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Abstract

Alexander Gebharter ([2017b]) has proposed to use one of the best known Bayes-
ian network (BN) causal discovery algorithms, PC, to identify the constitutive
dependencies underwriting mechanistic explanations. His proposal assumes that
mechanistic constitution behaves like deterministic direct causation, such that
PC is directly applicable to mixed variable sets featuring both causal and con-
stitutive dependencies. Gebharter claims that such mixed sets, under certain
restrictions, comply with PC’s background assumptions. The aim of this paper
is to show that Gebharter’s proposal incurs severe problems, ultimately rooted in
the widespread non-compliance of mechanistic systems with PC’s assumptions.
This casts severe doubts on the attempt to implicitly define constitution as a
form of deterministic direct causation complying with PC’s assumptions.
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1 Introduction

The mechanistic account of scientific explanation (Machamer et al. [2000]; Bechtel
and Abrahamsen [2005]; Glennan [2002]) holds that the explanandum, a higher-level
phenomenon, is explained by the lower-level mechanism responsible for it. In a popular
characterization,

[a] mechanism is a structure performing a function in virtue of its component

parts, component operations, and their organization. The orchestrated function-

ing of the mechanism is responsible for one or more phenomena. (Bechtel and

Abrahamsen [2005], p. 423)

To give a simple but paradigmatic example, which shall serve as our guiding example
throughout the paper, the phenomenon of amplification in a two-stage amplifier is
caused by a signal (e.g., current, voltage, power) received from an input source, and
causes effects such as signal distortion in an output device (e.g., a loudspeaker). The
phenomenon is explained by the augmentation of the signal by the amplifier’s two
transistors arranged in series (see Wimsatt [2007], ch. 12).

More generally, a mechanism is embedded in a causal context, where causal back-
ground conditions are operative relative to which certain parts of the system are re-
sponsible for the phenomenon. The relevant kind of responsibility is constitutive rather
than causal. The system’s parts that mechanistically explain the phenomenon are the
‘component’ (cf. quote), or constituent, parts. While causation has been at the cen-
tre of philosophical theorizing for centuries, the notion of constitution, or constitutive
relevance, has only recently begun to attract philosophical attention. In particular,
it is still unclear what discovery method(s) could systematize data-based inference to
constitution.

The problem of constitutive discovery is the following: given a set of spatiotem-
poral parts of an explanandum phenomenon, which of these parts are explanatorily
relevant, that is, constituents of the phenomenon? Importantly, clarity on parthood
relations (i.e., spatiotemporal overlap) between macro and micro entities is customar-
ily assumed by all proposed solutions of this problem (Craver [2007]; Harbecke [2010];
Couch [2011]; Gebharter [2017b]; Baumgartner and Casini [2017]). However, parthood
is only necessary but not sufficient for constitution and, hence, must be complemented
by additional criteria in order to identify constituents. Recently, Alexander Gebharter
([2017b]) has proposed to bring to bear PC—one of the best known causal discovery
algorithms from the Bayesian network (BN) framework (Spirtes et al. [2000]; Pearl
[2009])—on the task of identifying the constituents among a phenomenon’s parts.
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To model and discover causation, PC identifies conditional independence constraints
with statistical tests and, assuming that the analysed system satisfies certain BN ax-
ioms, causally connects variables not found to be independent. Gebharter claims that,
despite fundamental differences between causation and constitution, constitutive rela-
tions comply with the BN axioms PC assumes for causation, such that constitution
can be methodologically treated as a form of (deterministic) direct causation. He
concludes that PC may, together with parthood information, concurrently be applied
to both causal and constitutive discovery in variable sets featuring both causally and
constitutively related variables.

This paper critically reviews Gebharter’s proposal. In a nutshell, we take issue with
Gebharter’s contention that constitution can be methodologically treated as a form
of causation. As violations of BN axioms can be argued to be rare in variable sets
exclusively featuring causal relations, which are assumed to be non-deterministic in
the BN framework, these axioms are justifiably assumable for causal contexts. But
constitutive relations generate deterministic dependencies in the presence of which
violations of BN axioms are no longer rare but commonplace, thus undermining their
justifiable assumability and a fortiori the reliability of PC’s output. On the basis of two
benchmarking experiments, we show that, even under discovery circumstances that—
apart from the presence of determinism—are maximally favourable to the performance
of PC, the algorithm’s capacity to correctly recover constitutive relations is not high
enough to counterbalance the severe risk of false positives.

The paper is organized as follows. Section 2 briefly introduces the BN framework.
Section 3 reviews Gebharter’s approach for PC-based constitutive discovery. Sections 4
and 5 question the justifiable assumability of BN axioms in the context of Gebharter’s
proposal. Section 6 considers the prospects of doing constitutive inference with a
version of PC explicitly designed for variable sets featuring deterministic dependencies,
and finds them dim. Finally, Section 7 discusses our benchmarking experiments, for
which we provide a detailed replication script in the paper’s supplementary material.

2 Preliminaries

We begin by introducing the BN axioms assumed by PC, as well as a notational
convention on the variables of BNs representing mechanistic systems.

Traditionally, the BN formalism uses generic random variables to represent types (or
degrees) of properties or behaviours independently of the entities instantiating them.
Here, however, we shall follow the mechanistic literature in taking the variables as
denoting the behaviours exhibited by specific entities (such as a system and its con-
stituents), and consequently adopt the following notational convention. Calligraphic
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fonts are used for specific random variables A(S) and B(P1) (Spohn [2006]), by which
we denote the behaviour A of a specific system S and the behaviour B of one specific
part P1 of S. As we are only concerned with specific variables, we will leave the entity-
relativity of our variables implicit and just write ‘A’, ‘B’, et cetera, for the behaviour
types ‘A(S)’, ‘B(P1)’, et cetera.

A BN is a triple ⟨V, E, Pr⟩ composed of a finite set of variables V = {V1, . . . ,Vn},
each taking finitely many possible values, of a set of edges E over the variables in V,
such that variables and edges ⟨V, E⟩ form a directed acyclic graph (DAG), and of a
probability distribution Pr, such that the probability of each variable Vi in the DAG
obeys the Markov Condition (MC):

(MC) For any Vi ∈V = {V1, . . . ,Vn}, Vi⊥⊥Noni ∣ Pari ,

where Pari denotes the set of parents of Vi, and Noni denotes the set of non-descen-
dants of Vi. In words, each variable is probabilistically independent of its non-descen-
dants, conditional on its parents, or equivalently, its parents screen it off from its
non-descendants.

In a causally interpreted BN, the edges stand for direct causal relations, Pari de-
notes the set of Vi’s direct causes, Noni the set of Vi’s non-effects in the true causal
structure regulating the behaviour of the variables in V, and MC is called Causal
Markov Condition (CMC) (Spirtes et al. [2000], §3.4.1, §3.5.1).

In addition to CMC, the PC algorithm assumes the Causal Faithfulness Condition
(CFC) (Zhang and Spirtes [2008], p. 247):

(CFC) ⟨V, E, Pr⟩ is such that every conditional independence relation true in Pr is
entailed by CMC applied to the true DAG ⟨V, E⟩.

CFC guarantees that there is no causal dependence without a probabilistic dependence,
in other words, that all probabilistic independencies in the graph are due to the absence
of causal dependencies.

