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Abstract

We provide a formally rigorous framework for integrating singular causa-
tion, as understood by Nuel Belnap’s theory ofcausae causantes, and objec-
tive single case probabilities. The central notion is that of a causal probability
space whose sample space consists of causal alternatives. Such a probability
space is generally not isomorphic to a product space. We give a causally mo-
tivated statement of the Markov condition and an analysis of the concept of
screening-off.

1 Causal dependencies and probabilities

Probability theory describes the likelihood of outcomes of chance set-ups. In this
paper, we will assume that the framework of probability theory applies to single,
concrete chance set-ups such as a single coin toss at a specific place and time.
This assumption appears to be uncontroversial in view of the fact that probability
theory is actually successfully applied. Since we are after a metaphysical picture
combining causation and probabilities, we will assume that both causal relations
and single case probabilities are objective. The aim of this paper may be described
as trying to make sense of that assumption by showing how it might be true.

Probability theory by itself has nothing to say about causation. However, ques-
tions of probabilities and questions of causation are obviously related. E.g., one
may ask whether probabilities can be a guide to discovering causal relations. The
literature on this question is large. When moved from an epistemic to a metaphys-
ical level, the question gets a different reading: What are the objective influences
of objectively existing causal relations on objectively existing probabilities? If a
concrete situation involves more than one chance set-up, the causal interrelation of
the set-ups may impose constraints on the probabilistic structure of the situation.
E.g., if depending on the outcome of one chance set-up, another one is enabled or
not, that causal structure should be mirrored in the probabilistic structure.
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In this paper, we will provide a rigorous framework for bringing together cau-
sation and probabilities. The paper is based on an existing theory of causation —
Nuel Belnap’s theory ofcausae causantes(Belnap, 2003b), the background for
which isbranching space-times(Belnap, 1992). In this paper, we presuppose the
notation of Belnap (2003b), which should be consulted. A very readable intro-
duction to the problem of bringing together causation and probabilities is given in
Weiner and Belnap (2004), which should also be consulted. The present paper may
be read as a sequel to that paper, developing its ideas in more formal detail.1

1.1 Background: Causation in branching space-times

Branching space-times is a rigorous framework for combining relativistic space-
times with indeterminism. The basic building blocks of branching space-times are
a setW of concrete point events and a partial order≤ defined onW ; the companion
strict order is written “<”. Historiesh are maximal directed sets, i.e., maximal such
that for anye1, e2 ∈ h there ise3 ∈ h with e1 < e3 ande2 < e3. Pointse1, e2

that are incomparable (neithere1 ≤ e2 nor e2 < e1) can still be elements of the
same history, viz., if they have a common upper bound. In that case, we calle1

ande2 space-like related, and we writee1 SLRe2. — Branching occurs at single
indeterministic points. Thus, any two historiesh1, h2 to which an indeterministic
point e belongs are either divided ate (h1 ⊥e h2) or undivided ate (h1 ≡e h2),
the latter being an equivalence relation. The set of histories containinge is written
H(e). H(e) is partitioned by≡e; we writeΠe for the set of partitions andΠe〈h〉 for
the unique element ofΠe containingh (presupposinge ∈ h). Thus,Πe〈h〉 is the
set of histories containinge that are undivided fromh at e. An initial I is a set of
point events that are part of one history. We writeH[I] for the set of histories of
which I is a part;H[I] 6= ∅. It is often adequate to think ofI as an upper bounded
initial chain, andI = {e} is an important special case. (A chain is a set of pairwise
comparable point events.) Theprimary propositional outcomesof an initial I are
the elements of the partitionΠI induced by undividedness atI, whereh ≡I h′ iff
h ≡e h′ for all e ∈ I. An outcome eventO is a set of (lower bounded) outcome
chains, all of which begin in one history. We writeH〈O〉 for the set of histories in
which O begins to occur (even though it does not have to occur as a whole); by
definition,H〈O〉 6= ∅.

1Most of this paper was written while I was a guest of Nuel Belnap’s at the University of Pitts-
burgh. I thank him both for his hospitality and for many helpful discussions. Furthermore, I have
greatly benefitted from his numerous comments on previous versions of the paper, including the sug-
gestion to “try the contrapositive” on a previous proof of Lemma 2. I also thank Tomasz Placek for
many stimulating discussions and for specific comments. Nuel Belnap, Tomasz Placek and Matthew
Weiner have kindly shared their results prior to publication. Support by the Deutsche Forschungsge-
meinschaft is also gratefully acknowledged.

2



Subscribing to the rather uncontroversial assumption that causation is a two-
place relation between cause and effect, the following two questions are crucial for
any theory of causation:

1. What is caused? Which entities areeffects?

2. What causes? Which entities arecauses?

As is well known, there are numerous different answers to these questions. One
main divide is between singular and generic causes and effects. Obviously, both
notions are important — consider “he broke the vase” vs. “smoking causes cancer”.
It seems both ontologically most promising and most in line with our framework
to address questions of singular causation first. Thus we look for singular, concrete
causes and effects. What sorts of entities are these? A good intuition seems to be
that causation involves change, but it is notoriously difficult to say what a change
is. The notion of atransition, introduced by von Wright (1963), is a liberalized
notion of change: A transition is “something and then something”; not necessarily
“. . . something else”. Following von Wright, in causation in branching space-times
the crucial causal notion is therefore that of atransition. Technically, a transition,
written I � O, is just an ordered pair of setsI andO of point events, whereI is
an initial event andO is an outcome event located afterI (i.e., for all eI ∈ I and
for all eO ∈ O we haveeI < eO).

The answer to question (1) above, from the point of view of causation in
branching space-times, is accordingly:

1. Transitionsare caused.

In sharp contrast to other theories of causation, causation in branching space-times
assumes that non-trivial causation depends on indeterminism. A transitionI � O
whose outcomeO is bound to occur, given thatI occurs, hasno causes. It does
not need any, since it happens anyway. Causes are thus understood asoriginating
causes (causae causantes), which seems to capture our actual usage of the category
of causation much more nicely than other accounts.

What are the causes? Causation in branching space-times gives the following
answer to question (2) above:

2. Causes are sets of (especially simple) transitions.

Thus, a transition is caused by (possibly a huge number of) transitions. The transi-
tions that figure as causes are of an especially simple sort: they are from a single
point e as initial (apast cause-like locusof the caused transition) to one ofe’s pri-
mary outcomesΠe〈h〉. Given an outcome eventO of e, e < O, the set of histories
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Πe〈O〉 is the uniquely determined member of the partitionΠe of H(e) in whichO is
kept possible, i.e., for whichΠe〈O〉 ∩H〈O〉 6= ∅. In fact, we haveH〈O〉 ⊆ Πe〈O〉.
The corresponding transitions, writtenti = ei � Hi, Hi ∈ Πei , are calledbasic
transitions. It turns out, as it should, that basic transitions are their own causes.
Thus, they may figure as irreducibly indeterministic building blocks of our inde-
terministic world. In the theory that will be developed in this paper, they will also
form the building blocks for the construction of probability spaces, thus providing
a close link between causation and probabilities.

Having mentioned the concepts, we now give the formal definitions of “past
cause-like locus” and “causa causans” (cf. Belnap 2003b) for later reference.

Definition 1 (Past cause-like loci)Let I � O be a transition. Then the set of
past cause-like locifor that transition,pcl(I � O), is defined to be

pcl(I � O) := {e ∈ W | e < O ∧ ∃h ∈ H[I] h ⊥e H〈O〉}.

Thus, a point evente is a past cause-like locus forI � O if (i) e < O, i.e., e
is a lower bound for the outcomeO, and (ii) there is a historyh in which the ini-
tial I finishes that is separated ate from all histories in whichO begins to occur.
Past cause-like loci make a difference as to the occurrence ofO. They are there-
fore necessarily indeterministic points, i.e., points with more than one immediate
outcome.

Definition 2 (Causae causantes)Let I � O be a transition. Then the set of
causae causantesfor that transition,cc(I � O), is defined to be

cc(I � O) := {e � Πe〈O〉 | e ∈ pcl(I � O)}.

A causa causansfor a transitionI � O is thus a transition from a past cause-like
locuse to that unique immediate outcomeΠe〈O〉 of e that keepsO possible right
aftere.

1.2 What are probabilities defined for?

Intuitively, probabilities are probabilities of outcomes of chance set-ups. Causation
in branching space-times offers the notion of an indeterministic transition to stand
for “chance set-up”. IfI � O can occur, butO does not have to occur givenI,
then it will in many cases be sensible to askhow probablethe transitionI � O was
compared to the alternatives. Thus, probabilities are probabilities of transitions. (In
the causally trivial case of a deterministic transition, the probability will be trivially
equal to one.) We will bind the notion of probabilities fully to the notion ofcausae
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causantes: Since the framework has room for indeterminism, it should be possible
to grade that indeterminism numerically at least in some cases.2

We will reduce all considerations of probabilities of transitions to considera-
tions of probabilities of combinations of basic transitions. This will be done by in
some way identifying a transition with its set ofcausae causantes. We call two
transitionscausally equivalent(I � O

c≡ I ′ � O′) iff they have the samecausae
causantes:

Definition 3 (Causal equivalence of transitions)

I � O
c≡ I ′ � O′ iff cc(I � O) = cc(I ′ � O′).

The relation
c≡ is an equivalence relation, and an equivalence class may be speci-

fied via the set of causae causantes of one of its members. In what follows, we will
therefore not talk about transitions in general, but about sets of basic transitions.3

The main work that is to be done is to find out how basic transitions combine and
which probabilities should be assigned to such combinations.

