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Abstract

Patrick Suppes’ maxim “to axiomatize a theory is to define a set-
theoretical predicate” is usually taking as entailing that the formula
that defines the predicate needs to be transportable in the sense of
Bourbaki. We argue that this holds for theories, where we need to
cope with all structures (the models) satisfying the predicate. For in-
stance, in axiomatizing the theory of groups, we need to grasp all
groups. But we may be interested in catching not all structures of a
species, but just some of them. In this case, the formula that defines
the predicate doesn’t need to be transportable. The study of this ques-
tion has lead us to a careful consideration of Bourbaki’s definition of
transportability, usually not found in the literature. In this paper we
discuss this topic with examples, recall the notion of transportable
formulas and show that we can have significant set-theoretical pred-
icates for classes of structures defined by non transportable formulas
as well.

Keywords: Suppes predicates. Set-theoretical predicates. Axiom-
atization of theories. Classes of structures. Bourbaki. Species of struc-
tures. Transportable formulas.
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1 Introduction

A real revolution in the discussion of scientific theories arose in the 1950s
having Patrick Suppes as one and perhaps the most important responsible.
The ‘revolution’ was directed to the logical empiricist view (started in the
1920s) that a scientific theory would be seen as a formal calculus to which
an interpretation is ascribed via what Carnap termed correspondence rules
(other philosophers used other names for the very same thing). The ax-
iomatics would be, in principle, within classical first order logic, but later
they have acknowledged that modal operators could also be used; Feder-
ick Suppe’s (not Suppes) article presents us three steps in the development
of the empiricists’ ideas, the last one involving modal logics (see his article
in [18]).

The precise nature of the correspondence rules (CR) is not clear at all.
They look as informal associations (Carnap recalls that N. R. Campbell
called this set of rules a ‘Dictionary’ [7, Chap.24]) connecting theoreti-
cal terms (of the language) with observable terms. These two concepts,
roughly speaking, mean the following. Observable terms are those terms
either directly perceived by the senses (such as ‘hard’ and ‘hot’) or those
that can be measured by “a simple apparatus” [7, Chap.23], such as the
temperature of a certain body. Carnap’s own example of a CR is the fol-
lowing: “The temperature (measured by a thermometer and, therefore, an
observable in the wider sense explained earlier) of a gas is proportional to
the mean kinetic energy of the molecules” (loc. cit.). That is, the connec-
tion is given by an informal (almost ad hoc) association. Theoretical terms,
as the name indicates, are ‘theoretical’ and cannot be availated as above; a
typical example is the kinetic energy in the above example. Despite Car-
nap had written his book after the raising of modern model theory [8], he
doesn’t consider formal semantics, where the association of language-terms
with ‘the reality’ is given by formal (mathematical) rules, and this ‘reality’
is taken as a set-theoretical structure. This brings important distinctions
we shall made later.

Several criticisms were posed to this view, some of them by Suppes
himself. It is enough to remember here that in providing this kind of ap-
proach to a huge theory such as general relativity, which requires several
‘step theories’ such as tensorial calculus, Riemannian geometry, partial
differential equations, real analysis and so on, would turn the axiomat-
ics something rather difficult to follow, for all these step theories would be
in need of being axiomatized too.

Suppes started by considering all these step theories as done in ad-
vance, presupposing them as already given by (informal) set theory and
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directed the efforts to the interested theory itself. This seems simple today,
but, as we have said, constituted a real advance in the axiomatic approach
to scientific theories, a program that was suggested by David Hilbert in
the sixth of his celebrated 23 Problems of Mathematics [14]. The new re-
sulting program was named the semantic approach to theories, in contrast to
the ‘syntactical’ approach of the logical empiricists. Suppes refers to these
two views as constituting the extrinsic approach (his semantic view) and
the intrinsic one [19].

