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Abstract

We provide a formally rigorous framework for integrating singular causa-
tion, as understood by Nuel Belnap’s theorycafisae causanteand objec-
tive single case probabilities. The central notion is that of a causal probability
space whose sample space consists of causal alternatives. Such a probability
space is generally not isomorphic to a product space. We give a causally mo-
tivated statement of the Markov condition and an analysis of the concept of
screening-off.

1 Causal dependencies and probabilities

Probability theory describes the likelihood of outcomes of chance set-ups. In this
paper, we will assume that the framework of probability theory applies to single,
concrete chance set-ups such as a single coin toss at a specific place and time.
This assumption appears to be uncontroversial in view of the fact that probability
theory is actually successfully applied. Since we are after a metaphysical picture
combining causation and probabilities, we will assume that both causal relations
and single case probabilities are objective. The aim of this paper may be described
as trying to make sense of that assumption by showing how it might be true.

Probability theory by itself has nothing to say about causation. However, ques-
tions of probabilities and questions of causation are obviously related. E.g., one
may ask whether probabilities can be a guide to discovering causal relations. The
literature on this question is large. When moved from an epistemic to a metaphys-
ical level, the question gets a different reading: What are the objective influences
of objectively existing causal relations on objectively existing probabilities? If a
concrete situation involves more than one chance set-up, the causal interrelation of
the set-ups may impose constraints on the probabilistic structure of the situation.
E.g., if depending on the outcome of one chance set-up, another one is enabled or
not, that causal structure should be mirrored in the probabilistic structure.



In this paper, we will provide a rigorous framework for bringing together cau-
sation and probabilities. The paper is based on an existing theory of causation —
Nuel Belnap’s theory otausae causantg8elnap, 2003b), the background for
which isbranching space-time@elnap, 1992). In this paper, we presuppose the
notation of Belnap (2003b), which should be consulted. A very readable intro-
duction to the problem of bringing together causation and probabilities is given in
Weiner and Belnap (2004), which should also be consulted. The present paper may
be read as a sequel to that paper, developing its ideas in more formaftdetail.

1.1 Background: Causation in branching space-times

Branching space-times is a rigorous framework for combining relativistic space-
times with indeterminism. The basic building blocks of branching space-times are
a setlV of concrete point events and a partial ordedefined ori?’; the companion
strict order is written <”. Historiesh are maximal directed sets, i.e., maximal such
that for anyey, es € h there ises € h with e; < ez andes < e3. Pointsey, eg

that are incomparable (neither < e; norey < e1) can still be elements of the
same history, viz., if they have a common upper bound. In that case, we, call
ande, space-like relatedand we writee; SLRes. — Branching occurs at single
indeterministic points. Thus, any two historiks, hs to which an indeterministic
point e belongs are either divided at(h; L. h2) or undivided ate (h; =, hs),

the latter being an equivalence relation. The set of histories containgwgritten

H.y. H(.) is partitioned by=,; we writeIl, for the set of partitions ant. (h) for

the unique element dfl, containingh (presupposing € h). Thus,II.(h) is the

set of histories containingthat are undivided fromk ate. An initial I is a set of
point events that are part of one history. We witfg, for the set of histories of
which I is a part;H|;) # (). Itis often adequate to think dfas an upper bounded
initial chain, andI = {e} is an important special case. (A chain is a set of pairwise
comparable point events.) Tlpgimary propositional outcomesf an initial I are

the elements of the partitiori; induced by undividedness at whereh =; 1/ iff

h =, h' for all e € I. An outcome even® is a set of (lower bounded) outcome
chains, all of which begin in one history. We writ€,, for the set of histories in
which O begins to occur (even though it does not have to occur as a whole); by
definition, H oy # 0.

Most of this paper was written while | was a guest of Nuel Belnap’s at the University of Pitts-
burgh. | thank him both for his hospitality and for many helpful discussions. Furthermore, | have
greatly benefitted from his numerous comments on previous versions of the paper, including the sug-
gestion to “try the contrapositive” on a previous proof of Lemma 2. | also thank Tomasz Placek for
many stimulating discussions and for specific comments. Nuel Belnap, Tomasz Placek and Matthew
Weiner have kindly shared their results prior to publication. Support by the Deutsche Forschungsge-
meinschatt is also gratefully acknowledged.



Subscribing to the rather uncontroversial assumption that causation is a two-
place relation between cause and effect, the following two questions are crucial for
any theory of causation:

1. What is caused? Which entities &ffect®
2. What causes? Which entities amuse8

As is well known, there are numerous different answers to these questions. One
main divide is between singular and generic causes and effects. Obviously, both
notions are important — consider “he broke the vase” vs. “smoking causes cancer”.
It seems both ontologically most promising and most in line with our framework
to address questions of singular causation first. Thus we look for singular, concrete
causes and effects. What sorts of entities are these? A good intuition seems to be
that causation involves change, but it is notoriously difficult to say what a change
is. The notion of aransition, introduced by von Wright (1963), is a liberalized
notion of change: A transition is “something and then something”; not necessarily
“...something else”. Following von Wright, in causation in branching space-times
the crucial causal notion is therefore that dfansition Technically, a transition,
written I — O, is just an ordered pair of sefsandO of point events, wheré is
an initial event and is an outcome event located aftefi.e., for alle; € I and
forall ep € O we havee; < ep).

The answer to question (1) above, from the point of view of causation in
branching space-times, is accordingly:

1. Transitionsare caused.

In sharp contrast to other theories of causation, causation in branching space-times
assumes that non-trivial causation depends on indeterminism. A trankitior®)
whose outcom& is bound to occur, given thdtoccurs, hasio causes It does
not need any, since it happens anyway. Causes are thus understragireing
causescausae causantgsvhich seems to capture our actual usage of the category
of causation much more nicely than other accounts.

What are the causes? Causation in branching space-times gives the following
answer to question (2) above:

2. Causes are sets of (especially simple) transitions.

Thus, a transition is caused by (possibly a huge number of) transitions. The transi-
tions that figure as causes are of an especially simple sort: they are from a single
pointe as initial (apast cause-like locusf the caused transition) to one &$ pri-

mary outcomesl.(h). Given an outcome evenl of e, e < O, the set of histories



I1.(O) is the uniquely determined member of the partitibnof H . in whichO is
kept possible, i.e., for whichl.(O) N H oy # @. In fact, we haved oy C 11.(O).
The corresponding transitions, written= e; — H;, H; € Il.,, are calledbasic
transitions It turns out, as it should, that basic transitions are their own causes.
Thus, they may figure as irreducibly indeterministic building blocks of our inde-
terministic world. In the theory that will be developed in this paper, they will also
form the building blocks for the construction of probability spaces, thus providing
a close link between causation and probabilities.

Having mentioned the concepts, we now give the formal definitions of “past
cause-like locus” and “causa causans” (cf. Belnap 2003b) for later reference.

Definition 1 (Past cause-like loci)Let I — O be a transition. Then the set of
past cause-like lodor that transition,pcl(I — O), is defined to be

pcl([>—>0) = {66 %4 ‘ e < O/\EVLEH[I]}LJ_E H(O)}

Thus, a point event is a past cause-like locus fdr — O if (i) e < O, i.e.,e

is a lower bound for the outcom®@, and (ii) there is a history: in which the ini-

tial I finishes that is separated afrom all histories in whichO begins to occur.
Past cause-like loci make a difference as to the occurren€e dhey are there-
fore necessarily indeterministic points, i.e., points with more than one immediate
outcome.

Definition 2 (Causae causantes) et / — O be a transition. Then the set of
causae causantéy that transition,cc(I — O), is defined to be

ce(l — 0) :={e— 11 (0) | e € pcl(I — O)}.

A causa causan®r a transition/ — O is thus a transition from a past cause-like
locuse to that unique immediate outconik (O) of e that keepsD possible right
aftere.

1.2 What are probabilities defined for?

Intuitively, probabilities are probabilities of outcomes of chance set-ups. Causation
in branching space-times offers the notion of an indeterministic transition to stand
for “chance set-up”. Iff — O can occur, buD does not have to occur given

then it willin many cases be sensible to &skv probableahe transition/ — O was
compared to the alternatives. Thus, probabilities are probabilities of transitions. (In
the causally trivial case of a deterministic transition, the probability will be trivially
equal to one.) We will bind the notion of probabilities fully to the notiorcatisae



causantesSince the framework has room for indeterminism, it should be possible
to grade that indeterminism numerically at least in some cases.

We will reduce all considerations of probabilities of transitions to considera-
tions of probabilities of combinations of basic transitions. This will be done by in
some way identifying a transition with its set chusae causantesiVe call two
transitionscausally equivalenf/ — O = S O’) iff they have the sameausae
causantes

Definition 3 (Causal equivalence of transitions)
I—O=I—0 iff cc(I—0)=ce(I' — 0.