Thus, the next section introduces some facts about basic transitions, and the
section after that is concerned with probabilities.

2 Basic transitions

2.1 Basics of basic transitions

Basic transitions are transitions from a point event (initial)ei to one ofei’s imme-
diate outcomesHi ∈ Πei ; we write

ti = ei � Hi.

The differentHi ∈ Π(ei) partition H(ei), the set of all histories containingei.
Pointsei for which Π(ei) has only one member are calledtrivial ; at such points,
no splitting occurs. A transitionei � H(ei) with a trivial initial is also called
trivial. We will mostly be interested innon-trivial, or indeterministic, points and

2It seems to be rather uncontroversial that probabilities are numerically graded modalities; cf.
e.g., Popper (1982, 70) and van Fraassen (1980, 198). Once possibilities are there, probabilities are
(well, almost) for free.

3This does not mean that all that is important about a transition is its set ofcausae causantes.
E.g., epistemically the spatiotemporal location ofI andO may play a huge role, and there are also
important differences between a basic transition and a non-basic transition that is causally equivalent
to it. All we claim in this paper is that on the ontological level, all that isprobabilistically important
about a transition is in itscausae causantes, taken together.
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transitions. A cause-like locus is always indeterministic by definition, so sets of
causae causantesconsist of non-trivial basic transitions.

We call two basic transitionst1 = e1 � H1 and t2 = e2 � H2 initial-

equivalentif their initials are the same (e1 = e2); in this case, we writet1
i≡ t2.

This is an equivalence relation, and the equivalence class ofti, [ti], is the set of all
basic transitions with initialei. Since[ti] is completely specified by the initialei,
we also write the equivalence classes as[ei]:4

[ti] = [ei] = {ei � H | H ∈ Πei}.

We call an initialei finitely splittingiff [ei] is finite. — On the set of basic transi-
tions, we can define a partial ordering relation as follows:

ti < tj iff ei < ej andH(ej) ⊆ Hi.
5

Thus, the transitiontj is aboveti (ti < tj) if tj can occur in the outcomeHi of ti.
For this it isnot enough thatei < ej : Since atei, histories split,ej must also occur
in the outcomeHi of ei.

The ordering of transitions sheds some light on when two transitions are com-
patible. This will now be spelled out in terms of consistent sets of transitions.

2.2 Set of basic transitions

Sets of basic transitions will be the basic building blocks for the probability spaces
to be defined later on: they will constitute the elements of the sample space. Not
all sets of basic transitions will do, however. Some sets are such that they cannot
occur in one history — they are causally impossible. The most useful sets of ba-
sic transitions are the consistent ones, where consistency is something like causal
possibility.

2.2.1 Consistency of sets of basic transitions

The notion of consistency is defined as follows:

Definition 4 (Consistent set of basic transitions)A setT = {t1, t2, . . .} of basic
transitions (ti = ei � Hi) is consistentiff all the outcomes have a history in

4This notion of initial-equivalence of basic transitions is to be distinguished from the notion of
causal equivalence of transitions employed above. Note also that on[ti], probabilities can be easily
defined, since we can introduce a natural set-theoretic Boolean algebra structure onΠei . This will
be our starting point later on.

5Note that givenei < ej , if H(ej) ∩Hi 6= ∅, thenH(ej) ⊆ Hi by transitivity of≡ei .
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common, i.e., iff∩ti∈T Hi 6= ∅. (The empty set∅ is considered consistent, since the
intersection of an empty set of histories,∩ti∈∅Hi, is by definition taken to be the
setH of all histories.)

By this definition, any subset of a consistent set of basic transitions is consistent.
A good thing to note is that the set of basic transitions that we identified with a
general transitionI � O is consistent in the sense just defined.

Lemma 1 For any transitionI � O, the set of itscausae causantesis consistent.

Proof: LetI � O be given, and letT = cc(I � O). By definition, anyei �
Hi = ti ∈ T satisfiesei < O andHi = Π(ei)〈O〉, so thatH〈O〉 ⊆ Hi. Thus,
H〈O〉 ⊆ ∩ti∈T Hi. As H〈O〉 6= ∅, T is consistent. �

Before we can move on, we need to state, and assume, an important postulate and
a convenient limitation.

2.2.2 Limitations: Finiteness and exclusion of modal funny business

The theory to be developed here will be limited in two ways. The first limitation
is for convenience’s sake and will have to be removed in a further development of
the theory: We will assume that all sets ofcausae causantesand all probability
structures that we are going to deal with are finite. This is by no means a “natural”
limitation, i.e., we do not assume that there are any deep ontological reasons for
this limitation. It is just that sticking to the finite case will allow us to focus on
the problem of combining causality and probability without having to cope with
problems of infinite probability structures all along.6

The second limitation is fundamental. In the general theory of branching space-
times, there may occur a phenomenon that Nuel Belnap has aptly called “modal
funny business”: roughly, some combinatorially possible histories may be absent.
Since we rely on smooth combinatorics, we will have to exclude models involving
modal funny business from our considerations. This seems not to be much of a
constraint, however, since a modally “funny” model may be mimicked probabilis-
tically by a model in which the combinatorics are smooth, and formerly missing
histories are excluded via probability zero.

Belnap (2003a) proves the equivalence of four different notions of modal funny
business. For our purposes, it is best to use the following notion:

Definition 5 (Modal funny business) In a model of branching space-times, there
is primary space-like related modal funny businessiff there are two initial events

6Cf. note 8 below for some comments on infinite structures.
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Figure 1: Effects of modal funny business.

(nonempty sets of point events that are part of one history)I1, I2 such thatI1 SLR I2
(∀e1 ∈ I1 ∀e2 ∈ I2 e1 SLRe2), but one primary outcomeΠI1〈h1〉 of I1 has an
empty intersection with one primary outcomeΠI2〈h2〉 of I2.7

Figure 1 illustrates what may happen if there is modal funny business. The three
depicted histories are all the histories there are in the model. Consider first the
eventsea, eb, andec that occur in all three histories. Each of these is an indeter-
ministic point event with two outcomes, which are labeled ‘+’ and ‘−’. There is
modal funny business according to Definition 5 — e.g., forI1 = {ea}, I2 = {eb},
the intersection of the ‘−’ outcomes is empty; among the three histories, none con-
tains bothea � − andeb � −. In the depicted case, there are also three pairwise
space-like related pointse1, e2, ande3 which are nonetheless not all contained in
one single history: Each pair, e.g.,e1, e2, is incomparable, and there is a history,
e.g.,h1, containing both points, witnessing the space-like relatedness. But con-
trary to what one might assume, none of the three histories of the model contains
all three pointse1, e2, ande3. In the absence of modal funny business, such a sit-
uation is ruled out: Given no modal funny business according to Definition 5, for
any finite set of pairwise SLR points there is a history containing the whole set, and
any set of transitions with pairwise SLR initials has a nonempty common outcome.

Lemma 2 If there is no modal funny business according to Definition 5, the fol-
lowing holds: (a) LetE = {e1, . . . , en} be such that forei, ej ∈ E, if ei 6= ej ,
thenei SLRej . ThenH[E] 6= ∅, i.e., there is a history containing all the points in
E. (b) Furthermore, letT = {t1, . . . , tn} be a set of transitions (ti = ei � Hi)
such that the set of initialsE = {ei | ti ∈ T} fulfills the conditions of (a) and such
that no two transitions fromT have the same initial. ThenT is consistent, i.e., the
transitions inT have a common outcome:∩ti∈T Hi 6= ∅.

7In the infinite case, this definition will have to be altered; cf. note 8 below for some indications
of what needs to be changed.
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Proof: We prove only (b), from which one may obtain (a) as follows: if onlyE is
given, select arbitrary outcomesHi ∈ Πei for eachei ∈ E. If then∩ti∈T Hi 6= ∅,
we haveH[E] 6= ∅ sinceHi ⊆ H(ei). — So assume that the premises of (b) hold,
but that∩ti∈T Hi = ∅. Let T ′ ⊂ T be a subset ofT that is maximal with respect
to ∩ti∈T ′Hi 6= ∅. Now let tj ∈ T − T ′. SetE′ = {ei | ti ∈ T ′}. By assumption,
the elements ofE are pairwise SLR, so the setsI1 = E′, I2 = {ej} are initials,
and the sets∩ti∈T ′Hi andHj are primary outcomes, fulfilling the requirement of
Definition 5. Now since there is no modal funny business by assumption, that
Definition implies∩ti∈T ′Hi ∩Hj 6= ∅, contradicting the maximality ofT ′. �

In what follows, we will assume that there is no modal funny business:

Postulate 1 (No modal funny business)There is no modal funny business accord-
ing to Definition 5.

2.2.3 Characterization of consistency in the absence of modal funny business

Given finite structures and no modal funny business, the notion of consistency of a
set of basic transitions can be expressed in different ways:

Lemma 3 Let T = {t1, . . . , tn}, ti = ei � Hi. The following conditions are
equivalent:

1. T is consistent.

2. There is a history to which all theei belong (∩ti∈T H(ei) 6= ∅). Furthermore,
(a) if ei = ej , thenHi = Hj , and (b) ifei < ej , thenH(ej) ⊆ Hi.

3. For anyti, tj ∈ T , exactly one of the following holds:

(a) ei = ej andHi = Hj (i.e., ti = tj) or

(b) ti < tj or

(c) tj < ti or

(d) ei SLRej .