Why informal set theory? Precisely because he didn’t wish to dis-
cuss the foundational issues; if we need tensors, they can be defined set-
theoretically. Do we need partial differential equations? Set theory does
the job. Do we need to be more specific about proofs? We proceed as
the mathematicians usually do. But of course if it is necessary to make
this base explicit, we can choose an axiomatic set theory that gives the de-
sired results, say (for most physical theories) the ZFC first-order system
[8, pp.592-3]. The important thing is that we don’t need any more to be
occupied with the details of these step theories, but just assume them, as
for instance physicists do in most cases.1

Let us give a more detailed simple example, to be used also later. This
is the case of semi-groups. As it is known from any basic book on algebra,
a semi-group is a (non-empty) set endowed with a binary operation which
is associative. We can write this in terms of structures (see more on this
below) of the form

S = 〈M, ?〉, (1)

where M , ∅ and ? a function from M × M to M, that is, an element
of P(M × M × M). As said before, the only axiom being this one (the
quantifiers range over M):

∀x∀y∀z(x ? (y ? z) = (x ? y) ? z). (2)

Examples of semi-groups, or models of this axiomatics, abound. The
set of real numbers endowed with addition of these numbers, the set of
natural numbers with multiplication, the set of all n × n matrices with
multiplication of matrices, etc. Suppes’ account was to show that this
move can be summed up by a certain formula of the language of set the-
ory,2 namely, the predicate (if we need to say, a formula with just one free

1Notice that in informal set theory we can do practically everything we wish in math-
ematical terms.

2Notice that the informal set theory has not a well defined language, but if necessary
we can reason as if the only specific predicate is membership, ∈. All other symbols are
either logical symbols or defined ones.
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variable) P(X) defined as follows:

P(X) := ∃M∃ ? (X = 〈M, ?〉 ∧ ? ∈ P(M×M×M) ∧ (2)). (3)

Important to realize that those who analise the definition claim for in-
stance that the formula is in the free variable X, as we see, and doesn’t
depend on any specific property of the set M, referring to only to the way
it enters in the formula by means of the whole expression [9]; so, it is trans-
portable in the sense of Bourbaki (see below). This means that there cannot
be imposed restrictions whatever on the principal sets occurring in the for-
mula (in the case, in the set M), for instance, the requirement that M must
be different from another non-empty set N (see below). But, could we use
the predicate below as the axiom, as in almost all standard books? That is,

P(X) := ∃M∃ ? (X = 〈M, ?〉 ∧M , ∅ ∧ ? ∈ P(M×M×M) ∧ (2)). (4)

Since this is important for that what follows, and since neither Bour-
baki nor those who mention his definitions are clear, we shall try to make
this claim precise.3 In fact, at §4 of his Algebra I book [4, p.30], Bourbaki
introduces the definition of group this way:

“Definition 1 – A set with an associative law of composition,
possessing an identity element and under which every element
is invertible, is called a group.”

The adaptation to semi-groups is immediate, just by requiring that the
operation (law of composition) be only associative. We see that the empty
set is not excluded of being a group (or a semi-group), and there is no
justification for that. We guess this has to be with his notion of trans-
portable formula, although as we shall see soon, the adding of something
like M , ∅ does not violates the transportability condition.

But sometimes we would be interested in collecting not all semi-groups,
but just some of them. Thus, we must add some restriction to the above
predicate, say by avoiding that some specific structure (or structures) en-
ter in the range of the predicate. In this case, some care is to be taken into
account.

Thus, we see that if we wish to axiomatize all models of a certain kind,
the formula must of course be transportable, which is the case when we

3Really, people in general simply adopt Bourbaki’s definitions taking into account that
they are clear. In our opinion, they are not.
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are (in Suppes’ sense) axiomatizing a certain theory, as the theory of semi-
groups, for in this case we are interested in collecting (as models of the
predicate) all semi-groups. But we can also use set-theoretical predicates
for collecting a certain classes of models, which doesn’t require the for-
mula to be transportable. Let us go to the details.

