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Abstract In this paper, I revisit Frege’s theory of sense and
reference in the constructive setting of the meaning explanations of
type theory, extending and sharpening a program–value analysis of
sense and reference proposed by Martin-Löf building on previous
work of Dummett. I propose a computational identity criterion
for senses and argue that it validates what I see as the most
plausible interpretation of Frege’s equipollence principle for both
sentences and singular terms. Before doing so, I examine Frege’s
implementation of his theory of sense and reference in the logical
framework of Grundgesetze, his doctrine of truth values, and views
on sameness of sense as equipollence of assertions.

1 Introduction

Frege was one of the first to dispute that all mathematical
truths are based on intuition, the cornerstone of the dominant
Kantian philosophy of mathematics, and put forward the thesis
that all arithmetical truths are reducible to logical truths.1
The success of his logicism would eventually depend on the
plausibility of the development of a new system of logic in which

1References to Frege’s works will be cited by name only and indicated
by page or section number in the text. I shall ambiguously refer to the
formal language and formal theory of Grundgesetze by “ideography”, unless
explicitly stated otherwise.
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all the objects and concepts of arithmetic could be defined.
Indeed, that was the original purpose of his Begriffsschrift,
the book which lays down the first systematic treatment of
modern logic, the ideography, and applies the system to the
mathematical theory of sequences. Frege hints at his logicist
program in the preface to his book, announcing that his
investigations will be continued with the logical elucidation
of the concepts of number, magnitude, and so forth in what
he describes as an immediately following publication. Yet,
it would not be until fourteen years later that the promised
book would finally appear in the form of the first volume of
Grundgesetze. Frege himself explains that this long delay was
due to the accommodation of essentially two major changes to
the ideography, a task that ultimately forced him to discard
an almost completed manuscript.2 The first change was the
introduction of value-ranges of functions, new objects that
are intended to generalize the informal notion of extension of
concept that he invokes in §68 of Grundlagen to overcome the
infamous Julius Caesar problem with an explicit definition of
the concept of number. This point has been studied extensively
and it will not concern us here.3 Instead, I would like to focus on
Frege’s theory of sense and reference, the doctrine that singular
terms and complete sentences have a mode of presentation and
denote an object, whose implementation consists in the second
substantial change made to the ideography.

Unfortunately, Frege’s formal account of his distinction
between sense and reference leaves much to be desired, as he
failed to develop his ideography sufficiently in order to capture
his answer to the paradox of identity, namely, the problem of
explaining the apparent difference in cognitive value between
true identity statements of the form a = a and a = b. This will
be the main subject of Section 2, where I shall examine the role
of the theory of sense and reference in the technical development
of Frege’s logicist project and his views on sameness of sense
as equipollence of assertions. In Section 3, I shall shift gears

2Grundgesetze I, ix.
3For a recent survey on the topic see Bentzen (2019).
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and turn to an opposing philosophical position that I take to
possess a more suitable semantic setting for the establishment of
a proper theory of sense and reference, namely, the constructive
conception of mathematics. The idea of reinterpreting Frege’s
traditional semantic distinction in a constructive setting is
certainly not new, as it has been first explored mainly by
Dummett (1978) and Martin-Löf (2001). The latter author has
extended considerably the ideas of the first one by reshaping
them in the context of his type theory, a formal system in
which every term is assigned to a type and every operation
strictly restricted to terms of a certain type.4 But at the
same time several aspects of Martin-Löf’s account strike me
as incomplete or problematic, especially because he does not
seem to make full use of the powerful intended semantics of
type theory, an informal realizability interpretation known as
the meaning explanations (Martin-Löf, 1982). My goal in this
paper is to revise of some of Martin-Löf’s main views, a task
that will be carried out in Section 4, where I carry the meaning
explanations to their ultimate logical conclusions.