Proof:1 ⇒ 2: For allti, Hi ⊂ H(ei), and∩ti∈T Hi 6= ∅ by (1). So there is a history
to which all theei belong. Ifei = ej , thenHi ∩Hj 6= ∅ iff Hi = Hj (the family
of outcomes ofei is a partition ofH(ei)). If ei < ej , thenH(ej) ∩ Hi = ∅ would
imply Hj ∩Hi = ∅ (sinceHj ⊆ H(ej)), meaning thatT would be inconsistent.

2 ⇒ 3: AssumeT violates (3), i.e., there areti, tj ∈ T such that none of
(3a)–(3d) applies. This is possible in four ways: (a)ei = ej , butHi 6= Hj — this
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violates (2); (b)ei < ej , butH(ej) ∩Hi = ∅ — again violating (2); (c) forej < ei

symmetrical to (b); (d)ei 6< ej andej 6≤ ei and notei SLRej — this means that
there is no history to which bothei andej belong, again violating (2).

3 ⇒ 1: Let T ′ := {ti ∈ T | ¬∃tj ∈ T ti < tj} be the set of maximal
elements ofT . It will be sufficient to establish that∩ti∈T ′Hi 6= ∅, since ifti < tj ,
Hj ⊆ Hi. Now for ti, tj ∈ T ′, if ti 6= tj , then we haveei SLRej : ei = ej is
ruled out by (3a), andti < tj or tj < ti is impossible sinceT ′ is the set of the
maximal elements. Thus we have a set of pairwise space-like related points with
outcomesHi specified, and by Lemma 2 (b), there is a history in the intersection
of all outcomes. �

The following Lemma characterizes the special status of the maximal elements:
their outcomes may be changed at will without violating consistency.

Lemma 4 If T = {t1, . . . , tn} is consistent andt0 ∈ [ti], t0 6= ti, thenT ′ =
(T − {ti}) ∪ {t0} is consistent iffti is maximal inT .

Proof: “⇐”: If ti is maximal, then the set witht0 substituted is also consistent by
Lemma 3 (2).

“⇒”: Let ti not be maximal inT , i.e., there istj ∈ T s.t.ti < tj , i.e.,ei < ej

andH(ej)∩Hi 6= ∅. SinceΠei is a partition ofH(ei), H(ej)∩H0 = ∅. By Lemma 3
(2), the set witht0 substituted is thus inconsistent. �

3 Causal probability theory

We have now prepared the ground for the introduction of probabilities into the
framework of causation in branching space-times. By the close link between cau-
sation and probability that was assumed at the outset, the objects that figure as
causes — sets of basic transitions — will be the objects on which probabilities will
be defined. In order to have probabilities, we need probability spaces:

Definition 6 (Probability space) A probability spaceis a triple 〈A,F, µ〉, where
A is a nonempty set (the “sample space”),F is a Booleanσ-algebra (sometimes
called “event algebra”) of subsets ofA (with zero element0 = ∅ and unit element
1 = A), andµ is a normalized, countably additive measure onF , i.e., (i)µ(1) = 1
and (ii) if (fi)i∈I is an at most countable family of disjoint elements ofF , then
µ(∪i∈Ifi) =

∑
i∈I µ(fi).

As stated above, we will considerfiniteprobability structures exclusively. Thus, we
will assume in the following that all probability spaces that we deal with are finite.
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In a finite probability space,F is just the usual set-theoretic algebra of subsets of
A, with the elements ofA playing the role of atoms, or basic alternatives.

The basic questions of this section may be characterized as follows:

Given a transitionI � O, represented by a consistent setT of basic transitions:
In which probability space can we speak of a “probability forT ”? That is:

1. What is the sample spaceA that containsT and its causal alternatives?

2. What is the Booleanσ-algebraF?

3. What is the measureµ; which general constraints hold forµ?

4. How do the measures in different probability spaces relate?

We will motivate our answers to these questions through a number of increasingly
complex examples.

3.1 Examples forT

The simplest example is given by a trivial transition: its set ofcausae causantesis
empty. In this case, we haveA = {∅}, F consists of two elements only (A and the
empty set), andµ(A) = 1. The first non-trivial example is given by a singleton set
of transitions.

3.1.1 T = {t1}

In this case,t1 is a basic transition with initiale1 and outcomeH1 ∈ Π(e1). The
probability space that needs to be considered is obvious:. The sample space is nat-
urally taken to be[t1], i.e., the set of all basic transitions with initiale1. Our finite-
ness assumption requires that[t1] be finite. This is not guaranteed, and it is cer-
tainly not adequate in all situations, but there exist well-known measure-theoretic
ways of dealing with infinities in this case (cf. note 8 below).

Given finiteA = [t1], F is just the set of all subsets ofA. The measureµ is
uniquely characterized by its value on the singleton sets, since any member ofF is
the disjoint union of a finite number of singletons. This is all standard probability
theory, with no hint of causal constraints.

3.1.2 T = {t1, t2}, e1 SLR e2

The simplest case of a setT with two elements is the case in which the initials
are space-like separated. (We do not consider the case thatT is inconsistent at the
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moment, since that cannot happen forT derived from a given transitionI � O,
cf. Lemma 1.)

In the present case,T combines two transitions. For single transitions, we
already know how to construct probability spaces — simply take the set[ti] to
be the sample space, as outlined above. From the two probability spacesP1 =
〈A1, F1, µ1〉 andP2 = 〈A2, F2, µ2〉 we may then form theproduct space, P =
〈A,F, µ〉, whereA = A1 × A2 is the Cartesian product ofA1 andA2, i.e., the
set of ordered pairs〈a1, a2〉 with ai ∈ Ai, i = 1, 2, andF = F1 × F2 is the
respective product Boolean algebra. For the measureµ, we at least require the
so-calledmarginal property:

Definition 7 (Marginal property for pairs) A measureµ on the product Boolean
algebraF = F1×F2 has themarginal propertyiff (i) for all f1 ∈ F1, µ(〈f1, 12〉) =
µ1(f1) and (ii) for all f2 ∈ F2, µ(〈11, f2〉) = µ2(f2).

The marginal property means that if one ignores the outcome of one initial by
considering the certain outcome1i = Ai (for whichµi(1i) = 1), one gets back the
single probability. Requiring thatµ satisfy the marginal property does not fixµ —
there are many ways open. One specific way is taking theproduct measureµ×:

µ×(〈f1, f2〉) = µ1(f1) · µ2(f2).

The other way is to allow forcorrelationsbetween outcomes ofe1 ande2 by using
a different measure.

Here comes a crucial question: Given thate1 ande2 are space-like related (and
thus, causally separated), should we require thatµ = µ×? We believe that no,
since quantum-mechanical correlation experiments give strong evidence that there
can be correlations between outcomes of space-like separated events. In order to
remain flexible, our theory should allow both for correlations and for the product
measure.

The product construction described above is standard in probability theory. A dif-
ferent perspective on that construction will prove to be illuminating when it comes
to generalizations. By Lemma 2, any combination of one outcome ofe1 and one
outcome ofe2 is consistent: Each{t′1, t′2} with t′1 ∈ [t1], t′2 ∈ [t2], is consistent.
We may base our probability space on such sets and define:

A = {{t′1, t′2} | t′1 ∈ [t1], t′2 ∈ [t2]}.

By the assumption of finitude,F may again be the usual set algebra, and it will
suffice to define the measureµ on the atoms, i.e., on the elements ofA. Since
in this construction, we did not start with “single” probability spacesP1 andP2,
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we cannot state the marginal property as before. However, we may require some
form of marginal property once two “single” probability spaces with respective
measuresµ1 andµ2 are given in addition:

Definition 8 (Marginal property for sets) Let F be the Boolean algebra of sets
of transitions as defined above. A measureµ onF has themarginal propertyiff (i)
for all a1 ∈ A1, µ({{a1, a2} | a2 ∈ A2}) = µ1({a1}) and (ii) for all a2 ∈ A2,
µ({{a1, a2} | a1 ∈ A1}) = µ2({a2}).

This is quite similar to Definition 7: Since

µ({{a1, a2} | a2 ∈ A2}) =
∑

a2∈A2

µ({{a1, a2}}),

requiring that that sum be equal toµ1({a1}) again means that by ignoring the out-
come ofe2 (by summing over all possibilities), one gets back the “single” measure.

In the present case (e1 SLRe2), the two mentioned perspectives are provably
equivalent, since there is an isomorphism between the two mentioned probability
spaces, via

〈a1, a2〉 ↔ {a1, a2}.

The important question is which of the two perspectives generalizes. In classical
probability theory, combinations of chance set-ups are adequately described via
product constructions. It turns out, however, that once causal notions enter the
picture, product constructions are no longer adequate. This is shown by the next
example.

3.1.3 T = {t1, t2}, t1 < t2

Apart from the casee1 SLRe2, which has already been considered, and the case
t2 < t1, which is symmetrical to the present one, this is the only possible case
of a consistent set of two transitions (cf. Lemma 3 (3)). As in the previous case,
two chance set-ups are combined. The attempt to apply a product construction will
result in an instructive failure.