CMC and CFC are provably satisfied or only rarely violated in many well-known
discovery contexts, guaranteeing that PC is reliably applicable to ‘oracle’ (true) infor-
mation on conditional dependencies and independencies in those contexts.1 On the
one hand, the following is a set of conditions that are jointly sufficient (albeit not all
of them are necessary) for CMC to be provably satisfied: (i) the functional relations in
the data-generating structure are linear, (ii) the exogenous variables and error terms
are independently distributed, (iii) all non-deterministic dependencies in the data (i.e.,

1 For a description of the algorithmic steps of PC, see Spirtes et al. ([2000], pp. 84–5).
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dependencies not producing conditional probabilities equal to 1) are due to noise and
not to some fundamentally indeterministic process, meaning that all non-deterministic
dependencies are so-called pseudoindeterministic, and (iv) the variable set is causally
sufficient (Spirtes et al. [2000], p. 35). (Causal) Sufficiency is formulated as follows
(Zhang [2006], p. 8):

(Sufficiency) For every pair of variables in V, every common direct cause of them is
also in V or has the same value for all units in the population.2

Sufficiency is necessary for the satisfaction of CMC: if Sufficiency is violated, there
may be varying latent common causes, which in turn may induce spurious probabilistic
dependencies between variables in V, that is, dependencies not due to causation and
thus violating CMC.

On the other hand, a sufficient (but not necessary) condition for CFC to hold is
that (i) and (ii) hold, and (v) the data contain no deterministic but only pseudoinde-
terministic dependencies. In that case, violations of CFC have Lebesgue measure 0,
which entails that they can only be produced under very strong assumptions (Spirtes
et al. [2000], pp. 41– 2). In turn, this is typically taken as a reason to expect them to
be very rare.

At the same time, there are well-known contexts in which BN axioms are frequently
violated and, hence, not justifiably assumable. One such context, relevant for the
remainder of this paper, involves deterministic dependencies in the data (which gen-
erate conditional probabilities equal to 1). In the presence of determinism, viola-
tions of CFC are commonplace (Spirtes et al. [2000], §3.8; Glymour [2007], p. 236).
To illustrate, whenever the dependencies along a path V1 Ð→ V2 Ð→ V3 are de-
terministic, that is, whenever V1 determines V2, which determines V3, it holds that
Pr(V3 ∣V1 ∧ V2) = Pr(V3 ∣V1) = 1, namely the indirect cause V1 screens off V3 from its
direct cause V2. However, these screening-off relations are not entailed by CMC, and
hence violate CFC. That is, every deterministic chain violates CFC. The systematicity
of CFC violations under determinism entails that PC is not justifiably applicable to
deterministic data.

3 Gebharter’s Proposal

While PC is one of the most frequently discussed causal discovery tools, it has played
no role so far in constitutive discovery. The main reason is that constitution is com-
2 The notion of a direct common cause, in turn, is spelled out as follows: for any V1 and V2 (V1 ≠ V2)

in V, V3 is a direct common cause of V1 and V2 if and only if V3 is a direct cause of V1 and a direct
cause of V2 relative to V ∪ {V3}.
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monly assumed to be characterized by (non-reductive) supervenience (see, e.g., Glen-
nan [1996], pp. 61–2, and Eronen [2011], ch. 11), which generates deterministic depen-
dencies: a complete set of constituents forms a supervenience base and thus a (modally)
sufficient condition of a phenomenon, to the effect that there cannot be a change in
the phenomenon without a change in its constituents. By contrast, as indicated in
Section 2, PC is normally considered to be applicable to (pseudo)indeterministic data
only.

To further clarify the difference between indeterministic and deterministic depen-
dencies, consider the mechanism operating in an amplifier. Let G represent the phe-
nomenon of gain, or absolute total voltage increase, of an amplifier subject to a voltage
input I. Amplifiers are built by assembling active elements, usually transistors, in a
circuit. We assume that the amplifier in question is a two-stage amplifier, such that the
signal received by a first transistor is amplified and fed to a second transistor, which
further amplifies it. Let A and B be the transistors’ absolute individual gains. Then,
the amplifier’s overall gain in response to any given input I = i is some indeterministic
function G = rGi − i + εG, where rG indicates the amplifiers’ amplification ratio and εG
is a noise term. For instance, if I = 2 volts and the amplification ratio is 8, then the
overall gain is G = 8 × 2 − 2 + εG volts, where 14 (i.e., 8 × 2 − 2) volts and εG volts, re-
spectively, are G’s deterministic and non-deterministic components. Analogously, the
transistors’ gains are also given by indeterministic functions, namely A = rAi − i + εA

volts and B = rBi − i + εB volts. Assume that the first transistor amplifies by a ratio
of 2, and the second amplifies by a ratio of 4.3 Then, when subject to an input I = 2

volts, the first transistor amplifies that signal by a gain of 2×2 − 2 + εA volts; and the
second transistor receives the amplified signal (2+ 2+ εA) and amplifies it further by a
gain of 4 × (2 + 2 + εA) − (2 + 2 + εA) + εB volts. By contrast, the relation between the
overall gain G on the one hand, and the transistors’ individual gains A and B on the
other hand, is not indeterministic but deterministic: G is simply the sum of A and B,
meaning that A and B determine G, such that whatever noisy component is present
in G, it is inherited from, and fully accounted for by, the noise in A and B. More
precisely, supervenience entails that rGi − i + εG = rB(rAi + εA) − i + εB. When I = 2

volts, 8 × 2 − 2 + εG = 4 × (2 + 2 + εA) − 2 + εB, that is, εG = 4εA + εB.
Notwithstanding the frequency of CFC violations under determinism, Gebharter

([2017b], pp. 2652–4) has—surprisingly—argued that constitution satisfies the same
axioms, which PC assumes for causation. More specifically, he contends that the
screening-off behaviour of complete sets of constituents (i.e., sets comprising a phe-

3 This yields the amplifier’s overall amplification ratio of 8 because a serial amplifier’s amplification
ratio is the product of its transistors’ amplification ratios.
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nomenon’s complete supervenience base) is analogous to that of deterministic direct
causes and that the screening-off behaviour of incomplete sets is analogous to that of
indeterministic direct causes. From that, he infers that constitutive relations can be
represented by causal BNs and that, with some restrictions, PC is directly applicable
to variable sets featuring both constitutive and causal relations, such that the uncov-
ered dependencies can then be grouped into causal and constitutive dependencies by
using knowledge of spatiotemporal overlap (i.e., parthood relations) between instances
of variables. In short, Gebharter claims that the PC algorithm can perform causal and
constitutive discovery in one go.

Given the well-known problems determinism creates for BN axioms, the natural con-
clusion to draw from Gebharter’s finding that constitution behaves like deterministic
direct causation would be that BNs are incapable of representing systems featuring
constitutive relations, just as they incapable of representing systems featuring deter-
ministic causal relations, and a fortiori that PC is inapplicable to systems featuring
constitutive relations. Aware that his proposal raises severe questions, Gebharter dis-
cusses two approaches to reconcile the deterministic nature of constitution with BN
axioms (cf. Gebharter [2017b], pp. 2661–2):

(A) Only apply PC to incomplete constitutive sets, which do not form complete
supervenience bases and, hence, do not generate deterministic dependencies in
the first place.

