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Abstract 

Judging an act’s causal efficacy plays a crucial role in causal decision theory. A recent 

development appeals to the causal modeling framework with an emphasis on the analysis 

of intervention based on the causal Bayes net for clarifying what causally depends on our 

acts. However, few writers have focused on exploring the usefulness of extending 

structural causal models to decision problems that are not ideal for intervention analysis. I 

found that it is structural models, rather than intervention analysis, serves as a valuable 

formal tool for a range of realistic decision problems that involve mixed causal 

mechanisms. The thesis concludes that structural models provide a more general 

framework for rational decision-makers. 

 

1. Introduction  

Decision theories concern an agent’s rational choice in a decision problem, where 

the agent faces different acts to choose from but is uncertain about each act’s possible 

consequences. Suppose she knows about the possible consequences of her different acts, 

the utility of each consequence, and the probability of each consequence. Then she can 
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acquire the expected utility of each act by multiplying the probability and the utility of 

each possible consequence of an act, and then adding the results of all possible 

consequences of the act. Philosophers in decision theory contend that a rational choice for 

an agent is an option that maximizes expected utility. 

Causal decision theory (hereafter, CDT) endorses the principle of expected utility 

maximization, but holds that the agent must take the causal relevance of her acts to their 

outcomes into consideration. Proponents of CDT share the belief that rational agents 

should maximize expected utility based on the causal information relevant to their acts, 

but differ in what approach best captures an act’s causal efficacy.1 

Interventionist decision theory (hereafter, IDT) is a form of CDT because IDT also 

holds that the relevant information that matters to our decision should be causal, but IDT 

approaches an act’s causal efficacy through intervention analysis within the framework of 

causal modeling.2 Specifically, IDT holds that an agent should conceive of an act as an 

 
1 David Lewis, 1981, p. 11; James Joyce, 1999, pp. 146; Ralph Wedgwood, 2013, p. 2644; Arif Ahmed, 

2014, pp. 8-9; Paul Weirich, 2016. 
2 Peter Spirtes, Clark Glymour, and Richard Scheines (2000, pp. 47-53) and Judea Pearl (2009, pp. 23-4, 

70-4) claim that an intervention I as an external force sets X to certain values, and I neither causes any 

variable other than X nor is caused by any other variable in a causal model.  

More formally, intervention analysis is assessed by the theory of causal Bayes net. Variables 

(denoted by uppercase letters) represent tokens of events that serve as relata of (type level) causal relations, 

and these variables range over possible values (denoted by lowercase letters) that represent these events’ 

occurrence or non-occurrence, or a value if an event is of a quantity. A Bayesian causal model M is a triple 

<G, V, P>, where V is a set that contains variables whose causal relationships we are interested in studying, 

P is the probability distribution of each variable, and G is a directed acyclic graph. G consists of nodes that 

represent variables in M, and arrows between nodes that represent causal relations. If the value of a variable 

Y depends on X, then there will be a directed path from X to Y. P satisfies the causal Markov condition if 

and only if each variable Xi in V is independent of all other variables except Xi’s descendent given Xi’s 

parent PAi, where “Xi’s descendent” stands for the other variables in V that are causally downstream from 

Xi and “Xi’s parents” stand for Xi’s immediate causes. More specifically, P satisfies the causal Markov 

condition if and only if the following condition holds: P(X1, …, Xn) = ∏ 𝑃(𝑋𝑖|𝑃𝐴(𝑋𝑖))𝑖 , where X1, …, Xn 

are all variables in V, and “PAi” stands for “parents of Xi.”  

An intervention on Xj removes all its pre-existing cause and set it to a specific value. Hence, the 

intervention analysis is done by removing 𝑃(𝑋𝑗|𝑃𝐴(𝑋𝑗)) from the above joint distribution. This amounts to 

set Xj to a specific value and make it no longer depends on its original parents. Hence, the effect of 
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intervention that disables all pre-existing causes of the act in a decision problem.3,4 This 

is because causal models represent the causal details relevant to a decision-making 

context in a rigorous mathematical language. Hence, when engaging with a decision 

problem, one should use causal models to clarify one’s assumptions about the causal 

structure of the problem, the information that one has available, and the question one is 

asking. More importantly, by making use of causal models, one can distinguish causation 

from correlation.5  

IDT instructs rational agents to choose an act x that maximizes the interventionist 

expected utility (hereafter, IEU. See below.). Let Y be a random variable that ranges over 

possible outcomes, P be a rational agent s’s subjective probability function, do(X = x) be 

s’s intervention to make s do x, V(Y = y) be the utility of an outcome y, and IEU(x) be the 

interventionist expected utility of act x.6 Here is Pearl’s definition of IEU:7  

 