As in the case fore1 SLRe2, one may try to start from two probability spaces
〈Ai, Fi, µi〉 with Ai = [ti], i = 1, 2. The product space〈A,F, µ〉 is definable
as before. However, that probability space is not adequate for the causal situation
assumed. Consider a pair〈t′1, t′2〉 with t1 ∈ [t1], t′1 6= t1, t′2 ∈ [t2]. That pair
corresponds to a causally impossible “alternative” toT , since by Lemma 4, there
is no history in which both the outcomeH ′

1 of t′1 and the initiale2 of t′2 occur
together. The only reasonable thing to do probabilistically seems to be to require
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thatµ(〈t′1, t′2〉) = 0 in that case (i.e., in caset′1 6= t1). But then, given the marginal
property, we get

µ1(t′1) = µ(〈t′1, 12〉) =
∑

t′2∈[t2]

µ(〈t′1, t′2〉) = 0 for t′1 6= t1,

and by normalization ofµ1, we getµ1(t1) = 1: e1 is bound to have outcomeH1.
That is certainly not warranted.

Consider a real life example: Assume that ate1 you decide at random whether
to go to the races or not (possibly by flipping a fair coin);[e1] = {e1 � H1

1 , e1 �
H2

1}, µ(go) = µ1(e1 � H1
1 ) = 0.5. If you are at the races (e2 such thate1 < e2

andH(e2) ⊆ H1
1 ), you either win (e2 � H1

2 ) or you lose (e2 � H2
2 ); suppose

µ2(win) = µ2(e2 � H1
2 ) = 0.2. The product space contains the four atoms

〈go, win〉, 〈go, lose〉, 〈stay, win〉, and〈stay, lose〉.

The latter two are causally impossible: If you do not go to the races, you can neither
win nor lose. By the argument given above, it seems to follow that therefore, you
go with probability1. This is absurd.

A way out of this quandary is to use the alternative to the product space con-
struction that was introduced above: Consider only the consistent combinations of
outcomes ofe1 ande2 and take as the atoms the maximally consistent sets. Thus,
we take the sample space of alternatives to be

A = {{t1, t′2} | t′2 ∈ [t2]} ∪ {{t′1} | t′1 ∈ [t1], t′1 6= t1}.

Given finiteness, the Boolean algebraF is again the usual set-theoretic algebra, and
µ is uniquely specified by its value on the atoms. Each element ofA is a maximally
detailed description of a consistent outcome involving the initialse1 and (possibly)
e2, and each element ofF is a set of such consistent outcomes.A then contains
exactly the causal alternatives toT . In terms of the races example, we consider
as atomic outcomes only the three (instead of four) maximally consistent sets (not
pairs) of transitions,

{go, win}, {go, lose}, {stay}.

Note that while the set{go} is consistent, it is not maximally so and is thus not
considered to be an atomic possibility. We may however identify that set with an
element ofF : {go} says the same as{{go, win}, {go, lose}} — if you go, you
either go and win, or you go and lose. A kind of marginal property is thus already
built into our framework, since the probability of{go} evaluates as

µ({go}) = µ({{go, win}, {go, lose}}) = µ({{go, win}}) + µ({{go, lose}})
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by probability theory alone. We will spell this out by defining the notion of a
representative below.

The framework sketched for our example easily generalizes to arbitrary finite
causal probability structures, as will be shown in the following.

3.2 General causal probabilities

We start with a given consistent setT of transitions, e.g., the set ofcausae cau-
santesof a given transitionI � O. Since we only consider finite structures in this
paper, we require that (i)T be finite and that (ii) for eachti ∈ T , [ti] be finite.8

The causal probability spacePT = 〈AT , FT , µT 〉 that is adequate to describe
causal alternatives toT is constructed as follows:

1. Let T̃ = ∪ti∈T [ti], the set of all alternatives to the elements ofT .

2. LetAT = {T ′ | T ′ ⊆ T̃ , T ′ maximally consistent}.

3. LetFT be the set-theoretic Boolean algebra overAT .

4. The measureµT may be any normalized measure onFT .

5. The sought-for probability space isPT = 〈AT , FT , µT 〉.

As one expects, the setT of transitions turns out to be an element ofAT sinceT is
consistent and by Lemma 3 (3a), no other element ofT̃ can be consistently added
to T . The given construction does not in any way single outT from among the
other elements ofAT . This is as it should be, since a probability space does not
contain a designated element to stand for “the real outcome”. Thus, the probability
spacePT can be constructed once the initials of all transitions inT are known: it
suffices to start from a given consistent set of point eventsE; the corresponding

8It turns out that while it is rather simple to generalize with respect to requirement (ii), using
standard tools of measure theory (e.g., Borel sets), it is much harder to generalize with respect to
(i). In fact, infiniteT creates difficulties for both considerations of probabilities and for the notion
of “modal funny business”. With respect to the latter, it turns out that Definition 5 is no longer
adequate for guaranteeing “smooth combinatorics”. In order to exclude combinatorially weird cases,
it seems best to use the step from condition (3) to condition (1) in Lemma 3 as the mark of “no funny
business”. The whole area merits further study. — With respect to probabilities, ifT is infinite, i.e.,
involves infinitely many initials, then there may be an infinite SLR set of initials, and there may be
an infinite chain of transitions inT . In the first case, the tools of standard probability theory for
infinite product spaces (cylinder sets, zero-one laws) will apply. In the second case, the situation
appears to be more challenging. Still that case is very interesting in view of the fact that, e.g., in
the modal theory of agency, “busy choice sequences” are analyzed whose probabilistic equivalent
exactly requires a probability theory for infinite chains of transitions. That question, too, certainly
merits further study.
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probability space may then be denotedPE = 〈AE , FE , µE〉. Since this way of
specifying causal probability structures can be generalized most easily, we will
mainly be talking about probability spacePE with a given setE of initials. — It
is even possible to build probability spaces from giveninconsistentsets of point
events; we will consider this generalization below.

In standard probability theory, it is customary to require that different measures in
different probability spaces respect the marginal property, which was formulated
for pairs as Definition 7 above. Since causal probability structures are not product
spaces, we need some way of expressing the fact that we wish to consider the
probability of “the same thing” in different probability spaces.

3.2.1 Representation in different probability spaces

Reconsider the races example from section 3.1.3. Going was in some sense an
alternative, but it was not a maximally specific alternative and thus, not an element
of AT . Still there was a place for it inFT , viz., as the set{{go, win}, {go, lose}}.
More generally, we may ask: Given a consistent set of basic transitionsS, i.e., an
element of the sample spaceAE of some causal probability spacePE , and a causal
probability spacePE′ , how isS represented inPE′? That question may be split in
two: (i) When isS representable inPE′? (ii) In caseS is representable, what is the
representative? The answer to the first question is straightforward:

Definition 9 (Representability ofS in PE′) A consistent setS ∈ AE of basic
transitions isrepresentable inPE′ iff E ⊆ E′.

WhenS is representable, we have seen that we should not expectS ∈ AE′ , since
AE′ contains maximally consistent sets relative toE′ only, andS may not be max-
imal. Nor will we haveS ∈ FE′ , sinceFE′ is a set of (maximally consistent) sets
of transitions. However, the following definition captures the required notion:

Definition 10 (Representative ofS in PE′) Therepresentative ofS in PE′ , SE′ ,
is defined to be the set of all maximally consistent sets extendingS:

SE′ = {T ′ ∈ AE′ | S ⊆ T ′}.

Thus we haveSE′ ∈ FE′ . In order to visualize what is going on, it may be good to
divide the definition into two steps, one downward and one upward, as follows:

1. S′ = S ∪ {e′ � Πe′〈e〉 | e � H minimal inS, e′ < e, e′ ∈ E′}
In words:S′ is derived fromS by “downward closure inE′”, i.e., by adding
all transitions belowS that are consistent withS and that have initials inE′.
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2. SE′ = {T ′ ∈ AE′ | S′ ⊆ T ′}
In words: the representative ofS in PE′ is the set of all maximally consistent
sets extendingS′. SinceS′ is downward closed inE′, this step will only add
elements on top ofS.

The concept of a representative allows us to state, and prove, that the probability of
a set of transitions is always smaller than or equal to the probability of its subsets:

Lemma 5 Let S be representable inPE′ , and letS′ ⊆ S. ThenµE′(SE′) ≤
µE′(S′

E′).

Proof: AsS′ ⊆ S, S′ is representable inPE′ as well. From the definition ofSE′ ,
one reads offSE′ ⊆ S′

E′ . The claim then follows from the additivity ofµE′ . �

Representing elements of the event algebraSo far, we have only considered the
representation of consistent sets of transitions, i.e., elements of the sample space
of some probability space. More generally, we may be interested in defining a
representative for a set of consistent sets of transitions, e.g., an element of the
event algebra of some probability space. The respective definitions are natural
generalizations of the two definitions from above:

Definition 11 (Representability) A setf ∈ FE of sets of basic transitions isrep-
resentable inPE′ iff E ⊆ E′.

Thus,f is representable inPE′ iff eachS ∈ f is representable inPE′ .

Definition 12 (Representative off in PE′) The representative off in PE′ , fE′ ,
is defined to be the set of all representatives of elements off :

fE′ = {SE′ | S ∈ f}.

3.2.2 Adapting the marginal property

As in standard probability theory, we want to say that the probability of “some-
thing” is the same in all probability spaces representing the something. Taking the
“something” to be a consistent set of basic transitions, one might think that we
would like to have the following alternative marginal property:

(BAD-MP) If S ∈ AE is representable inPE′ , thenµE(S) = µE′(SE′).

