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Dynamical Causes

Abstract

Mechanistic explanations are often said to explain because they reveal the causal
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structure of the world. Conversely, dynamical models supposedly lack explanatory power
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because they do not describe causal structure. The only way for dynamical models to
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produce causal explanations is via the 3M criterion: the model must be mapped onto a
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mechanism. This framing of the situation has become the received view around the
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viability of dynamical explanation. In this paper, I argue against this position and show
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that dynamical models can themselves reveal causal structure and consequently produce
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non-mechanistic, dynamical explanations. Taking the example of cell fates from systems
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biology, I show how dynamical models, and specifically the attractor landscapes they
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describe, identify the causes of cell differentiation and explain why cells select particular
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fates. These dynamical features of the system better fit Woodward’s (2010, 2018) criteria
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of specificity and proportionality and make them the best candidate causes of cell fates
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than mechanisms. I also show how these causes are irreducible and inaccessible to

w W
o J

mechanistic models, making 3M unworkable and counterproductive in this case.
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Dynamical models can reveal dynamical causes and thereby provide causal explanations.
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1. Introduction
The concept of causal structure of the world, or just causal structure, is a touchstone of
modern Mechanism!? originating from Salmon’s (1984) causal-mechanical approach to
scientific explanation. The claim that a close relationship exists between causal structure

and explaining a phenomenon is outlined by Craver (2007):

“There are perhaps many interesting things to be said about explanatory texts, but
one crucial aspect of their adequacy has to do with whether explanatory texts

accurately characterize the causal structure of the world.” (Craver 2007, pg. 27)

A related and complementary claim made by mechanists is that scientific explanations

should describe the causal relationships which comprise this causal structure:

“In many areas of science, explanations are said to be adequate to the extent, and
only to the extent, that they describe the causal mechanisms that maintain,
produce, or underlie the phenomenon to be explained, the explanandum

phenomenon.” (Kaplan & Craver 2011, pg. 601).

Putting these ideas together, I take causal structure to refer to the comprehensive web of
causal relations that underlie or produce a phenomenon. Something explanatory ought
to follow on from having a description of causal structure - if you understand all the
relationships driving a phenomenon to occur, you have explained it2 In short,

explanation is all about describing causal structure.

! Following the convention proposed by Glennan & Illari (2018b) | distinguish the philosophical stance of
Mechanism from the object called a mechanism via a capitalisation added to the former.

2Though Kaplan & Craver (2011) qualify this demand for completeness: descriptions that reveal a partial
causal structure and are in the process of completion can also be considered explanatory.
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And as mechanists have argued, mechanisms have a special, if not unique, role to play in

this revelatory task:

“Mechanisms explain the diverse aspects of the explanandum phenomenon, and

so unify them by relating them to an underlying causal structure” (Craver 2007

pg. 49)

“[Mechanistic] models...carry explanatory force to the extent, and only to the
extent, that they reveal (however dimly) aspects of the causal structure of a

mechanism.” (Kaplan & Craver 2011, pg. 602)

This closely pairs the notion of causal structure to explanatory power, and mechanisms
link the two because, in many cases, a description of a mechanism is necessary for
describing causal structure. Driving the point home, these mechanists argue that
explanations necessarily capture the totality of causal relations producing a
phenomenon, and that this totality - the causal structure - is in large part what
differentiates a loose bundle of descriptions from a genuine explanation (Craver 2006,

2007).

But not everyone is satisfied with this mechanistic arrangement. A movement to
articulate a mode of non-mechanistic3, dynamical explanation based on dynamical
models has been afoot for some time (Chemero & Silberstein 2008, Stepp et al. 2011).
Dynamical models are a kind of mathematical model that employs the tools of dynamical
systems theory to capture the unfolding of variables over time using differential and
difference equations. These models have a track record of impressive descriptive

accuracy and predictive power when applied to various cognitive, neuroscientific and

3 A nonmechanistic explanation refers broadly to any explanation that does not appeal to underlying causal
mechanisms for its explanatory power.
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biological phenomena. By their very nature they do not by themselves give much detail
about the physical realisers or substrates of the variables they model: “[s]Juch dynamical
systems explanations...don’t seem to proceed by the decomposition into parts with
intrinsic behaviours that is characteristic of modular styles of explanation.” (Woodward
2013, pg. 60). Proponents consider this advantageous - because of this feature dynamical
models can “zoom out” from these fine-grained details and say new and interesting things
about the dynamical features of a system in a way mechanistic models do not, since even
the most minimal mechanistic account is committed to describing the concrete entities

and activities producing phenomena (Glennan & Illari 2018a).

Breaking with mechanist views on explanation, proponents of dynamicism reject the
necessity for mechanistic models as a prerequisite for explanation and emphasise
accuracy in description and prediction as sufficient (Chemero & Silberstein 2008).
Dynamicists have mostly conceded that dynamical explanations need not adhere to
mechanist standards around explanation, specifically the requirement that they ought to
describe causal mechanisms (Stepp et al 2011). The dynamicist account further departs
from the mechanist orthodoxy by suggesting that dynamical explanations “need not
respect the underlying causal structures that give rise to system-level dynamics.” (Kaplan

& Craver 2011, pg. 602).

Mechanist philosophers have, as a result, been critical of claims that dynamical models
are explanatory. A more thorough justification for Chemero & Silberstein’s (2008) claim
that prediction and counterfactual description are sufficient for explanation is missing -
and as Kaplan & Craver (2011) point out, much more work would be required on the

dynamicist’s part to demonstrate that predictive power yields explanatory power.
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Further, if mechanists are right that causal structure is core to explanation, and
mechanisms are crucial to getting at causal structure, then on two counts dynamical
models are a non-starter as standalone explanations. This general concern, termed the
causal relevance concern (Meyer 2018) is the biggest hurdle for getting dynamical

explanation up and running.