2 Frege on sameness of sense

In Frege’s works we find the two forms of judgment that are
current in modern logic, the judgment form that asserts that a
proposition is true, which is written in turnstile notation as

A

and the judgment form that states that a sentence expresses a
proposition, which is implicitly introduced for the first time in
§2 of Begriffsschrift via the content stoke

A

4In this paper, I will be concerned with a fragment of Martin-Löf (1982)
where the only types are dependent function types, equality types, and
the natural numbers. Judgments of typehood are used instead of type
universes, and typehood and type membership judgments are defined via
primitive type and term judgments, as described in Section 3.
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Therein, a proposition is described as a “judgeable content”
and identified with the content of a turnstile judgment.
This intuitive notion of content represents the main semantic
element of the ideography at this earlier point and, in fact,
logical operations such as implication, negation, and universal
quantification are all exclusively applicable to contents, or,
more precisely, to judgeable contents or propositions.

The only exception to this structure is the relation of
identity of content which is introduced in §8 of Begriffsschrift as
a metalinguistic relation between the expressions themselves
and not their respective contents. That is, according to this
interpretation of equality, an equality statement a = b means
that the expressions ‘a’ and ‘b’ have the same content. One
semantic consequence of this is that two propositions cannot be
identified if they imply each other, for they may have different
contents. Indeed, the propositional extensionality principle

(A Ą B) Ą (B Ą A) Ą (A = B)

is not only not a theorem in Begriffsschrift but also inconsistent
with its formal system, as noted in Duarte (2009). However,
once the ambiguous notion of content is split into sense and
reference, propositional extensionality becomes a valid principle
for references, although not for senses, since the fact that two
theorems are logically equivalent does not mean that they have
the same cognitive value.5

2.1 The doctrine of truth values

Frege’s theory of sense and reference is systematically
introduced for both singular terms and complete sentences in
his seminal essay Sinn und Bedeutung. The theory seems to
provide a compelling answer to the paradox of identity with
respect to singular terms, for we are able to say that the

5Curiously, Frege (1980) once considered an identity criterion for senses
along those lines in a letter to Husserl dated 9 December 1906, but this
suggestion is clearly unacceptable, since it would mean that every two true
propositions a = a would a = b express the same sense.
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cognitive value of a = a and a = b is generally different because
a and b may differ in their sense, despite being coreferential.
However, the theory becomes highly controversial when we
consider the sense and reference of sentences, which are taken to
express a thought (in modern terminology, a proposition) and
refer to a truth value, which, since referents are always objects,
are seen as the simplest representatives of logical objects. Frege
is well aware of this counterintuitive aspect of his doctrine, as
he immediately attempts to justify it by noting that what he
calls an object can only be properly understood in connection
to concepts and relations and then attempts to substantiate
his claim that the reference of a sentence is its truth value by
remarking that the latter remain unchanged when a part of
the sentence is replaced by a coreferential expression, that is,
that sentences with the same truth value are interchangeable
salva varitate. Later on, in the preface of Grundgesetze,
Frege remarks that the introduction of truth-values may seem
strange at first, but adds that the fact that everything becomes
much simpler and sharper with those objects puts a great
weight in the balance in favor of his own conception.6 In the
ideography, concepts and relations are treated as particular
cases of functions that output truth values and Frege explicitly
states that an object is anything that is not a function.

Besides the poor justifications for Frege’s adoption of his
strage doctrine of truth values, it is disappointing that almost
no considerations about sense or thoughts can be found in
Grundgesetze, at least if we assume that the real purpose of the
distinction between sense and reference is to offer a solution
to the paradox of identity. Although Frege still seems to have
a strong conviction that a criterion of identity for senses is of
fundamental importance, as we can judge from, for instance, a
December 1906 letter to Husserl, where Frege writes:

It seems to me that an objective criterion is
necessary for recognizing a thought again as the
same, for without it logical analysis is impossible.
(Frege, 1980, p. 70)

6Grundgesetze I, x.
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Frege does not seem to bother to provide a logic of sense and
reference in the book he intends to show once and for all that
arithmetic is nothing but logic. For this reason, we can say
that Frege failed to show that some mathematical equality
statements have cognitive value in Grundgesetze, because his
solution to the identity paradox is entirely dependent on what
it means for two expressions to have different senses, and no
identity criterion for senses is given in his ideography.

