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Quantum field theories containing massless particles such as photons and glu-
ons are divergent not just in the ultraviolet, but also in the infrared. Infrared
divergences are typically regarded as less conceptually problematic than ultra-
violet divergences because there is a reasonably straightforward cancellation
mechanism that renders measurable physical observables such as decay rates
and cross-sections infrared finite. In this paper, I scrutinize the restriction
to measurable physical observables that is required to make the cancella-
tion mechanism applicable. I argue that this restriction does not necessitate
a retreat to operationalism about the meaning of the theory as one might
reasonably have worried, but it does call attention to a collection of under-
appreciated conceptual issues lurking in the infrared regime of quantum field
theories with massless particles.

1. Introduction. The structural core of non-relativistic quantum mechan-

ics is reasonably well agreed upon. It includes states defined on a Hilbert

space, operators on that space to represent observables, the Schrödinger dy-

namics, and the Born rule for determining probabilities for the outcomes of

experiments.1 This structural core provides an algorithm for extracting em-

pirical predictions from the theory. Interpretive debates are concerned with

whether we should adopt an operationalist view of this algorithm, or if the

structural core should be furnished with a realistic interpretation. And of

course, providing such a realistic interpretation requires that one provide a

resolution to the quantum measurement problem.

Giving a realistic interpretation of quantum field theory similarly requires

a solution to the quantum measurement problem, but the measurement prob-

lem is often conspicuously absent in foundational discussions of the theory.

One reason for this is that relativistic constraints raise difficulties for gener-

alizing some solutions to the measurement problem from quantum mechanics

to quantum field theory. Another reason is that quantum field theory is of-

ten characterized as a theory of scattering.2 This can be seen from the fact

that the basic phenomenological object in the theory is often taken to be the

S-matrix which encodes transition amplitudes between prepared incoming

states and measured outgoing states, both with determinate particle content.
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So one might worry that before we even get to the issue of the measure-

ment problem, the formalism for the theory is tinged with operationalism.

The structure of the theory is designed to capture the scattering experiments

used to test the theory from the outset.

Suppose we are interested in pressing on and attempting to give a realist

interpretation of the scattering phenomena that quantum field theory is able

to describe. We can use the scattering form of Born’s rule,

Pr(ψout|ψin) := |〈ψout|S|ψin〉|2, (1)

to determine the probability of a transition from the state |ψin〉 to the state

|ψout〉. On first inspection, this seems to involve essentially the same struc-

tural core as non-relativistic quantum mechanics, and to provide an algorithm

for predicting the outcomes of experiments which we can go about interpret-

ing. However, the quantum field theoretic algorithm is beset with interpretive

challenges of its own that arise before we confront the measurement problem.

As a result, much of the interpretive work dedicated to quantum field theory

has been concerned with the processes that are required to get the algorithm

up and running, and not the interpretation of the algorithm itself.

The interpretive difficulties facing the quantum field theoretic algorithm

are diverse. For one, |ψin〉 and |ψout〉 are not states in the physical statespace

of the interacting quantum fields involved in the scattering. Rather, they

are states in the statespace of free fields. Information about the interacting

fields must be gleaned from the perturbative evaluation of the S-matrix ele-

ment for a particular |ψin〉 and |ψout〉. To do this we sum all of the Feynman

diagrams with the appropriate particle content and incoming and outgoing

momenta. This perturbative evaluation gives rise to additional obstacles to

interpretation. The most widely discussed of these are the ultraviolet diver-

gences that arise from the short-distance and large-momentum regime of the

theory. The integrals corresponding to individual diagrams contributing to

the probabilities in Eq. (1) are infinite. These ultraviolet divergences neces-

sitate the renormalization of the theory in order to render predictions for the

outcomes of experiments finite.3 Some presentations of the theory give the

impression that a properly implemented renormalization procedure is suffi-

cient to get an algorithm up and running that gives probabilities that match

the experimental results.