According to mechanists, the solution to the causal relevance concern is straightforward:
associating models with a mechanism in line with the model-to-mechanism-mapping
(3M) requirement (Kaplan 2015; Kaplan & Craver 2011). The idea behind 3M is that so
long as the terms in a dynamical model can be associated with (mapped onto) the
mechanistic components underlying the model, then the dynamical model can thereby

describe causes:

“(3M) A model of a target phenomenon explains that phenomenon to the extent
that (a) the variables in the model correspond to identifiable components,
activities, and organizational features of the target mechanism that produces,
maintains, or underlies the phenomenon, and (b) the (perhaps mathematical)
dependencies posited among these (perhaps mathematical) variables in the
model correspond to causal relations among the components of the target

mechanism.” (Kaplan 2011, pg. 347).

By being grafted onto a mechanism, dynamical models do say something about the causal
structure underlying the phenomenon, namely the temporal and organisational features
of the causal relations between mechanistic components, a view also developed and
endorsed by Bechtel & Abrahamsen (2010, 2013). Similarly, when Craver & Kaplan
(2018) claim that “[n]ot all dynamical models describe causal relations. Explanatory

dynamical models do...” it means that properly mechanistic models (with added
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dynamical details) are explanatory. The status of dynamical models, according to

mechanists, is therefore as descriptive tools in service to mechanistic explanations.

On their own, dynamical models do not describe causal (and hence explanatory)
relationships*, but rather function as a useful tool for describing the temporal
organisation of mechanisms (Kaplan 2015). Their utility acknowledged, dynamical
models are still in an asymmetrical relationship with mechanisms, “their explanatory
value can be seen as clearly depending on the presence of an associated account (however
incomplete) of the parts in the mechanism” (Kaplan 2015 pg. 760). There is no causal
story a dynamical model can provide that does not, ultimately, boil down to a mechanistic

model.

In this paper | will argue against this mechanist interpretation of dynamical models, and
provide a novel example of non-mechanistic, dynamical explanation at work. First, I will
contest the claim that dynamical models do not describe causal relations, appealing to an
even-handed application of interventionist standards (Meyer 2018). This clears the
immediate path to allow dynamical models to give descriptions of causal structure.
Second, I will show how dynamical models of cell fates, an example borrowed from
systems biology, uncover the causal structure underlying this phenomenon. The attractor
landscape described by this model, I will argue, reveals the causes of cell differentiation
without reference to mechanisms. Thirdly, following from this positive account, I use
Woodward’s (2010, 2018) and Waters’ (2007) notions of specificity and proportionality
to further illustrate how attractors are the best candidate difference-makers for cell fate

outcomes, and best describe the causal structure of the phenomenon. Finally, I dispute

“1t should be mentioned here that there are ongoing discussions regarding the feasibility of non-causal
dynamical explanations (e.g. Ross 2015; Chirimuuta 2017). | will however focus specifically on the case for
causal dynamical explanations and bracket the non-causal option.



o J oy Ul W -

OO UG UG UTOTOUTOTOT R B BB BB DDA DNWWWWWWWWWWNNNNNNNNNNR R e e
GRWONRFRPFOOVWO I EWNROWOW®®JdAANUTAWNROWOW®O®JdNTEWNROW®O-JAURWNROWW-L0U S WNR O W

that the causal structure identified by dynamical models of cell fates can or ought to map

onto mechanistic models, per the 3M requirement.

2. Causal Structure and Dynamical Models

Recently several arguments have been made targeting the causal relevance concern
generated by the foregoing mechanist picture of explanation (Meyer 2018; van Eck
2018). These authors have claimed that dynamical models can in fact describe causal
relations and thereby explain non-mechanistically, while retaining the mechanist’s own

interventionist framework to make their case.

The main strains of Mechanism all appeal to Woodward’s (2003) interventionism to
support the notion that mechanisms describe causes. This should not be taken to imply
that interventionism privileges mechanisms as the only possible source of causal
relations. On the interventionist account, mechanistic explanations are “one important
variety of explanation” capable of “meeting the general interventionist conditions on
explanation” (Woodward 2017, pg. 85) among other candidates. On Meyer’s (2018) view,
if dynamical models can similarly meet these general interventionist conditions for

establishing causal relations, then they ought to be considered causal.

What are Woodward’s general interventionist conditions? Woodward supplies (M):

(M) Xcauses Y if and only if there are background circumstances B such that if
some (single) intervention that changes the value of X (and no other variable)

were to occur in B, then Y would change. (Woodward 2008, pg. 222).

(M) specifies how ideal interventions can be used to establish causal relevance of
variables. These interventions establish the relationship between the value of a variable,

X, and the value of a variable Y. Changes in Y which are the direct result of changes in X
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demonstrate a causal relationship. X is causally relevant to Y if (M) is satisfied. Hence if a
variable in a dynamical model can meet the requirements of (M), then it ought to be

considered a cause.

Meyer (2018) uses the example of the Haken-Kelso-Bunz (HKB) (Haken et al. 1985)
model of bimanual coordination to demonstrate how dynamical models can describe
causes. Bimanual coordination is the phenomenon whereby synchronised movements on
either hand (in this case moving index fingers from side to side) can be coordinated to
move either in-phase, or anti-phase (where ¢=0 and 180 respectively). To accomplish

this, the HKB model uses a differential equation to map the system'’s evolution over time:

dp 2b sin 2
i asin ¢ sin2 ¢

Where ¢ represents relative phase, ranging between 0 degrees and 180 degrees (in- and

anti-phase conditions respectively); and b/a relates the frequency of oscillations.
- o S ———————

Figure 1: An illustration of bimanual coordination, where (a) represents in-phase

a b

coordination, and (b) represents anti-phase coordination. Reproduced from

Mechsner et al (2001).