The relation= is an equivalence relation, and an equivalence class may be speci-
fied via the set of causae causantes of one of its members. In what follows, we will
therefore not talk about transitions in general, but about sets of basic trangitions.
The main work that is to be done is to find out how basic transitions combine and
which probabilities should be assigned to such combinations.

Thus, the next section introduces some facts about basic transitions, and the
section after that is concerned with probabilities.

2 Basic transitions

2.1 Basics of basic transitions

Basic transitions are transitions from a point event (ini#afo one ofe;'s imme-
diate outcomesg?; € II.,; we write

t; = e; >_>Hz"

The differentH; € Il partition H ., the set of all histories containing.

Pointse; for which II .,y has only one member are calledial; at such points,
no splitting occurs. A transitiom; — H.,) with a trivial initial is also called
trivial. We will mostly be interested imon-trivial, or indeterministi¢ points and

2It seems to be rather uncontroversial that probabilities are numerically graded modalities; cf.
e.g., Popper (1982, 70) and van Fraassen (1980, 198). Once possibilities are there, probabilities are
(well, almost) for free.

3This does not mean that all that is important about a transition is its sEtusiae causantes
E.g., epistemically the spatiotemporal locationfladndO may play a huge role, and there are also
important differences between a basic transition and a non-basic transition that is causally equivalent
to it. All we claim in this paper is that on the ontological level, all thgbtigbabilisticallyimportant
about a transition is in itsausae causantetaken together.



transitions. A cause-like locus is always indeterministic by definition, so sets of
causae causantemnsist of non-trivial basic transitions.

We call two basic transitions; = e; — H; andty = e — Hs initial-
equivalentif their initials are the sames{ = e5); in this case, we write; = to.
This is an equivalence relation, and the equivalence class [0f], is the set of all
basic transitions with initia¢;. Since|t;] is completely specified by the initial,
we also write the equivalence classeses*

[ti} = [61] = {ei — H ’ H e Hei}-

We call an initiale; finitely splittingiff [e;] is finite. — On the set of basic transi-
tions, we can define a partial ordering relation as follows:

t; < tj iff e < €; andH(ej) - Hi.5

Thus, the transition; is abovel; (t; < t;) if t; can occur in the outcom#; of ¢;.
For this itisnotenough that; < e;: Since ate;, histories splite; must also occur
in the outcomeH; of e;.
The ordering of transitions sheds some light on when two transitions are com-
patible. This will now be spelled out in terms of consistent sets of transitions.

2.2 Set of basic transitions

Sets of basic transitions will be the basic building blocks for the probability spaces
to be defined later on: they will constitute the elements of the sample space. Not
all sets of basic transitions will do, however. Some sets are such that they cannot
occur in one history — they are causally impossible. The most useful sets of ba-
sic transitions are the consistent ones, where consistency is something like causal
possibility.

2.2.1 Consistency of sets of basic transitions
The notion of consistency is defined as follows:

Definition 4 (Consistent set of basic transitions)A setT” = {¢1, ts, ...} of basic
transitions ¢; = e; ~— H;) is consistentff all the outcomes have a history in

“This notion of initial-equivalence of basic transitions is to be distinguished from the notion of
causal equivalence of transitions employed above. Note also tHaf oprobabilities can be easily
defined, since we can introduce a natural set-theoretic Boolean algebra structige drhis will
be our starting point later on.

°Note that givere; < e;, if He,) N H; # 0, thenH .,y C H; by transitivity of=.,.



common, i.e., iff,er H; # (. (The empty sdtis considered consistent, since the
intersection of an empty set of histories, -y H;, is by definition taken to be the
set$) of all histories.)

By this definition, any subset of a consistent set of basic transitions is consistent.
A good thing to note is that the set of basic transitions that we identified with a
general transitiod — O is consistent in the sense just defined.

Lemma 1 For any transition/ — O, the set of itTausae causantesconsistent.

Proof: Letl — O be given, and leT’ = cc(I — O). By definition, anye; —
H; = t; € T satisfiese; < O andH; = II,,)(O), so thatH oy C H;. Thus,
H(O) C NgerH;. As H(O> # (), T is consistent. O

Before we can move on, we need to state, and assume, an important postulate and
a convenient limitation.

2.2.2 Limitations: Finiteness and exclusion of modal funny business

The theory to be developed here will be limited in two ways. The first limitation
is for convenience’s sake and will have to be removed in a further development of
the theory: We will assume that all setsadusae causantesnd all probability
structures that we are going to deal with are finite. This is by no means a “natural”
limitation, i.e., we do not assume that there are any deep ontological reasons for
this limitation. It is just that sticking to the finite case will allow us to focus on
the problem of combining causality and probability without having to cope with
problems of infinite probability structures all alofg.

The second limitation is fundamental. In the general theory of branching space-
times, there may occur a phenomenon that Nuel Belnhap has aptly called “modal
funny business”: roughly, some combinatorially possible histories may be absent.
Since we rely on smooth combinatorics, we will have to exclude models involving
modal funny business from our considerations. This seems not to be much of a
constraint, however, since a modally “funny” model may be mimicked probabilis-
tically by a model in which the combinatorics are smooth, and formerly missing
histories are excluded via probability zero.

Belnap (2003a) proves the equivalence of four different notions of modal funny
business. For our purposes, it is best to use the following notion:

Definition 5 (Modal funny business) In a model of branching space-times, there
is primary space-like related modal funny busindsghere are two initial events

6Cf. note 8 below for some comments on infinite structures.
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Figure 1: Effects of modal funny business.

(nonempty sets of point events that are part of one histgry} such that; SLRI»
(Ve1 € 11Vea € lye; SLReg), but one primary outcomély, (ki) of I, has an
empty intersection with one primary outcottig, (ho) of 15.”

Figure 1 illustrates what may happen if there is modal funny business. The three
depicted histories are all the histories there are in the model. Consider first the
eventse,, e, ande, that occur in all three histories. Each of these is an indeter-
ministic point event with two outcomes, which are labeled and ‘—'. There is
modal funny business according to Definition 5 — e.qg.lfoe= {e,}, 2 = {es},

the intersection of the-*’ outcomes is empty; among the three histories, none con-
tains bothe, — — ande;, — —. In the depicted case, there are also three pairwise
space-like related points, e, andes which are nonetheless not all contained in
one single history: Each pair, e.g., €2, is incomparable, and there is a history,
e.g., h1, containing both points, witnessing the space-like relatedness. But con-
trary to what one might assume, none of the three histories of the model contains
all three points:4, e2, andes. In the absence of modal funny business, such a sit-
uation is ruled out: Given no modal funny business according to Definition 5, for
any finite set of pairwise SLR points there is a history containing the whole set, and
any set of transitions with pairwise SLR initials has a nonempty common outcome.

Lemma 2 If there is no modal funny business according to Definition 5, the fol-
lowing holds: (a) LetE' = {ey,...,e,} be such that foe;,e; € E, if e; # e,
thene; SLRe;. ThenH g # 0, i.e., there is a history containing all the points in
E. (b) Furthermore, letl’ = {t¢;,...,t,} be a set of transitiong( = e; — H;)
such that the set of initial® = {e; | ¢; € T'} fulfills the conditions of (a) and such
that no two transitions froni" have the same initial. ThéeF is consistent, i.e., the
transitions in7" have a common outcomey, e H; # 0.

In the infinite case, this definition will have to be altered; cf. note 8 below for some indications
of what needs to be changed.



Proof: We prove only (b), from which one may obtain (a) as follows: if aklis
given, select arbitrary outcomés; € 11, for eache; € E. If thenn,crH; # 0,

we haveH g # () sinceH; C H . — So assume that the premises of (b) hold,
but thatn,,crH; = (0. LetT’ C T be a subset df’ that is maximal with respect

to Ny,errH; # 0. Now lett; € T —T". SetE’ = {e; | t; € T'}. By assumption,

the elements oF are pairwise SLR, so the sefs = E’, I, = {e;} are initials,

and the sets\,, v H; and H; are primary outcomes, fulfilling the requirement of
Definition 5. Now since there is no modal funny business by assumption, that
Definition impliesn, e H; N H; # (), contradicting the maximality &f”. O

In what follows, we will assume that there is no modal funny business:

Postulate 1 (No modal funny business)rhere is no modal funny business accord-
ing to Definition 5.