3With the development of the renormalization group, the physical need for this process is
now well-understood. Quantum field theories are understood as effective theories with an
explicitly specified domain of applicability. Recent philosophical literature has begun to
address how this approach to understanding the ultraviolet divergences might affect the
prospects for realist interpretations of the the theory. For my purposes, the important
conclusion that can be drawn from these discussions is that the ultraviolet divergences do
not provide an obstacle to realist interpretations of field theory.
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In fact, an additional step is required. There is an independent source of

infinities that need to be addressed before the algorithm yields finite proba-

bilities. These infrared divergences come from the long-distance and small-

momentum regime of the theory, and have received comparatively little at-

tention in the literature. The infrared divergences result from the emission

of very low momentum massless particles, and are typically regarded as less

conceptually problematic than ultraviolet divergences because there is a rea-

sonably straightforward cancellation mechanism that renders physical observ-

ables such as decay rates and cross-sections infrared finite. More precisely,

the infrared divergences cancel when we restrict to measurable physical quan-

tities. My aim in this paper is to scrutinize the restriction to measurable

physical observables that is required to make the cancellation mechanism ap-

plicable. It is prima facie plausible that there are physical quantities that

are not measurable, but about which there are still facts. For this reason, a

restriction to what is measurable is potentially problematic. If one adopts an

operationalist interpretation which only countenances those quantities which

are measurable as meaningful, such a restriction is unproblematic. However,

if one ultimately aspires to provide a realist interpretation, one needs the

quantum field theoretic algorithm to be well-defined for all of the physically

meaningful quantities, which may not just be the measurable ones. So to

ensure that the restriction in question does not amount to a thumb on the

operationalist’s side of the scale, we need to make sure that we are not re-

stricting beyond the physical matters of fact.

In order to determine whether or not the restriction to measurable physical

quantities is an acceptable one, we must analyze the origin of the infrared

divergences and the infrared cancellation mechanism in detail. I turn to that

task in Section Two. In Section Three I discuss the restriction to measurable

physical quantities and I argue that it need not mark a problematic retreat

to operationalism. In the fourth section I argue that the infrared divergences

from massless particles are a conceptually distinct infrared problem from the

one raised by Haag’s theorem. The infrared divergences discussed here are

more directly relevant for the prospects of providing a realist interpretation

of the theory because they bear on the nature of the physical statespace of

the theory. Section Five concludes by emphasizing that the infrared regime

of quantum field theory contains foundationally significant issues which are

important for the project of interpreting the theory.

2. Infrared Cancellation. Early in the development of quantum electro-

dynamics it was recognized that the infrared problems of classical electro-

dynamics carried over to quantum field theory. In this latter context, the

problems stem from the presence of massless particles. If a massless particle

is “soft” in the sense that it has very low momentum, then the emission of

such a particle requires very little energy. In the case of quantum electrody-
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namics, for example, in processes with outgoing electrons in the final state,

the electron is never actually free as we are accustomed to thinking of it.

In reality, outgoing electrons emit many soft photons which lead to infrared

divergences in the S-matrix element for the process.4 Closely analogous prob-

lems arise in quantum chromodynamics due to the massless gluons, and in

quantum theories of gravity involving massless gravitons.

An approach to addressing the infrared divergences was discovered by

Bloch and Nordsieck even before the development of covariant perturbation

theory for quantum electrodynamics (Bloch and Nordsieck 1937). What they

realized was that the infrared divergences from the emission of soft photons

are perfectly cancelled by infrared divergences from virtual soft photons. This

cancellation mechanism was elaborated in full detail for quantum electrody-

namics by Yennie, Frautschi and Suura who showed conclusively that QED

can be rendered infrared finite to all orders of perturbation theory (Yennie,

Frautschi, and Suura 1961). Weinberg produced a significant simplification of

the argument, which also applies to theories with massless gravitons, shortly

after (Weinberg 1965). Similar arguments, though more limited in their gen-

erality, have also been provided for quantum chromodynamics.5 The central

observation required to induce the cancellation in each case is that any re-

alistic particle detector has some minimum energy threshold. Particles with

energy below this threshold will pass through the detector undetected. When

S-matrix elements, transition rates, and cross-sections are expressed in a way

that accounts for the presence of such a threshold, the infrared divergences

can be shown to cancel to all orders.