IEU(x) =df ∑y P(Y = y | do(X = x)) V(Y = y) 

 

This definition asserts that s should assess the expected utility of an outcome y based 

on evaluating the effect of the intervention to make s do x.  

 

intervention on Xj is obtained by the new joint distribution: P’(X1, …, Xn) = ∏ 𝑃(𝑋𝑖|𝑃𝐴(𝑋𝑖))𝑖∉𝑗 .  
3 See Christopher Meek and Clark Glymour, 1994, pp. 1007-8; Pearl, 2009, p. 70 and pp. 108-112; 

Christopher Hitchcock, 2016, pp. 1158-9; Reuben Stern, 2017, pp. 4139-42; Stern, 2018, pp. 2-3. Meek and 

Glymour (1994) claim that we may conceive of our acts as interventions only when we believe that our 

actions are not caused by circumstances beyond our control. See Hitchcock, 2016, p. 1166, and Stern, 2018, 

pp. 7-8.  
4 Note that the notion of “intervention” in this paper is not the same as James Woodward’s (2003, pp. 94-

98). In this paper, “intervention analysis” is understood in terms of manipulating the probability distribution 

in a causal model where the causal Markov condition holds. See footnote 2.  
5 Meek and Glymour, 1994; Pearl, 2009, section 4.1; Hitchcock, 2015, p. 1175; Stern, 2017, p. 4147.  
6 Pearl uses the do-operator to denote “intervention.”  
7 Pearl, 2009, p. 108. For similar proposals, see Meek and Glymour, 1994, pp. 1009-10; Hitchcock, 2016, 

pp. 1162-4.  
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Nevertheless, Pearl (2017 and forthcoming) recently proposes a new definition of 

expected utility in terms of structural causal models (hereafter, SCM) as decision-making 

conditionals. Call the definition of expected utility with an application of SCM “the 

structural expected utility” (hereafter, SEU):8 

 

SEU(x) =df ∑y P(Yx = y) V(Y = y) 

 

Pearl entitles P(Yx = y) as a SCM defined counterfactuals.9 This definition declares 

that s should evaluate the expected utility of act x by using an SCM analysis of causality.  

IEU and SEU are methodologically different approaches. They instruct the agent to 

use different procedures in evaluating the causal information of decision problems. For 

instance, IEU tells the agent to obtain the probability distribution and the corresponding 

causal graph of each variable in a decision problem.10 In contrast, SEU requires 

delineating functional relations between relevant variables to attain the causal structure.11 

They are nevertheless different methodologies for the agent to approach decision 

problems. 

This paper attempts to assess the scope of SEU and IEU, their effectiveness in 

making explicit the causal structure of decision problems. Previous work has only 

focused on IEU’s implications for some controversial examples in CDT, such as 

 
8 Pearl, 2017, p. 1 and forthcoming, p. 1. Note that Pearl (2009, p. 108) originally endorsed IEU. Also, 

Pearl sometimes uses P(Y = y | do(X = x)) and P(Yx = y) interchangebly in his writings because the later can 

be translated and computed by the former under several strong assumptions. Such translation would fail in 

some examples. See Pearl, 2009, pp.245-7, 289-93 and Pearl et al., 2016, pp. 107-116. 
9 Pearl, forthcoming, pp. 2-6. For the comparison between the causal modeling’s and Lewis’s accounts of 

counterfactuals, see Eric Hiddleston, 2005, Woodward, 2003, pp. 133-145, and Pearl, 2009, pp. 238-41, 

and Pearl, 2017. 
10 See footnote 2. 
11 I will formally expand on this later. 
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Newcomb’s Problem and Psychopath Button, or issues of uncertainty about causal 

dependency.12 To the best of my knowledge, the distinction between IEU and SEU has 

not been dealt with in depth. The example in next section demonstrates that it is SEU, 

rather than IEU, serves as a valuable formal tool for a range of realistic decision problems 

that involve mixed causal mechanisms. Therefore, SEU provides a more general 

framework for rational decision-makers.  

