
edge. The same is true for Statements [2]and [3|and Open Problem I]in the next sec-
tions. It argues against logicism as Open Problem [I] concerns abstract computable
sets X C N.

2. The physical impossibility of machine computations on
sufficiently large integers inspires Open Problem I]

Definition 4. Ler B = ((24HHNH
: 1025.16114896940657
Lemmal. 8= 1010



Proof. We ask Wolfram Alpha athttp://wolframalpha.com. |
Statement 2. The set X = {k e N: (B8 <k) = (B,k)NP,2.1 # 0} satisfies conditions
(DO-D.

Proof. Condition (1) holds as X 2 {0, ...,3} and the set $,2, is conjecturally infi-
nite. By Lemmal[T] due to known physics we are not able to confirm by a direct com-
putation that some element of #,2,, is greater than 8, see [2]. Thus condition (2)
holds. Condition (3) holds trivially. Since the set
(keN:(B<k)ABkNP,q # 0}
is empty or infinite, the integer § is a threshold number of X. Thus condition (4)
holds. O
In Statement [2}
card(X) < w = X C (-0, ]
and the sets
X=tkeN:(B<k)= B,kNPp, 0}
and
X\ (—00,B]l={keN:(B<k)ABk)NP,p, #0}
have definitions of similar complexity. The following problem arises:

Open Problem 1. Is there a set X C N that satisfies conditions (1)-(3) and (5)?

3. Number-theoretic statements ¥,

Let f(1) =2, f(2) =4, and let f(n+ 1) = f(n)! for every integer n > 2. Let U, de-
note the system of equations which consists of the equation x;! = x;. For an integer
n > 2, let U, denote the following system of equations:

x! = x
X1 X1 X2
Vie{2,....n—-1} x;! = xi

The diagram in Figure 1 illustrates the construction of the system U,,.

squaring X2 ] X3 Xp_1 1 Xy,
X > > e o o
1 > > —_-—

Fig. 1 Construction of the system U,

Lemma 2. For every positive integer n, the system U, has exactly two solutions in
positive integers, namely (1,...,1) and (f(l), e f(n)).


http://wolframalpha.com

Let
an{xi!:xk: i,ke{l,...,n}}u{x,-~xj=xk: i,j,ke{l,...,n}}

For a positive integer n, let ¥,, denote the following statement: if a system of equa-
tions S C By, has at most finitely many solutions in positive integers xi, . . ., X,, then
each such solution (xi,...,Xx,) satisfies xi,...,x, < f(n). The statement ¥, says
that for subsystems of B,, with a finite number of solutions, the largest known solu-
tion is indeed the largest possible. The statements ¥; and W5 hold trivially. There is
no reason to assume the validity of the statement W, cf. Conjectureﬂ]in Section E}

Theorem 1. For every statement P, the bound f(n) cannot be decreased.
Proof. Tt follows from Lemma [Z]because U, C B,. m|
Theorem 2. For every integer n > 2, the statement ¥, 1 implies the statement ..

Proof. 1f a system S C B, has at most finitely many solutions in positive integers

X1,...,Xy, then for every integer i € {1,...,n} the system S U {x;! = x,4} has at
most finitely many solutions in positive integers xi, ..., X,+1. The statement ¥,
implies that x;! = x,.1 < f(n + 1) = f(n)!. Hence, x; < f(n). ]

Theorem 3. Every statement ¥, is true with an unknown integer bound that de-
pends on n.

Proof. For every positive integer n, the system B, has a finite number of subsystems.
O

4. A conjectural solution to Open Problem (1]
Lemma 3. For every positive integers x and y, x! -y = y! if and only if
x+l=ynVvix=y=1

Lemma 4. (Wilson’s theorem, |1, p. 89]). For every integer x > 2, x is prime if and
only if x divides (x — 1)! + 1.