(B) Allow for deterministic dependencies but only apply PC to systems featuring no
more than two mechanistic levels.

Approach (A) amounts to testing for determinism prior to a BN analysis (by, e.g.,
performing a multicollinearity test) and, if that test is positive, abstaining from ap-
plying PC. A variable set V featuring constitutive relations will only be free of de-
terministic dependencies provided that no phenomenon in V has a complete set of
constituents in V. As constitution, according to Gebharter, technically behaves like
causation, missing constituents are on a par with missing causes of the phenomenon.
Since constituents typically are not only relevant to the phenomenon but, on separate
paths, also to other (micro-level) variables in V, it follows that missing constituents
amount to missing common causes of two (or more) variables in V. If such common
causes are missing, Sufficiency requires that they be fixed to the same value for all
units in the population. However, as they are constituents of a phenomenon in V and,
thereby, in the latter’s supervenience base, they cannot be fixed, on pain of restraining
the free variation of the phenomenon and, in consequence, of inducing spurious cor-
relations between the phenomenon and other variables, in violation of CMC. In sum,
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missing constituents that are not fixed induce a violation of causal Sufficiency, in which
case CMC tends to be violated, too (Gebharter [2017b], p. 2660). Thus, adopting ap-
proach (A) in an attempt to avoid CFC violations generates frequent CMC violations,
which is why Gebharter concludes that (A) fails to reconcile the deterministic nature
of constitution with the BN axioms. To justifiably assume CMC, V should contain
complete constitutive sets, meaning that data over V should feature deterministic
dependencies.

This leaves us with approach (B), which Gebharter indeed advances as a solution to
the problems prompted by the deterministic nature of constitution (Gebharter [2017b],
p. 2662). In the previous section, we have seen that chains of at least three deterministi-
cally related variables are a paradigmatic type of structure generating CFC violations.
Without argument, Gebharter takes such chains to be the only source of CFC vio-
lations induced by determinism. Accordingly, he stipulates that PC be only applied
to mechanistic systems with no more than two levels, which excludes deterministic
chains.

To understand what exactly this two-level restriction entails, we need to clarify
what Gebharter means by a level or by the predicate ‘. . . is at a lower level than
. . . ’. Unfortunately, he does not provide an explicit definition of this notion. In the
mechanistic literature, the ordering among levels is often spelled out by means of the
notion of constitution: X is at a lower level than Y if and only if X constitutes Y (see,
e.g., Craver [2007], p. 189). However, in the context of constitutive discovery, where
information about constitution is wanting, one cannot draw on constitution to fix the
level ordering. That is, as the two-level restriction is intended to facilitate the inference
to constitution, constitution cannot be presupposed in order to spell out the two-level
restriction, meaning that the notion of a level cannot be understood along the lines
of (Craver [2007], p. 189). But what can be presupposed in contexts of constitutive
discovery is parthood information, which, we submit, is the next best conceptual basis
to clarify Gebharter’s two-level restriction.

Mechanists typically assume clarity on spatiotemporal parthood relations. That is,
for any two variables X and Y , they assume clarity on whether X and Y stand in a
relation of proper parthood, that is, on whether the instances of X occupy a spacetime
region strictly contained within the instances of Y , or vice versa. For simplicity, we
subsequently talk about variables standing in a parthood relation, even though, strictly
speaking, only their instances may stand in such a relation. In the vein of (Eronen
[2013], p. 1047), we define a variable X to be a direct proper part of a variable Y if
and only if X is a proper part of Y and there does not exist another variable Z that
is a proper part of Y such that X is a proper part of Z. This yields an order of direct
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proper parthood, which can be used to locally distinguish spatiotemporal levels of a
mechanistic phenomenon Y : Y is on the top level; the variables representing direct
proper parts of Y are on the next lower level; then come the variables representing
direct proper parts of the direct proper parts of Y , and so on.

Against that background, Gebharter’s two-level restriction can now be said to stip-
ulate that a variable set V constitutively analysed by PC contains variables from no
more than two spatiotemporal levels. That is, V may include a phenomenon and its
parts on one lower level in the spatiotemporal level hierarchy, but no parts of parts of
it. Or differently, V must not contain any triple of variables ⟨V1,V2,V3⟩ such that V1 is
a part of V2, which is a part of V3. This restriction does not presuppose clarity on con-
stitutive relations, since—to reiterate—not all parts are constituents. The restriction
excludes that V contains constituents of constituents of a phenomenon, which in turn
excludes that V contains deterministic chains inducing violations of CFC. Gebhar-
ter believes that it is thereby ensured that deterministic dependencies do not conflict
with CFC more frequently than indeterministic dependencies and, hence, that CFC
is justifiably assumable even for mixed variable sets featuring both phenomena and
constituents—rendering PC applicable for the purpose of constitutive discovery.

The following sections critically review Gebharter’s proposal.

4 Markov Violations Due to the Two-level Restriction

Before the next section discusses whether Gebharter’s two-level restriction really ren-
ders CFC justifiably assumable for a variable set V comprising a complete set of
constituents for every phenomenon in V, we want to point out that satisfying the two-
level restriction for V amounts to excluding certain variables from V. This is bound
to conflict with Sufficiency’s call for including all direct common causes or fixing them
to constant values. If there exists a direct common cause of two variables in V that
is on a third level with respect to two other variables in V, the two-level restriction
requires it to be excluded from V. But if that direct common cause cannot be fixed
to a constant value when the other variables in V vary, excluding it from V violates
Sufficiency and a fortiori CMC.

To make this problem concrete, consider the structure in Figure 1, where V1 denotes
a phenomenon with two causally connected constituents V2 and V3. V3 itself has a
constituent, V4, which is a common cause of two downstream effects V5 and V6. Subject
to the two-level restriction, V4 must be excluded from the analysis when investigating
the interplay between the variables in V = {V1,V2,V3,V5,V6}. But if V4 remains latent,
Sufficiency requires that it be fixed to a constant value in all units of the population.
However, this cannot be done in a study scrutinizing the structure in Figure 1, which
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Figure 1: A hypothetical structure where arrows denote causation and double arrows con-
stitution. Ovals contain variables in parthood relations, and dashed lines separate upper-level
from lower-level variables. Latent variables (V4) are not inside circles.

requires free variability of all involved variables. Since V4 is in the supervenience
base of V3, fixing it would suppress the free variation of V3, giving rise to spurious
correlations involving V3. In other words, excluding V4 from the analysed variable set
violates Sufficiency, to the effect that the spurious correlations between V5 and V6 as
well as between V3 (and possibly V1) and V5/V6 cannot be screened off, in violation of
CMC.

One might contend that CMC could be restored by, instead of V4, including suitable
ancestors of V4 outside of the spacetime region occupied by V1, which ipso facto are
also common causes of V3, V5, and V6. However, ancestors of V4 are not direct common
causes of V3 and V5. They contain the same information about V4’s descendants as V4
itself only if they raise the probability of V4 as close to 1 as possible. If that is the
case, however, further deterministic dependencies would result in addition to the ones
induced by constitution, which would further raise the chances of CFC violations.