The following sections of this paper are organized as follows. Section 2 presents the 

example of the Spinner and explains why IEU fails to deliver an intuitive result. Section 3 

gives a brief overview of SCM. Section 4 employs SCM to analyze the Spinner and 

shows how SCM and SEU, but not intervention analysis and IEU, deliver an intuitive 

result. 

2. The Spinner 

An agent has a chance to win a prize (called the reward). There is a spinner 

(drawn below) and an arrow in the circle. The agent may choose between two options 

“SAFE” and “ADD-X.” If the agent plays SAFE, the agent flicks the arrow and gains the 

value where the arrow stops. Since 40% of the time the arrow stops in area Z =1, 20% in 

area Z = 2, and 40% in area Z = 3, the expected average gain for the agent is 2 units of 

money. In contrast, option ADD-X allows the agent to increase the reward by X unit(s) of 

money for a small cost (much smaller than X) with the following rule: if the arrow stops 

in area Z = 1, Z will not be contributive, and the reward will have only X unit(s) of 

money. If the arrow stops in area Z = 3, Z will be contributive so the reward will have 3 + 

 
12 Meek and Glymour, 1994, pp. 1008-9; Hitchcock, 2016, pp. 1165-9; Stern, 2017, pp. 4142; Stern, 2018, 

pp. 15-16. 

Draf
t D

o N
ot 

Cite



 

 

6 

X units. However, if the arrow stops in area Z = 2, Z will be deleterious so the reward will 

have X  ̶  2 units.  

 

Figure 1. The Spinner 

 

Now, assessing the expected gain of option ADD-X is a complicated task.13 The 

spinner is a mixture of areas of Z that react differently to the agent’s choosing ADD-X. 

For example, Z is contributive to the reward in Z = 3, not contributive to the reward in 

area Z = 1, and deleterious to the reward in area Z = 2. The causal mechanisms of these 

areas differ from area to area because they exhibit different dispositions that manifest 

given the presence of the agent’s acting on ADD-X. 

Since the spinner consists of the areas with different dispositional properties, the 

intervention analysis has difficulty in accurately predicting the causal effect of choosing 

ADD-X. Simply put, intervention analysis is mostly assessed by the theory of causal 

Bayes net with the assumption that the relevant causal model satisfies the causal Markov 

condition. However, the procedure of computing the effect of acting on ADD-X as an 

 
13 This example is a modified case of “additive intervention.” Namely, one evaluates the effect of adding 

some amount from X without removing a pre-existing causal process of X. (In Newcomb's Spinner, I use X 

as an instrument variable, Y as some amount, Z as a preexisting cause of Y.) See Bill Shipley, 2016, pp. 9-

11, 50-4 and Pearl, 2009, section 11.4.4. Pearl et al. (2016, pp. 109-111) confirm that the effect of additive 

intervention could not be reduced to intervention-expressions alone.  

40%

20%

40%

Z = 1 Z = 2 Z = 3
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intervention amounts to computing P(Y = y | do(X = q)), which does not fix the level of Z. 

Since the level of Z is not fixed, we may estimate the value of Z by the 

expectation (𝐸(𝑍)), and 𝐸(𝑍) = 2 in the Spinner. Thus, the intervention analysis implies 

that the agent should predict that acting on ADD-X as an intervention will always result 

in the worst case scenario: Z will be deleterious so the reward will have X  ̶  2 units. 

Nevertheless, this is certainly incorrect. For only 20% of the time the value of Z is 

deleterious to the reward, but 80% of the time the value of Z is not deleterious to the 

reward. It seems that ADD-X does not always lead to the worst causal scenario of the 

value of Z being deleterious. Intervention analysis is limited when it is not possible for 

the agent to intervene on a relevant feature that has a mixture of different causal 

mechanisms.14 

In the Spinner, the agent cannot intervene to fix the amount of the reward. For doing 

so is an intervention that removes the pre-existing rule of the spinner, but the agent must 

flick the arrow, and it is not up to the agent to fix the arrow on the spinner that consists of 

areas that react differently to adding X. Thus, it seems that the intervention analysis of 

choosing ADD-X is unfitting if the intervention analysis is insensitive to the variant 

causal properties across the circle that is not intervenable. Hence, the agent’s intervention 

analysis of choosing ADD-X is inaccurate, and it remains unclear whether the agent 

should choose SAFE or ADD-X. 