Let A denote the following system of equations:

.XTQ! = X3
X3! = X4
x5! = x¢
Xg! = X9
X1X1 = X2
X3-X5 = Xp
X4+-Xg = Xo
X5+X7 = X8

Lemma [3]and the diagram in Figure 2 explain the construction of the system A.
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Fig. 2 Construction of the system A

Lemma S. For every integer x| > 2, the system A is solvable in positive integers
X2, ...,X9 if and only ifx% + 1 is prime. In this case, the integers xa,..., X9 are
uniquely determined by the following equalities:

X2 = X%
X3 = (x%)!
o= (D!
X5 = xf +1
Xe = (x% + 1)!
() +1
xX; = —5—
! x% +1
xXg = (x%)! +1
X9 = ((x%)! + 1)!
Proof. By Lemma [3] for every integer x; > 2, the system A is solvable in posi-
tive integers x,, ..., xo if and only if x? + 1 divides (x})! + 1. Hence, the claim of
Lemma[3l follows from Lemmal4] O
Lemma 6. There are only finitely many tuples (xy, ..., x9) € (N'\ {0))°, which solve
the system A and satisfy x| = 1. This is true as every such tuple (x, . . ., x9) satisfies

Xiy... Xg € {1,2).

Proof. The equality x; =1 implies that x, = xf = 1. Hence, for example,
x3 = xp! = 1. Therefore, xg = x3 + 1 =2 or x3 = 1. Consequently, xo = xg! < 2. O

Conjecture 1. The statement Yy is true when is restricted to the system A.

Theorem 4. Conjecture[l|proves the following implication: if there exists an integer
x1 = 2 such that x% + 1 is prime and greater than f(7), then the set P, is infinite.



Proof. Suppose that the antecedent holds. By Lemma 5] there exists a unique tuple
(X2, ..., X9) € (N\{O})?® such that the tuple (x, X2, . . . , Xo) solves the system A. Since
x2+ 1> f(7), we obtain that x> > (7). Hence, (x2)! > f(7)! = f(8). Consequently,

x9 = (D!+ D! > (F8) + D! > f(8)! = £(9)

Conjecture [I] and the inequality x9 > f(9) imply that the system A has infinitely
many solutions (xy,...,x9) € (N {op°. According to Lemmas [5| and @ the set
P21 18 infinite. O

Theorem 5. Conjecture[l|implies the statement ®.

Proof. 1t follows from Theorem ] and the equality f(7) = ((24H)D!. ]
Theorem 6. The statement ® implies Conjecturell]

Proof. By Lemmas[5|and[f] if positive integers xi, ..., xo solve the system A, then

(x1 Z22)A (x5 = xf + 1) A (x5 is prime)

or Xxi,...,x9 € {1,2}. In the first case, Lemma E] and the statement @ imply
that the inequality x5 < ((24))D! = f(7) holds when the system A has at most
finitely many solutions in positive integers xj,...,Xx9. Hence, x, = x5 — 1 < f(7)
and x3 = xp! < f(7)! = f(8). Continuing this reasoning in the same manner, we can
show that every x; does not exceed f(9). m|

Definition 5. Let K = {k € N : the number of digits of k belongs to P,2,1}.

Lemma 7. card) > 9+ 10%4% < 10 10450.6930560314272

Proof. The following PARI/GP ([4]) command

isprime(1+9%44747,{flag=2})

returns %1 = 1. This command performs the APRCL primality test, the best deter-
ministic primality test algorithm ([[7, p. 226]). It rigorously shows that the number
(3 . 2747)2 + 1 is prime. Since 9- 109 4T non-negative integers have 1 +9 - 4747

digits, the desired inequality holds. To establish the approximate equality, we ask
Wolfram Alpha about 9 % (107(9 = 47747)). O

Statement 3. The sets X = P,z and X = K satisfy conditions (1) -(3). The state-
ment ®© implies that both sets X satisfy condition (5).

Proof. Since the set P2, is conjecturally infinite, Lemma [7]implies condition (1)
for both sets X. Condition (3) holds trivially for both sets X. By LemmalI] due to
known physics we are not able to confirm by a direct computation that some element
of P,2,; is greater than f(7) = ((24HH!)! = B, see [2]. Thus condition (2) holds for
both sets X. Suppose that the statement ® holds. This implies two facts:

B is a threshold number of X = P2, (6)
and

9...9is a threshold number of X = K @)

—

B digits



Thus condition (4) holds for both sets X. The definition of 2, is much simpler

than the definition of 2,1 \ (=00, 8]. The definition of K is much simpler than the

definition of K \ (—m,w]. The last three sentences imply that condition (5)
B digits

holds for both sets X. O
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