Of course, whether the two-level restriction gives rise to CMC violations crucially
hinges on the particularities of an analysed structure. The problem only obtains in
structures such that a part of a part is a non-fixable common cause of two variables
in V. We have no reason to assume that structures of this type are rare, but, at the
same time, do not want to contend that they are particularly frequent. What we want
to insist on, however, is that Gebharter is wrong in believing that once a complete set
of constituents of every phenomenon in V is contained in V the remaining problem of
how to ensure Sufficiency ‘is just the general problem of how to guarantee for causal
sufficiency, which all causal modeling approaches have to face’ (Gebharter [2017b],
p. 2661). Gebharter’s two-level restriction, which he introduces to maintain CFC
despite the presence of deterministic dependencies, is not without consequences on the
difficulty of ensuring Sufficiency and CMC. Establishing the satisfaction of Sufficiency
and CMC is more difficult in the case of mixed variable sets comprising variables from
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no more than two levels than it is in the case of ordinary variable sets analysed in
causal modelling.

5 Extensive Faithfulness Violations

Let us now turn to whether mechanistic systems on no more than two levels can
justifiably be assumed to comply with CFC. Section 3 has shown that, to satisfy CMC,
mechanistic systems must be analysed relative to variable sets V with complete sets
of constituents C. Subject to the supervenience of phenomena on their constituents,
every such set C determines its corresponding phenomenon. This universal bottom-up
determination yields that every phenomenon is screened off from all other variables—
whether in V or not. The reason is that determination is monotonic: for any arbitrary
variable Vi, if C determines V1, then C ∧ Vi also determines V1. If Pr(V1∣C) = 1, then
Pr(V1∣C ∧ Vi) = 1, meaning that C screens off V1 from any variable Vi. CFC is only
satisfied in such contexts if the conditional independencies between the phenomena
and all their non-constituents are entailed by the true graphs, meaning that all macro
phenomena in fact are both uncaused (they only have incoming arrows from their
supervenience-base variables) and causally inert, that is, causally isolated.

To illustrate, reconsider our amplifier example from Section 3 and let the analysed
variable set be G = {I,G,S,A,B}, where I (the amplifier’s input), G (the amplifier’s
overall gain), A (the first transistor’s absolute gain), and B (the second transistor’s
absolute gain) are complemented by S, which denotes, say, the distortion of the signal
received by a loudspeaker. Since A and B determine G (from the bottom up), A and B
screen off G from I and S, or formally I,S⊥⊥G ∣A,B.4 These conditional independencies
comply with CFC only if the amplifier’s overall gain is de facto neither caused by its
input nor a cause of the distortion in the loudspeaker. More generally, to satisfy CFC,
the amplifier’s overall gain must be assumed to be causally isolated from the rest of
the universe.

That, of course, is a pill impossible to swallow for most mechanists, namely the
addressees of Gebharter’s proposal, as they tend to be non-reductive physicalists who
endorse the existence of macro-level causation (see, e.g., Glennan [1996], pp. 61-2, Ero-
nen [2011], ch. 10, Eronen [2012], or Kistler [2009]).5 They will thus reject the causal
isolation of all phenomena and, consequently, interpret the conditional independencies

4 By contrast, A does not screen off I and B. When holding the absolute gain of the first transistor
fixed, I still makes a difference to the absolute gain of the second transistor. For the same reason,
B does not screen off A and S, and A and B do not screen off I and S.

5 In fact, we are not aware of a single proponent of the mechanistic framework who would endorse
the causal isolation of macro phenomena.
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Figure 2: Graph (a) is the true structure of a two-stage amplifier mechanism over G =

{I,G,S,A,B} for an epiphenomenalist*. Graph (b) results from applying PC to the true
conditional (in)dependencies over G, where G is a deterministic function of A and B.

between phenomena and all non-constituents in contexts featuring complete sets of
constituents as CFC violations obtaining even in two-level systems.

In turn, to avoid CFC violations, Gebharter ([2017a]) rejects non-reductive physical-
ism and endorses a radical form of macro-level epiphenomenalism, call it epiphenome-
nalism*, namely the view that non-fundamental properties are not only causally inert
(as entailed by standard epiphenomenalism) but also uncaused.6 More concretely, ac-
cording to epiphenomenalism*, the true graph for our amplifier example is the one in
Figure 2a. Against that backdrop, the fact that G is screened off from I and S by
A and B follows from CMC applied to the true graph and, hence, does not violate
CFC. Clearly though, this manœuvre not only clashes with the standard metaphys-
ical commitments in the mechanistic literature but also with the scientific practice
of those disciplines that are most interested in constitution, such as the social and
biomedical sciences, which routinely engage in investigating causal relations among
macro variables and, hence, do not commit to epiphenomenalism*.

Worse yet, in addition to bottom-up determination, mechanistic systems with no
more than two levels may also feature top-down determination, to the effect that
not only phenomena are screened off from all incoming and outgoing influences, but
also constituents can be screened off in this way. This problem is best introduced by
reconsidering the amplifier example. The amplifier’s absolute overall gain G is the sum
of its constituents A and B. However, the function of addition is reversible: it not
only holds that G is determined by A and B, but also that A is determined by G and
B (e.g., G =14 ∧ B =12 determines A=2) and that B is determined by G and A (e.g.,

6 Gebharter insists ([2017b], p. 2660) that macro variables may still be involved in ‘inefficient’ (or
‘unproductive’) causal relations, that is, causal relations not manifesting themselves in difference-
making patterns in data and, hence, undetectable by methods of causal data analysis. Hence,
Gebharter endorses epiphenomenalism* with respect to efficient causation only. But admitting
inefficient relations in a formalism that takes difference-making to be necessary for causation is
unfounded and ad hoc.
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G =14 ∧ A=2 determines B =12). Hence, every variable in M = {G,A,B} is screened
off from I and S by the other two elements of M.

If PC is applied to oracle information on conditional (in)dependencies inG, all edges
connecting the variables in M to the variables in G ∖M will be removed, resulting
in the graph skeleton in Figure 2b. This graph is non-Markovian because the pairs
⟨I,A⟩, ⟨I,B⟩, ⟨A,S⟩, ⟨B,S⟩ are unconnected even though these variables are pairwise
unconditionally dependent. Under the assumption that CMC is satisfied, Figure 2b
cannot amount to the skeleton of the true graph because too many edges have been
eliminated. Moreover, since no Markovian graph over G exists, which entails all the
independencies depicted in Figure 2b, this constitutes a so-called detectable violation
of CFC (Zhang and Spirtes [2016], p. 252), namely a CFC violation ensuing from
the fact that the data cannot possibly be modelled in compliance with BN axioms.7

No metaphysical background assumption—whether epiphenomenalism* or else—could
ever reconcile the independencies in Figure 2b with CFC. The only remaining conclu-
sion is that CFC is violated in this two-level mechanism, and a fortiori that PC is
inapplicable to our amplifier system.

The possibility of top-down determination shows that not even the idiosyncratic
metaphysical background of epiphenomenalism* suffices to secure the applicability
of PC to mixed variable sets complying with Gebharter’s two-level restriction. The
crucial follow-up question now becomes how widespread top-down determination is.
It is clearly not limited to amplifier gains or even to phenomena, whose values are the
sum of their constituents. It obtains whenever the relation between phenomena and
constituents is regulated by an aggregation function with the following reversibility
property: a function y = f(x1, . . . , xn) is reversible if and only if all of its inputs xi
are determined by its output y in conjunction with all of its other inputs apart from
xi, or formally, if and only if for all i, 1 ≤ i ≤ n, xi = f−1(x1, . . . , xi−1, xi+1, . . . , xn, y).
Examples of functions for which reversibility holds are linear functions, the product of
non-zero values, exponentiation of positive integers, the sum of squares, many Boolean
functions, or functions used in information coding, storage, and encryption (which are
explicitly exploited for their reversibility).