It is possible that Frege had come to recognize that the most
important notion for the vindication of his logicism is that of
reference, as pointed out by Simons (1992), and that for those
purposes all that we need to know about sense is that a sentence
needs to express a thought in order to refer at all. In fact, now
the horizontal stroke symbolism

A

which used to indicate that A is a proposition (judgeable
content) before the division of content into sense and reference,
no longer says that A expresses a proposition (thought). Instead
of being an implicit form of judgment, the horizontal is treated
as a function that refers to a truth value depending on the
reference of A, yielding the true if A denotes the true and
the false otherwise. Similarly, negation does not operate on
contents anymore, for it is explicitly treated as a function

A

that has the opposite effect of yielding the false if A does not
refer to the true and the true otherwise. The turnstile judgment
has kept its role, being the only judgment form of the revised
ideography. It is now fully explained in terms of reference as
well, now asserting that the expression A refers to the true.
There is no way to formally assert the fact that a sentence
expresses a thought in Grundgesetze, which is to say to fulfill
the role previously played by the content stoke.

In general, it would seem that Frege contradicts himself
by downplaying the value of sense and treating his doctrine
of truth values as a mere technical device for the successful
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accomplishment of his logicism, as argued in Ruffino (1997)
and Duarte (2009). This can be seen more clearly in light of the
discarded manuscript that was written before the introduction
of the distinction between sense and reference to the ideography
in Grundgesetze. In §69 of Grundlagen, immediately after the
explicit definition of the concept of number is proposed by
Frege, he attempts to confirm the fruitfulness of his definition
by sketching a proof of an crucial theorem that says that the
number that falls under the concept F is equal to the number
that falls under the concept G iff F and G are in one-to-
one correspondence (Hume’s Principle). The proof consists
in the showing that both sides of the biconditional imply
each other. But in the ideography, where a biconditional is
always represented by an equality, the formalization of the proof
cannot be completed without propositional extensionality. In
Grundgesetze, what makes the derivation of propositional
extensionality as a theorem possible it is the introduction of
Basic Law IV, which roughly states that the truth values
denoted by the sentences A and B either coincide or not

¬( A = B) Ą ( A = B)

But this is only allowed as an axiom in the ideography because
of the distinction between sense and reference. If those
observations are correct, Frege conceived his theory of sense and
reference primarily as a logical apparatus necessary to overcome
technical obstacles rather than as a solution to the paradox of
identity as it is commonly thought.7 That would explain why
Frege does not do justice to the notion of sense in Grundgesetze.

2.2 The equipollence principle

What comes closer to the proposal of a criterion of identity
for senses in Frege’s writings is the equipollence principle that
two sentences A and B express the same thought provided that
anyone who accepts A as true must also immediately accept B
as true and vice-versa. Sundholm (1994) has called attention to

7See e.g. Ruffino (1997, §3) and Duarte (2009, p.167).
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the fact that this idea has been informally suggested on many
occasions by Frege, most notably in the opening passage of his
Kurze Übersicht meiner logischen Lehren:

Now two propositions A and B can stand in such a
relation that anyone who recognizes the content of
A as true must thereby also recognize the content
of B as true and, conversely [...] So one has to
separate off from the content of a proposition the
part that alone can be accepted as true or rejected
as false. I call this part the thought expressed by
the proposition. (Frege, 1906, pp.197–98)

I take the following equipollence to be the most natural choice
of a corresponding principle for singular terms: two singular
terms a and b express the same sense if for every predicate P ,
anyone who accepts P (a) as true must also immediately accept
P (b) as true and vice-versa. Related to salva veritate, this idea
is already hinted at in Sinn und Bedeutung

If we now replace one word of the sentence by
another having the same reference, but a different
sense, this can have no bearing upon the reference
of the sentence. Yet we can see that in such a case
the thought changes; since, e.g., the thought in the
sentence ‘The morning star is a body illuminated
by the Sun’ differs from that in the sentence ‘The
evening star is a body illuminated by the Sun.’
Anybody who did not know that the evening star is
the morning star might hold the one thought to be
true, the other false. (Frege, 1892, p.62)