Suppose we are interested in a QED process with initial state α and final

state β containing a total of n incoming and outgoing electrons.6 The S-

matrix element for this process Sβα requires corrections from the emission of

soft photons. Consider the simplest case where a single soft photon is emitted

from one of the outgoing electron lines as shown in Fig. 1(a). This yields a

correction given by the product of an electron-photon vertex, and an electron

propagator with momentum p+ q, in the limit where q → 0:7

[
i(2π)4e(2pµ + qµ)

]
·
[
−i

(2π)4

1

(p+ q)2 +m2 − iε

]
q→0−−→ epµ

p · q − iε
. (2)

4Additional infrared divergences can occur when massless particles move collinearly with
the particle from which they were emitted. This class of divergences can be addressed
with methods similar to those discussed in this section, though they will not be my focus
in this paper.

5One important example is provided by the KLN theorem (Kinoshita 1962; Lee and Nauen-
berg 1964). For helpful discussion see (Muta 1987, Ch. 6).

6The argument I present here is a simplified version of the one initially given in (Weinberg
1965) and further elaborated in (Weinberg 1995, Ch. 13).

7In taking the limit I have used the freedom to rescale ε without changing the sign of the
term.
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(a) (b) (c) (d) (e)

Figure 1: Emission of real soft photons, and exchange of virtual soft photons.

If the photon is emitted from an incoming line rather than an outgoing line,

as shown in Fig. 1(b), then the momentum in the additional propagator is

p− q and the correction is given by:

[
i(2π)4e(2pµ − qµ)

]
·
[
−i

(2π)4

1

(p− q)2 +m2 − iε

]
q→0−−→ epµ

−p · q − iε
. (3)

To obtain the correction for the emission of a single soft photon from any

of the incoming or outgoing electron lines we must sum over each way the

process can happen. If we adopt the convention that ηn = +1 if the emission

is from an outgoing line and ηn = −1 if it is from an incoming line, this sum

can be written compactly as: ∑
n

ηnep
µ
n

pn · q − iηnε
. (4)

If two soft photons are emitted, the correction is given by a product of

factors like those we found in Eq. (2) and Eq. (3). For example, if one is

emitted from an incoming line and one is emitted from an outgoing line, as

in Fig. 1(c), the correction is given by:[
epµ2

p2 · q2 − iε

]
·
[

epµ1
−p1 · q1 − iε

]
. (5)

If both electrons are emitted from the same outgoing line, as in Fig. 1(d),

then the correction is:[
epµ1

p1 · q2 − iε

]
·
[

epµ1
p1 · (q1 + q2)− iε

]
. (6)

A simple induction8 shows that the correction for the emission of N soft

8See (Weinberg 1995, pp. 538-539).
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photons is given by:
N∏
i=1

(∑
n

eηnp
µi
n

pn · qi − iηnε

)
. (7)

From this basic relation we can determine the effects of both virtual and real

soft photons on Sβα.

To determine the correction from the contribution of soft virtual photons

depicted in Fig. 1(e), we must introduce a scale Λ which determines which

virtual photons we want to count as soft. Different choices of Λ simply cor-

respond to different choices of what count as radiative corrections, and what

count as part of the uncorrected matrix element. We will also be manipulat-

ing infrared divergent expressions and so we will introduce an infrared cutoff

λ. This cutoff will eventually be removed by taking the λ → 0 limit at the

end of the calculation.

The correction from a single soft virtual photon can be determined by

taking the product of two emitted photon corrections, multiplied by a photon

propagator (−igµν)/[(2π)4 · (q2 − iε)], summing over the polarization indices,

and integrating over the soft photon momentum:∫ Λ

λ

d4q A(q), (8)

where,

A(q) =
−i

(2π)4(q2 − iε)
·
∑
n,m

e2ηnηm(pn · pm)

(pmn · q − iηnε)(−pm · q − iηmε)]
. (9)

To obtain the correction from N virtual soft photons, we take the product of

N such factors, and divide by factors of N ! to account for possible permuta-

tions of where the lines attach, and (2N) to account for interchanges of the

two ends of the line. This gives,

1

N !