To provide another example, consider the phenomenon of voting by a show of hands.
Casting a vote, W = 1, can be constituted by a raise of either the left hand, L= 1, or
of the right hand, R = 1 (but raising both hands is invalid); or formally, W = 1 ↔

7 We thank an anonymous referee for pointing this out to us. The detectability of the CFC violation
would render the (conservative) PC algorithm applicable if it was only the so-called Orientation
Faithfulness component of CFC that was violated (Zhang and Spirtes [2016], pp. 254–5). What is
violated here, however, is the Adjacency Faithfulness component.
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(L = 1 ∧ R = 0) ∨ (L = 0 ∧ R = 1). This system of binary variables does not only
feature bottom-up determination but also top-down determination: any of the four
possible value configurations of {W,L} and of {W ,R} determine the value of R and
L, respectively.8 Hence, not only the phenomenon of voting but also the hand raisings
are screened off from all variables outside of that system. But hand raisings, for
example, have causes in the motor cortex and effects in air displacement, meaning
that outside variables can de facto causally interact with R and L. That these outside
variables can be screened off from R and L in mixed variable sets comprising complete
sets of constituents, therefore, violates CFC.

These considerations suffice to establish that, contrary to what Gebharter envisages
in approach (B), CFC violations in (deterministic) mechanistic systems comprising
only two levels are not rare but widespread—unlike CFC violations in (pseudoinde-
terministic) causal systems. The two-level restriction does not warrant the justifiable
assumability of CFC.

A possible response might be to further restrict the applicability of PC to mecha-
nisms regulated by non-reversible aggregation functions. Paradigmatic non-reversible
functions are periodic functions, products of zero, or the maximum and minimum
functions. If a phenomenon is aggregated from its constituents by a non-reversible
function, it does not hold for every constituent that its values are determined by the
phenomenon in conjunction with all other constituents, that is, top-down determina-
tion does not obtain. However, such an approach would differ in a crucial respect from
Gebharter’s original restriction to two-level systems in (B). A variable set V can be
ensured to comply with the two-level restriction by imposing that V does not contain
a triple ⟨Vi,Vj,Vk⟩ such that Vi is a spatiotemporal part of Vj and Vj is a part of Vk.
While identifying spatiotemporal parthood relations—clarity on which is generally as-
sumed in the mechanistic literature—is undoubtedly difficult, it does not presuppose
clarity on constitutive relations. In consequence, that V satisfies the two-level restric-
tion can be established independently of clarity on the constitutive relations obtaining
among the elements of V. The same does not hold for a restriction to admissible ag-
gregation functions. It is unclear how it could be established independently of clarity
on the identity of the constituents that a phenomenon is aggregated from its con-
stituents in V by a certain type of (non-reversible) function. What type of function
regulates the interplay between phenomena and constituents can only be determined
after the constituents have been identified. However, the latter is exactly the purpose
of Gebharter’s procedure. Hence, an attempt to avoid CFC violations resulting from

8 To illustrate for {W,L} and R: W =0 ∧ R=0 → L=0; W =0 ∧ R=1 → L=1; W =1 ∧ R=0 → L=1;
and W =1 ∧ R=1→ L=0.
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Figure 3: Voting with a non-reversible aggregation function. (a) is the true graph over O =

{M,L,R,W,D} under epiphenomenalism* (where double arrows are constitutive). Graph
(b) results from applying PC to the true conditional (in)dependencies over O.

top-down determination by restricting the procedure’s applicability to systems with
non-reversible aggregation functions would render that procedure circular.

Nonetheless, let us assume for the sake of argument that there are types of mecha-
nistic systems for which the nature of the aggregation function is known even in the
absence of clarity on the constituents. The applicability of Gebharter’s proposal could
thus be confined to mechanisms known to have a non-reversible aggregation function.
To show that not even such a restriction would ensure compliance with CFC, we mod-
ify the voting example such that a vote also counts as validly cast (W = 1) if both
hands are raised (L = 1 ∧ R = 1). The relation between the phenomenon W and its
constituents L and R shall hence be regulated by the non-reversible function of inclu-
sive disjunction (i.e., maximum): W =1 ↔ L=1 ∨R=1 (i.e., W = max(L,R)). While
we still get bottom-up determination from this system, that is, every value configu-
ration of {L,R} determines a value of W , we no longer get top-down determination.
Not every value configuration of {W,R} and {W ,L} determines a value of L and R,
respectively. For example, if W =1 and L=1, it is not determined whether R takes the
value 0 or 1, as both values are possible.

To decide whether Gebharter’s procedure is reliably applicable to structures for
which top-down determination can be non-circularly excluded, we embed this non-
reversible voting mechanism in a simple causal context. Let M be a variable repre-
senting the cause of the hand raising in the voter’s motor cortex, and let D represent
the ultimate decision taken by the vote. Let us moreover grant Gebharter that epiphe-
nomenalism* holds. It follows that the true structure over O = {M,L,R,W,D} is the
one in graph (a) of Figure 3. Contrary to constitutive arrows, causal arrows shall
again be indeterministic. In that system, L and R cannot be screened off from their
cause M by the other variables in O. However, since W is a deterministic function
of L and R, and D can be expressed as a probabilistic function of W , W encodes all
the information on L and R relevant to the probability of D. All that matters for the
decision is whether at least one hand was raised; whether it was the left or the right
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is irrelevant. Hence, given the value of W additional information about L or R has no
bearing on the probability of D. Or formally, D ⊥⊥L,R ∣W . Even without top-down
determination, W screens off the hand raisings from the resulting decision. If PC is
applied to oracle information on conditional (in)dependencies in O, it will detach D
from the voting mechanism, as shown in Figure 3b. Just as Figure 2b, Figure 3b
is non-Markovian because the pairs ⟨W ,D⟩, ⟨L,D⟩, ⟨R,D⟩ are unconnected despite
their being unconditionally dependent. Since no Markovian graph exists, which is
faithful to the (in)dependencies among the variables in O, CFC is again detectably
violated, which in turn establishes PC’s inapplicability—the two-level restriction (and
epiphenomenalism*) notwithstanding. In sum, strengthening approach (B) by adding
a restriction to certain types of aggregation functions is not a feasible option.

In sum, the question explored in this section must be answered in the negative:
Mechanistic systems on no more than two levels cannot justifiably be assumed to
comply with CFC. This confirms the received wisdom in the BN literature that variable
sets comprising phenomena and their constituents are simply beyond the scope of
warranted applicability of PC, which is limited to indeterministic data (cf. condition
3 in Spirtes et al. [2000], p. 351).