Yet, much remains to be done before both equipollence
principles for singular terms and sentences can be adopted as
satisfactory identity criteria for senses, for we do not have a
rigorous account of what does it mean to “immediately” accept
a proposition as true. In Funktion und Begriff, Frege has
expressly stated that the sense of two expressions is equal up
to renaming of bound variables, that is, that we could write
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x2 − 4x directly as y2 − 4y without altering its sense, however,
it can be very difficult to determine the extent of strictness in
his account of sameness of sense, considering that Frege also
happens to claim that the two halves of Basic Law V express
the same sense, but in a different way.8

3 Constructive semantics in type theory

In the remainder of this paper, I will argue that a constructive
rendering of the theory of sense and reference is capable of not
only providing a precise computational interpretation to the
equipollence principles criteria for singular terms and sentences,
but also validating them. I will begin our discussion with a brief
outline of some important aspects of constructive semantics.

In Frege’s semantics, as mentioned in the previous section,
the assertion that a proposition is true is understood as
declaring the fact that the thought expressed by a sentence
denotes the true, an interpretation that rests on a realist
assumption that numbers and other sorts of mathematical
objects are non-physical and non-mental entities that do not
exist in space or time. Therefore, the most fundamental form
of judgment in logic and mathematics is the truth judgment,
which Frege writes as

A

In contrast, the constructivist tradition states that the
only legitimate way of understanding a proposition is as a
specification of a construction with certain given properties
and, moreover, that in order to assert that a proposition is true
one has to exhibit a construction that realizes the specification
expressed by the given proposition (Martin-Löf, 1985). The
central form of judgment is therefore the one that states that
a is a construction that realizes a proposition A, which, using
the language of type theory, is often expressed as

8Both claims are found in Frege (1891, p.27). Frege’s views on sameness
of sense have been dealt with in more detail in Sundholm (1994, p.304–307),
Klement (2016, §4), and Bentzen (forthcoming, §2.1).
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a : A

Put differently, to assert that a proposition is realized
by a construction is to declare the truth of that proposition.
One thing that should be emphasized is that the existence
of a construction should not be understood as an ontological
existential claim that may be verified by means independent
of our knowledge, but rather as the epistemic act of
conceiving such a mathematical construction. Accordingly, the
constructive conception of truth can be regarded as a form of
anti-realism with respect to mathematical objects.

3.1 Judgments

In type theory, a construction is a humanly computable
procedure or program that is generally accepted as a method
for obtaining a mathematical object. Following the so-called
propositions-as-types correspondence (Howard, 1980), both
propositions and sets are specifications of constructions that
are structured through the unifying concept of a type. The
elements of a type are commonly called terms, and, as expected,
terms are interpreted as constructions.

For a more concise semantic explanation, it is convenient
to base our type theory on two equality forms of judgment
that state that two expressions are equal types and also that
two expressions are equal terms of a type. I shall write those
equalities with a triple bar notation to emphasize the fact that
they are judgmental relations, meaning that they only occur in
assertions and therefore are not subject to operations such as
those determined by logical connectives

A ≡ B type a ≡ b : A

The reflexivity of those equality judgments can be used to define
their more common counterparts A type and a : A, which say
that an expression is a type and that an expression is a term of a
type, as A ≡ Atype and a ≡ a : A. In other words, to determine
their meaning, it suffices to determine the meaning of the type



11

and term equality as primitive judgments. The general strategy
is that the meaning of a judgment is given via an untyped
model of computation, an idea that derives directly from the
meaning explanations (Martin-Löf, 1982). Every meaningful
statement is based on a notion of computation that is accepted
as a primitive concept and used to give terms a computational
behavior, define types as term specifications, and to assign
terms to types based on the values to which they compute.

3.2 Computation

The whole process of meaning explanation starts with the
specification of a native computation system that takes the
form of a programming language, typically the untyped
lambda-calculus extended with constants for the type-formers,
constructors, and eliminators of the type theory. In this paper,
I will consider dependent function types Πx:AB, equality types
a =A b, and the natural numbers nat. First, we specify the
syntax of the programming language

var := x | y | z | ... | x′ | y′ | z′ | ...
expr := var

Π(var:expr)expr | λvar.expr | expr(expr)
expr =expr expr | refl(expr) | eqrec(expr, expr, expr)
nat | 0 | succ(expr) | natrec(expr, expr, expr)

Then, we endow this language with an operational semantics,
a complete description of how terms are expected to compute
given in the form of a transition relation over closed terms, that
is, expressions with no occurrence of free variables, and reflexive
on certain closed terms, which are regarded as execution values.