[
1

2

∫ Λ

λ

d4q A(q)

]N
, (10)

and thus, when we sum over N and use the fact that exp(x) =
∑

N x
N/N !

we find that,

Sλβα = SΛ
βα exp

(
1

2

∫ Λ

λ

d4q A(q)

)
. (11)

SΛ
βα is the S-matrix element with no virtual photon exchange with momentum

less than Λ included. Sλβα is the S-matrix element corrected to include virtual

soft photon exchange with momentum greater than λ but less than Λ. The
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rate for the process is then given by the matrix element squared:

Γλβα = |Sλβα|2 = |SΛ
βα|2 exp

(∫ Λ

λ

d4qA(q)

)
= ΓΛ

βα exp

(∫ Λ

λ

d4qA(q)

)
. (12)

Weinberg shows that the integral in the exponential yields:∫ Λ

λ

d4qA(q) = −A ln

(
Λ

λ

)
, (13)

where,

A =
−1

8π

∑
n,m

e2ηnηm
βnm

ln

(
1 + βnm
1− βnm

)
and βnm =

[
1− m4

e

(pn · pm)2

]1/2

. (14)

Inserting Eq. (13) into Eq. (12), and using familiar properties of exponentials

and logarithms, we find that:

Γλβα = ΓΛ
βα exp

(
−A ln

(
Λ

λ

))
= ΓΛ

βα

[
exp

(
ln

(
λ

Λ

))]A
= ΓΛ

βα

(
λ

Λ

)A
.

(15)

This provides a complete statement of the correction to the rate from virtual

soft photons. In the limit where λ → 0 we see that the rate Γλβα vanishes.

This is the result of exponentiating ln(Λ/λ) which is divergent in the λ→ 0

limit.

The virtual soft photon divergences leading to this unphysical vanishing

of the rate are cancelled by divergences from real photon emission. More

precisely, this cancellation can be seen to apply to all orders of perturbation

theory when the total rate, including all radiative corrections, is expressed in

terms of the resolution of the detector used to measure the real soft photons.

Weinberg explains the restriction as follows:

The resolution of the infrared divergence problem . . . is found in

the observation that it is not really possible to measure the rate

Γβα for a reaction α → β involving definite numbers of pho-

tons and charged particles, because photons of very low energy

can always escape undetected. What can be measured is the rate

Γβα(E,ET ) for such a reaction to take place with no unobserved

photon having an energy greater than some small quantity E,

and with not more than some small total energy ET going into

any number of unobserved photons. (Weinberg 1995, pp. 544-545,

my emphasis)

This restriction to the measurable quantity Γβα(E,ET ) in order to render the

rate infrared finite requires careful analysis. I will turn to that task in Section
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Three. The remainder of this section completes the demonstration that if one

makes this restriction, then the infrared divergences cancel.

In order to calculate the correction from the emission of N real soft pho-

tons, with momenta q1, . . . , qN , each term in Eq. (7) must be multiplied by

the appropriate coefficient function,9

ε∗µ(qi, hi)

(2π)3/2(2|qi|)1/2
. (16)

This yields the following expression for the matrix element Sλβα(q1, q2, . . . , qN),

which includes the contributions of both the virtual soft photons and the N

real emitted soft photons:

Sλβα(q1, q2, . . . , qN) = Sλβα

N∏
i=1

1

(2π)3/2(2|qi|)1/2
·
∑
n

ηne(pn · ε∗(qi, hi))
(pn · qi)

, (17)

where Sλβα is as given in Eq. (11). The differential rate for the emission

of N soft photons into the volume of momentum space
∏

i d
3 qi, is given by

squaring Eq. (17), summing over the helicities, and multiplying by
∏

i d
3 qi

which gives:

dΓλβα(q1, q2, . . . , qN) = Γλβα

N∏
i=1

d3 qi
(2π)3(2|qi|)