In order for the relation from b/a and ¢ to be causal, the following would need to hold:
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“(M) b/a causes ¢ if and only if there are background circumstances B such

that if some (single) intervention that changes the value of b/a (and no

other variable) were to occur in B, then ¢ would change.” (Meyer 2018, pg. 13)

Experimental interventions into this system involve changing the frequency of
oscillations (b/a) in order to observe their effect on relative phase (¢). Subjects are
tasked with attempting to maintain bimanual coordination in either the in- or anti-phase
conditions, and also match their frequency of their movements to cues given by the
experimenters. This paradigm was used in Scholz & Kelso (1989), who intervened to
increase and decrease the frequency of the cues provided to the subjects. Several
predictions of the HKB model were validated in the results of these experiments: when
oscillation frequency is slow (b/a > 0.25) both in-phase and anti-phase patterns of
coordination are quite stable — subjects are able to maintain these movements without
altering phase. But at higher frequencies (b/a =< 0.25) the anti-phase pattern (¢ = 0)

becomes difficult to maintain, and subjects tend to slip into an in-phase pattern (¢ = 180).

The key point here is that the relationship between b/a and ¢ is not merely a correlation.
There is a direction established by this experimental intervention from b/a to ¢, from
cause to effect. Further these interventions produce regular, function-like changes in the
value of ¢. The variable b/a is the difference-maker to ¢ — while other variables may
provide necessary background conditions (B), it is b/a that causes ¢ to change in value.

So in this case, (M) should be satisfied as a straightforward example of a causal relation -
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the variables in the HKB model describe causes. In Woodwardian terms, they describe

difference-makers, the systematic relationships from cause to effect.>

3. Cell Fates

Having outlined the basic framework for causal, dynamical explanation, [ now turn to the
novel case of cell fates, a topic of significant interest in contemporary systems biology and
cell genetics. An almost ubiquitous feature of animal cells is their capacity for
differentiating into cell fates - alternate, stable phenotypes expressing new traits.
Frequently one kind of primogenitor (undifferentiated) cell can differentiate into several
distinct cell fates, each exhibiting a different phenotype. Some stem cells, for instance, are
bi- or multi-potent, meaning they have the potential to transition into two or more stable

phenotypes respectively.

These fates are interesting for a few reasons. Firstly, they tend to be stable and the
transitions into them reliably one-directional under normal circumstances. Once
differentiated, cells do not tend to “un-differentiate” backwards into progenitor cells or
switch over into a different fate. Secondly, cells tend to transition through a series of

phenotypes in between the progenitor phenotype and cell fate phenotype in a very

5 acknowledge here the significant debates around higher-level interventions in the mechanist literature,
particularly the problem of fat-handedness: intervening on a higher-level variable necessitates
simultaneously intervening on its supervenience base, and hence violating the interventionist requirement
for isolating a single variable for intervention (see Baumgartner & Gebharter 2017, Krickel 2017). I bracket
this substantial discussion by adhering to Woodward’s (2015) clarification to (M). Woodward specifies that
non-causal supervenience relations between micro- and macro-levels need not be held steady in the same
fashion as causal relations, so that “properties that supervene on but that are not identical with realizing

properties can be causally efficacious.” (Woodward 2015, pg. 303)
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directed fashion - even if external perturbations disrupt this typical course, they still find

their way to a stable fate.

One story invoked to explain these features of cell fates is a kind of genetic pre-
destination. Each phenotype, on this interpretation, must contain some kind of
instruction for how to progress to the next phenotype, and that phenotype to the next,
and so on down the line. Alternatively, the cell may receive external signals that help

direct and drive these transitions and maintain them.

These conceptions have proven too coarse-grained in many situations (Huang 2012).
More recent developments in cell genetics and systems biology suggest that
differentiations are driven not in a step-by-step or externally controlled fashion, but in a
self-organised process driven by networks of thousands of genes engaged in extremely
complex interdependent relationships, with all kinds of endogenous activity determining

the transitions between fates, as well as their relative stability.

The need to make sense of these complex relationships is in part responsible for the
development of gene regulatory networks (GRNs) as a modelling tool. A GRN is a network
map of the relationships between the many genes that make up the genotype of a given
cell, a series of “layers of molecular regulatory networks and cell-cell communication
networks — a web of interactions through which genomic information must percolate to
produce the macroscopic phenotype” (Huang 2012, pg. 153). These “interactions” consist
of each gene’s expression behaviour, namely what proteins it instructs a cell to transcribe,
and how this influences the activities of other genes. How these expressions promote,
inhibit, and otherwise interfere with the expressions of other genes is what makes up the

architecture of a GRN.
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Unsurprisingly given the number of interconnected transcription processes involved,
what GRNs help illustrate is that there is no fixed set of genetic tracks that determines a
cell’s transitions. While some interactions can be identified as important in particular
transitions, what decides the cell fate of a given cell is a highly complex, high-dimensional
network involving thousands of interconnected genes (Huang et al. 2005). What GRNs
can show is which phenotypes are stable or unstable relative to their neighbours, and

how these differences can drive transitions to new phenotypes.

GRNs are the first tool used in developing an explanation of cell fates. The second is
Waddington’s (1957) notion of epigenetic landscapes. Waddington’s metaphor has
proven particularly durable and appealing to many biologists concerned with cell fate
phenomena, and the metaphor appears frequently in this scientific literature (e.g. Enver
et al 2009; Davila-Velderrain et al 2015; Moris et al 2016). Adherents to this line of
thinking equate progress through stable and unstable phenotypes to progress through
the peaks and valleys of epigenetic landscapes, with the phenotype represented by a ball

rolling through this terrain, like in Waddington'’s famous illustration.
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Figure 2: Waddington’s illustration of the epigenetic landscape. The ball
(phenotype) runs down through the landscape and is canalised into different

phenotypic outcomes. From Waddington (1957).