2 Mathematics: a world of structures

Nicholas (or ‘Nicolas’) Bourbaki is the pseudonym of a group of (mainly)
French mathematicians who, in the 1930s, intended to rescue French math-
ematics to actuality, that is, to keep it in the level and dealing with the
methods (the axiomatic method) that were being developed mainly in Ger-
many (the book by van der Waerden, Modern Algebra [22], was taken as
a paradigm).4 It is known that France lost many of its more important
scientists during the first world war, so that the mathematics taught in
the universities during the post-war times were still the ‘old’ mathematics
of the XIX century, and did not cover the most recent subjects with new
methods (the axiomatic method), such as abstract algebra. The group,
initially formed by Jean Dieudonné, Henri Cartan, André Weil, Claude
Chevalley and Jean Delsarte, started in 1934 a project termed Éléments de
Mathématique and, according to Dieudonné, planed to finish it in three
years. Dieudonné recalls that this was a plan of young and ill informed
students and that they never had planed such a thing if they were more
informed [13].5 Important to notice that the members of the group change
from time to time, so that the group is still alive today. The initial objective
was yet not achieved at all (which gives an idea of the wide task they as-
cribed to themselves). A very nice historical account about the group and
its realizations can be seen in [16]; further considerations in [9], [17].

The idea was to see all mathematical theories as formed by structures of
a kind.6 These structures were to be build from some fundamental struc-
tures, termed mother structures, which are the algebraic, ordering and topo-
logical structures, Bourbaki also acknowledges that this expressed a stage

4In explaining (p.ix) the purpose of his book, van der Waerden said that he wished “to
introduce the reader into the whole world of [algebraic] concepts”, by considering the
“recent expansion” in this field, “due to the ‘abstract’, ‘formal’, or ‘axiomatic’ school”.

5Meaning that they realized later the huge work they intended to cover in so few
years.

6Important to notice that Bourbaki didn’t deal with all fields of the mathematics of the
day, for instance leaving number theory and geometry aside. There is no apparent reason
for that.
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in the development of mathematics, so that further developments could
suggest other ‘mother’ structures. According to Corry [9], since Bourbaki
reputed ordering structures as fundamental, his axiomatics for sets ini-
tially took the notion of ordered pair as primitive [6], what was modified
in later versions, when he turned to the usual way of taking the unordered
pair as given by a specific axion, from which the ordered pair results by
definition. All other mathematical structures would arise from suitable
‘combinations’ of these mother structures. So, the field of the real numbers
was characterized by being a complete ordered field, these three words in-
dicating the (topological) completeness, ordering, and an algebraic struc-
ture [5, p.264]. A semi-group is an algebraic structure, so are the monoids,
groups, rings, etc.

We clearly see the formalistic purely syntactical approach of Bourbaki.
Mathematics is got by writing symbols in the paper according to the rules
stated in the Theory of Sets. If something was not written yet, it does not
belong to the field of mathematics. So, his notion of truth is quite peculiar,
in a certain sense constructive: something is true if we have a proof of
it, even an indirect proof, which shows that his mathematics is ‘classic’,
that is, the excluded middle law, so as reductio at absurdum, among other
‘classical’ procedures, hold. In the same vein, something is false if there
is a proof for its negation. Thus, something for which there is no proof
neither by the affirmation nor to its negation, is neither true nor false. In
other words, the mathematics is classic, by the metamathematics is not, being
constructive. Bourbaki doesn’t think of semantics as we are accustomed
nowadays.