·
∑
nm

ηnηme
2(pn · pm)

(pn · qi)(pm · qi)
(18)

Integrating over the direction of photon propagation yields the differential

rate for the emission of N soft photons with energies ω1, . . . , ωN :

dΓλβα(ω1, ω2, . . . , ωN) = ΓλβαA
N dω1

ω1

dω2

ω2

· · · dωN
ωN

(19)

where the factor A is as defined in Eq. (14). Note that if we were to inte-

grate Eq. (19) over the emitted energies of the photons, we would produce

logarithmic divergences from the ω → 0 end of the integrations. However,

the imposition of the infrared cutoff λ ensures that the expressions are regu-

lated. If we were to remove the regulator at this stage of the calculation, the

cancellation mechanism would not do its job, and we would not arrive at a

sensible physical rate at the end of the calculation.

In order to arrive at a final expression for the rate, the integration over

photon energies must be done respecting the constraints described in the

quotation of Weinberg above. In particular, the unobserved photons must

each have energy below the detector threshold and above the infrared cutoff,

E ≥ ωi ≥ λ, and the total energy of all of the unobserved photons must not

9In this expression, ε is a polarization vector and h is the helicity.
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be greater than ET ,
∑

i ωi ≤ ET :

Γλβα(E,ET ) = Γλβα

∞∑
N=0

AN

N !

∫
E≥ωi≥λ,

∑
i ωi≤ET

N∏
i=1

dωi
ωi

, (20)

The integration subject to these restrictions gives:10

Γλβα(E,ET ) =

(
E

λ

)A
Γλβα. (21)

The cancellation of the infrared divergences is achieved by inserting the ex-

pression in Eq. (15) for Γλβα into Eq. (21). This combines all corrections from

real and virtual photons into an expression for Γλβα(E,ET ):

Γλβα(E,ET ) =

(
E

λ

)A
Γλβα =

(
E

λ

)A(
λ

Λ

)A
ΓΛ
βα =

(
E

Λ

)A
ΓΛ
βα. (22)

Note that the factors of λ cancelled each other, and so we can take λ→ 0 to

obtain:

Γβα(E,ET ) =

(
E

Λ

)A
ΓΛ
βα. (23)

Thus, when we account for both soft virtual photon exchange and real soft

photon emission, the rate becomes independent of λ and is infrared finite. The

procedure used to achieve this result does, however, introduce a dependence

on the detector resolution, E.

The subsequent literature adopts a distinction between exclusive and in-

clusive quantities.11 Exclusive quantities stipulate the exact contents of the

incoming and outgoing states. For example, in an exclusive cross-section one

might demand that there are exactly three electrons and no other particles,

even if the other particles are not detected. Inclusive quantities stipulate part

of the contents of the final state, but they also account for the possibility that

there are other particles in the final state. The rate in Eq. (23) provides an

example of an inclusive quantity. We have stipulated that there are a total

of n incoming and outgoing electron lines, but we have also accounted for

the emission of an arbitrary number of undetected soft photons each with

energy less than E and with total energy less than ET . At particle acceler-

ators, attention is often restricted to such inclusive quantities, and the it is

the justification for this to which we now turn our attention.

10I have omitted an overall factor resulting from the integration which is close to 1 in the
circumstances we are interested in analyzing.

11As far as I have been able to determine, this distinction originates from (Feynman 1969).
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3. Measurement. The apparent need to restrict to measurable physical

quantities has arisen in other contexts during the development of quantum

field theory. Early in the development of the theory, Bohr and Rosenfeld

argued that the value of the field at a point was not a measurable quantity,

but that the average value of the field over a small spacetime region was

measurable (Bohr and Rosenfeld 1933; Bohr and Rosenfeld 1950). It was

later realized that field operators could not be mathematically defined at

points of spacetime, and that instead they had to be represented as operator-

valued distributions which are well-defined only as integrations against test

functions of compact support on small regions of spacetime.12 When it was

realized that the mathematical definition of the theory became ill-defined

for associations of operators with points, a number of figures suggested that

this should be intepreted as resulting from the fact that such quantities were

unmeasurable.13 If one adopts the additional assumption that unmeasurable

quantities are not meaningful, then the ill-definedness of field operators at

points becomes unproblematic: there is no physically meaningful quantity

for the ill-defined field operators to correspond to.