How do we evaluate the causal efficacy of an act when the world is a mixture of 

variant mechanisms in which the act causes different outcomes? Presumably, if the agent 

 
14 One cannot evaluate the causal efficacy of ADD-X by the analysis of interventions P(Y = y | do(X = x, Z 

= z)), P(Y = y | do(X + Z)), and P(Y = y | do(X − Z)). As stipulated in the example, it is not possible for the 

agent to intervene to set Z to a fixed value.  

Draf
t D

o N
ot 

Cite



 

 

8 

knows each area’s causal mechanism, she should evaluate the causal effects of her 

interventions area by area. Since the issue is predicting the expected gain of ADD-X, the 

agent should average the causal effects in each area by its proportion to the whole circle 

to derive the desired quantity. 

This paper puts forward a justification for applying SCM to evaluate an act’s causal 

efficacy in decision theory. The last question of the above example—how we evaluate the 

causal efficacy of an act when the world is a mixture of variant mechanisms in which the 

act causes different outcomes—calls for a SCM analysis. For this purpose, the above 

example provides an independent reason for employing SCM to define an act’s expected 

utility in decision theory, namely, SEU. In what follows, I will introduce SCM, which 

may be of use to a rational agent to accurately predict what is causally downstream from 

her acts. 

3. Structural Causal Models 

SCM can formally represent causal relations in a rigorous mathematical language. 

They conveniently represent an agent’s belief about causal relationships among variables 

of interest and the causal effect of an intervention. A prior development of SCM includes 

the work of the economist Herbert A. Simon who specialized in decision-making. In his 

influential papers, Simon argues that we can define a causal system as some functional 

relationships in a structure—a specific arrangement of variables and equations in fixing 

the sequence of computing their solutions.15 I will begin with a brief account of SCM. 

 
15 Herbert A. Simon, 1957, pp. 10-13.  
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A structural causal model M consists of a quadruple <U, V, f , P>, where U is a set 

of exogenous (or background) variables, V is a set of endogenous variables. Exogenous 

variables represent background factors in M and are only determined by factors outside 

the model, and their values do not depend on the other variables in the model. In contrast, 

endogenous variables are determined only by the other variables in the model. f is a set of 

functions that assign each endogenous variable in V a value based on the values of the 

other variables in the model. P represents a probability distribution over all variables in 

U. Specifically, each function has the form:16  

Xi = fi (PAi, Ui), i = 1,…,n 

where Xi is an endogenous variable in V, PAi (which stands for “parents of Xi”) is 

a set of variables in V, Ui is an exogenous variable in U, and PAi and Ui together 

determine the value of Xi. Moreover, by assumption, each variable in V can only have one 

distinct equation that determines its value. Hence, each function represents an 

autonomous causal mechanism that predicts what value nature would assign to Xi in 

response to every possible value combination of (PAi, Ui). They are autonomous in the 

sense that one function fi continues to hold or remains undisrupted by external changes to 

the other functions in f. Hence, the causal relations in M are deterministic given a value 

assignment of Ui. Since every Xi is (partially or wholly) determined by at least one Ui and 

every Ui is not determined by any Xi in V, a value assignment of all Ui in U determines a 

unique value distribution over all Xi in V based on f. If P is the probability distribution 

 
16 Simon, 1957, pp. 18-19, 40; Pearl, 2009, pp. 202-3; Pearl et al, 2016, pp. 26-7.  
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over all exogenous variables, the probability distribution for the endogenous variables is 

also P.17, 18 

A structural causal model M corresponds to a causal graph G. If the value of a 

variable Y depends on X according to the function fY, then there will be a directed path 

from X to Y.19  

For the sake of illustration of SCM and an explicit representation of the causal 

relationships in the Spinner, I will use SCM to represent the Spinner, and demonstrate 

that the agent can accurately predict what is causally downstream of her acts in SCM’s 

expressions in the next section.  