This transition relation is fully captured by the computation
rules that I now symbolically describe, where a 7−→ a′ indicates
the fact that a transitions to a′ and aval means that a is a value,
which is to say that a 7−→ a is the case. I will start considering
the rules for the dependent function type, which generalizes the
notion of universal quantification and dependent product of sets
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∏
x:AB val λx.a val

a 7−→ a′

a(b) 7−→ a′(b)

(λx.a)(b) 7−→ a[b/x] λx.a(x) 7−→ a

The dependent function type Π(x:A)B is inhabited by functions
λx.a, where a is an open term that may depend on x, and
if f is a function and a a term, then f(a) is the application
of f to a. The last two computation rules are of particular
importance, because they induce some obvious resemblances
between lambda-terms λx.f(x) and Frege’s value-ranges ϵ́f(ϵ),
since ϵ́f(ϵ) ∩ a = f(a) is a theorem in the ideography (see
§34 of Grundgesetze), although ϵ́f(ϵ) = f contradicts the
intended semantics of the ideography since value-ranges are
taken to be objects and cannot be functions. I explore this
connection in detail in Bentzen (2020b), which contains a more
comprehensive type-theoretic study of the ideography.

The following rules provide a full computational account of
the equality type a =A b, the type-theoretic counterpart of the
usual notion of an equality proposition. Unlike the judgmental
equality a ≡ b : A, a =A b does not have any assertive force.
The constructor refl(a) represents the reflexivity of equality
and the eliminator eqrec(a, b) generalizes the principle of salva
veritate that Frege borrows from Leibniz.

a =A b val refl(a) val

a 7−→ a′

eqrec(a, b) 7−→ eqrec(a′, b)

eqrec(refl(a), b) 7−→ b

Finally, we have the rules for natural numbers, which give
us 0, a successor operator succ(n) and an explicit recursor
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natrec(a, b, c) that incorporates the principle of complete
mathematical induction

nat val 0 val succ(a) val

a 7−→ a′

natrec(a, b, c) 7−→ natrec(a′, b, c)

natrec(0, a, b) 7−→ a

natrec(succ(a), b, c) 7−→ (c(a))(natrec(a, b, c))

As it can be seen, the basic pattern here is that all type-formers
and their constructors are interpreted as values, eliminators
preserve computation on their main argument, and eliminators
transition to a particular information that was given to them
for when their main argument is a certain constructor.

The transition relation divides terms into two classes: those
that are themselves values are called canonical, and those that
are not themselves values but may eventually reach a value if we
keep iterating the transition process are called non-canonical.
This iteration is made precise with the notion of evaluation, a
computation that halts when it founds the value that a term
transitions to after an indefinite number of transition steps. I
shall write a ↓ a′ to mean that a evaluates to a′. Since we are
dealing with untyped computations, the evaluation of a term
will not always terminate, but it suffices to characterize closed
expressions as programs that when executed output the value
they evaluate to.

3.3 Type and term equality

Roughly, we explain what a type is by specifying the terms
of that type following an idea that can be traced back to
the constructive conception of set advocated by Bishop (1967)
and the interpretation of the intuitionistic logical constants
proposed by Heyting (1934). In fact, the first thing we do
to explain what types are is distinguishing between canonical
and non-canonical types. Any expression that evaluates to a
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canonical type is a type, and a canonical type is explained by
prescribing what their canonical terms are.

The meanings of the type and term equality judgments are
mutually explained in a similar way. To account for the former,
we assume that A and A′ are closed expressions, and assert that

A and A′ are equal types provided that they evaluate to the
same canonical type up to type equality.