2.2.3 Characterization of consistency in the absence of modal funny business

Given finite structures and no modal funny business, the notion of consistency of a
set of basic transitions can be expressed in different ways:

Lemma3 LetT = {t1,...,tn}, t; = e; — H;. The following conditions are
equivalent:

1. T is consistent.

2. There is a history to which all the belong (;,crH ., # 0)). Furthermore,
(a) ife; = €j, thenH; = Hj, and (b) ife; < €j, thenH(ej) C H,.

3. Foranyt;,t; € T, exactly one of the following holds:

(@) e; =ejandH; = H; (i.e.,t; = t;) or
(b) t; < tjor
(c) tj <t;or
(d) e; SLRe;.

Proof: 1 = 2: Forallt;, H; C H(.,), andny,erH; # () by (1). So there is a history
to which all thee; belong. Ife; = ¢;, thenH; N H; # 0 iff H; = H; (the family
of outcomes ot; is a partition ofH,)). If ¢; < e;, thenH(ej) N H; = () would
imply H; N H; = 0 (sinceH; C H.,), meaning thal” would be inconsistent.

2 = 3: AssumeT violates (3), i.e., there arg,t; € T such that none of
(3a)—(3d) applies. This is possible in four ways: €a)= e;, but H; # H; — this



violates (2); (b)e; < ej, butH;y N H; = () — again violating (2); (c) foe; < e;
symmetrical to (b); (d}; £ e; ande; £ e; and note; SLRe; — this means that
there is no history to which boty ande; belong, again violating (2).

3= 1. LetT' := {t;, € T | -3t; € Tt; < t;} be the set of maximal
elements off". It will be sufficient to establish that,, . H; # 0, since ift; < t;,
H; C H;. Now fort;,t; € TV, if t; # t;, then we havey; SLRej: e; = e; is
ruled out by (3a), and; < t; ort; < t; is impossible sincd” is the set of the
maximal elements. Thus we have a set of pairwise space-like related points with
outcomesH; specified, and by Lemma 2 (b), there is a history in the intersection
of all outcomes. O

The following Lemma characterizes the special status of the maximal elements:
their outcomes may be changed at will without violating consistency.

Lemma4 If T = {t1,...,t,} is consistent andy € [t;], to # t;, thenT’ =
(T — {t:}) U {to} is consistent ift; is maximal in7".

Proof: “<": If ¢; is maximal, then the set with substituted is also consistent by
Lemma 3 (2).

“=" Let t; not be maximal iril’, i.e., there ig; € T's.t.t; < t;,i.e.,e; < e;
andH(e].)ﬂHZ-_ # 0. Sinc_eHel. i§ a parti_tion otZ_LI(ei), H;NHo=(.BylLemma3
(2), the set withty substituted is thus inconsistent. d

3 Causal probability theory

We have now prepared the ground for the introduction of probabilities into the
framework of causation in branching space-times. By the close link between cau-
sation and probability that was assumed at the outset, the objects that figure as
causes — sets of basic transitions — will be the objects on which probabilities will
be defined. In order to have probabilities, we need probability spaces:

Definition 6 (Probability space) A probability spaces a triple (A, F, 1), where
A is a nonempty set (the “sample spacef),is a Booleans-algebra (sometimes
called “event algebra”) of subsets of (with zero elemend = () and unit element
1 = A), andy is a normalized, countably additive measurefon.e., (i) u(1) =1
and (i) if (f;)ier is an at most countable family of disjoint elementspfthen

w(Uier fi) = X icr 1(fi).

As stated above, we will considinite probability structures exclusively. Thus, we
will assume in the following that all probability spaces that we deal with are finite.

10



In a finite probability spacef’ is just the usual set-theoretic algebra of subsets of
A, with the elements ofl playing the role of atoms, or basic alternatives.
The basic questions of this section may be characterized as follows:

Given a transition/ — O, represented by a consistent §ebf basic transitions:
In which probability space can we speak of a “probability i6t? That is:

1. What is the sample spagkthat containg” and its causal alternatives?
2. What is the Boolean-algebraF'?

3. What is the measune which general constraints hold fpf?

4. How do the measures in different probability spaces relate?

We will motivate our answers to these questions through a number of increasingly
complex examples.

3.1 Examples forT

The simplest example is given by a trivial transition: its setafsae causantes
empty. In this case, we have = {(}}, F’ consists of two elements onlyl(and the
empty set), angi(A) = 1. The first non-trivial example is given by a singleton set
of transitions.

311 T={t}

In this caset, is a basic transition with initiat; and outcome/; € II,). The
probability space that needs to be considered is obvious:. The sample space is hat-
urally taken to bét,], i.e., the set of all basic transitions with initial. Our finite-
ness assumption requires thag be finite. This is not guaranteed, and it is cer-
tainly not adequate in all situations, but there exist well-known measure-theoretic
ways of dealing with infinities in this case (cf. note 8 below).

Given finite A = [t1], F is just the set of all subsets ef. The measure is
uniquely characterized by its value on the singleton sets, since any menmbés of
the disjoint union of a finite number of singletons. This is all standard probability
theory, with no hint of causal constraints.

312 T = {tl,tg}, e1 SLR es

The simplest case of a sétwith two elements is the case in which the initials
are space-like separated. (We do not consider the casé thanconsistent at the

11



moment, since that cannot happen Toderived from a given transitioh — O,
cf. Lemmal.)

In the present casd, combines two transitions. For single transitions, we
already know how to construct probability spaces — simply take thétgeb
be the sample space, as outlined above. From the two probability sPaces
(A1, F1,p1) and Py = (Ag, Fy, pu2) we may then form the@roduct spaceP =
(A, F,u), whereA = A; x A, is the Cartesian product of; and A,, i.e., the
set of ordered pairga;, as) with a; € A;, i = 1,2, andF = F} x Fy is the
respective product Boolean algebra. For the meagunge at least require the
so-calledmarginal property

Definition 7 (Marginal property for pairs) A measurg: on the product Boolean
algebraF’ = F) x F, has themarginal propertyff (i) forall f1 € F1, u({(f1,12)) =
pa(f1) and (i) for all fo € Fy, p({11, f2)) = p2(f2).

The marginal property means that if one ignores the outcome of one initial by
considering the certain outcomg= A; (for which ;(1;) = 1), one gets back the
single probability. Requiring that satisfy the marginal property does not fix—
there are many ways open. One specific way is takingtbduct measure . :

px ((f1, f2)) = i (f1) - pa(f2)-

The other way is to allow focorrelationsbetween outcomes @f ande; by using
a different measure.

Here comes a crucial question: Given thatindes are space-like related (and
thus, causally separated), should we require that u? We believe that no,
since quantum-mechanical correlation experiments give strong evidence that there
can be correlations between outcomes of space-like separated events. In order to
remain flexible, our theory should allow both for correlations and for the product
measure.

The product construction described above is standard in probability theory. A dif-
ferent perspective on that construction will prove to be illuminating when it comes
to generalizations. By Lemma 2, any combination of one outcomg ahd one
outcome ofes is consistent: Eackit), t,} with t] € [t1], t, € [t2], is consistent.

We may base our probability space on such sets and define:

A= {{t,ta} | 1] € [ta],t5 € [t2]}.

By the assumption of finitudef” may again be the usual set algebra, and it will
suffice to define the measureon the atoms, i.e., on the elementsAf Since
in this construction, we did not start with “single” probability spaé¢gsand P,

12



we cannot state the marginal property as before. However, we may require some
form of marginal property once two “single” probability spaces with respective
measures; andyus are given in addition:

Definition 8 (Marginal property for sets) Let F' be the Boolean algebra of sets
of transitions as defined above. A measumen F' has themarginal propertyff (i)
forall a; € Ay, u({{a1,a2} | a2 € A2}) = pi({a1}) and (i) for all ag € A,,
n({{ar, a2} | a1 € Ar}) = po({az}).

This is quite similar to Definition 7: Since

p({{ar, a2} [as € Az}) = > p({{ar, a2}}),

as€As

requiring that that sum be equalg@({a, }) again means that by ignoring the out-
come ofe; (by summing over all possibilities), one gets back the “single” measure.
In the present case(SLRes), the two mentioned perspectives are provably
equivalent, since there is an isomorphism between the two mentioned probability
spaces, via
(a1,a2) < {a1,as}.

The important question is which of the two perspectives generalizes. In classical
probability theory, combinations of chance set-ups are adequately described via
product constructions. It turns out, however, that once causal notions enter the
picture, product constructions are no longer adequate. This is shown by the next
example.

313 T = {tl,tg}, t1 < to

Apart from the case; SLRes, which has already been considered, and the case
to < t1, which is symmetrical to the present one, this is the only possible case
of a consistent set of two transitions (cf. Lemma 3 (3)). As in the previous case,
two chance set-ups are combined. The attempt to apply a product construction will
result in an instructive failure.