Similar reasoning has been employed to address other ill-defined quantities

from the ultraviolet regime. Empirically interesting field theories are ultravi-

olet divergent and require renormalization. This process involves recognizing

that some parameters in the lagrangian such as the bare mass and the bare

charge are infinite and introducing counterterms to cancel the infinities and

re-express the theory in terms of measurable parameters such as the dressed

mass and charge. In response to this situation one frequently encounters the

claim that bare parameters in the Lagrangian are unmeasurable. To take just

one example, Srednicki explains that “It may be disturbing to have a param-

eter in the Lagrangian that is formally infinite. However, such parameters are

not directly measurable, and so need not obey our preconceptions about their

magnitudes” (Srednicki 2007, p. 67).14 Once again, we encounter the view

that only those quantities that are measurable are required to be meaningful.

Compare this to the reasoning Weinberg offered in the previous section.

The rate Γλβα is infrared divergent in the limit where λ → 0, but it is un-

measurable. The measurable rate Γλβα(E,ET ) is infrared finite to all orders

of perturbation theory in the λ → 0 limit. The justification for the need

to make this restriction in order to arrive at infrared finite quantities, when

one is explicitly articulated, is that any real physical detector has some finite

energy resolution and particles with energy below that threshold will not be

12This came to be understood in stages, with the conclusive theorem provided in (Wight-
man 1964).

13(Friedrichs 1951; Cook 1953)
14Similar claims can be found in (Peskin and Schroeder 1995, p. 315) and (Itzykson and

Zuber 2012, p. 319), and in many other accounts of the rationale underlying renormal-
ization.
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registered in the detector. Thus, Weinberg’s demonstration establishes that

quantum field theory provides well-defined values for all of those observables

that are physically measurable and most discussions of this issue leave off

here.15

Absent additional argumentation, I think that this amounts to a prob-

lematic retreat to operationalism. To be clear, my concern is not with oper-

ationalism as an account of meaning in general. I am open to the possibility

that operationalism provides a compelling account of meaning in at least

some cases. What is problematic in this case is that the justification for the

restriction to measurable quantities relies on the stronger claim that only

those quantities that are measurable are physically meaningful. Suppose

this stronger claim were true. Then the demonstration that the field the-

oretic expressions for the measurable observables are well-defined amounts

to a demonstration that the field theoretic expressions for every physically

meaningful quantity is well-defined. If the stronger claim is not true, and

there are physically meaningful quantities that are not measurable, then the

demonstration that the measurable quantities are well-defined does not go

far enough to establish that the theory adequately accounts for all of the

meaningful quantities.

To determine whether or not the restriction to measurable quantities in

the infrared case is problematic, we need to know whether or not failures of

measurability stand in direct correspondence with failures of meaningfulness.

For this reason, each proposed restriction to measurable quantities requires

its own analysis, as each involves distinct physical limitations on what is

measurable. While I believe that both of the ultraviolet cases introduced

above merit further attention of their own, here I will restrict attention to

the infrared case as that is my central concern in this paper.

Suppose we simply grant that every physical detector will have some

threshold E such that particles with energy less than E will not be detected.16

Note that quantities like cross-sections and rates are defined with respect to

a particular collection of incoming particles, and a particular collection of

detected outgoing particles. However, for a given incoming state, α, the dy-

namics of the theory will yield an outgoing state which is a superposition

with indeterminate particle content, including an indeterminate number of

electrons, hard photons, and soft photons with energy below the detection

threshold. It is only upon measurement that the outgoing state becomes

15Essentially the same justification can be found throughout the physics literature. See, for
example, (Brown 1992, pp. 490-491), (Duncan 2012, p. 719, p. 723, p. 728), (Itzykson
and Zuber 2012, p. 173, p. 354), (Peskin and Schroeder 1995, pp. 200-202), (Schweber
2011, p. 549), and (Srednicki 2007, pp. 157-158).