6 PCD Won’t Save the Day

Given the problems deterministic data generate for PC, Glymour ([2007]) has pro-
posed a variant of PC, called PCD, which is custom-built for variable sets featuring
deterministic dependencies. Accordingly, this section investigates whether the princi-
ple behind Gebharter’s proposal could be saved by implementing it with PCD instead
of PC. PCD aims to make causal discovery insensitive to CFC violations induced by
determinism. To this end, it operates like PC with one important exception. Unlike
PC, PCD does not take screen-off relations involving maximal conditional probabilities
of 1 to indicate the absence of causation. PCD only infers that two variables Vi and
Vj are causally unrelated if they can be screened off with non-maximal conditional
probabilities. If they can only be screened off with maximal probability, the output of
PCD features an edge between Vi and Vj that is marked as ‘uncertain’ with a question
mark (Glymour [2007], p. 236).

The first thing to note about the idea of replacing PC by PCD in Gebharter’s proce-
dure is that discovery by PCD is much less informative than by PC. While PC exploits
conditional independencies of 1 to infer to (causal) irrelevance, PCD simply abstains
from drawing any inference from such independencies. Furthermore, it is doubtful
whether the assumptions required by PCD are any more justifiable when analysing
mechanistic systems than the assumptions of PC—even though PCD’s assumptions
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Figure 4: (a) is the true graph over G, and (b) the skeleton output by PCD applied to the
true conditional (in)dependencies in G.

are clearly weaker than PC’s. While applying PC requires assuming that all con-
ditional independencies in the data faithfully reflect the true graph, applying PCD
only requires assuming that the conditional independencies with probabilities lower
than 1 are faithful to the true graph. But the version of the voting example with a
non-reversible aggregation function (max) has shown that bottom-up determination
may generate non-deterministic screen-off relations, which do not follow from applying
CMC to the true graph. The same happens in our amplifier example. Since the overall
gain, G, is the sum of the individual gains, A and B, of the amplifier’s two transistors, G
encodes all the information on A and B that is relevant to the probability of distortion,
S. Accordingly, although S is not determined by any subset of G = {I,G,S,A,B}, it
is screened off from A and B by the conjunction of the input to the amplifier, I, and
G: if we know the values of I and G, additional information on A and B has no bearing
on the probability of S, or formally, S ⊥⊥A,B ∣I,G. These conditional independencies
obtain even if I and G do not raise the probability of S to 1 and, hence, they should
be faithful to the true graph, if PCD is applied to data on our amplifier. However,
they are not.

If PCD is applied to oracle information on conditional (in)dependencies among the
variables in G, its output has the skeleton in Figure 4b. Here, CFC is violated because
the edges corresponding to the pairs ⟨A,S⟩ and ⟨B,S⟩ are missing, even thoughA and B
are causes of S (cf. Figure 4a). Moreover, contrary to the graphs in Figures 2b and 3b,
this graph is Markovian, as it preserves connections corresponding to all unconditional
dependencies. In particular, the pairs ⟨A,S⟩ and ⟨B,S⟩ are connected—via G. This
means that, differently from the CFC violations incurred by PC, this sort of CFC
violations is non-detectable.

Clearly, these (non-deterministic) CFC violations do not hinge on the particularities
of the voting or the amplifier example. If a set of variables D determines a variable Vi,
it easily happens that Vi encodes all the information on D relevant to the probability of
some downstream variable Vj. In all such cases, Vi renders Vj conditionally independent
of D, even if the corresponding conditional probabilities are below 1. Undoubtedly,
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this is a frequent pattern in systems featuring phenomena and complete sets of their
constituents. According to all metaphysical views that do not deny the causal effi-
cacy of constituents, these (non-deterministic) conditional independencies violate the
faithfulness standards of PCD and, thus, render the use of PCD unwarranted—again,
despite compliance with the two-level restriction. Moreover, since these CFC violations
are undetectable, the inapplicability of PCD will tend to go unnoticed. Consequently,
PCD may be unjustifiably applied, resulting in fallacious inferences. By contrast, the
detectability of the CFC violations incurred by PC ensures that PC’s inapplicability
does not go unnoticed, thereby preventing fallacious inferences. In sum, PCD is an
even less suitable tool for constitutive inference than PC.

7 False Positives

Recently, various studies (e.g., Zhang and Spirtes [2008], Zhalama et al. [2017]) have
investigated to what degree CFC violations affect the actual output of PC, among
other algorithms. These studies suggest that proper parts of PC’s outputs can, under
certain circumstances, be reliably interpreted causally despite CFC violations. More
concretely, it is CFC’s purpose to ensure that the absence of edges in PC’s outputs can
be interpreted in terms of the absence of causation. This interpretation is blocked if
CFC is violated. However, the interpretation of present edges in terms of the presence
of causation remains unaffected by CFC violations. So perhaps there is a case to be
made that, when applied to mechanistic systems, PC can still reliably infer the presence
of causal/constitutive dependence relations without incurring an unacceptable risk of
committing false positives, even if it cannot reliably infer the absence of such relations,
due to a severe risk of false negatives. If this holds up to scrutiny, Gebharter’s approach
could be used as a means to uncover the presence of constitutive and causal dependence
relations in mixed variable sets, even if it does not reliably exhibit their absence.

To investigate that question we set up two benchmark experiments; the first running
PC with the frequently used parametric independence test Fisher’s Z, and the second
running it with a promising non-parametric independence test called RCIT (Strobl et
al. [2018]). Each experiment consists of two series of inverse search trials testing the re-
liability of PC’s analysis of data simulated from a Gaussian data-generating structure
(in the sense of Edwards [2000], ch. 3), whose core has the form of the mechanism be-
hind our amplifier example. In both experiments, the first trial series has the objective
to determine the false positive ratios among unoriented and oriented edges issued by
PC when applied to data featuring deterministic dependencies, and the second series
to determine the ratio among these false positives ascribable to determinism. For that
purpose, the only difference between the data-generating structures used for the two
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Figure 5: PC-friendly expansion of the structure in Figure 2a over G∗ =G ∪ {X ,Y,Z}.

series is that the structure for the first series induces deterministic dependencies be-
tween certain variables whereas the one for the second series does not. More precisely,
in both trial series, all variables are indeterministic, that is, sampled with (normally
distributed) error terms, with the exception of the variable G, which is aggregated from
variables A and B deterministically (i.e., without its own, independent error term) in
the first series, and indeterministically (i.e., with its own error term) in the second.

The quality of PC’s outputs is known to be sensitive to various factors, such as the
existence of unshielded colliders, the sample size, the joint normality of the distribution,
or the linearity of the functional dependencies (see, e.g., Spirtes et al. [2000], p. 351).
As deterministic dependencies induced by constitution shall be the only obstacle for
PC, we ensure that the trials are otherwise favourable to PC. To this end, we do
not directly simulate data from the amplifier structure in Figure 2a but expand it by
adding three unshielded colliders, one on the transistor variables A and B each, and
one on the distortion variable S (see Figure 5).

The false positive ratios in the two trial series will, of course, depend on what we
take the true data-generating structure to be. In the second—purely causal—series,
the true structure is straightforwardly obtained by a causal interpretation of the graph
in Figure 5, according to which the edges A Ð→ G and B Ð→ G are causal and not
constitutive. In case of the first—mechanistic—series, however, different background
metaphysics disagree on what the true data-generating structure is, as we have seen
in Section 5. In order to remain maximally charitable to Gebharter, we grant him his
epiphenomenalism* and simulate the data in the first trial series such that the ampli-
fier’s input I appears in the equations generating the values of A and B, which, in turn,
appear in the equations generating the values of S. Yet, the variable representing the
overall gain, G, is neither simulated as a function of I nor is S simulated as a function of
G. In other words, we assume that the true graph over G∗

= {I,G,S,A,B,C,X ,Y,Z}

comprises no causal arrows in and out of G but that all causal influence goes through
its constituents A and B. That is, the true structure shall be the one obtained from
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an epiphenomenalist* interpretation of the graph in Figure 5.
We conduct the trials in R using the PC implementation pcalg by Kalisch et al.