In standard probability theory, this is a good way to describe the marginal property.
In our framework, it will not do. ConsiderS = {e1 � H1} andE = {e1}, E′ =
{e0, e1} with e0 < e1. In this situation, the probability ofS = {{e1 � H1}} will
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normally be greater than the probability ofSE′ = {{e0 � Πe0〈e1〉, e1 � H1}},
since inPE′ , first e0 has to have the right outcome and thene1 has to have the
right outcome, whereas inPE , only e1 has to have the right outcome. Standard
probability theory with the product construction does not leave room for picturing
more than one “layer” of initials, but the framework that is presented here does. In
order to arrive at a correct formulation of the marginal property, we need to require
thatPE′ be anextensionof PE , which notion is defined as follows:

Definition 13 (Extension) A causal probability spacePE′ is an extensionof PE

iff (i) E ⊆ E′ and (ii) there is noe′ ∈ E′ − E ande ∈ E such thate′ < e.

In other words,PE′ is an extension ofPE iff E′ is a superset ofE and all the new
elements ofE′ are maximal with respect toE. If PE′ extendsPE , the problematic
situation described above cannot occur. Thus, the following is an adequate formu-
lation of the marginal property for sets of basic transitions in our causal framework:

(MP) If S ∈ AE is representable inPE′ and if PE′ extendsPE , thenµE(S) =
µE′(SE′).

We postulate that the marginal property should hold in Our world:

Postulate 2 The marginal property (MP) holds for all probability assignments.

Postulate 2 is already sufficient to ensure that an analogue of (MP) holds for ele-
ments of event algebras as well. We state this result as a Lemma:

Lemma 6 Let f ∈ FE , and let PE′ extendPE . Given (MP), it follows that
µE(f) = µE′(fE′).

Proof:

µE(f) =
∑
S∈f

µE(S) =
∑
S∈f

µE′(SE′) = µE′({SE′ | S ∈ f}) = µE′(fE′).

�

3.2.3 Markov property

The motivation for the marginal property was purelystructural: “the same thing”
has to have the same probability, however represented. The causal structure only
entered in spelling out what “representing the same thing” might mean. We now
consider a property of probability spaces that is ofcausalorigin and that accord-
ingly does not have a direct counterpart in standard probability theory. We rely on
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the intuition that the probability of a transition is something like the probability of
the outcome, given the initial. We will suggest that in some specific cases, this may
be read as a conditional probability.

We first introduce the notion oflayering:

Definition 14 Let T be consistent. We say thatT is layerediff there is a proper
subsetT ′ of T such that for allt′ ∈ T ′ and for all t ∈ T − T ′, t < t′. In this case,
we say thatT ′ forms an upper layer ofT .

e

ee 1 2

3

A

e 3

ee 1 2

B
e

e

e3

2

1

C

Figure 2: A: not layered; B and C: layered

Not all T are layered; consider Figure 2A, wheree2 < e3, but e1 SLRe2 and
e1 SLRe3. If T is layered, as in Figure 2B and C, an upper layer may be uniquely
determined, as in (B), or it may not be unique, as in (C).

Transitions in an upper layer of layeredT all are located above all the other
transitions. Thus there can be no causal influence from the transitions inT − T ′

on one of the outcomes ofT ′ that was not already present whenT ′ occurs. Given
thatT ′ occurs, the occurrence ofT − T ′ has been accounted for completely. This
observation motivates the following postulate:

Postulate 3 (Markov property) Let T = R ∪ S be consistent and layered, and
let R be an upper layer ofT . Then all measuresµT onPT satisfy

µT (T ) = µR(R) · µS(S).

In caseµS(S) 6= 0, this may be phrased in terms of conditional probabilities:

µR(R) = µT (T | S) = µT ({T} ∩ ST )/µT (ST ) = µT (T )/µS(S),

where we have employedT ∈ ST (sinceS ⊆ T ) andµS(S) = µT (ST ) (by the
marginal property).
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Note that we are here dealing with anontologically motivatedMarkov condi-
tion that applies to single cases. In connection with graphical models and Bayesian
Networks, one assumes a so-called “causal Markov condition” that applies to “vari-
ables”. We will give some brief remarks on the interrelation between the frame-
work presented here and the framework of Bayesian Networks at the end of sec-
tion 3.2.6 below.

3.2.4 Causal probability spaces from inconsistent initials

Technically, it is unproblematic to extend the probability space construction de-
scribed at the beginning of section 3.2 to any setE of initials:

• Form the set̃T = ∪e∈E [e].

• Use the set of all maximally consistent subsets ofT̃ as sample spaceAE .

• Form the event algebraFE ; in the finite case that is assumed here for sim-
plicity, use the set-theoretic algebra of subsets ofAE .

• Define some suitable measureµE onFE .

• Set the probability spacePE to be〈AE , FE , µE〉.

For this construction to be well-defined it isnot necessary thatE be consistent.
E.g., in the case ofE = {e1, e2} with incompatiblee1 and e2, assuming two
outcomes+1,−1 and+2,−2 for simplicity, AE contains only singletons:

AE = {{e1 � +1}, {e1 � −1}, {e2 � +2}, {e2 � −2}}.

The crucial question is: under which circumstances can we give a coherent causal
reading to the spacePE? The guiding idea in constructing probability spaces was
that AE should describe alternatives. In the example, this reading appears ques-
tionable: in which sense might the occurrence ofe1 � +1 be an alternative to
the occurrence ofe2 � +2? A minimal sense of “alternative” might be defended:
They cannotbothoccur, so they are alternatives. But by looking for a causal read-
ing of probability spaces, we also want acausalsense of “alternative”, and that
sense is not forthcoming in the example: No connection between the alternatives
is present. Things would be different ifE contained a third elemente such that
e < e1, e < e2, for then,e would provide the sought-for causal link, shared by all
alternatives.

In the general case, we want to say thatAE is a set of causal alternatives if there
is such a causal link in the form of initials that are shared by all the alternatives.
SinceAE consists of maximally consistent sets of transitions, the minima ofE will
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be common initials of all alternatives inAE exactly if they are consistent. We thus
give the following definition of when a probability space is causally interpretable
as a space of alternatives:9

Definition 15 (Causal probability space) LetE be a finite set of finitely splitting
point events. The probability spacePE , defined as above, is acausal probability
spaceiff the minimal elements ofE are consistent.

Given a causal probability spacePE , it will do no harm to add proper maxima
to E — the resulting probability space will again be causal, since its minimal
elements stay the same. We call the procedure of adding proper maxima “fine
graining”. For the idea, refer back to the races example from section 3.1.3. There,
E = {e1, e2}, and there was one minimal initial,e1 (deciding what to do), with
outcomes go/stay. In the outcome “go”, there was a second initial,e2 (betting), with
outcomes win/lose. By our definition, the corresponding probability spacePE is
causal. That feature will be preserved if we give a more fine-grained description
of the “stay” outcome ofe1 by adding a new initiale3 in the “stay” outcome above
e1. E.g.,e3 might have outcomes read/cook. WithE′ = {e1, e2, e3}, PE′ clearly
describes causal alternatives: you either stay and read, or you stay and cook, or
you go and win, or you go and lose. Given one alternative, you can tell a causal
story of how another alternative might have occurred. Note thatPE′ cannot be
derived from any consistent set of transitions directly, but only via fine graining.
Our formal definition runs as follows:

Definition 16 (Fine graining) LetE andE′ be finite sets of finitely splitting point
events. The probability spacePE′ is a fine-grained versionof PE iff (i) E ⊆ E′,
(ii) for all e′ ∈ E′ − E there ise ∈ E such thate < e′, and (iii) for all S ∈ AE ,
the measure is preserved:µE(S) = µE′(SE′).

Thus, fine graining means adding new initials that are not new minima, while pre-
serving the measure as far as possible. We can now formulate a Lemma that con-
nects the notion of a causal probability space with the notion of fine graining.

Lemma 7 LetE be a set of point events. The following conditions are equivalent:

1. PE is a causal probability space (i.e., the minima ofE are consistent).

2. The minima ofE are pairwise space-like related.

9The definition is limited to the finite case in view of the general finiteness requirement in this
paper.
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3. PE is a fine-grained version of a causal probability spacePT , whereT is a
consistent set of transitions.

Proof:1 ⇒ 2: Since the set of minima is consistent, there is a historyh containing
them all. Two minimae1 ande2, e1 6= e2, cannot be comparable (for then one
would not be minimal), so (as witnessed byh) they are space-like related.

2 ⇒ 3: Let M be the set of minima ofE. For eachei ∈ M , select an outcome
Hi ∈ Πei , and letT = {ei � Hi}. By Lemma 3 (3d),T is consistent. ThenPE

is derived by fine graining fromPT : (i) M ⊆ E and (ii) E −M contains just the
non-minimal elements ofE. The measure can be adjusted as necessary.

3 ⇒ 1: Let PE be derived fromPT by fine graining, and letM be the set of
minima from among the initials ofT . By consistency ofT , M is consistent, and
by the definition of fine graining,M is also the set of minima ofE. �

3.2.5 Random variables and correlations

In standard probability theory, arandom variableX is a function defined on the
sample spaceA of a probability spaceP . Usually, but not necessarily, the values
of X will be real numbers. E.g., with the sample spaceA being the outcomes
of a roll of a die,X might be equal to one for the odd outcomes and equal to
zero for the even ones. The probability of a valuex of the random variableX
is written pr(X = x). For a fair die, in the example case we would thus have
pr(X = 1) = 1/2.