16This claim is often asserted without argument. Establishing its validity would require a
detailed analysis of the physical nature of the detector and its coupling to the measured
particle. I am grateful to Jeff Barrett for discussion of this point.
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one with the determinate particle content as we assumed β to have. And,

of course, how one conceives of this process of becoming a state with deter-

minate particle content depends on how one prefers to resolve the quantum

measurement problem.

In computing the rate Γβα(E,ET ) we assumed that this measurement

process yields a specific number of electrons and no hard photons in the final

state. If there were hard photons, or a different number of electrons, we

would need to compute the rate for a different process. Given that there

are outgoing electrons in the final state, there are also soft photons which

were not detected. So the justification relied on here is not that there is no

photon detector that can detect arbitrarily soft photons and hence quantities

involving them are meaningless. Rather, every measurement that is done has

some energy resolution, and we need to account for the fact that given the

particular measurement that has been executed, there can be soft photons

below that resolution.

This shows why it necessary to express the physical quantities in terms

of the detector resolution, E. For a given incoming state, there are distinct

possible outgoing states. By selecting a specific β, we have not done quite

enough to specify which part of the statespace the measurement is a projection

onto. By specifying E, we condition on which kinds of soft radiation can

be undetected in the final state. For a different detector energy resolution

E ′, different kinds of unobserved soft radiation states are possible, as are

different alternatives to β. The need to restrict to what is measurable is not

a retreat to operationalism. Rather, the presence of the energy resolution is

an articulation of the precise nature of the question we are asking about the

outgoing state by executing the particular measuring process that we chose

to execute.

4. The Connection to Haag’s Theorem. In their appraisal of the philo-

sophical significance of Haag’s theorem, Earman and Fraser make several ref-

erences to infrared divergences (Earman and Fraser 2006). They claim, for

example, that “In the physicists’ lingo, the move from one inequivalent repre-

sentation to another is marked by divergences. Haag’s theorem is concerned

with infrared divergences that are associated with Euclidean invariance and

the infinite volume of space (Earman and Fraser 2006, p. 319)”. They also

note the infrared divergences can be tamed by imposing some form of infrared

regulator.17 The imposition of an infrared regulator can cure more than one

kind of infrared pathology, and caution is required here in order not to run

together two conceptually distinct issues.

The interaction picture is a formal intermediary between the the Schrödinger

picture and the Heisenberg picture which is often employed as a calculational

17The regulators they consider are the compactification of space, and the restriction of the
theory to bounded regions of spacetime (Earman and Fraser 2006, p. 319, 323, 330).
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tool to facilitate the perturbative evaluation of observables. It postulates the

existence of a global unitary transformation connecting the free and inter-

acting Hilbert spaces. Haag’s theorem shows that this transformation does

not exist and that these spaces are unitarily inequivalent. Thus, the interac-

tion picture is predicated on an inconsistent set of assumptions. Miller has

provided an account of how perturbative calculations that employ the interac-

tion picture can be empirically successful despite this apparent inconsistency

(Miller 2016). The imposition of an infrared regulator renders some of the

assumptions of the theorem false. This undercuts the threat to the empirical

success of the theory from Haag’s theorem, but it leaves questions about the

well-definedness of the interaction picture in the limit where the regulator is

removed.