([2012]). Replication scripts for the two experiments are available in the paper’s sup-
plementary material.9 For all trial series, we simulate 2000 data sets from the structure
in Figure 5 with a (large) sample size of 10 000 observations each. The first trial series
(in both experiments) processes the first 1000 data sets, and the second the remain-
ing 1000 data sets. We draw normally distributed values for all variables and for all
(mutually independent) error terms, all being centred around 0 and having standard
deviations of 1. All variables are related by linear functions. To avoid that our results
are sensitive to any numeric elements of those linear functions, we randomly draw—for
each of the 2000 data sets—non-zero numeric constants for exogenous variables and
parameters for endogenous variables (both from the interval [−5,5] ∖ {0}).

In the two trial series of the first experiment, we run the pc() function from
the pcalg package using the independence test gaussCItest implementing Fisher’s
Z. Moreover, we apply the majority rule (maj.rule = TRUE) from (Colombo and
Maathuis [2014]) that checks triples of variables for orientation ambiguities and we
set the significance level to α = 0.05. We are interested in false positive ratios for edges
and orientations. In an individual trial, these ratios correspond to the number of un-
oriented/oriented edges contained in the output graph but not in the corresponding
true graph of Figure 5, divided by the total number of edges in the output graph. We
also report completeness (or recall) ratios, that is, the number of unoriented/oriented
edges contained both in the output graph and the true graph divided by the total
number of edges in the true graph. In addition, we exhibit the recovery rates for a
number of oriented edges, which are relevant to our ensuing discussion of the results.
The bar chart in Figure 6 presents the results of the first experiment; it shows the
means of all of the above ratios over the 1000 trials of the first series in black and of
the 1000 trials of second series in gray.

We find a significant difference in false positive ratios. Under determinism, on aver-
age 25.0% of the edges and 29.7% of the orientations are false. Under indeterminism,
those numbers go down to 8.2% and 11.6%, respectively. That is, G being a deter-
ministic function of its constituents triples the false positive ratios. Under conditions
favourable to its performance, PC performs satisfactorily when it comes to identifying
edges and orientations. Still, the presence of only one determined variable leads to 3 of
10 orientations being wrong, which is a performance hardly describable as satisfactory
under otherwise ideal discovery conditions.

One reason for the difference in false positive ratios is that PC finds fewer screen-off

9 This is available at https://people.uib.no/mba110/docs/rep_material_BJPS2018-395.zip.

https://people.uib.no/mba110/docs/rep_material_BJPS2018-395.zip
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Figure 6: Results of the first benchmark experiment running PC with the parametric in-
dependence test Fisher’s Z. Bar plots present completeness ratios for edges (e.complete)
and orientations (o.complete); false positive ratios for edges (e.false.pos) and orientations
(o.false.pos); and recovery rates for a number of interesting oriented edges.

relations under determinism, resulting in more inferred adjacencies per trial overall. On
average, PC issues 12 adjacencies per trial in the first series and only 8.7 in the second
series. Some of these additional adjacencies are true, some of them not; some of them
are correctly oriented, some of them not. But the difference in false positives between
the two series is only to a small degree ascribable to the difference in the overall number
of inferred adjacencies, as can be seen by comparing the decrease in completeness and
false positive ratios between the two trial series. When G is a deterministic function
(i.e., without error term) of A and B, 81.8% of the edges and 68.8% of the orientations
of the true graph are recovered on average. When G is sampled with an error term,
those ratios go down to 72.7% and 58.7%, respectively. That is, the recovery rate of
the true graph decreases by 11% for unoriented edges and by 15% for orientations.
However, as we have seen above, the false positive rates decrease by over 60% when
G is not determined by A and B. That is, under indeterminism PC does not simply
avoid mistakes because it infers fewer adjacencies overall, but because it hits the target
more reliably. Or inversely put, determinism induces PC to mistake spurious for causal
dependencies.

The culprit is Fisher’s Z test, which is unreliable in detecting spurious independen-
cies induced by determinism. The test measures partial correlations. However, the
concept of partial correlation (e.g., the correlation between X and Y given Z) is not
well-defined when certain pairwise correlations are deterministic (e.g., when Z deter-



22 Lorenzo Casini and Michael Baumgartner

mines X or Y ). With just one controlling variable Z, the partial correlation function,
ρX,Y ⋅Z , is defined in terms of the pairwise correlations ρXY , ρY Z , and ρXZ , as follows:

ρX,Y ⋅Z =

ρXY − ρXZρZY
√

1 − ρ2XZ ⋅

√

1 − ρ2ZY

When correlations are well defined, they take values over the closed interval [−1,1],
where 0 indicates absence of correlation, -1 indicates full anticorrelation, and 1 indi-
cates full correlation (Gentle [2013], p. 37). If Z determines X or Y , ρXZ or ρZY are 1,
such that one of the two squared roots, and thus the denominator, goes to 0, and the
partial correlation function goes to infinity. It follows that conditional independencies
due to determinism erroneously appear as maximal correlations.10 This problem does
not only affect Fisher’s Z test, but any parametric test of conditional independence.
In the family of graphical Gaussian models for continuous data, pairwise conditional
independencies correspond to zero partial correlations (Edwards [2000], pp. 11, 36–7).
In other words, under the assumption that all involved variables are multivariate Gaus-
sian, conditional independence between any two variables holds if, and only if, their
partial correlation is zero. All parametric independence tests try to reject a null hy-
pothesis about (zero) partial correlation. Whenever PC is run with a parametric test,
therefore, deterministic dependencies will induce false positives due to the unreliability
of those tests in the presence of determinism.

In the first trial series, this problem is visible in the high output rates of false oriented
edges in and out of G. For example, Y Ð→ G is issued in 82.4% of the trials, I Ð→ G
in 68.7%, and G Ð→ S in 71.5%. In fact, none of these variables should be adjacent,
because A and B determine G and, hence, screen G off from all other variables. But
these independencies are not correctly recovered by Fisher’s Z; and the resulting edges
are even oriented by PC in the majority of the trials. These false positives disappear
almost completely in the second series, where Y Ð→ G is returned in a negligible 2.2%
of the trials, I Ð→ G in 1.1%, and G Ð→ S in 1.3%.