4. Additive Intervention 

I use the linear SCM M1: <U, V, f , P> to represent the causal relationships in the 

Spinner. Let X, Y, Z be endogenous variables in V, and I, UZ be exogenous variables in 

U.20 These variables range over possible values (denoted by lowercase letters). X 

represents how much value the agent adds to the prize, Y represents the value of the 

reward, and Z represents the value that the arrow points to. The intervention variable I 

represents the agent’s intervention, and it is an exogenous variable because only outside 

factors (for example, the agent’s free will) determine its value. 

 
17 Simon, 1957, pp. 40-3, 54-6; Pearl, 2009, pp. 27-32, 205-6; Pearl et al, 2016, p. 98. 
18 A consequence of a structural causal model M is that the probability distribution of every variable in M 

satisfies the causal Markov condition (CMC). CMC holds in SCM under these further assumptions: (a) 

there is no causal loop in M, namely, the associated causal graph is acyclic; (b) the exogenous variables in 

U are jointly independent; (c) M includes every variable that is a cause of two or more other variables; and 

(d) if any two variables are dependent, then one is a cause of the other or there is a third variable causing 

both. See Pearl, 2009, p. 30; Daniel Steel, 2005, p. 10. 
19 Pearl, 2009, p. 203. 
20 For the sake of brevity, I omit some exogeneous variables. 

Draf
t D

o N
ot 

Cite



 

 

11 

In the Spinner, X can increase the prize Y, and Z also causally affects Y’s value. 

The causal graph G1 of this model M1 is figure 2: 

 

Figure 2. The causal graph G1 of the Spinner with some exogenous variables omitted. 

The following functions represent the causal relations between these variables: 

fX: X = {𝑞, 0}  

fZ: Z = 𝑈𝑍  

fY: Y = {

𝑍 𝑖𝑓 𝑋 = 0
𝑋  𝑖𝑓 𝑋 > 0 𝑎𝑛𝑑 𝑍 < 2

𝑋 − 𝑍  𝑖𝑓 𝑋 > 0 𝑎𝑛𝑑 𝑍 = 2 
𝑍 + 𝑋  𝑖𝑓 𝑋 > 0 𝑎𝑛𝑑 𝑍 > 2

 

UZ is an exogenous variable that determines the value of Z. The probability 

distribution of UZ is the composition of the spinner: P(UZ = 1) = 0.4, P(UZ = 2) = 0.2, and 

P(UZ = 3) = 0.4. Also, X = q represents the agent’s action to add q to the reward; X = 0 

represents the agent’s action to add nothing to the reward.  

Next, fX stands for the causal mechanism that specifies how the agent decides to add 

value to the reward: if she decides to add q amount of value, X will be set to q. If she 

decides to add nothing, X will be set to 0.  

fY stands for how X and Z determine the amount of the reward: if the agent adds no 

value (X = 0), then the value of Y will equal Z. If the agent adds some value (X > 0), but Z 

is lower than 2, then the value of Y will be X. If the agent adds some value, but Z equals 
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2, then the amount of Y will be X − Z. If the agent adds some value, and Z is larger than 2, 

then the value of Y will be Z + X. This function fY demonstrates different mechanisms in 

which Z reacts differently to the added value X in the process of determining the reward 

Y.  

Turning now to the question of how an agent predicts the overall causal effects of 

choosing ADD-X. The diverse areas have varied types of causal mechanisms represented 

by several levels of Z. In the Spinner, the circle consists of areas with three levels of Z: 

40% is Z =1, 20% is Z =2, and 40% is Z = 3. One can estimate the results in each level of 

Z and averages these effects by the probability distribution of Z.21 I now turn to explain 

how this sort of prediction is done in M1.
  

One may use P(Yx = y| Z = z) to represent the probability that an outcome y would 

obtain conditional on the action X = x in a structural model updated by Z = z.22 Given a 

structural model M and observed information Z = z, one can evaluate the conditional P(Yx 

= y | Z = z) in three steps:23, 24 

(1) Abduction: Conditionalize on the evidence z to determine the value of the 

variables in U. 

(2) Action: Replace the equations corresponding to variables in set X by the 

equation X = x. 

(3) Prediction: Use the modified model and the updated value of the variables in 

U to compute the value of Y. 