This is where dynamical models enter the picture. In order to put Waddington’s ideas
about the epigenetic landscape into practice, researchers appeal to dynamical models as
a way of capturing the trajectory of a cell through the many possible phenotypes it could
express. The resulting models and attractor landscapes bear a striking resemblance to
Waddington’s landscape, which has as a result has been reconsidered from merely
illustrative metaphor to something potentially more revealing about the workings of

GRNs (Jaeger & Monk 2014).

Attractor landscapes are a frequently used visualisation of dynamical models, and are
virtually ubiquitous in models of cell fates. To produce a 3D model that illustrates a cell’s
trajectory through different states (phenotypes), modellers reduce the many dimensions
(genes) involved, of which there may be thousands, into a plane. Each point on that plane
represents a possible state for the system to inhabit, and nearby states represent similar
states. The relative height or depth of any given point indicates its stability or lack

thereof.
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An attractor

A basin of attraction

Figure 3: An attractor landscape. The green ball represents the phenotype, which
has settled into one of several available basins of attraction. From Enver et al

(2009).

In dynamical systems theory an attractor is a point in this landscape that represents a
stable solution to the equations that make up the model. Over time, the system will
converge towards an attractor if it enters its basin of attraction. A basin of attraction is
the set of points that “feed into” a given attractor. The convergence on an attractor might
be stable, where the system settles right on the attractor point — or it may oscillate around

that point (“circling the drain”) for some time or even indefinitely.

In the attractor landscape these features are visualised as the troughs and valleys that
Waddington’s “ball rolling down the hill” follow and settle into. These attractor
landscapes will, later in this section, be shown to provide the causal detail needed to

describe and explain cell fates.

Biologically, the attractor point itself corresponds to a stable phenotype - a cell fate.
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“Extrapolating from Waddington, different cell types may be seen as stable
solutions of transcription factor networks—or ‘attractors’—which occupy the

basins of Waddington’s landscape.” (Graf & Enver 2009, pg. 590)

Figure 4 illustrates a toy example characteristic of many GRNs. There are two proteins
being transcribed, a and b, each of which inhibits the transcription of the other - mutual
inhibition - and encourage transcription of themselves in a positive feedback loop - auto-
stimulation. These processes of mutual inhibition and auto-stimulation are common

features of cells that are multi-stable.

There are also three attractors present. The first, a/b, is the stable starting point - the
undifferentiated, progenitor phenotype where neither a nor b is transcribed at a high
rate, and from which the system is unlikely to budge. If left undisturbed, the effects of
mutual inhibition and auto-stimulation will generally ensure that transcription of a and
b remains roughly even. Attractors a and b represent two “downhill” cell fates the
perturbed system may end up in - if a/b were destabilised, the system will bifurcate, and

converge on either a or b.
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Figure 4: The attractor landscape of the toy cell fate system. The system is depicted
bifurcating from a/b, the progenitor fate, into either the a or b fate. From Enver et

al (2009).

Graduating from a toy model, I turn now to a real-world example: Huang et al’s (2007)
model of FDCP-mix cells, a kind of bone-marrow cell. An FDCP-mix cell is capable of
differentiating into two distinct cell fates called erythroids and myeloids. Differentiation
into erythroid/myeloid is influenced heavily by two transcription factors, GATA1 & PU.1
respectively. GATA1 & PU.1 are both auto-stimulating, and mutually inhibiting. The

following model describes the activation and regulation of GATA1 and PU.1:

dx, xt b
—_— = + b L —k X
e~ ten +axr o teR +axp U

dx, X3 6b,

=a +
dt 20, +x) 2Op +x]
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Where x1 represents GATA1 activity, xz2 represents PU.1 activity, and a1 & az, b1 & bz, k1 &
k2, and 6, all represent control parameters. Parameters ai/az represent the relative
strength of auto-stimulation of GATA1 and PU.1 respectively; bi/b2 describe the rate of
mutual inhibition of GATA1 and PU.1; ki/kz represent the rate of deactivation of GATA1
and PU.1; and 6 represents the strength of the regulatory interaction. Much like the
previous toy model, this real-world system exhibits tristability - C, the progenitor state,

as well as 4 and B, the differentiated erythroid and myeloid cell fates.

By intervening on these parameters, Huang et al (2007) were able to alter the features of
the attractor landscape. This is analogous to reshaping Waddington's landscape, where a
change in the topography of that landscape - which states are stable and unstable relative
to their neighbours - can induce a previously stable system to differentiate, and in this
instance bifurcate into new “downhill” cell fates, an arrangement referred to as a

“transition via a bifurcation” (Huang et al 2007, pg. 701).

Huang et al (2007) focus on the a, b and k parameters since these collectively represent
the various regulatory influences on x1 and x2. The effects of mutual inhibition, auto-
stimulation and deactivation over time of GATA1 and PU.1 are thought to maintain the
stability of the system in its progenitor fate, C. Disturbing these variables, then, has the

potential to destabilise C and induce differentiation into either A or B.

The model predicts that reducing the rate of auto-stimulation (a1 & az) and deactivation
(k1 & k2y will destabilise C and induce differentiation. The model also considers an
alternative scenario where - due to different initial values in control parameters - the
only attractor present in the model is C, the basin of which covers the entire phase space.
In this scenario, reducing the value of b1 & b2z destabilises C, and also leads to the

appearance of the A and B attractors. In either situation, C is converted from a stable state
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into an unstable “hill-top”, from which any small stochastic variation in GRN activity is
enough to induce a differentiation event. The system is compelled to leave C, and

converge towards either A or B, the erythroid and myeloid cell fates respectively.