As in the case foe; SLRes, One may try to start from two probability spaces
(As, Fi, ui) with A; = [t;], ¢« = 1,2. The product spacéA, F u) is definable
as before. However, that probability space is not adequate for the causal situation
assumed. Consider a pdif,, t,) with t; € [t1], t| # ti1, t, € [t2]. That pair
corresponds to a causally impossible “alternativeTtosince by Lemma 4, there
is no history in which both the outcom®; of | and the initiales of ¢}, occur
together. The only reasonable thing to do probabilistically seems to be to require
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thatu((t},t5)) = 0in that case (i.e., in cagé # t1). But then, given the marginal
property, we get

pi(ty) = p((t1, 1)) = > p((ty,th)) =0 for &3 # i,

tIQE[tQ]

and by normalization ofi;, we getu;(¢1) = 1: e; is bound to have outcom#é; .
That is certainly not warranted.

Consider a real life example: Assume thatayou decide at random whether
to go to the races or not (possibly by flipping a fair coil)] = {e; — H{,e1 —
H?}, 1(go) = p1(e; — Hi) = 0.5. If you are at the races{ such thak; < e
andH,, C H{), you either win ¢; — Hj) or you lose ¢, — H3); suppose
pa(Win) = po(ex — Hi) = 0.2. The product space contains the four atoms

(go,win), (go, lose, (stay, win), and (stay, lose.

The latter two are causally impossible: If you do not go to the races, you can neither
win nor lose. By the argument given above, it seems to follow that therefore, you
go with probabilityl. This is absurd.

A way out of this quandary is to use the alternative to the product space con-
struction that was introduced above: Consider only the consistent combinations of
outcomes ok; andes and take as the atoms the maximally consistent sets. Thus,
we take the sample space of alternatives to be

A={{tr,ta} |15 € [l U{{t1} [ t1 € [ta]. 81 # ta}.

Given finiteness, the Boolean algelitfas again the usual set-theoretic algebra, and

1 is uniguely specified by its value on the atoms. Each elemeati®t maximally
detailed description of a consistent outcome involving the initialsnd (possibly)

es, and each element df is a set of such consistent outcometsthen contains
exactly the causal alternativesTa In terms of the races example, we consider
as atomic outcomes only the three (instead of four) maximally consistent sets (not
pairs) of transitions,

{go,win}, {go, lose}, {stay}.
Note that while the sefgo} is consistent, it is not maximally so and is thus not
considered to be an atomic possibility. We may however identify that set with an
element ofF: {go} says the same &5 go, win}, {go, lose}} — if you go, you
either go and win, or you go and lose. A kind of marginal property is thus already
built into our framework, since the probability ¢§o} evaluates as

p({go}) = u({{go,win}, {go,lose}}) = u({{go,win}}) + u({{go lose}})
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by probability theory alone. We will spell this out by defining the notion of a
representative below.

The framework sketched for our example easily generalizes to arbitrary finite
causal probability structures, as will be shown in the following.

3.2 General causal probabilities

We start with a given consistent sgtof transitions, e.g., the set chusae cau-
santef a given transition — O. Since we only consider finite structures in this
paper, we require that (@ be finite and that (i) for each < T, [t;] be finite®

The causal probability spader = (Ar, Fr, ur) that is adequate to describe
causal alternatives tf is constructed as follows:

1. LetT = Uy,er[ti], the set of all alternatives to the elementgof
2. LetAp = {T" | T' C T, T’ maximally consistent

3. Let - be the set-theoretic Boolean algebra axer.

4. The measurgr may be any normalized measure Bp.

5. The sought-for probability space®s = (Ar, Fr, ur).

As one expects, the sétof transitions turns out to be an elementbf sinceT is
consistent and by Lemma 3 (3a), no other elemefift ofin be consistently added

to T. The given construction does not in any way single ‘Butom among the
other elements ofAr. This is as it should be, since a probability space does not
contain a designated element to stand for “the real outcome”. Thus, the probability
spacePr can be constructed once the initials of all transitiong’iare known: it
suffices to start from a given consistent set of point evéhtthe corresponding

81t turns out that while it is rather simple to generalize with respect to requirement (i), using
standard tools of measure theory (e.g., Borel sets), it is much harder to generalize with respect to
(i). In fact, infinite T creates difficulties for both considerations of probabilities and for the notion
of “modal funny business”. With respect to the latter, it turns out that Definition 5 is no longer
adequate for guaranteeing “smooth combinatorics”. In order to exclude combinatorially weird cases,
it seems best to use the step from condition (3) to condition (1) in Lemma 3 as the mark of “no funny
business”. The whole area merits further study. — With respect to probabilitiEgsiinfinite, i.e.,
involves infinitely many initials, then there may be an infinite SLR set of initials, and there may be
an infinite chain of transitions iff". In the first case, the tools of standard probability theory for
infinite product spaces (cylinder sets, zero-one laws) will apply. In the second case, the situation
appears to be more challenging. Still that case is very interesting in view of the fact that, e.g., in
the modal theory of agency, “busy choice sequences” are analyzed whose probabilistic equivalent
exactly requires a probability theory for infinite chains of transitions. That question, too, certainly
merits further study.
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probability space may then be denotBgd = (Ag, F, ug). Since this way of
specifying causal probability structures can be generalized most easily, we will
mainly be talking about probability spa¢g; with a given setF of initials. — It

is even possible to build probability spaces from giweconsistentsets of point
events; we will consider this generalization below.

In standard probability theory, it is customary to require that different measures in
different probability spaces respect the marginal property, which was formulated
for pairs as Definition 7 above. Since causal probability structures are not product
spaces, we need some way of expressing the fact that we wish to consider the
probability of “the same thing” in different probability spaces.

3.2.1 Representation in different probability spaces

Reconsider the races example from section 3.1.3. Going was in some sense an
alternative, but it was not a maximally specific alternative and thus, not an element
of Ar. Still there was a place for it iy, viz., as the sef{go, win}, {go, lose} }.

More generally, we may ask: Given a consistent set of basic trans#ioins., an
element of the sample spade; of some causal probability spaé;, and a causal
probability space’s, how is.S represented iPg:? That question may be splitin

two: (i) When isS representable i’z ? (i) In caseS is representable, what is the
representative? The answer to the first question is straightforward:

Definition 9 (Representability of S in Pg/) A consistent sef € Ap of basic
transitions isrepresentable i iff £ C E'.

When S is representable, we have seen that we should not expect ¢/, since
Ap: contains maximally consistent sets relativéfoonly, andS may not be max-
imal. Nor will we haveS € Fg:, sinceF: is a set of (maximally consistent) sets
of transitions. However, the following definition captures the required notion:

Definition 10 (Representative ofS in Pg:) Therepresentative of in Pg/, Sgr,
is defined to be the set of all maximally consistent sets extersding

Sgr = {T/ € Ap ‘ S C T’}.

Thus we haveSy € Fgr. In order to visualize what is going on, it may be good to
divide the definition into two steps, one downward and one upward, as follows:

1. 8=85U{e — I (e) | e — H minimalinS, e’ <e,e € E'}
In words: S” is derived fromS by “downward closure irE’”, i.e., by adding
all transitions belows that are consistent witd and that have initials if’.
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2. Spr = {T/ € Ap ‘ S’ - T/}
In words: the representative Sfin Py is the set of all maximally consistent
sets extending’. SinceS’ is downward closed i’, this step will only add
elements on top aof.

The concept of a representative allows us to state, and prove, that the probability of
a set of transitions is always smaller than or equal to the probability of its subsets:

Lemma’ Let S be representable iPg/, and letS” C S. Thenug/(Sg/) <
pe (Sp)-

Proof: AsS’ C S, S’ is representable if?z as well. From the definition af 5,
one reads of6z C S%,. The claim then follows from the additivity gfz,. O

Representing elements of the event algebraSo far, we have only considered the
representation of consistent sets of transitions, i.e., elements of the sample space
of some probability space. More generally, we may be interested in defining a
representative for a set of consistent sets of transitions, e.g., an element of the
event algebra of some probability space. The respective definitions are natural
generalizations of the two definitions from above:

Definition 11 (Representability) A setf € Fg of sets of basic transitions rep-
resentable iPg iff E C E'.

Thus, f is representable iRg, iff each S € f is representable g .