 

 
21 In cases where experimental units manifest variant dispositional properties, Spirtes, et al. (2000, p.165-7) 

also cite similar calculations to obtain predictions.  
22 P(Yx = y) is a subjunctive conditional. “P(Yx = y)” stands for the probability that, had an intervention do(X 

= x) been performed, an outcome Y = y would obtain. 
23 The following procedure draws from David Galles and Pearl (1998), Pearl (2009, pp. 202-6), and Pearl et 

al. (2016, pp. 92-8). Joseph Halpern (2000) provide another detailed account of causal inferences in SCM. 

For the sake of simplicity, I will skip some unnecessary technical details. Note that this is different from 

Woodward’s notion of causality analyzed with counterfactual interventions.  
24 Pearl, 2009, p. 37, 206. 
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The first step uses the information Z = z about the situation to fix the values of the 

exogenous variables in U. In particular, each value assignment of variables in U is the 

defining characteristic of a single individual or situation. For example, in the model M1, a 

value assignment Ui = ui stands for the identity of the agent and the spinner. The second 

step stands for the minimal modification of the model M that replaces fX with X = x. The 

third step predicts the value of Y based on the modified M and the updated values of U.  

Returning to the question posed in the Spinner, it is now possible to answer the 

agent’s question of assessing SEU of choosing ADD-X by SCM. First, the agent updates 

her value assignment of U from the supposition that Z = 1, 2, or 3 and identifies UZ. Next, 

she carries over the updated value of UZ to the model M1 modified by X = q. Finally, she 

predicts the value of Y by finding a solution to the following equations: 

fX: X = q 

fZ: Z = 𝑈𝑍  

fY: Y = {

𝑍 𝑖𝑓 𝑋 = 0
𝑋  𝑖𝑓 𝑋 > 0 𝑎𝑛𝑑 𝑍 < 2

𝑋 − 𝑍  𝑖𝑓 𝑋 > 0 𝑎𝑛𝑑 𝑍 = 2 
𝑍 + 𝑋  𝑖𝑓 𝑋 > 0 𝑎𝑛𝑑 𝑍 > 2

 

Next, she can predict that had she added q unit(s) to the reward when Z = 1, the 

reward would be q. Equally, she can also predict that had she added q unit(s) to the 

reward when Z = 2, the reward would be q  ̶  2. Had she added q unit(s) to the reward 

when Z = 3, the reward would be q + 3. Given that 40% of the time Z =1, 20% of the time 

Z =2, and 40% of the time Z = 3, the SEU of “ADD X” would be q + 0.8 minus the fee 

that the agent has to pay. Recall that the expected value of the reward if the agent plays 

Safe is invariably 2. Therefore, if option ADD-X allows the agent to pay less than 0.1 Draf
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unit of money to add X > 1.3 to the reward, she will be quite confident that option ADD-

X is preferable to option SAFE. 

The implication is that facilitating SCM and deriving SEU in the Spinner and 

similar situations is more fitting than intervention analysis. As demonstrated in the 

Spinner, the approach of SCM captures the mixture of variant causal mechanisms 

specified by the probability distribution of Z and the function fy, and thereby obtains more 

accurate characterizations of each area’s causal property and the causal efficacy of 

choosing ADD-X. Hence, in cases where an agent observes different causal properties 

that are not intervenable across the population in the real world, the agent might more 

adequately make statements about her acts’ causal efficacy in SCM’s mathematical 

terms.   

The cases of mixed causal properties are realistic, but often not ideal for intervention 

analysis that is appropriate when most members of a population share invariant causal 

profiles. These cases are common when an act causally affects an extensive system. For 

example, a socioeconomic policy affects diverse citizens; an educational program affects 

numerous students; a business decision affects countless customers; an approved drug 

affects various patients. It would seem that these complicated situations are not rare in 

decision problems. 

In this paper, I have identified the example of the Spinner which underlines the 

importance of SCM and SEU. In that example, the characterization of the causal effect of 

the act delivered by IEU and the characterization delivered by SEU diverge and the 

latter—not the former—seems intuitively correct. Moreover, the language of SCM and 

SEU is richer than intervention analysis and IEU because SCM and SEU enable the agent 
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to make necessary mathematical statements that relate directly to various causal 

dispositions in the real world.25 The theoretical implication of the Spinner is that SEU is 

recommended in similar situations, and that SEU might be a foundation for a more 

general decision theory. 
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