Random variables may map more than one element of the sample space to the
same value, as in the example. The most fine-grained random variables preserve
the structure of the sample space via an isomorphism, e.g.,X(a) = a. For such
random variables, we may identifypr(X = x) with µ(x). This identification is
unproblematic in the finite case considered here. Random variables are required to
give a definition of correlation and (probabilistic) independence:

Definition 17 (Independence and correlations)A familyX1, . . . , Xn of random
variables defined on a probability spaceP is calledindependentiff for anyn-tuple
〈x1, . . . , xn〉 of respective outcomes,

pr(X1 = x1 ∧ . . . ∧Xn = xn) = pr(X1 = x1) · . . . · pr(Xn = xn).

If the familyX1, . . . , Xn is not independent, it is calledcorrelated. Thus, acorre-
lation is of the form

pr(X1 = x1 ∧ . . . ∧Xn = xn) 6= pr(X1 = x1) · . . . · pr(Xn = xn).
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Note that pairwise independence does not guarantee independence. — It is straight-
forward to transfer these notions to causal probability structures: A random vari-
able XE is again taken to be a function defined on the sample spaceAE of a
probability spacePE . Basic random variablesare defined on the sample space
A{t} generated by a single basic transitiont = e � H.

As an example, consider rolling a fair die again, as described by a probability
spacePE (E = {e}). The random variableX will be as defined above. LetY be
defined to have the value one for outcome2 and value zero otherwise. It turns out
thatX andY are correlated, since, e.g.,

pr(X = 1 ∧ Y = 1) = 0 6= pr(X = 1) · pr(Y = 1) = (1/2) · (1/6).

Such trivial correlations must be distinguished from empirically challenging corre-
lations, for which the notion of screening-off is important. Before we move to that
discussion, we give a definition ofindependenceandcorrelationsfor causal prob-
ability spaces, which is based on using the most fine-grained random variables:

Definition 18 Let PE be a finite causal probability space.PE is called (proba-
bilistically) independentiff for anyT = {t1, . . . , tn} ∈ AE ,

µE(T ) =
∏
ti∈T

µ{ti}(ti).

PE is calledcorrelatediff it is not independent.

Thus, we have at our hands two different concepts of correlations: One is about
random variables defined onPE , while the other is aboutPE itself. The die exam-
ple already shows that on an uncorrelatedPE , one can define correlated random
variables. In many empirically important cases, such correlations among random
variables may be explained by uncorrelatedPE , invoking the notion of (probabilis-
tic) screening-off.

3.2.6 Screening-off

One of the most important links between causality and probability is via the con-
cept of screening-off. Roughly, screening-off means that if there are correlations
among causally unconnected variables, then in the common past of these vari-
ables there is an event that screens off the correlations, i.e., conditional on which
there are no correlations any more. Consider the notorious barometer example: A
falling barometer is correlated with rain, even though neither does the rain cause
the barometer to fall, nor does the falling barometer cause the rain. In this situa-
tion, we can point to a temporally prior common cause of the correlations: Low
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atmospheric pressure causes both the rain and the barometer’s falling; conditional
on low atmospheric pressure, the two variables are uncorrelated.

This story is good as far as it goes, and it captures a methodologically important
point that may drive empirical research: Explain correlations through the common
past.10 Since we wish to give a reading of screening-off in the framework of this
paper, we need to be more explicit with respect to a number of key notions:

1. What are the variables that may be correlated?

2. For which correlations do we expect screening-off?

3. Which notion of location for variables is appropriate?

4. What does the screening-off principle look like? How can the requirement
of causal priority and the concept of conditioning on a common cause be
expressed?

(1) It seems natural to take “variables” to be random variables defined on a causal
probability spacePE . Thus, we will be dealing with correlations in the sense of
Definition 17.

(2) As a famous slogan would have it, correlations cry out for explanation. That
may be so, but certainly not all correlations cry for explanations of the screening-
off variety. That is already obvious from the die example, where the random vari-
ables were just defined so as to yield correlations. Furthermore, any sort of causal
influence of one variable on another will make correlations relatively uninterest-
ing, too. E.g., in the races example from section 3.1.3, going is correlated with
winning, but this is just so because in order to win, one has to go and bet in the
first place. Thus, interesting correlations are among “causally separated” variables,
which must somehow be expressed via the concept of space-like separation, bring-
ing us to the next point.

(3) Random variables do not have locations. Still, for a random variableX defined
in PE , some pointse ∈ E may be important for determining the value ofX, while
others may be unimportant. The maximal elements ofE play a special role here,
since the outcomes of the maximal elements determine an element of the sample
space (the domain ofX) uniquely. LettingEM be the set of maximal elements of
E, we thus define the setVX of value-determining points forX to be

VX = {e ∈ EM | ∃t, t′ ∈ [e]∃S ∈ AE (t ∈ S ∧X(S) 6= X((S − {t}) ∪ {t′}))}.
10In fact, the first overt application of a screening-off principle, by Reichenbach (1956), was in

trying to define the direction of time.
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In words, a maximal pointe of E is value-determining forX if the outcome ofe
can make a difference as to the value ofX.

We may now define when two random variables defined inPE arecausally
separated:

Definition 19 (Causal separation of random variables)The random variablesX
andY defined inPE are causally separatediff their respective value-determining
points are either space-like separated or incompatible, i.e., iff

∀eX ∈ VX ∀eY ∈ VY (eX SLRey ∨ eX , eY incompatible).

Thus, we will be looking for screening-off for causally separated variables only.
(This excludes both the die case and the races example.)

(4) LetX andY be two causally separated, correlated random variables defined in a
causal probability spacePE . If PE itself is correlated (according to Definition 18),
then correlations among variables are to be expected anyhow. However, in the
absence of correlations inPE , a screening-off principle holds. We state this as a
Theorem:

Theorem 1 (Screening-off principle)
Let X and Y be two causally separated, correlated random variables defined in a
causal probability space PE , and let E′ = E − EM be the set of non-maximal
elements in E. Then either (i) PE is correlated or (ii) PE is uncorrelated, and any
S′ ∈ AE′ screens off X from Y : For any S′ ∈ AE′ , any x ∈ ran(X) and any
y ∈ ran(Y ),

pr(X = x ∧ Y = y | S′) = pr(X = x | S′) · pr(Y = y | S′).

Proof: We need to consider (ii) only. For simplicity’s sake we assume thatVX ∪
VY = EM , i.e., all maximal points inE are relevant forX or for Y . (Otherwise,
the unnecessary points may be deleted.) We writeSx(S′) for the set{S ∈ AE |
S′ ⊆ S, X(S) = x}, Sy analogously, andSxy for {S ∈ AE | S′ ⊆ S, X(S) =
x ∧ Y (S) = y}. Thus, e.g.,Sx(S′) pools together all ways of continuingS′ such
as to yield valuex for X. Then we have

pr(X = x ∧ Y = y | S′) = µE({S ∈ Sxy(S′)})/µE′(S′)

=
∑

S∈Sxy(S′)

µE(S)/µE′(S′)

=
∑

S∈Sxy(S′)

∏
t∈S−S′

µ{t}(t).
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The fraction may be replaced by the product in the last step sincePE is uncorrelated
and thus, bothµE(S) andµE′(S′) factor: e.g.,µE(S) =

∏
t∈S µ{t}(t). We now

write Tx(S′) for the set of sets of transitionsT with initials from VX for which
there isS ∈ AE , S′ ⊆ S, T ⊆ S, with X(S) = x. Thus,Tx(S′) pools together
all possible ways for the variableX to have valuex, given thatS′ occurred. (The
outcomes ofe ∈ VY do not change the value ofX.) We thus get

pr(X = x | S′) = µE({S ∈ Sx(S′)})/µE′(S′)

=
∑

S∈Sx(S′)

µE(S)/µE′(S′)

=
∑

S∈Sx(S′)

∏
t∈S−S′

µ{t}(t)

=
∑

T∈Tx(S′)

∏
t∈T

µ{t}(t).

The last step is licensed since fore 6∈ VX , all outcomes ofe will lead to the
same value ofX by definition, so that the sum is over all outcomes ofe, yielding
probability one and thus cancelinge from the sum.

We finally have

pr(X = x | S′) · pr(Y = y | S′) = ∑
T∈Tx(S′)

∏
t∈T

µ{t}(t)

 ·

 ∑
T ′∈Ty(S′)

∏
t′∈T ′

µ{t′}(t
′)

 =

∑
T∈Tx(S′)

∑
T ′∈Ty(S′)

∏
t∈T

µ{t}(t) ·
∏

t′∈T ′

µ{t′}(t
′) =

∑
S∈Sxy(S′)

∏
t∈S−S′

µ{t}(t) = pr(X = x ∧ Y = y | S′).

In the last step, we have employed the assumption thatVX andVY together make
up the set of maxima ofE, so that any continuation ofS′ in AE has “new” initials
either fromVX or fromVY . �

Thus, our framework allows to capture in a mathematically precise way a notion
of “prior screening-off” for correlated random variables: If variablesX and Y
are causally separated and the causal probability spacePE on whichX andY are
defined is uncorrelated, then the non-maximal elements ofE collectively act as
screeners-off. Even though random variables do not have a space-time location,
the Theorem captures the notion ofprior screening-off, since the value ofX and
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Y is determined by the maximal elements ofE, which are causally later than the
screeners-off.

Reichenbach seems to have thought that screening-off was a universal princi-
ple. Our Theorem, however, allows for a failure of screening-off, viz., ifPE itself
is correlated. Correlations inPE may in turn have two very different reasons: (i)
It may be thatPE is inadequate to describe the situation at hand, since it contains
correlations where a more careful analysis, extendingPE , would find none.PE

may thus be thought of as a “surface model” for the phenomena. In an extended
model (made up from copies ofPE after identifying prior screeners-off), there will
be no correlations. (ii) It may be thatPE is the right model, and still there are
correlations.