After this initial differentiation event where C can no longer be occupied by the system,
the decision to converge on A versus B cell fates becomes available for the cell. Assuming
absolute symmetry in the system (A and B are equally accessible from the now
destabilised C) then minor variations in initial starting position, and random fluctuations
in expression, will be responsible for pushing the system towards A or B. However,
asymmetries in the attractor landscape can make one of A or B more accessible than the
other and bias the system towards a particular cell fate despite the stochastic nature of
the system’s trajectory. For instance, a greater value of x1 versus x2 will bias the system
towards settle into the myeloid state versus the erythroid fate, and vice versa. Huang et
al (2007) describe this as “tilting the watershed” in order to “harness and bias the

stochastic processes.” (pg. 710)

Having considered the phenomenon described by Huang et al’s (2007) model (initial
differentiation followed by cell fate selection) the question of interest is: how or why do
FDCP cells differentiate into erythroid or myeloid cell fates? Put into interventionist
speak, we are interested in the what-if-things-had-been-different question, or w-question
about cell fates: counterfactually, under what conditions would we have observed a

different result (the selected fate)?

In interpreting this model, I argue that what makes the difference to the outcome, and
what answers the w-question, is the attractor landscape. Specifically, I argue the presence
or absence of particular attractors is decisive to the outcome for a cell in the process of

selecting a fate.
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As mentioned earlier, the initial destabilisation event occurs only once C has been
intervened upon. If C is present (with sufficiently high ridges to prevent stochastic
fluctuations from pushing the cell out of C) then the cell will not undergo a differentiation
event. This is ultimately what answers the w-question: a different result would have been
obtained depending on the presence or absence of the stable progenitor attractor state C.
While the destabilisation of C can be induced via different stimuli (changes to the rate of
auto-stimulation, mutual inhibition, and deactivation of GATA1 and PU.1) what makes the
difference is C. An investigator intervenes on C through these control parameters.
Further, no control parameter stands out as the singular cause of differentiation. In fact,
most of the control parameters are, if intervened upon, capable of destabilising the stable

attractor C under the right background conditions.

After the initial destabilisation of C, the cell needs to select a new cell fate to differentiate

towards from this new unstable position:

“Metaphorically, the destabilization and disappearance of the progenitor attractor
can be viewed as S being placed on a “watershed” region in Waddington's
epigenetic landscape (Waddington, 1957) where it can easily be “tipped” into
either side to the now easily accessible attractors of the two prospective lineages
by small, deterministic perturbations or by random fluctuations in molecular
activities, to reliably produce distinct and specific outcomes. This near-symmetric
bifurcation model thus is consistent with the ample evidence for the observed

stochasticity in fate determination...” (Huang et al 2007, pg. 709-710)

Huang et al (2007) are here comparing Waddington’s metaphor with their observed
results: a symmetrical destabilisation event leaves the cell equally likely (all other things

being equal) to differentiate towards A or B. The general stochastic variation in gene
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expression is enough to push the cell towards either one, as well as all manner of

incidental factors:

“..the “watershed” metaphor explains the observation that many unspecific
(hence, non-instructive) signals, such as solvents or mechanical forces, can cause
differentiation in many cell systems: they may do so by “tipping” cells into a

predefined program” (Huang et al 2007, pg. 710)

From a position of high instability, it takes very little, up to and including incidental
mechanical forces acting on the cell, to trigger differentiation. Small variations in initial
conditions also have an influence, according to the model, on whether A or B is ultimately

selected.

But what makes the difference outside this inherent stochasticity in the system is, as
mentioned earlier, the biasing of these processes by shaping the attractor landscape. By
intervening on control parameters, the investigators were able to “tilt the watershed”,
making A or B occupy more or less of the phase space with their basin of attraction. This
is achieved through an asymmetrical intervention on the control parameters such that x1
is greater than x2 (or vice versa). This effectively makes one cell fate - myeloid or

erythroid - more accessible from the cell’s present state than the other.

The takeaway from this part of Huang et al’s (2007) discussion is that there are many
events than can induce the initial differentiation event (the destabilisation of C) and many
events than can determine whether A or B is selected subsequently, ranging from the
various control parameters to external forces. Whatever stimulus is involved, what
makes the difference to the outcome is the specifics of the attractor landscape. How

accessible a fate is from the cell’s present state is what makes the outcome more likely
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amidst a barrage of stochastic fluctuations, and what makes a fate accessible are the

dimensions of the associated attractor.

4. Dynamical Causes

An objection to the foregoing interpretation would be to question the role of attractors
(and really any dynamical feature of a system) as the cause of differentiation in favour of
a mechanistic interpretation. If we assume the initial destabilisation event has occurred
in a cell, and the system is poised to differentiate to a myeloid or erythroid, perhaps
differentiation can simply be explained by the levels of different transcription factors
present. For instance, in Huang et al's model, one might prefer a mechanistic
interpretation wherein intervening on levels of GATA1 and PU.1 in a cell leads to different
outcomes. Higher levels of GATA1 and PU.1 in a cell do indeed predict a higher likelihood
of those cells differentiating into erythroids and myeloids respectively (Huang et al
2007). On this reading it seems like the cause of differentiation is decidedly mechanistic.

If this were the case, it would of course be fatal to the account being built here.

To air out this criticism, [ will consider two possible readings: the mechanist one spelled
out above, and the dynamical interpretation [ advanced in the previous section, and place

them into Woodward'’s (M) criterion:

(M1) GATA1 transcription level causes erythroid differentiation if and only if there
are background circumstances B such that if some (single) intervention that
changes the value of GATA1 transcription level (and no other variable) were to

occur in B, then erythroid differentiation would change.