Definition 12 (Representative off in Pg/) Therepresentative of in Pg/, fg/,
is defined to be the set of all representatives of elemernts of

fer ={Se | Sef}

3.2.2 Adapting the marginal property

As in standard probability theory, we want to say that the probability of “some-
thing” is the same in all probability spaces representing the something. Taking the
“something” to be a consistent set of basic transitions, one might think that we
would like to have the following alternative marginal property:

(BAD-MP) If S € Ag is representable iR, thenug(S) = pp (Sgr)-

In standard probability theory, this is a good way to describe the marginal property.
In our framework, it will not do. Conside$ = {e¢; — H;} andE = {e;}, E' =
{eo, e1} with ey < e;. In this situation, the probability of = {{e; — H;}} will

17



normally be greater than the probability 8 = {{ep — Il.,{e1),e1 — Hi}},

since inPg, first eg has to have the right outcome and thgnhas to have the
right outcome, whereas iz, only e; has to have the right outcome. Standard
probability theory with the product construction does not leave room for picturing
more than one “layer” of initials, but the framework that is presented here does. In
order to arrive at a correct formulation of the marginal property, we need to require
that Pg be anextensiorof Pr, which notion is defined as follows:

Definition 13 (Extension) A causal probability spac#y is anextensionof Py
iff () £ C £’ and (ii) thereis ne’ € £’ — E ande € F such that’ < e.

In other words Pz is an extension ofz iff £’ is a superset off and all the new
elements of” are maximal with respect t&. If P/ extendsPg, the problematic
situation described above cannot occur. Thus, the following is an adequate formu-
lation of the marginal property for sets of basic transitions in our causal framework:

(MP) If S € Ag is representable i’g and if Py extendsPg, thenug(S) =
e (Spr)-

We postulate that the marginal property should hold in Our world:
Postulate 2 The marginal property (MP) holds for all probability assignments.

Postulate 2 is already sufficient to ensure that an analogue of (MP) holds for ele-
ments of event algebras as well. We state this result as a Lemma:

Lemma6 Let f € Fg, and let Pg; extendPg. Given (MP), it follows that
pe(f) = pe (fer).
Proof:

pe(f) =Y ne(S) =Y pe(Se) = pe({Se | S € f}) = pe(fe)-

Sef Sef

3.2.3 Markov property

The motivation for the marginal property was purstyucturat “the same thing”

has to have the same probability, however represented. The causal structure only
entered in spelling out what “representing the same thing” might mean. We now
consider a property of probability spaces that icafisalorigin and that accord-

ingly does not have a direct counterpart in standard probability theory. We rely on
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the intuition that the probability of a transition is something like the probability of
the outcome, given the initial. We will suggest that in some specific cases, this may
be read as a conditional probability.

We first introduce the notion dayering

Definition 14 LetT be consistent. We say thatis layerediff there is a proper
subsefl” of T' such that for allt’ € 7" and forallt € T'— 7", t < . In this case,
we say thafl” forms an upper layer df .

Figure 2: A: not layered; B and C: layered

Not all T' are layered; consider Figure 2A, whetg < e3, but e; SLRey; and
e1 SLRes. If T is layered, as in Figure 2B and C, an upper layer may be uniquely
determined, as in (B), or it may not be unique, as in (C).

Transitions in an upper layer of layer&dall are located above all the other
transitions. Thus there can be no causal influence from the transitidhs-if”
on one of the outcomes @t that was not already present wh€hoccurs. Given
thatT” occurs, the occurrence @f — 7" has been accounted for completely. This
observation motivates the following postulate:

Postulate 3 (Markov property) LetT = R U S be consistent and layered, and
let R be an upper layer df". Then all measureg on Pr satisfy

pr(T) = pr(R) - ps(S).
In caseus(S) # 0, this may be phrased in terms of conditional probabilities:

pr(R) = pr(T' | S) = pr({T} N S7)/pr(St) = pr(T)/ ps (),

where we have employefl € Sr (sinceS C T) andus(S) = ur(Sr) (by the
marginal property).
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Note that we are here dealing with antologically motivatedarkov condi-
tion that applies to single cases. In connection with graphical models and Bayesian
Networks, one assumes a so-called “causal Markov condition” that applies to “vari-
ables”. We will give some brief remarks on the interrelation between the frame-
work presented here and the framework of Bayesian Networks at the end of sec-
tion 3.2.6 below.

3.2.4 Causal probability spaces from inconsistent initials

Technically, it is unproblematic to extend the probability space construction de-
scribed at the beginning of section 3.2 to anyBatf initials:

Form the sefl” = U.cg|e].

Use the set of all maximally consistent subset$'afs sample spacér.

Form the event algebrBg; in the finite case that is assumed here for sim-
plicity, use the set-theoretic algebra of subsetd pf

Define some suitable measurg on F.

Set the probability spacBg to be(Ag, Fg, ug).

For this construction to be well-defined it ot necessary thakl be consistent.
E.g., in the case oF = {ej,e2} with incompatiblee; and ez, assuming two
outcomest, —; and+-, —s for simplicity, Ag contains only singletons:

Ap = {{e1 — +1},{e1 — =1}, {ea — +2}, {ea — —2}}.

The crucial question is: under which circumstances can we give a coherent causal
reading to the spacBg? The guiding idea in constructing probability spaces was
that A should describe alternatives. In the example, this reading appears ques-
tionable: in which sense might the occurrencezpf— +; be an alternative to
the occurrence of, — +2? A minimal sense of “alternative” might be defended:
They cannobothoccur, so they are alternatives. But by looking for a causal read-
ing of probability spaces, we also wantausalsense of “alternative”, and that
sense is not forthcoming in the example: No connection between the alternatives
is present. Things would be different # contained a third elememrtsuch that
e < e1, e < eg, for then,e would provide the sought-for causal link, shared by all
alternatives.

In the general case, we want to say tHatis a set of causal alternatives if there
is such a causal link in the form of initials that are shared by all the alternatives.
SinceAg consists of maximally consistent sets of transitions, the mininfawfll
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be common initials of all alternatives ity exactly if they are consistent. We thus
give the following definition of when a probability space is causally interpretable
as a space of alternativés:

Definition 15 (Causal probability space) Let E be a finite set of finitely splitting
point events. The probability spadeg;, defined as above, is@usal probability
spacdff the minimal elements df are consistent.

Given a causal probability spadez, it will do no harm to add proper maxima

to £ — the resulting probability space will again be causal, since its minimal
elements stay the same. We call the procedure of adding proper maxima “fine
graining”. For the idea, refer back to the races example from section 3.1.3. There,
E = {e1, ez}, and there was one minimal initiad; (deciding what to do), with
outcomes go/stay. In the outcome “go”, there was a second iritighetting), with
outcomes win/lose. By our definition, the corresponding probability spaces
causal. That feature will be preserved if we give a more fine-grained description
of the “stay” outcome oé, by adding a new initiaés in the “stay” outcome above

e1. E.g.,es might have outcomes read/cook. Wil = {e1, e, e3}, Pgr clearly
describes causal alternatives: you either stay and read, or you stay and cook, or
you go and win, or you go and lose. Given one alternative, you can tell a causal
story of how another alternative might have occurred. Note fhatcannot be
derived from any consistent set of transitions directly, but only via fine graining.
Our formal definition runs as follows:

Definition 16 (Fine graining) Let £ and E’ be finite sets of finitely splitting point
events. The probability spad&: is afine-grained versioof Py iff (i) £ C E’,
(i) forall ¢ € E' — FE there ise € FE such thate < ¢/, and (iii) for all S € Apg,
the measure is preservedy (S) = pgp/ (Sgr).

Thus, fine graining means adding new initials that are not new minima, while pre-
serving the measure as far as possible. We can now formulate a Lemma that con-
nects the notion of a causal probability space with the notion of fine graining.

Lemma 7 Let F be a set of point events. The following conditions are equivalent:
1. Pg is a causal probability space (i.e., the minimalofire consistent).

2. The minima of are pairwise space-like related.

%The definition is limited to the finite case in view of the general finiteness requirement in this
paper.
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3. Py is afine-grained version of a causal probability spaee whereT is a
consistent set of transitions.

Proof: 1 = 2: Since the set of minima is consistent, there is a hiskorgntaining
them all. Two minimae; andes, e; # eo, cannot be comparable (for then one
would not be minimal), so (as witnessed bythey are space-like related.

2 = 3: Let M be the set of minima of. For eache; € M, select an outcome
H; € 11, and letl’ = {e; — H;}. By Lemma 3 (3d)." is consistent. The®z
is derived by fine graining fronr: (i) M C E and (ii) £ — M contains just the
non-minimal elements of. The measure can be adjusted as necessary.