This characterizes type equality as a relation between terms
that behave in a certain expected way. The following rules
illustrate how type equality can be explained for our canonical
types: dependent function types, equality types, and natural
number types

A ↓
∏

x:B C A′ ↓
∏

x:B′ C ′ B ≡ B′ type x : B ⊢ C ≡ C ′

A ≡ A′ type

A ↓ a =B b A′ ↓ a′ =B′ b′ B ≡ B′ type a ≡ a′ : B b ≡ b′ : B

A ≡ A′ type

A ↓ nat A′ ↓ nat

A ≡ A′ type

While the above stipulations endow type equality with an
intensional nature (Dybjer, 2012), we often find an additional
condition that determines a type uniquely by its terms

a : A ⊢ a : A′ a : A′ ⊢ a : A

A ≡ A′ type

Now, in order to give a full account of term equality we
assume that we are given closed terms a and b as well as a type
A, and evaluate them all, declaring that

a and b are equal terms of type A provided that a and b
evaluate to equal canonical terms of the canonical type which

A evaluates to.
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More concretely, term equality can be explained by laying down
what it is to evaluate to equal canonical terms up to term
equality for all the considered canonical types:

A ↓
∏

x:B C a ↓ λx.M a′ ↓ λx.M ′ x : B ⊢ M ≡ M ′ : C

a ≡ a′ : A

A ↓ b =B b′ a ↓ refl(b) a′ ↓ refl(b′) b ≡ b′ : B

a ≡ a′ : A

A ↓ nat a ↓ 0 a′ ↓ 0

a ≡ a′ : A

A ↓ nat a ↓ succ(M) a′ ↓ succ(M ′) M ≡ M ′ : nat

a ≡ a′ : A

The semantics given above can be inductively extended to
judgments occurring under a list of hypothesis, meaning that
the validity of the hypothetical judgment

x : A ⊢ f : B

is subject to the validity of the non-hypothetical or categorical
judgment f [a/x] : B for every closed term a : A. In sum,
the only way a hypothetical judgment can be given meaning
to is by determining what categorical judgment they result in
when all their free variables are replaced with closed terms.
Frege’s determination of the reference of functional expressions
in Grundgesetze §§29–31 is based on a similar idea, since the role
that functional expressions play in the ideography is no different
than that of open terms in type theory (Bentzen, 2020b).

Because only closed terms are taken into account in the
validation of a hypothetical judgment, it can be shown that the
principle of known as Axiom K obtains

x : A, p : x =A x ⊢ p ≡ refl(x) : x =A x

because, for a closed term a : A, a closed equality term b :
a =A a will always evaluate to a canonical term of a =A a,
which means that p ↓ refl(x). Since a =A a is a canonical type,
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c ≡ refl(a) : a =A a obtains. This principle is a straightforward
consequence of the reflection rule

x : A, y : A, p : x =A y ⊢ x ≡ y : A

which can be easily validated using a similar line of reasoning
and expresses the fact that, semantically, every propositional
equality is also a judgmental equality.

4 Sense and reference

It was Dummett (1978) who first noticed that Frege’s theory
of sense and reference could be rendered constructively by
assuming that the sense of a singular term is related to its
reference as a program is related to its value, and that the
thesis that the reference of a sentence is a truth value should
be entirely rejected, since, if we think of the sense of an
expression not as a mode of presentation of its reference but
as an effective method for determining it, that would imply a
means of deciding whether a proposition is true or false.9

Although the idea that a sentence refers to a truth value
has no place in a constructive setting, Martin-Löf (2001) has
observed that an interpretation of singular terms as terms and
propositions as types in the sense of the meaning explanations
allows for a more rigorous development of a theory of sense and
reference for both singular terms and sentences. In this context,
there is nothing better suited to mediate the passage from the
sense to the reference of an expression than the evaluation of
a term to its canonical form. More concretely, the reference
of a term (λx.refl(x))(0) is the canonical term it evaluates to,
refl(0). Programs are means for specifying their values and so
are senses, since values are references. Expanding this idea to
the sphere of types, Martin-Löf notes that that the reference of
a sentence has to be a canonical proposition, a view that fits

9Moschovakis (1994) adds to this interpretation a mathematical notion
of recursive algorithm that allows for a more rigorous theory of sense.
Therefore, it can be seen as a forerunner of the theory of sense of reference
of Martin-Löf (2001), which is grounded in type theory instead.
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perfectly the meaning explanations, since an expression that is
assigned to a type is interpreted as a sentence that expresses
a proposition, and a type evaluates to a canonical type, which
is taken as their referent. For example, both (λx.x)(nat) and
natrec(0, nat, λx.x(x)) are equal types because they evaluate to
the canonical type nat. In other words, they are coreferential
types but specify their value in differently.