(M2) Presence of erythroid attractor causes erythroid differentiation if and only if

there are background circumstances B such that if some (single) intervention that
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changes the value of presence of erythroid attractor (and no other variable) were

to occur in B then erythroid differentiation would change.

(M1) represents a 3M-compliant interpretation, where the causal relations in the
dynamical model map to the underlying mechanistic model. (M2) advances the
dynamicist argument - that the causal relations identified by the dynamical model are
indeed genuine causes. Selecting which of these scenarios is the better interpretation
requires some grappling with how exactly we might select between different potential

causes.

Fortunately, Woodward (2010, 2018) has elaborated some criteria designed to clarify
situations where the role of difference-maker is ambiguous. The ambiguity arises because
not all potential causes are created equal - they “...can differ in the extent to which they
satisfy other conditions relevant to their use in explanatory theorizing” (Woodward 2018
pg- 1). Two of these conditions developed by Woodward are I think particularly relevant

to the current discussion - these are specificity, and proportionality.

Taking these conditions one at a time, [ want to consider (M1) and (M2) first in terms of
specificity. Specificity refers to “a kind of fine-grained and specific control” (Woodward
2010 pg. 306) that a cause has over the outcomes for some effect variable. To motivate
the importance of this condition, Woodward draws on an example offered by Waters

(2007) who discusses the synthesis of RNA molecules by DNA.

In this case, DNA provides genetic information to RNA polymerase, which then produce
RNA molecules. The question is over whether DNA or the RNA polymerase is the cause of

RNA molecule output:
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“DNA is a specific difference maker in the sense that different changes in the
sequence of nucleotides in DNA would change the linear sequence in RNA
molecules in many different and very specific ways. RNA polymerase does not
have this specificity...it is not the case that many different kinds of interventions
on RNA polymerase would change the linear sequence in RNA molecules in many

different and very specific ways.

This shows that DNA is a causally specific potential difference maker. The fact that
many such differences in DNA do actually exist and these differences actually
explain the specific differences among RNA molecules indicates that DNA is the

causally specific actual difference maker...” (Waters 2007, pp. 574-575)

Of the two possible causes, RNA polymerase is the least specific. It does not provide a
fine-grained description of the dependency between different states of the cause, and
different states of the effect. Either the polymerase is doing its job, or it is not. This is
comparatively coarse-grained when we want to understand the specifics of these

dependencies.

On the other hand, DNA seems a far more satisfactory candidate cause. There is a fine-
grained dependency between the different states of the DNA (what genetic information
it inputs) and what RNA molecule is produced. Hence DNA is more specific and is the

better candidate for the genuine cause of RNA molecule output.

Specificity requires that states of a cause map uniquely to states of an effect. The less
“overlap” or lack of uniqueness in these mappings, the better. This mapping should
describe exploitable counterfactual relationships between cause and effect in this fine-

grained way. When selecting between candidate causes, especially in biology, the more
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specific a cause-effect mapping the more we should be inclined to select it as the genuine

cause.

With specificity in mind, let us consider the viability of (M1). Does transcription of GATA1
exercise a fine grained and specific control over the outcome of cell differentiation?
GATA1 does increase the probability that a destabilised cell will end up as an erythroid,
so it exercises that much control. But that relationship does not tell us why a certain
threshold of perturbation is required to initiate differentiation. Nor does it tell us why
certain states of the system will differentiate into erythroids, and why others won't.
Consequently, there is a considerable amount of overlap between many different values
of differentiation and the consequent states of the cell fate. Consequently, the description

here is fairly coarse-grained and non-specific.

On the contrary if we accept (M2), then we are delivered far more explanatorily relevant,
fine-grained dependencies. The threshold required to initiate differentiation into an
erythroid is now explained - it is due to specific stabilities of phenotypes compared to
their neighbours, as described by the dynamical model. The fact that some states
converge on the erythroid fate and not others is due to the dimensions of the basin of

attraction corresponding to that fate.

The second condition to be examined, proportionality, “has to do with the extent to which
a causal claim fully captures conditions under which variations in some phenomenon of
interest occur.” (Woodward 2018, pg. 1). Woodward provides an illustrative example:
imagine I train a pigeon to peck at a red stimulus via classical conditioning. I present a
new stimulus to the pigeon, and it pecks at it. Two possible causal claims can be

introduced to describe what has just happened:

1. The presence of a scarlet stimulus caused the pigeon to peck.
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2. The presence of a red stimulus caused the pigeon to peck.

1 is not untrue. Scarlet is a type of red, and on this basis, one could fairly claim that a
scarlet stimulus caused the pigeon to peck. However there seems to be something off
about this interpretation. Woodward identifies the flaw in that the “scarletness” of the
stimulus is not what induced the pigeon’s pecking, but rather its “redness”. 2 is a more
appropriate statement of cause and effect, since it is the redness or non-redness of the
stimulus which is, based on the variety of conditions we could submit the pigeon to, the
real “difference-maker”. There are situations where the stimulus is not scarlet, yet the

pigeon does indeed peck - when the stimulus is another shade of red.

Selecting the correct causal claim can be approached by the application of the notion of
proportionality: causes should be proportional to their effects, meaning that a statement
of a cause should not contain excessive detail, nor omit necessary detail (Woodward is

here drawing on Yablo (1992)):

“(P) There is a pattern of systematic counterfactual dependence (with the
dependence understood along interventionists lines) between different possible
states of the cause and the different possible states of the effect, where this pattern
of dependence at least approximates to the following ideal: the dependence (and
the associated characterization of the cause) should be such that (a) it explicitly
or implicitly conveys accurate information about the conditions under which
alternative states of the effect will be realized and (b) it conveys only such
information - that is, the cause is not characterized in such a way that alternative
states of it fail to be associated with changes in the effect.” (Woodward 2010 pg.