A universal principle of screening-off will not rule out possibility (i). In fact,
the principle of screening-off, read as a piece of scientific methodology, urges us to
replace situations of type (i) with a more satisfactory, uncorrelated extended model.
However, universal screening-off speaks against possibility (ii). It is an empirical
question whether a situation of type (ii) actually occurs. Here, the Bell inequal-
ities together with empirical results of quantum correlation experiments strongly
suggest a positive answer: In nature, there are correlations among causally sepa-
rated variables for which there is no screener-off.11 In the light of the strangeness
of these correlations, it seems appropriate to call correlations inPE “probabilistic
funny business”. Thus, we define:

Definition 20 A causal probability spacePE exhibitsprobabilistic funny business
iff it is correlated according to Definition 18.

A short comment on the theory of Bayesian Networks may be in order. While this
paper is about deducing probabilistic consequences from causal relations, it is often
important to deduce causal relations from statistical data. Since the 1980s, a num-
ber of methods have been developed for elucidating that direction of the problem.
The framework of Bayesian Networks (Pearl, 2000; Jensen, 2001) has been espe-
cially prominent in this respect, and many important applications have been based
on that framework. The present framework may be seen as giving a spatiotempo-
rally and mathematically precise reading of the “causal variables” of the Bayesian
Network theory in terms of random variables defined on causal probability spaces.
It seems plausible to assume that the further development of the present framework

11The Bell inequalities were derived by John Bell after Reichenbach’s death; cf. Bell (1987) for
the original papers dating from 1964 onward. Decisive experiments have been conducted since the
1980s; cf., e.g., Aspect et al. (1982). — A more thorough analysis of the quantum mechanical case
will have to be deferred to a future paper.
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will shed light on fundamental questions in the theory of Bayesian Networks, such
as the question of the status of the “causal Markov condition” assumed there.12

In the following section we will put many of our notions to work.

3.3 Application: Probability of suprema of a chain

As an application of our framework, we consider the following problem:
Let I be an initial chain andSup := {suph(I) | h ∈ H[I]} the family of its

suprema. This is a kind of chance set-up that Belnap (1992) has called “indeter-
minism without choice”: the transition fromI to its suprema is generally indeter-
ministic, but no choice inI determines the outcome. With respect to this set-up,
two questions arise:

1. In which probability space may we describe all the transitionsI � p, p ∈
Sup, as causal alternatives?

2. What will be the sum of the probabilities of all these alternative transitions?
Will our framework yield the expected answer,∑

p∈Sup

µ(I � p) = 1?

It turns out that we need a further Postulate to deal with this problem. Appendix A
shows that that Postulate, due to Weiner (1997), is not a consequence of the other
Postulates of branching space-times.

Postulate 4 (Weiner) Suprema retain their order across histories: IfI andJ are
two initial chains andh1, h2 two histories both containing bothI andJ , then (i)
suph1

(I) = suph1
(J) iff suph2

(I) = suph2
(J), (ii) suph1

(I) < suph1
(J) iff

suph2
(I) < suph2

(J), and (iii) suph1
(I) > suph1

(J) iff suph2
(I) > suph2

(J).

Given this Postulate, the answer to the two questions is: (1) There is a natural
choice for the sought-for probability space. (2) The probabilities in that space do
sum to one. We formulate this as a Theorem. At present, since the considerations of
probability spaces were limited to the finite case, we will have to assume finiteness
here, too.

12A further interesting link between the two frameworks is given by the problem of applying the
Bayesian Networks approach to single cases; cf. Pearl (2000, chap. 10) on the problem of “the actual
cause”.
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Theorem 2
Let I be an initial chain, and let Sup := {suph(I) | h ∈ H[I]} be the family of
its suprema. Let CC = ∪p∈Supcc(I � p). Then, assuming that CC is finite and
with finitely splitting initials,

1. PCC is a causal probability space,

2. ACC = {cc(I � p) | p ∈ Sup}, and

3. for any measure µCC on FCC ,
∑

p∈Sup µCC(I � p) = 1.

Proof: Let I and Sup be given, and letPCL = ∪p∈Suppcl(I � p), CC =
∪p∈Supcc(I � p). We prove the three claims in turn, spending most of our labor
on (2). First we need to prove a Lemma:

Lemma 8 Letei be minimal inPCL, and letpj ∈ Sup. Thenei < pj .

Proof: Asei ∈ PCL, there ispi ∈ Sup s.t. ei < pi. Assume thatei 6< pj . In
that case, it follows from Postulate 4 that no history can contain bothei andpj (use
{ei} andI as initials and two histories both containingei and one containingpi, the
otherpj). Thus, on the assumption thatei 6< pj , for a historyhi containingei and a
historyhj containingpj , the prior choice principle gives a splitting pointe ∈ hi∩hj

s.t. e < ei. But thene < pi, and aspj ∈ hj , hj ∈ H[I], andhj ⊥e H〈pi〉 by
transitivity of undividedness. Thus,e ∈ pcl(I � pi), contradicting the minimality
of ei. �

We now proceed to prove the Theorem.

(1) If PCL has only one minimum, there is nothing to show. So lete1 ande2,
e1 6= e2, be minima ofPCL. Let p ∈ Sup. By Lemma 8,e1 < p ande2 < p,
so there is a history containing both. Sincee1 and e2, being minima, must be
incomparable, it follows that they are space-like related. The claim then follows
by Lemma 7 (2). �

(2) “⊆”: For each transitionI � p, p ∈ Sup, cc(I � p) is a maximally consistent
subset ofCC.

Let p ∈ Sup, and letT = cc(I � p). By Lemma 1,T is consistent, and
T ⊂ CC by construction ofCC. We need to show thatT is maximally consistent
in CC. So lett′ = e′ � H ′ ∈ CC − T , and letT ′ = T ∪ {t′}. Sincet′ ∈ CC,
t′ ∈ cc(I � p′) for somep′ ∈ Sup, p′ 6= p, andH ′ = Πe′〈p′〉. We will show that
T ′ is inconsistent.

We first show that on the assumption thatT ′ is consistent,e′ < p: Assume
that there is no history containing bothe′ andp. Then there must be a splitting
point e′′ < e′, and as in the proof of Lemma 8, we gete′′ ∈ pcl(I � p), so
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e′′ � Πe′′〈p〉 ∈ T . But ase′′ is a splitting point forH(e′) andH〈p〉), Πe′′〈p〉 ∩
H(e′) = ∅, so thatT ′ would be inconsistent. Thus there is a history containing both
e′ andp, and by Postulate 4,e′ < p. — Now again as in the proof of Lemma 8,
e′ ∈ pcl(I � p), and thus eithert′ ∈ T , contradicting our assumptiont′ 6∈ T , or
T ′ is inconsistent by Lemma 3 (3). �

(2) “⊇”: Each maximally consistent subset ofCC is the set ofcausae causantes
of a transitionI � p, p ∈ Sup. We show (a) each consistent subset ofCC
determines a supremum ofI, (b) each maximally consistent subset ofCC does
so uniquely, and (c) a maximally consistent subset ofCC is in fact equal to the
corresponding set ofcausae causantes.

(a) LetS be a consistent subset ofCC, letSm be the set of transitions maximal
in S (which exists by finiteness). We show that there is a history in∩ti∈SmHi that
containsI:

(a.i) For ti ∈ Sm, all ei are pairwise space-like related (by maximality) and
belong to one history (Lemma 3 (2)).

(a.ii) Also, for eachei there is a pointe ∈ I s.t. for alle′ ∈ I, if e′ ≥ e, then
e′ SLRei: (α) ei is a past cause-like locus for some transitionI � p, p ∈ Sup. So
ei < p, and there is a historyh such thatei andI belong toh and forhp ∈ H〈p〉,
h ⊥ei hp. (β) For alle ∈ I, ei 6< e. Assume otherwise. Thene ∈ h (sinceI ⊆ h).
Selecthp ∈ H〈p〉. SinceI < p, e < p, soe ∈ hp. But ei < e now givesh ≡ei hp,
contradictinghp ∈ H〈p〉. (γ) There ise ∈ I such thatei 6≥ e. Otherwise,ei is an
upper bound forI, andei ∈ h, soei ≥ p′ = suph(I). But for p ∈ Sup we also
hadp < ei. By Postulate 4 (usingI and{ei}), this is impossible. Soe SLRei. (δ)
For e′ ∈ I, if e < e′, then alsoe′ SLRei — otherwise,e < e′ ≤ ei, contradicting
(γ).

(a.iii) SinceSm is finite, the intersection of the final sections ofI constructed
in step (a.ii) is nonempty, call itI ′. We have established{ei | ti ∈ Sm} SLRI ′.

(a.iv) At this point we may use Postulate 1 for the primary outcome∩ti∈SmHi

of the set{ei | ti ∈ Sm} and for some primary outcome ofI ′, this will give us
a joint outcome and thus a historyh containingI ′ (and thus,I) and contained in
all the outcomesHi of ti ∈ Sm. — SinceSm was maximal,h ∈ ∩ti∈SHi. SoS
determines the transitionI � suph(I).