If the passage from the sense to the reference of an
expression is given through evaluation, how should one interpret
the passage of an expression to its sense? I have suggested
elsewhere that an expression a comes to be known as a program
when it is assigned to a type A.10 The reason for this lies in
an analogy with computer programs: a piece of code is only
recognized as a program when it is correctly typechecked by a
compiler of the programming language in question. If there is
a single type mismatch error, such as an assignment of a value
between two variable of different types, then we did not wrote
a program after all. However, if we assume that a term a has
a sense only when a : A we are at the same time excluding the
possibility that terms lacking a reference have a sense. This has
to do with the fact that a : A obtains only when a computes to
a value according to our semantic stipulations, while not every
term has a value. Consider a non-terminating term such as the
infamous Ω term

(λx.x(x))(λx.x(x)).

Frege has always defended that in an exact science such as
mathematics every expression must have a reference, but he
never once entertained the idea that a sentence does not express
a sense if it lacks a reference. Even in our setting, it is desirable
to allow expressions to have a sense when they do not have a
reference, for even a non-terminating term can be run just like
any other program. I shall therefore say that an expression
is recognizable as a program when it is interpretable by an
operational semantics in the style of the previous section. That
means that all that is needed for an expression to have a sense is

10See for instance Bentzen (2018, forthcoming).
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a grammatical structure that conforms to the program syntax.
Returning to our analogy with computer programs, we may say
that a piece of code is a legitimate program when it passes a
lexical check, when there are no missing required characters
or unrecognizable tokens. Using Frege’s semantic triangle, the
tripartite distinction between expressions, programs, and values
can be succinctly formulated as follows

reference/value

expression sense/programoperational semantics

evaluation

Martin-Löf is careful to distinguish between two different
interpretations of equality of reference, claiming that a
judgmental equality a ≡ b : A says of the senses of a and b
that they are coreferential and a propositional equality a =A b,
when proven to be true, says of the references of the expressions
‘a’ and ‘b’ that they are equal objects, because one is here
suppressing the equality term p that realizes the propositional
equality via the assertion of p : a =A b, the part of the judgment
that he sees as not “referentially transparent”. Having said that,
I cannot see the grounds for this distinction, which may be
described as confusing at best, considering that semantically
every propositional equality is a judgmental equality. Since
Martin-Löf speaks of judgmental equality as an intensional
relation, one may question if he is not simply leaving the
semantics aside and speaking of the formalism itself, since, to
give an example, while it is easy to construct a term of type
n+m =nat m+n via the principle of complete induction, there
is no derivation of the judgmental equality n+m ≡ m+n : nat
in the theory, since both sides of the equality do not evaluate to
the same value, although they do for every particular instance
of n and m. Semantically, both propositional and judgmental
equalities say that the senses of a and b have the same reference,
because they amount to the fact that the values of programs a
and b are one and the same.
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Martin-Löf also claims that equality of sense is given
by a relation of synonymy for expressions, which includes
in particular renaming of bound variables and definitional
stipulations such as π = C/d. I believe that this view of
sameness of sense is essentially correct, but it lacks a theoretical
motivation in the setting of the meaning explanations. The
following computational explanation is able to provide a more
compatible justification. Since to say that two expressions
have the same sense is to say that two terms express the same
program in type theory, we just have to justify an identity
criterion for programs. Clearly, it seems appropriate to identify
programs that have the same computational content. Hardly
anyone would say that two programs are identical if one involves
more computations than other, even though they may have the
same execution value. With that in mind, I propose that a
and b express the same program if they have the exact same
computational behavior, if to evaluate a is to evaluate b and
vice-versa. It is simply natural to identify two terms up to
renaming of bound variables and definition unfolding, given
that they are evaluated in the same way.