298).
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So, the possible states of scarletness (scarlet or non-scarlet) are not depended upon by
the possible states of pecking (pecking or not pecking). Conversely, possible states of the
pigeon’s pecking do depend on the possible states of the stimulus’ redness. Example 2
provides the required “accurate information about the conditions under which
alternative states of the effect will be realised”. It also excludes scarletness since this does
not provide said accurate information (also fulfilling (b)). Hence redness fulfils the
criterion (P), while scarletness does not. This provides a good guide to the formulation of
statements of causal relevance — example 2 is much preferred to 1, since it identifies cause

and effect better by eliminating those details which violate (P).

Once again, I argue that (M2) comes out on top over (M1) when it comes to satisfying
proportionality. The attractor landscape “displays or exhibits a pattern of dependence”
(Woodward 2018, pg. 3, emphasis in original) between causes and effects in the way that
a mechanistic story does not. The dynamical model displays and exhibits how the cell’s
phenotype depends on the stability of its current state, as well as previous and potential
future states. The canalisation and perturbation of this dynamical system is therefore

proportionate to changes in the cell’s phenotype.

Meanwhile (M1) does not relay us accurate information on why certain states of the
proposed cause - GATA1 transcription - lead to certain states of the system. Indeed there
are a variety of situations where GATA1 transcription will not induce the erythroid fate
and situations where (under the same background conditions) other events will induce
the erythroid fate. The perturbation may be insufficient, the ridges surrounding the

progenitor state too high, and so on.

On both counts - specificity and proportionality - it seems the best candidate cause is

described by (M2). Indeed, this is exactly the kind of interpretation that seems prevalent
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in the scientific literature and a natural way of speaking about dynamical models of cell
fates. For instance, Ferrell (2012) in a review of the role of Waddington’s model in cell
differentiation emphasises the ultimate role of the attractor landscape in determining

fates:

“Although it was natural to assume that the induction stimulus acts by increasing
the value of [a transcription factor] I could have alternatively made the stimulus
act through any of the other parameters...Would this alter the conclusion that cell-
fate commitment occurs as a result of the disappearance of a valley at a saddle-
node bifurcation? The answer is no. No matter how I choose to have the inductive

stimulus affect the model, the result is the same.” (Ferrel 2012 pg. R461)

Whichever parameter one intervenes on - changing rates of auto-stimulation or mutual
inhibition, of transcription levels, etc. - the causal import nevertheless lies with the
dynamics of the system, with the attractor landscape. Conspicuous by its absence in these
scientific discussions is much concern about how to render the causal story described by
these dynamical models down into an underlying mechanism. Rather, in theoretical
discussions cell fates are equated with attractors, such that changes to these attractors
correspond to changes in cell fate phenomena (Enver et al 2009; Davila-Velderrain et al
2015; Huang 2012; Moris et al 2016). My point here is that the interpretation I offer fits

comfortably with the way scientists talk about models of cell fates.

This is not to say that scientific talk, which naturally does not always map directly onto
how philosophers of science or biology talk, is decisive to how we should formulate a
mode of explanation. On the contrary, [ wish to pre-empt the claim sometimes advanced
by mechanists, apparently originating with Craver (2007), that the mechanistic mode of

explanation most closely reflects how scientists think about nature and experiment on it,
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and hence has some especially pragmatic justification. A dynamicist account evidently

aligns just as well with the scientific literature at least as far as cell fates are concerned.

5. The 3M Response

The anticipated response from mechanists is that even if attractors meet the
interventionist criteria, no such model of cell fates can stand alone as a causal
explanation. This is because - according to the 3M requirement - the dynamical model
ought to be mapped to an underlying mechanistic model, which is what really provides
the causal power and describes the causal structure of cell fates. In other words, 3M is a
claim about reduction - causal claims about dynamical models reduce down to causal
claims about the underlying mechanistic details. Claims about attractors acting as
difference-makers are (if we accept 3M) reducible to claims about difference-makers

within the GRN architecture.

However, Kaplan & Craver (2011) stress that 3M is not intended to be rigidly applied, and
accordingly set up 3M inclusive of an assumption that the requirement can be defeated,

with some caveats:

“Like all default stances, 3M is defeasible. However, those who would defease it must
articulate why mechanistic styles of explanation are inappropriate, what
nonmechanistic form of explanation is to replace it, and the standards by which such

explanations are to be judged.” (Kaplan & Craver 2011, pg. 603)

In taking up this challenge, the first point is likely to be the most contentious. Given the
breadth of its application and ambitions, putting a hard limit on the reach of Mechanism
is a difficult proposition. However, one uncontroversial starting point is this: Mechanism

ends where it is unable to provide explanations. As we have seen, comprehensively
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uncovering the causal structure underlying a phenomenon (or at least, being in the
process of doing so) is a requirement for explanation for mechanists. As a consequence,
if mechanistic models can’t get at causal structure, it follows that this would indicate a

situation where mechanistic explanation is inappropriate.

Cell fates are an example of the causal structure underlying a phenomenon being
accessible to dynamical models. On the other hand, it is inaccessible to mechanistic
models. This is because the difference maker is part of the system’s dynamics - an
attractor - that can only be described in the context of a dynamical model. For example,
the progenitor cell fate which makes the difference to the initiation of differentiation “...is
“dynamically” defined, namely, as a metastable state in between two neighboring
attractors of the prospective differentiated states...” (Huang et al 2007 pg. 699). Hence a
description of the mechanism underlying cell fates (the proteins involved, the GRN
architecture, etc.) will not get at the difference maker to the cell fate, and consequently
there is no clear mechanistic analogue of this attractor, no entity or collection of entities

that corresponds coherently to this dynamical feature.