10 Typical software implementations of Fisher’s Z, such as gaussCItest, have in-built heuristics
to avoid the explosion of the partial correlation function. As a result, independencies induced by
determinism will often not appear as maximal but as ordinary non-maximal correlations. Moreover,
there exist approaches for correcting extreme values of partial correlations by, for instance, shrinking
the empirical correlations towards the identity matrix (Schäfer and Strimmer [2005]). When Fisher’s
Z is run on a thus shrunk correlation matrix (e.g., produced via corpcor::pcor.shrink()), it
succeeds in reliably detecting independencies induced by determinism (we thank Marco Scutari for
pointing this out; see the replication script for a concrete example). However, that works reliably
only with a properly pre-determined λ value and it misleads PC into frequently inferring too many
independencies, to the effect that ordinary causal dependencies are no longer properly recovered.
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Before we investigate whether PC’s performance under determinism can be improved
by running it with a non-parametric independence test, we complete the discussion
of the results from our first experiment. Figure 6 shows that, under determinism,
PC correctly identifies the arrow A Ð→ G in a remarkable 76.4% of the trials, which
is significantly higher than the false positive rate. At the same time, the recovery
rate for B Ð→ G is only 13.5%, meaning that the prospect of discovering that B is a
constituent of G is less than half as high as the risk of inferring a false orientation.
What is more, the edge connecting B and G is mis-oriented from G to B twice as much
(25.9%) as it is oriented from B to G. Both of these effects are due to determinism,
as can be seen by the fact that, although the recovery rate for A Ð→ G is somewhat
lower (69.4%) in the second series, the one for B Ð→ G jumps to 61.6%. Also, the
false orientation of the edge between B and G goes down to 6%. Finally, we report
a noticeable mistake, unrelated to constitutional inference, which is committed more
frequently in the indeterministic setting: in series 1, PC issues an arrow from Y to S
in 29.3% of the trials; that number increases to 40.9% in series 2.

Our second experiment differs from the first only insofar as Fisher’s Z is replaced by
the non-parametric independence test RCIT (Strobl et al. [2018]). We re-analyse the
same 2000 data sets with a sample size of 10 000 each, using the same tuning parameters
as before. In a first trial series (analysing the first 1000 data sets), G is a deterministic
function of A and B, whereas in a second series, all variables are sampled with an
error term. The purpose of the second experiment is to scrutinize PC’s performance
in analysing mixed variable sets when it is run with a non-parametric independence
test, that is, a test not relying on partial correlations.

There exist various non-parametric independence tests, but most of them suffer from
severe performance limitations and cannot process sample sizes of 10 000 observations
in reasonable time (on an ordinary computer). We chose RCIT because of its compu-
tational efficiency, which allowed us to run the same tests as in the first experiment,
and because of its promising benchmarking track record (see Strobl et al. [2018]).11

The results of the second experiment are plotted in Figure 7. The first thing to
note is that, when PC is run with RCIT, it recognizes the independencies induced by
determinism much more reliably than with Fisher’s Z. In series 1, PC outputs Y Ð→ G
in only 27% of the trials, I Ð→ G in 7.8%, and G Ð→ S in 25.6%. Though these edges
appear even less (17.3%, 5.1%, and 14.5%, respectively) in series 2, they are issued

11 While, for example, bnlearn (Scutari [2010]) provides ready-made functionalities for running PC
with various non-parametric independence tests, RCIT is not yet available in standard PC software.
We thank Eric Strobl for sharing a wrapper function of RCIT, which can be called from within the
pc() function of the pcalg package.
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Figure 7: Results of the second benchmark experiment running PC with the non-parametric
independence test RCIT.

more frequently than in series 2 of the first experiment, where the indeterministic data
is processed with Fisher’s Z.

Next, in both trial series of the second experiment, the completeness ratios for edges
and orientations are much lower than in the first experiment. When run with RCIT,
PC recovers on average only 51.1% of the true edges and only 28.5% of the true
orientations under determinism. Correspondingly, the constitutive arrow A Ð→ G is
recovered merely half as much (37.9%) in series 1 of the second experiment as it is in
series 1 of the first experiment. Under indeterminism, the completeness ratios and the
recovery rates of the arrows connecting A and B to G improve a bit but they do not
reach the corresponding rates of the first experiment. More concretely, even though
series 2 features ideal discovery conditions for PC, PC only finds 40.6% of the true
arrows when it is run with RCIT. That performance is clearly unsatisfactory.

Yet, even though PC implemented with RCIT infers much fewer adjacencies overall,
it does not commit fewer false positives. When G is a deterministic function of A and
B, the false positive ratios for both edges (26.8%) and orientations (30.0%) are about
the same as when PC is run with Fisher’s Z. But when G is sampled with an error,
PC issues twice as many false positives with RCIT: 20.3% false adjacencies and 24.1%
false orientations. In sum, even though PC with RCIT recognizes the independencies
induced by determinism, its inferences from data comprising both causally and consti-
tutively related variables are not more reliable than when PC is run with Fisher’s Z.
On the one hand, PC with RCIT makes more mistakes of a different sort; for exam-
ple, it issues an arrow Y Ð→ S in 62.8% of the trials of series 1 (which number even
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increases in series 2). On the other hand, since PC infers fewer adjacencies with RCIT
overall, mistakes weigh more heavily on the averaged false positive scores.

In conclusion, correctly analysing systems featuring constitutively and causally re-
lated variables by means of PC—with either parametric or non-parametric indepen-
dence tests—is an intricate and error-prone matter, even when the system is linear,
with plenty of unshielded colliders, and the sample size is large. In the deterministic
trial series of both experiments, the probability that PC identifies B as a constituent
of G is only half as high as the probability of inferring a false orientation. This clearly
suggests a negative answer to the question whether PC could reliably infer the presence
of causal/constitutive dependence relations in mechanistic systems. In our (paradig-
matic) test structure, the prospect of correctly identifying the constituents of G is way
too low to counterbalance the risk of a false positive.

8 Conclusion

Alexander Gebharter has recently claimed that the PC algorithm may be fruitfully
brought to bear on the task of constitutive discovery. He proposes that it be used to
infer causal as well as constitutive dependencies in one go, despite the widespread view
that causation and constitution are fundamentally different kinds of dependencies.

In this paper, we argued that Gebharter severely underestimates the problems, which
constitutive relations and the features of his discovery approach induce for PC. First,
the two-level restriction, which Gebharter introduces to warrant the Causal Faithful-
ness Condition, renders the justification of the Causal Markov Condition more prob-
lematic than in ordinary causal discovery contexts. Second, Faithfulness is system-
atically violated even in mechanistic systems complying to the two-level restriction,
meaning that PC cannot be reliably applied. Third, the latter problem cannot be
remedied by employing a modified version of PC, namely PCD, which is designed
for contexts of Faithfulness violations induced by determinism. The reason is that
constitutive dependencies tend to generate probabilistic independencies, which are
unfaithful even by PCD’s weakened faithfulness standards. Fourth, only interpreting
the presence (and not the absence) of edges in outputs of the PC algorithm pro-
duced in Faithfulness-violating contexts does not amount to a promising weakening
of Gebharter’s proposal. In two extended benchmarking experiments, we showed that
the determinism induced by constitution prevents PC from reliably inferring even the
presence of causal/constitutive dependencies.

From all this, we conclude that Gebharter’s proposal to use PC for constitutive dis-
covery is a non-starter. PC is an algorithm custom-built for causal discovery contexts,
which are characterized by (pseudo)indeterministic dependencies. Deterministic de-
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pendencies, as induced by constitution, are beyond the scope of PC. Ultimately, this
finding casts doubt on Gebharter’s starting point, namely the assumption that consti-
tution may be treated as a form of deterministic direct causation complying with the
Causal Markov Condition and the Causal Faithfulness Condition.
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