3 = 1: Let Py be derived fromPr by fine graining, and lei/ be the set of
minima from among the initials df'. By consistency of", M is consistent, and
by the definition of fine graining)/ is also the set of minima df. O

3.2.5 Random variables and correlations

In standard probability theory, mndom variableX is a function defined on the
sample spacd of a probability spacé”. Usually, but not necessarily, the values
of X will be real numbers. E.g., with the sample spatdeing the outcomes

of a roll of a die, X might be equal to one for the odd outcomes and equal to
zero for the even ones. The probability of a valuef the random variableX

is written pr(X = z). For a fair die, in the example case we would thus have
pr(X =1)=1/2.

Random variables may map more than one element of the sample space to the
same value, as in the example. The most fine-grained random variables preserve
the structure of the sample space via an isomorphism, @) = a. For such
random variables, we may identifpy-(X = x) with p(z). This identification is
unproblematic in the finite case considered here. Random variables are required to
give a definition of correlation and (probabilistic) independence:

Definition 17 (Independence and correlations)A family X1, ..., X,, of random
variables defined on a probability spaétis calledindependeniff for any n-tuple
(x1,...,zy) Of respective outcomes,

priXi=om A ANXp=a,) =pr(Xi=21) ... pr( Xy, = xn).

If the family X1, ..., X,, is not independent, it is callecbrrelated Thus, acorre-
lationis of the form

prXi=m A . ANXp =) #pr(Xi=o1) ... pr( Xy, = xn).
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Note that pairwise independence does not guarantee independence. — It is straight-
forward to transfer these notions to causal probability structures: A random vari-
able X is again taken to be a function defined on the sample spac®f a
probability spacePr. Basic random variableare defined on the sample space
Ay generated by a single basic transitios e — H.

As an example, consider rolling a fair die again, as described by a probability
spacePr (E = {e}). The random variablé& will be as defined above. Lé&f be
defined to have the value one for outcotnand value zero otherwise. It turns out
that X andY are correlated, since, e.g.,

pr( X =1AY=1)=0#pr(X=1)-pr(Y =1)=(1/2) - (1/6).

Such trivial correlations must be distinguished from empirically challenging corre-
lations, for which the notion of screening-off is important. Before we move to that
discussion, we give a definition ofdependencandcorrelationsfor causal prob-
ability spaces, which is based on using the most fine-grained random variables:

Definition 18 Let Pr be a finite causal probability spacePy is called (proba-
bilistically) independeniff forany T' = {t¢1,...,t,} € Ag,

pe(T) = [ weto)-

t; €T
Py, is calledcorrelatedff it is not independent.

Thus, we have at our hands two different concepts of correlations: One is about
random variables defined dpg, while the other is abouPg itself. The die exam-

ple already shows that on an uncorrelafégl one can define correlated random
variables. In many empirically important cases, such correlations among random
variables may be explained by uncorrelatgg invoking the notion of (probabilis-

tic) screening-off.

3.2.6 Screening-off

One of the most important links between causality and probability is via the con-

cept of screening-off. Roughly, screening-off means that if there are correlations
among causally unconnected variables, then in the common past of these vari-
ables there is an event that screens off the correlations, i.e., conditional on which
there are no correlations any more. Consider the notorious barometer example: A
falling barometer is correlated with rain, even though neither does the rain cause
the barometer to fall, nor does the falling barometer cause the rain. In this situa-
tion, we can point to a temporally prior common cause of the correlations: Low
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atmospheric pressure causes both the rain and the barometer’s falling; conditional
on low atmospheric pressure, the two variables are uncorrelated.

This story is good as far as it goes, and it captures a methodologically important
point that may drive empirical research: Explain correlations through the common
past!® Since we wish to give a reading of screening-off in the framework of this
paper, we need to be more explicit with respect to a number of key notions:

1. What are the variables that may be correlated?

2. For which correlations do we expect screening-off?
3. Which notion of location for variables is appropriate?
4

. What does the screening-off principle look like? How can the requirement
of causal priority and the concept of conditioning on a common cause be
expressed?

(1) It seems natural to take “variables” to be random variables defined on a causal
probability spacePs. Thus, we will be dealing with correlations in the sense of
Definition 17.

(2) As a famous slogan would have it, correlations cry out for explanation. That
may be so, but certainly not all correlations cry for explanations of the screening-
off variety. That is already obvious from the die example, where the random vari-
ables were just defined so as to yield correlations. Furthermore, any sort of causal
influence of one variable on another will make correlations relatively uninterest-
ing, too. E.g., in the races example from section 3.1.3, going is correlated with
winning, but this is just so because in order to win, one has to go and bet in the
first place. Thus, interesting correlations are among “causally separated” variables,
which must somehow be expressed via the concept of space-like separation, bring-
ing us to the next point.

(3) Random variables do not have locations. Still, for a random varigtdefined

in Pg, some pointg € E may be important for determining the value.f while

others may be unimportant. The maximal element& gflay a special role here,
since the outcomes of the maximal elements determine an element of the sample
space (the domain of) uniquely. LettingEy; be the set of maximal elements of

E, we thus define the sty of value-determining points fak to be

Vy={eeEy |3t cle]3S € Ap (te SAX(S) £ X((S—{t}) Ut}

01N fact, the first overt application of a screening-off principle, by Reichenbach (1956), was in
trying to define the direction of time.
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In words, a maximal pointg of E' is value-determining foX if the outcome ok
can make a difference as to the valueXaf

We may now define when two random variables define@jinare causally
separated

Definition 19 (Causal separation of random variables)The random variablex
andY defined inPg are causally separateiff their respective value-determining
points are either space-like separated or incompatible, i.e., iff

Vex € Vx Vey € Vy (€X SLRey Vex, ey incompatible.

Thus, we will be looking for screening-off for causally separated variables only.
(This excludes both the die case and the races example.)

(4) Let X andY be two causally separated, correlated random variables defined in a
causal probability spackg. If P itself is correlated (according to Definition 18),
then correlations among variables are to be expected anyhow. However, in the
absence of correlations iRz, a screening-off principle holds. We state this as a
Theorem:

Theorem 1 (Screening-off principle)

Let X and Y be two causally separated, correlated random variables defined in a
causal probability space Pg, and let E' = E — E); be the set of non-maximal
elements in E. Then either (i) Pg is correlated or (ii) Pg is uncorrelated, and any
S" € Aps screens off X fromY': For any S’ € Apy, any € ran(X) and any
y eran(Y),

pr(X=a2AY =y|S)=pr(X=2]9) pr(Y =y|9).

Proof: We need to consider (ii) only. For simplicity’s sake we assumelthat

Vy = E), i.e., all maximal points irF’ are relevant fotX or for Y. (Otherwise,
the unnecessary points may be deleted.) We v#ijtes’) for the set{S € Ag |

S C S,X(S) =z}, Sy analogously, and,, for {S € Ag | S’ C S, X(S) =

z ANY(S) = y}. Thus, e.g.5.(S’) pools together all ways of continuing such
as to yield value: for X. Then we have

priX=azAY =y|8) = pup({S € Swy(S)})/up(S)
= > u(S)/pp(S)

S€Spy(S)

= > I mso.

SESLy(S") teS—5"
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The fraction may be replaced by the product in the last step $ipds uncorrelated
and thus, bothuz(S) andug: (S’) factor: e.9.ur(S) = [1,cq kg (t). We now
write T,,(S’) for the set of sets of transitioriB with initials from Vx for which

thereisS € Ap, 8" C S, T C S, with X(S) = z. Thus,T,(S’) pools together
all possible ways for the variabl& to have valuer, given thatS’ occurred. (The
outcomes ot € V4 do not change the value &f.) We thus get

prX =z[95) = ps({S € S%(S)})/np (s
= Y ws(S)/up(S)

S€S,(S")

= > I mwe

S€S,(S") teS—S'

= > Ilmso

TeT:(S") teT

The last step is licensed since fer¢g Vyx, all outcomes ofe will lead to the
same value ofX by definition, so that the sum is over all outcomes ofielding
probability one and thus cancelimgrom the sum.

We finally have

pr(X=x|8) pr(Y=9y|8) =

(z [T ) ( S wene )

TET,(S") teT T/ET,(S") ' €T’
> Y Trw®- I mey) =
TET,(S") T'€T, (S") teT teT’

oI @@ =prX=2rY =y|5).
S€Suy(S") teS—S"
In the last step, we have employed the assumptionithkaand V3~ together make
up the set of maxima af, so that any continuation & in Az has “new” initials
either fromVx or from V. O

Thus, our framework allows to capture in a mathematically precise way a notion
of “prior screening-off” for correlated random variables: If variabEsand Y

are causally separated and the causal probability sBaam whichX andY are
defined is uncorrelated, then the non-maximal element& cbllectively act as
screeners-off. Even though random variables do not have a space-time location,
the Theorem captures the notionmfor screening-off, since the value &f and
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Y is determined by the maximal elementsiof which are causally later than the
screeners-off.