To entertain the notion, persisting with 3M in this case would presumably involve trying
to locate the physical components that underlie abstract dynamical features like
attractors. This seems like a difficult proposition, since these features don’t appear to
have a direct relationship to any component of the system - attractors and basins of
attraction result from a network of dynamical activity involving many thousands of
working parts. To pursue this option necessitates a description of a brute amalgamation
of all the physical components associated with these features of the dynamical model -

the thousands of genes, the transcription of proteins, etc.
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But in this scenario all of the explanatory work would still be done by the dynamical
model, since it provides the relevant details about causal relations/difference makers.
Identifying physical features associated with a model doesn’t entail those features or
components are necessarily providing causal detail. It’s hard to see how a model like this
could be anything other than a bona fide dynamical explanation, since all the explanatory

work would be done by the dynamical model.

If anything, the idea of adding in excess mechanistic detail seems to run directly against
mechanist’s own standards of explanation, as well as the general rationale for these
standards. Craver & Kaplan (2018) for instance discuss the notion of completeness as a
benchmark of good causal explanation, where a description includes all the causally and
constitutively relevant features of the world. Equally critical is the exclusion of irrelevant
detail, keeping out those features of the world that are neither causally nor constitutively

relevant to the phenomenon.

It is, on the mechanist account, counter to the purposes of a good causal explanation to
include features of the world that do not contribute to the unveiling of causal structure.
Hence if the addition of further mechanistic detail contributes nothing to understanding
the causal structure of cell fates, then it seems that by mechanists’ own standards of

explanatory completeness 3M is, in this case, counterproductive.

The second requirement for defeating 3M - articulating a non-mechanistic account of
explanation - can be dispensed with here more easily. Both Meyer (2018) and van Eck
(2018) provide interventionist-based accounts of dynamical explanation - the former
outlined earlier in Section 2 - that share many (if not most) of the assumptions about
explanation that motivate the mechanist account. This kind of explanation follows the

interventionist method of locating difference-makers and developing counterfactual-
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supporting invariant generalisations. Further details require significant fleshing out, but

these accounts at least offer a foundation to build on.

The third point - what kind of standards would dynamical explanation be judged by -
provides the most scope for interpretation. [ take this reference to standards to mean,
roughly, what is required for a mere description to transition into an explanation. Much
like mechanistic explanation, the development of counterfactual-supporting invariant
generalisations is the basis of providing causal explanations. Similarly, an appeal to the
accounts of dynamical explanation offered by Meyer (2018) and van Eck (2018) ought to

be considered at least a good starting point for this project.

One lingering and related issue concerns the capacity for a dynamical model to “fit” onto
the real-world system it is supposed to be explaining. Woodward (2017) details this
concern, claiming the HKB model of bimanual coordination fails to be explanatory
because it underspecifies what the real-world targets of the causal dependency relations
revealed by the model actually are. To be clear, Woodward (2017) explicitly denies that
this is necessarily a call for an associated mechanism (or a general critique of the
possibility of dynamical explanation) but rather for more detailed specification as to what
the features of the world purportedly being explained by the model are. Meyer (2018)
differs on this point, arguing that it seems fairly clear what the HKB model explains - a

cognitive system’s exhibition of bimanual coordination.

To expand on this point, I think it is worth looking at why mechanistic explanations do
not typically face this problem of fit. For one, mechanistic models seem intuitively easier
to fit onto the world - after all, mechanistic models are supposed to (to some extent, with
necessary abstractions and idealisations) resemble the target mechanism-in-the-world

(Craver 2007). But more formally, a mechanistic model fits onto features of the world and
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explains them when the counterfactual dependencies it describes resemble
counterfactual dependencies actually obtaining in the world. Dynamical explanations
could do the same: in the cell fates example, we have a model that describes
counterfactual dependencies which the investigators show also obtain in the GRNs of real
FDCP-mix cells (Huang et al 2007). Hence the dependencies in the model resemble those

in the real-world system - and fit is achieved.

Another important aside here concerns the relationship between mechanistic and
dynamical explanations. So far this paper has not grappled with problems of integration
or compatibility explicitly. I would argue that the specific characterisation of the
phenomenon - the explanatory question being asked - will play a large role in how these
modes of explanation hang together. A question specifically about the difference-maker
to cell fates appears to require what van Eck (2018) calls a “pure dynamical model”, one
that is non-mechanistic. We are really only interested in the dynamics causing one
outcome to obtain over another, and include mechanistic details (the GRN) only as

background conditions. All the relevant causal detail is contained in the dynamical model.

[ leave open the question of a combination of the two, which seems a substantial
discussion requiring its own treatment. I have only discussed one example from one
subgenre of science, and hence it is plausible that some questions require a different

model or combination of models to fully encompass the phenomenon.

6. Conclusion

In this paper I have argued that non-mechanistic, causal dynamical explanations are
viable. I have provided reasons, rooted in Woodward’s interventionist account, for
thinking that dynamical models do in fact describe the causal structure of the world

independently of mechanisms, using the example of cell fates. I have argued that



o J oy Ul W -

OO UG UG UTOTOUTOTOT R B BB BB DDA DNWWWWWWWWWWNNNNNNNNNNR R e e
GRWONRFRPFOOVWO I EWNROWOW®®JdAANUTAWNROWOW®O®JdNTEWNROW®O-JAURWNROWW-L0U S WNR O W

dynamical models can describe more specific and proportional causes than mechanistic
models of the same phenomena, and hence are the better descriptors of causal structure
in these cases. I have also defended against the 3M criterion, showing how in the case of
cell fates, adhering to 3M is counter-productive to causal explanation and need not be

observed.
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