(b) Now letS be maximally consistent, and leth1, h2 ∈ ∩ti∈SHi with I ⊆ h1

andI ⊆ h2. Setpi = suphi
(I), i = 1, 2. We want to showp1 = p2. Assume

p1 6= p2. (i) By the prior choice principle, sincep1 ∈ h1 − h2, there is a choice
point e < p1 such thath1 ⊥e h2 (i.e., e is maximal inh1 ∩ h2). By transitivity
of undividedness,h1 ⊥e H〈p2〉. So e ∈ pcl(I � p2). (ii) The transitiont =
e � Πe〈p2〉 is acausa causansfor p2, sot ∈ CC. But t 6∈ S, sincet rules out
h1 (h1 6∈ Πe〈p2〉), and we hadh1 ∈ ∩ti∈SHi. (iii) Since alsoh2 ∈ ∩ti∈SHi and
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h2 ∈ Πe〈p2〉, the setS ∪ {t} is consistent. This contradicts the assumption thatS
is maximally consistent inCC.

(c) Let S ⊆ CC be maximally consistent, and letp ∈ Sup be the uniquely
determined supremum ofI for which H〈p〉 ∩

⋂
ti∈S Hi 6= ∅. We now show that

S = cc(I � p).
(c) “⊆”: Let ti = ei � Hi ∈ S. We haveei < p, and asei ∈ PCL, we also

haveei ∈ pcl(I � p), and asHi = Πei〈p〉, in fact ti ∈ cc(I � p).
(c) “⊇”: Let ti = ei � Hi 6∈ S. ThenS ∪ {ti} must be inconsistent (sinceS

is maximally consistent), and thus it cannot be that there ishp ∈ H〈p〉 ∩ Hi (else
that history would witness consistency). But thenti 6∈ cc(I � p). �

(3) The last part of the proof is simple: SinceACC = {cc(I � p) | p ∈ Sup}, the
sum in question turns out to be the measure of the unit element1CC , equal to one
for any measureµCC . In detail:∑

p∈Sup

µ(I � p) =
∑

p∈Sup

µCC(cc(I � p)) =
∑

T∈ACC

µCC(T )

= µCC(∪T∈ACC
T )

= µCC(1CC) = 1.

�

A Preservation of the ordering of suprema

In the proof of Theorem 2 we had to invoke Postulate 4, which says that the order-
ing of history-relative suprema is preserved across histories. Here we will show that
Postulate 4 is not a consequence of the other Postulates of branching space-times.
In the following section we will then show that Postulate 4is a consequence of
branching space-times theory augmented by a notion of “same space-time point”.13

We will construct a model with two histories,h1 andh2. Let 〈R2,≤M 〉 be the
two-dimensional Minkowskian plane, i.e., the set of points in the two-dimensional
real plane with the Minkowskian ordering,

(x, y) ≤M (x′, y′) iff (x− x′)2 ≤ (y − y′)2 andy ≤ y′.

This will be our first history,h1. In order to have branching and thus, a second
history, we add the set

F = {(∗, y) | y > 0},
13The formulation of Postulate 4 is due originally to Weiner (1997). He also gave a rather simple

model showing that the Postulate is not a consequence of branching space-times alone (Weiner,
personal communication). The model presented here was derived independently. It emphasizes the
fact that histories in a branching space-times model may be radically non-isomorphic.
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h1 h2

I J I J(0,0)(0,0)

(-1,1) (1,1)
(*,1)

Figure 3: A branching space-times model violating Postulate 4. See text for details.

which is isomorphic to the positive reals. We now define the ordering≤ on W =
R2 ∪ F to be

(x, y) ≤ (x′, y′) iff (x, y) ≤M (x′, y′)
(∗, y) ≤ (∗, y′) iff y ≤ y′

(x, y) < (∗, y′) iff (x, y) <M (−y′, y′) or (x, y) <M (y′, y′).

Thus, for no(x, y) and(∗, y′) do we have(∗, y′) ≤ (x, y). In this way,F is pasted
into the future light cone above(0, 0). Through the ordering,(∗, y) is in some sense
identified with the two points(−y, y) and(y, y) that are on the border of the future
light cone above(0, 0). The resulting model is〈W,≤〉, pictured in Figure 3. We
need to establish that this is a model of branching space-times. Clearly,W 6= ∅.
Fact: The ordering is antisymmetric.
Proof: Since this is clear for the ordering onR2 and onF , we only need to look at
the “mixed” case. But if(x, y) < (∗, y′), it cannot be that(∗, y′) < (x, y), by the
definition of the ordering. �

Fact: The ordering is transitive.
Proof: Selecta, b, c ∈ W such thata < b, b < c. If all the three points are in
R2 or all in F , thena < c follows immediately from transitivity of the respective
orderings. So we only need to check two cases: (i)a = (x, y), b = (x′, y′), c =
(∗, y′′). Assume thatb < c is due to the fact that(x′, y′) <M (y′′, y′′) (for −y′′,
argue analogously). Thena < c follows from the transitivity of the Minkowskian
ordering. (ii)a = (x, y), b = (∗, y′), c = (∗, y′′). Assume that(x, y) < (y′, y′)
holds. Then sincey′ < y′′, in the Minkowskian ordering,(y′, y′) <M (y′′, y′′),
anda < c again follows from the transitivity of the Minkowskian ordering. �
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Fact: Let a = (x, y) >M (0, 0), b = (∗, y′). Thena andb are incomparable.
Proof: By the definition of the ordering. �

Fact: In 〈W,≤〉 there are exactly two histories.
Proof: h1 = R2 is a history, since it is upward directed, and by the previous fact, it
cannot be extended by elements ofF . The set

h2 = (h1 − {(x, y) | (0, 0) <M (x, y)}) ∪ F

is also upward directed, and cannot be extended by elements of{(x, y) | (0, 0) <M

(x, y)} either. Again by the previous fact, “mixed” cases are excluded. �

Fact: The ordering is dense and has infima and history-relative suprema.
Proof: From the properties of the orderings onR2 and onF . �

Fact: The prior choice principle holds. There is exactly one splitting point,(0, 0).
Proof: Let c1 be a chain inh1 − h2, i.e., in the future light cone of(0, 0). Then
(0, 0) < c1, and(0, 0) is maximal inh1 ∩ h2. Alternatively, letc2 be a chain in
h2 − h1. Again(0, 0) < c2, since(0, 0) < (∗, y) for all y > 0. �

We have thus established that〈W,≤〉 is a model of branching space-times, re-
specting the Postulates (cf. Belnap 2002). We now prove that〈W,≤〉 violates
Postulate 4.

Fact: In W , there are two initial chainsI, J that have different suprema inh1, but
the same supremum inh2.
Proof: Let I = {(1, 1− 1/n) | n ∈ N}, J = {(−1, 1− 1/n) | n ∈ N}, as shown
in Figure 3. These chains are inh1∩h2, and they are bounded — e.g., by(1, 1) and
(−1, 1), resp., which are their suprema inh1. In h2, however,suph2

(I) = (∗, 1) =
suph2

(J). — Along the same lines, one can construct suprema that are space-like
related inh1, but comparable inh2 (e.g., setI ′ = {(2, 2− 1/n) | n ∈ N}). �

B Branching space-times with space-time points

If we have available a notion of “the same spacetime point” in a model of branching
space-times, then Postulate 4 holds. We define the notion of “same space-time
point” as follows:

Definition 21 (Branching space-times with spacetime points)A triple 〈W,≤, S〉
is a model ofbranching space-times with spacetime points (BST+S)iff 〈W,≤〉 is
a model of branching space-times andS is an equivalence relation onW such that

1. For each historyh in W and for each equivalence class[s], s ∈ W , the
intersectionh ∩ [s] contains exactly one element.
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2. S respects the ordering, i.e., for[s], [s′] equivalence classes andh1, h2 his-
tories,[s]∩h1 = [s′]∩h1 iff [s]∩h2 = [s′]∩h2, and the same for “<” and
for “ >”.

In BST+S we can prove that history-relative suprema of initial chains, guaranteed
to exist by BST, are at the same location.

Lemma 9 Let〈W,≤, S〉 be a model of BST+S, letI be an upper bounded chain in
W , and leth1, h2 be two histories withI ⊆ h1 ∩h2. ThenS(suph1

(I), suph2
(I)).

Proof: Lets1 = suph1
(I), and lets2 = [s1] ∩ h2 be the spacetime point inh2 that

is at the same position ass1 according toS. We need to prove thats2 = suph2
(I).

First,s2 is an upper bound forI: Takee ∈ I. Sincee ≤ s1 andS preserves order
ande ∈ h1 ∩ h2, we havee < s2. It remains to prove thats2 is the smallest upper
bound forI in h2. Assume otherwise. Then there has to bes′2 ∈ h2, s′2 < s2,
ands′2 an upper bound forI. By the argument just given,s′1 = [s′2] ∩ h1 is an
upper bound forI in h1, and from order preservation,s′1 < s1. This contradicts
the assumption thats1 is the supremum (least upper bound) ofI in h1. Thus,
s2 = suph2

(I): the supremum ofI is at the same spacetime point across histories.
�

As a corollary, we get that a model of BST+S satisfies Postulate 4.

Corollary 1 In a model of BST+S, Postulate 4 is satisfied

Proof: LetI, J be two initial chains, and leth1, h2 be two histories two which both
I andJ belong. Then by Lemma 9, the history-relative suprema will be at the same
spacetime points, and the claim follows by order preservation ofS. �

With the model of Appendix A we have established the following:

Fact: Not every model of BST can be extended to a model of BST+S.
Proof: By the model from Appendix A and by corollary 1, using contraposition.�
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