Infrared divergences from soft massless particles raise a more serious worry

about the infrared regime of quantum field theory than the one implicated

in Haag’s theorem. The infrared cancellation results are sufficient to assuage

worries about how it can be that theories with infrared divergences are still

empirically successful. However, because of the presence of the soft massless

particles, free electron states with distinct momenta are unitarily inequivalent

to one another.18 As such, this class of infrared divergences call into question

the well-definedness of the physical state spaces of theories like quantum elec-

trodynamics. For this reason, I think they are rightly regarded as a symptom

of more serious conceptual problem than Haag’s theorem, which only under-

mines a method for extracting predictions from the theory. The challenge

from the soft massless particles is a serious one for interpreters of quantum

field theory and it is one which in my view requires significant further atten-

tion.19

5. Conclusion. I have argued that the need to express physical quantities

in terms of the energy resolution of a detector does not mark a problem-

atic retreat to operationalism. As in the case of the ultraviolet divergences,

the infrared divergences can be understood physically. With a properly im-

plemented renormalization scheme and infrared cancellation mechanism in

place, the algorithm of quantum field theory provides finite expressions for

physical observables. Thus, the infrared divergences, like the ultraviolet diver-

gences, are not ultimately an obstacle to realist interpretations of the theory.

The infrared regime of the theory is fraught with conceptual issues which

bear directly on the issue of how one might go about producing such an in-

terpretation, and very much warrants further attention from a foundational

perspective.

18For discussion see (Duncan 2012, pp. 722-723) or (Buchholz 1982).
19Perhaps the first philosopher to approach this problem is Ruetsche, who has suggested

that coherent state representations may play an important role in understanding these
issues (Ruetsche 2012, pp. 245-246).
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feldgrössen. Det Kgl. Danske Videnskabernes Selskab. Mathematisk-fysiske Med-
delelser 12, 1–65.

Bohr, N. and L. Rosenfeld (1950). Field and charge measurements in quantum electro-
dynamics. Phys. Rev. 78, 794–798.

Brown, L. S. (1992). Quantum Field Theory. Cambridge University Press.

Buchholz, D. (1982). The physical state space of quantum electrodynamics. Comm.
Math. Phys. 85 (1), 49–71.

Cook, J. M. (1953). The mathematics of second quantization. Transactions of the Amer-
ican Mathematical Society 74 (2), 222–245.

Duncan, A. (2012). The conceptual framework of quantum field theory. Oxford: Oxford
Univ. Press.

Earman, J. and D. Fraser (2006). Haag’s Theorem and its Implications for the Founda-
tions of Quantum Field Theory. Erkenntnis 64.

Feynman, R. P. (1969). Very high-energy collisions of hadrons. Phys. Rev. Lett. 23,
1415–1417.

Friedrichs, K. O. (1951). Mathematical aspects of the quantum theory of fields parts i
and ii. Communications on Pure and Applied Mathematics 4 (2-3), 161–224.

Itzykson, C. and J. Zuber (2012). Quantum Field Theory. Dover Books on Physics.
Dover Publications.

Kinoshita, T. (1962). Mass singularities of Feynman amplitudes. J. Math. Phys. 3, 650–
677.

Lee, T. D. and M. Nauenberg (1964). Degenerate Systems and Mass Singularities. Phys.
Rev. 133, B1549–B1562.

Miller, M. E. (2016). Haag’s Theorem, Apparent Inconsistency, and the Empirical Ad-
equacy of Quantum Field Theory. The British Journal for the Philosophy of Sci-
ence 69 (3), 801–820.

Muta, T. (1987). Foundations of quantum chromodynamics: An Introduction to pertur-
bative methods in gauge theories. World Sci. Lect. Notes Phys. 5, 1–409.

Peskin, M. and D. Schroeder (1995). An Introduction To Quantum Field Theory. Fron-
tiers in Physics. Avalon Publishing.

Ruetsche, L. (2012). Interpreting Quantum Theories. Oxford: Oxford Univ. Press.

Schweber, S. (2011). An Introduction to Relativistic Quantum Field Theory. Dover Pub-
lications.

Srednicki, M. (2007). Quantum Field Theory. Cambridge University Press.

Wallace, D. (2019). What is orthodox quantum mechanics? In A. Cordero (Ed.), Philoso-
phers Look at Quantum Mechanics. Springer Verlag.

Weinberg, S. (1965). Infrared photons and gravitons. Phys. Rev. 140, B516–B524.

Weinberg, S. (1995). The Quantum Theory of Fields, Volume 1. Cambridge University
Press.
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