4.1 Equipollence

It only remains to be asked how this account of sameness of
sense can be linked to the equipollence principles that we have
previously discussed. For the sake of argument, let us first
assume that A and B are sentences, which is to say that they
evaluate to canonical types. We have to show that A and B have
the same sense when anyone who accepts A will immediately
accept B and vice-versa. One interpretation of the immediacy
in the latter condition is that proposed in Sundholm (1994)

a : A

a : B
and b : B

b : A

that says that any construction that realizes A is also a realizer
for B and vice-versa. But that does not imply that A and B
have the same computational behavior. Instead, it says that
they have the same reference, since from this coextensionality
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it would follow that A ≡ B type. That may seem odd from a
Fregean perspective, but recall that sentences do not refer to
truth values but to canonical types here.

If we choose to interpret immediacy in a purely compu-
tational way instead, then we have that anyone who accepts
A will immediately accept B if, without any reference to the
notions of transition or evaluation, one is justified in an making
assertion of the truth of B from one’s assertion of the truth of
A, or, equivalently, if from one’s construction of a term a : A
one can construct a (possibly new) term b : B by means that
do not involve the computation. It is plain that sameness of
sense is given by equipollence under this view, for this condition
describes precisely what it means for two types to have the same
computational behavior. Finally, if we are given an open type

x : A ⊢ P (x) type

then the corresponding principle for terms follows directly from
the equipollence of types, because to say that two terms a : A
and b : A are equipollent is to explain how anyone who accepts
P (a) will immediately accept P (b), which we already did.
Notice that only terms of a same type can be equipollent, like
everything else in type theory. It does not make sense to ask
whether, say, Julius Caesar is equipollent to 0.

If we were to interpret equality of reference for types in
a strictly Fregean sense, that is, following the idea that two
sentences are coreferential if they have the same truth value,
then obviously the relation that we would be looking for
would be that of logical equivalence, which, type theoretically,
translates to the existence of two functions f : A → B and
g : B → A between the types A and B.11 But it is worth
stressing that actual equality of reference does not follow from
logical equivalence, for two types may imply each other without
computing to the same canonical type. Put differently, if we
had a type universe U , whose terms are smaller types, then the
following principle of propositional extensionality

11We typically write A → B as an abbreviation for Πx:AB when the type
B does not depend on x : A.
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(A → B) → (B → A) → (A =U B)

would be false in the meaning explanations, just as it was in
Begriffsschrift because A and B may have different contents. In
general, we do not even have that g(f(a)) =A a and f(g(b)) =B

b obtain, for every a : A and b : B. The only thing logical
equivalence tells us is that if we constructed a term of A we
know how to find another term of B and vice-versa. It comes
with no other guarantees, as Sundholm (1994) notes.

4.2 Equality and homotopy

Over the last few years, homotopy type theory (UFP, 2013) has
emerged as a new foundation for mathematics that unites type
theory and homotopy theory via a homotopical interpretation
of type theory where a type A is viewed as a space, a term a : A
as a point of the space A, an equality term p : a =A b as a path
from point a to point b in the space A and so on.12

One of the main ingredients that reinforces this inter-
pretation is the univalence axiom, which offers a formal
justification for the common view among mathematicians that
two mathematical objects are equal when they are isomorphic.
Roughly, the univalence axiom implies that two types are
identical just in case they are equivalent in a technical sense.

ua : A ≃ B → A =U B

And this new sort of identification imposes a weaker
understanding of propositional equality where in general a
closed term p : a =A b does not entail a ≡ b : A, because
univalence introduces a new canonical term ua(e) to the equality
type that is not judgmentally equal to a reflexivity term,
assuming that e is an equivalence. Considering that refl(a)
is interpreted as the constant path at the point a, univalence
ensures the existence of non-trivial paths.

12For a philosophical introduction to homotopy type theory, see Ladyman
and Presnell (2016) and Bentzen (2020a).
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Yet, this homotopical view of equality goes against
the constructive theory of sense and reference that I have
expounded, precisely because if propositional equality is to
express coreferentiality, then the reference of a term cannot
be its value in homotopy type theory. In the presence of non-
trivial paths, that is, if we are allowed to construct a closed
term p : a =A b such that p ̸≡ refl(a), then we have that
a ↓ a′ and b ↓ b′ but a′ ̸≡ b′, meaning that the interpretation of
propositional equality as equality of values is lost.
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