Reichenbach seems to have thought that screening-off was a universal princi-
ple. Our Theorem, however, allows for a failure of screening-off, vizPfitself
is correlated. Correlations iy may in turn have two very different reasons: (i)
It may be thatPg is inadequate to describe the situation at hand, since it contains
correlations where a more careful analysis, extendtag would find none. Pg
may thus be thought of as a “surface model” for the phenomena. In an extended
model (made up from copies & after identifying prior screeners-off), there will
be no correlations. (ii) It may be thdz is the right model, and still there are
correlations.

A universal principle of screening-off will not rule out possibility (i). In fact,
the principle of screening-off, read as a piece of scientific methodology, urges us to
replace situations of type (i) with a more satisfactory, uncorrelated extended model.
However, universal screening-off speaks against possibility (ii). It is an empirical
guestion whether a situation of type (ii) actually occurs. Here, the Bell inequal-
ities together with empirical results of quantum correlation experiments strongly
suggest a positive answer: In nature, there are correlations among causally sepa-
rated variables for which there is no screenertdffn the light of the strangeness
of these correlations, it seems appropriate to call correlatiof ifprobabilistic
funny business”. Thus, we define:

Definition 20 A causal probability spac®&y exhibitsprobabilistic funny business
iff it is correlated according to Definition 18.

A short comment on the theory of Bayesian Networks may be in order. While this
paper is about deducing probabilistic consequences from causal relations, it is often
important to deduce causal relations from statistical data. Since the 1980s, a num-
ber of methods have been developed for elucidating that direction of the problem.
The framework of Bayesian Networks (Pearl, 2000; Jensen, 2001) has been espe-
cially prominent in this respect, and many important applications have been based
on that framework. The present framework may be seen as giving a spatiotempo-
rally and mathematically precise reading of the “causal variables” of the Bayesian
Network theory in terms of random variables defined on causal probability spaces.
It seems plausible to assume that the further development of the present framework

"The Bell inequalities were derived by John Bell after Reichenbach’s death; cf. Bell (1987) for
the original papers dating from 1964 onward. Decisive experiments have been conducted since the
1980s; cf., e.g., Aspect et al. (1982). — A more thorough analysis of the quantum mechanical case
will have to be deferred to a future paper.
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will shed light on fundamental questions in the theory of Bayesian Networks, such
as the question of the status of the “causal Markov condition” assumedthere.

In the following section we will put many of our notions to work.

3.3 Application: Probability of suprema of a chain

As an application of our framework, we consider the following problem:

Let I be an initial chain andup := {sup,(I) | h € H;} the family of its
suprema. This is a kind of chance set-up that Belnap (1992) has called “indeter-
minism without choice”: the transition fromto its suprema is generally indeter-
ministic, but no choice irf determines the outcome. With respect to this set-up,
two questions arise:

1. In which probability space may we describe all the transitibrs p, p €
Sup, as causal alternatives?

2. What will be the sum of the probabilities of all these alternative transitions?
Will our framework yield the expected answer,

> (I —p) =17

pESup

It turns out that we need a further Postulate to deal with this problem. Appendix A
shows that that Postulate, due to Weiner (1997), is not a consequence of the other
Postulates of branching space-times.

Postulate 4 (Weiner) Suprema retain their order across histories:/1and J are
two initial chains andhq, ho two histories both containing bothand J, then (i)
supy, (I) = supy, () iff supy,,(I) = supy, (1), (i) supy, (I) < supy, (J) iff
supy, (I) < supy, (J), and (iii) supy,, (1) > supy,, (J) iff supy,, (1) > supy,, (J).

Given this Postulate, the answer to the two questions is: (1) There is a natural
choice for the sought-for probability space. (2) The probabilities in that space do
sum to one. We formulate this as a Theorem. At present, since the considerations of
probability spaces were limited to the finite case, we will have to assume finiteness
here, too.

12 further interesting link between the two frameworks is given by the problem of applying the
Bayesian Networks approach to single cases; cf. Pearl (2000, chap. 10) on the problem of “the actual
cause”.
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Theorem 2

Let I be an initial chain, and let Sup := {sup,(I) | h € Hy;} be the family of
its suprema. Let CC' = Upegypcc(I — p). Then, assuming that CC is finite and
with finitely splitting initials,

1. Poc is a causal probability space,
2. Acc = {ce(I — p) | p € Sup}, and

3. for any measure picc: on Foe, Y e g boo (L — p) = 1.

Proof: LetI and Sup be given, and letPCL = Upecgyppcl(I — p), CC =
Upesupcc(I — p). We prove the three claims in turn, spending most of our labor
on (2). First we need to prove a Lemma:

Lemma 8 Lete; be minimal inPCL, and letp; € Sup. Thene; < p;.

Proof: Ase; € PCL, there isp; € Sup S.t.e; < p;. Assume that; £ p;. In
that case, it follows from Postulate 4 that no history can containdqathdp; (use
{e;} andI as initials and two histories both containiagand one containing;, the
otherp;). Thus, on the assumption that£ p;, for a historyh; containinge; and a
historyh; containingp;, the prior choice principle gives a splitting poine h;Nh;
s.t.e < ¢;. Butthene < p;, and asp; € hj, hj € Hyp, andh; L. Hy,y by
transitivity of undividedness. Thus,e pcl(I — p;), contradicting the minimality
of e;. O

We now proceed to prove the Theorem.

(1) If PCL has only one minimum, there is nothing to show. Socletinde,,

e1 # e, be minima of PCL. Letp € Sup. By Lemma 8,1 < p andey; < p,

so there is a history containing both. Singeande,, being minima, must be
incomparable, it follows that they are space-like related. The claim then follows
by Lemma 7 (2). d

(2) “C”: For each transitiod — p, p € Sup, cc(I — p) is a maximally consistent
subset olCC'.

Letp € Sup, and letT" = ce(I — p). By Lemma 1,T is consistent, and
T C CC by construction of”’C. We need to show th&t is maximally consistent
inCC. Solett! =¢ — H' € CC —T,andletT” =T U {t'}. Sincet’' € CC,
t' € ce(I — p') for somep’ € Sup, p’ # p, andH’ = I/ (p'). We will show that
T’ is inconsistent.

We first show that on the assumption tHatis consistente’ < p: Assume
that there is no history containing bothandp. Then there must be a splitting
pointe” < €', and as in the proof of Lemma 8, we g&t € pcl(I — p), so
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e’ ~— Tlen(p) € T. But ase” is a splitting point forH .,y and Hyy, Tl (p) N

H .y = 0, so thatT” would be inconsistent. Thus there is a history containing both
¢/ andp, and by Postulate 4’ < p. — Now again as in the proof of Lemma 8,
e’ € pcl(I — p), and thus eithet’ € T, contradicting our assumptigh ¢ T, or

T’ is inconsistent by Lemma 3 (3). O

(2) “2™ Each maximally consistent subset @1 is the set ofcausae causantes
of a transition/ — p, p € Sup. We show (a) each consistent subset’@f
determines a supremum &f (b) each maximally consistent subset@' does
so uniquely, and (c) a maximally consistent subset’6f is in fact equal to the
corresponding set afausae causantes

(a) LetS be a consistent subset@f, let S,,, be the set of transitions maximal
in S (which exists by finiteness). We show that there is a history;jas,, H; that
containsl:

(a.i) Fort; € Sy, all e; are pairwise space-like related (by maximality) and
belong to one history (Lemma 3 (2)).

(a.ii) Also, for eache; there is a point € I s.t. foralle’ € I, if ¢/ > ¢, then

¢/ SLRe;: (a) ¢; is a past cause-like locus for some transitions p, p € Sup. So
e; < p, and there is a historg such thak; and/ belong toh and forh, € H,,
h Le, hy. (B) Foralle € I, e; £ e. Assume otherwise. Thene h (sincel C h).
Selecth, € H,. Sincel < p, e < p, sOe € hy. Bute; < e now givesh =, hy,
contradictingh, € H,. (y) There ise € I such thak; # e. Otherwiseg; is an
upper bound fod, ande; € h, soe; > p’ = sup,(I). But forp € Sup we also
hadp < e;. By Postulate 4 (using and{e; }), this is impossible. SesLRe;. (d)
Fore' € I,if e < €, then alsce’ SLRe; — otherwisee < ¢’ < e;, contradicting
()

(a.iii) Since.S,, is finite, the intersection of the final sections/o€onstructed
in step (a.ii) is nonempty, call i¥'. We have establishe@; | ¢; € S, } SLRI'.

(a.iv) At this point we may use Postulate 1 for the primary outcomes,, H;
of the set{e; | t; € S;,} and for some primary outcome &f, this will give us
a joint outcome and thus a histohycontainingl’ (and thus,/) and contained in
all the outcomedd; of t; € S,,,. — SinceS,, was maximalh € Ny,csH;. SOS
determines the transitioh— supy,(1).

(b) Now let'S be maximally consistent, and |Bt, ho € Ny, esH; with I C hy
andl C hy. Setp; = supy, (I), i = 1,2. We want to show; = p. Assume
p1 # po. (i) By the prior choice principle, sincg, € hy — ho, there is a choice
pointe < p; such thath; 1. hs (i.e., e is maximal inhy N hy). By transitivity
of undividednesshy L. Hy,,). Soe € pel(I — py). (i) The transitiont =
e — Il.(p2) is acausa causanfr ps, sot € CC. Butt ¢ S, sincet rules out
hi (h1 ¢ Il.(p2)), and we hadv, € Ny, cgH;. (ii) Since alsohy € Ny,csH; and
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ho € . (p2), the setS U {t} is consistent. This contradicts the assumption that
is maximally consistent i€'C'.

(c) Let S C CC be maximally consistent, and lpte Sup be the uniquely
determined supremum dffor which H,y N (",.cq Hi # 0. We now show that
S = cc(I — p).

(c)“C" Lett; = e; — H; € S. We havee; < p, and ase; € PCL, we also
havee; € pcl(I — p), and asH; = I, (p), in factt; € cc(I — p).

(c)“2" Lett; =e; — H; € S. ThenS U {t;} must be inconsistent (since
is maximally consistent), and thus it cannot be that therg,is H, N H; (else
that history would witness consistency). But thet cc(1 — p). O

(3) The last part of the proof is simple: Sinde:c = {cc(I — p) | p € Sup}, the
sum in question turns out to be the measure of the unit elefpentequal to one
for any measurgcc. In detail:

Youd—p) = > pecleeI—p)= > poc(T

pESup pESup TeAcc
pcc(UreaceT)
= pcc(lec) = 1

A Preservation of the ordering of suprema

In the proof of Theorem 2 we had to invoke Postulate 4, which says that the order-
ing of history-relative suprema is preserved across histories. Here we will show that
Postulate 4 is not a consequence of the other Postulates of branching space-times.
In the following section we will then show that Postulatés4d consequence of
branching space-times theory augmented by a notion of “same space-time'point”.

We will construct a model with two historied; andhs. Let (R?, <,,) be the
two-dimensional Minkowskian plane, i.e., the set of points in the two-dimensional
real plane with the Minkowskian ordering,

(z,y) <um (&y) iff (z—2/)?<(y—y)*andy <y’

This will be our first history,h;. In order to have branching and thus, a second
history, we add the set

F={(xy) [y >0},

13The formulation of Postulate 4 is due originally to Weiner (1997). He also gave a rather simple
model showing that the Postulate is not a consequence of branching space-times alone (Weiner,
personal communication). The model presented here was derived independently. It emphasizes the
fact that histories in a branching space-times model may be radically non-isomorphic.

31



(1,1

-1LD

I (0,0) J I (0,0) J

h, h,

Figure 3: A branching space-times model violating Postulate 4. See text for detalils.

which is isomorphic to the positive reals. We now define the ordefiriim W =
R? U F to be
(z.y) < (@) it (z,y) <m (@)
(ry) < (xy) iff y <y
((L‘, y) <M

(z,y) < (x,9)  iff (=) or (z,y) <umr (v, ).

Thus, for no(z, y) and(x, y’) do we havex,y’) < (x,y). In this way,F is pasted
into the future light cone abov@, 0). Through the orderingx, y) is in some sense
identified with the two point$—y, y) and(y, y) that are on the border of the future
light cone above0, 0). The resulting model ig$WW, <), pictured in Figure 3. We
need to establish that this is a model of branching space-times. Cléat).
Fact: The ordering is antisymmetric.

Proof: Since this is clear for the ordering & and onF’, we only need to look at
the “mixed” case. But ifx,y) < (x,3), it cannot be thatx, y’) < (x,y), by the
definition of the ordering. d

Fact: The ordering is transitive.

Proof: Selecta,b,c € W such thatu < b, b < c. If all the three points are in
R? or all in F, thena < c follows immediately from transitivity of the respective
orderings. So we only need to check two casesu @& (z,y),b = (2/,y),¢c =
(x,4”). Assume thab < c is due to the fact thatz’, ') < (v, y") (for —y”,
argue analogously). Then< c follows from the transitivity of the Minkowskian
ordering. (i)a = (x,y),b = (x,9),c = (*,4”). Assume thatz,y) < (v',v)
holds. Then sincg’ < v”, in the Minkowskian ordering(y’,v') <u (v”,vy"),
anda < c again follows from the transitivity of the Minkowskian ordering. [
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Fact: Leta = (z,y) > (0,0), b = (,9). Thena andb are incomparable.
Proof: By the definition of the ordering. d

Fact: In (W, <) there are exactly two histories.
Proof: h; = R? is a history, since it is upward directed, and by the previous fact, it
cannot be extended by elementsfafThe set

he = (hi = {(z,y) [ (0,0) <ar (z,9)}) U F

is also upward directed, and cannot be extended by elemefits,af) | (0,0) <as
(x,y)} either. Again by the previous fact, “mixed” cases are excluded. [

Fact: The ordering is dense and has infima and history-relative suprema.
Proof: From the properties of the orderings BA and onF. a

Fact: The prior choice principle holds. There is exactly one splitting pgint)).
Proof: Let ¢; be a chain imhy — ho, i.e., in the future light cone of0,0). Then
(0,0) < ¢1, and(0,0) is maximal inh; N hy. Alternatively, letco be a chain in
ha — hi. Again (0,0) < cg, since(0,0) < (x,y) forall y > 0. O
We have thus established th@¥, <) is a model of branching space-times, re-
specting the Postulates (cf. Belnap 2002). We now prove (fiat<) violates
Postulate 4.

Fact: In W, there are two initial chains, J that have different suprema i, but

the same supremum .

Proof: Let/ = {(1,1—-1/n) | ne N}, J={(-1,1—-1/n) | n € N}, as shown

in Figure 3. These chains arefinN hs, and they are bounded — e.g., fy 1) and
(—1,1), resp., which are their suprema’in. In ko, howeversup,,, (1) = (x,1) =

supy, (/). — Along the same lines, one can construct suprema that are space-like
related inh, but comparable ifs (e.g., setl’ = {(2,2 — 1/n) | n € N}). O

B Branching space-times with space-time points

If we have available a notion of “the same spacetime point” in a model of branching
space-times, then Postulate 4 holds. We define the notion of “same space-time
point” as follows:

Definition 21 (Branching space-times with spacetime pointsA triple (W, <, S)
is a model ofbranching space-times with spacetime points (BSTffS)V, <) is
a model of branching space-times afds an equivalence relation o such that

1. For each historyh in W and for each equivalence clasg, s € W, the
intersection. N [s] contains exactly one element.
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2. S respects the ordering, i.e., fos], [s'] equivalence classes artd, hy his-
tories, [s] N hy = [s'| N Ay iff [s] N Ay = [s'] N he, and the same for£” and
for “

>

In BST+S we can prove that history-relative suprema of initial chains, guaranteed
to exist by BST, are at the same location.

Lemma 9 Let(W, <, S) be amodel of BST+S, Iétbe an upper bounded chain in
W, and lethy, ho be two histories withl C hy N ha. ThenS(supy,, (1), supy, (1)).

Proof: Lets; = supy, (1), and letsy = [s1] N hy be the spacetime point i, that

is at the same position as according td5. We need to prove that = supy,, (I).

First, so is an upper bound fof: Takee € I. Sincee < s; andS preserves order

ande € hi N he, We havee < ss. It remains to prove that, is the smallest upper

bound forI in he. Assume otherwise. Then there has toshec ho, s, < sa,

and s, an upper bound fof. By the argument just givens; = [s}] N Ay is an

upper bound fod in h;, and from order preservatios; < s;. This contradicts

the assumption that; is the supremum (least upper bound)loin h;. Thus,

s3 = supy, (1): the supremum of is at the same spacetime point across histories.
Il

As a corollary, we get that a model of BST+S satisfies Postulate 4.

Corollary 1 In a model of BST+S, Postulate 4 is satisfied

Proof: Letl, J be two initial chains, and lét;, ho be two histories two which both
I andJ belong. Then by Lemma 9, the history-relative suprema will be at the same
spacetime points, and the claim follows by order preservatich of O

With the model of Appendix A we have established the following:

Fact: Not every model of BST can be extended to a model of BST+S.
Proof: By the model from Appendix A and by corollary 1, using contrapositian.
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