2.1 Species of structures

In Chapter 4 of the book on set theory, Bourbaki develops his ‘theory of
structures’, which interests us here. In [11], the authors proposed a mod-
ification and adaptation of Bourbaki’s notions, grounding them in a set
theory with atoms. Here we shall follow Bourbaki, but without the tech-
nical details and subtleties. As said before, most of the content of present
day mathematics, according to Bourbaki, fall under the notion of struc-
ture.7 But, what is a structure? Bourbaki speaks of species of structures and

7Interesting to mention that the theory of categories [16] was never mentioned by
Bourbaki [9] (another omission are the Gödel’s incompleteness theorems [17]), although
the concept of category arose with one of its members, Samuel Eilenberg (together with
Saunders MacLane), and further developed for instance by another of members, Alexan-
der Grothendieck. Categories are ‘big enough’ to be treated as usual sets, so it would
be necessary to expand the logical (ZF) basis to cope with them, something that perhaps
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of structures of a certain species; intuitively speaking, using a terminology
which departs from him, a (mathematical) structure is precisely that we
are spectating it to be since our logical courses: a set, or a collection of sets,
endowed with relations and operations not only among their members
(which would characterize order-1 structures [15]) but also among collec-
tions of elements of these sets (the elements of the basic sets are called
individuals), relations among them, etc. So, we may have relations whose
relata are also relations, that is, the structures may by of order-n, n > 1.8

To give an idea of how things proceed, let us start with a finite col-
lection of sets E1, E2, . . . , En which will be the principal sets and a finite
collection A1, A2, . . . , Am of auxiliary sets (in our examples, we shall use
just three principal sets, F, G, and H). The auxiliary sets must not contain
any references to the principal sets. For instance, the vector space struc-
ture comprises a principal set V of vectors and an auxiliary set K of scalars,
while semi-groups have just one principal set M and no auxiliary sets. Us-
ing the set-theoretical operations of taking the power set and the Cartesian
products, we can obtain a sequence of new sets P(F), F × H, P(G)× H,
. . . . These sets are constructed from a very subtle schema S he terms an
echelon construction schema we will not recall here (but see [5, chap.4], [11],
[9]). The last set in the sequence is the echelon of scheme S. For instance,
to get a binary operation over a set F, we build a sequence of sets with a
certain schema S (omitted here), for instance (there is not just one schema,
so different sequences can be obtained) F, F× F, F× F× F, and finally we
get the echelon of scheme S, P(F× F× F). The binary operation will be an
element s ∈ P(F × F × F) (before, in our given example of semi-groups,
we have termed ? such an s), to which we impose the restrictions we wish,
written in the form of postulates, say that s must be associative, that is [5,
p.60],

s(s(a, b), c) = s(a, s(b, c)), (5)

which in our above terminology means ?(?(a, b), c) = ?(a, ?(b, c)), or sim-
ply (a ? b) ? c = a ? (b ? c).

Another important concept is that of canonical extensions of mappings.
Given an echelon construction schema S and two collections of sets E1, . . . ,

Bourbaki was not being up to do.
8We use the terminology ‘order-n’ instead of ‘first-order’, ‘second-order’ etc. to avoid

confusion with the order of the languages. Really, we can define order-n structures (n >
1) in first-order languages, say in first-order ZF; for instance, well-ordering structures
are not order-1, as it is easy to see (the postulate requires the reference to ‘all non-empty
subsets’, which is not a sentence of first-order.
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En and E′1, . . . , E′n, let us consider mappings (functions) fi : Ei → E′i . Bour-
baki defines extensions of these mappings from the sets in an echelon
based in S constructed over the Ei to the corresponding sets in the ech-
elon also based in S but now on the E′i , until getting a mapping from the
echelon of scheme S based on the Ei to the echelon of scheme S based on
E′i (the reader must be attentive with the terminology). This last mapping
is the canonical extension of the fi, written 〈 f1, . . . , fn〉S. If the fi are injective
(surjective, bijective), then 〈 f1, . . . , fn〉S will be injective (surjective, bijec-
tive) [5, p.261].

A species of structure Σ is defined this way. We take a collection of prin-
cipal base sets x1, . . . , xn, a collection of auxiliary bases sets A1, . . . , Am
and a specific echelon construction schema S(x1, . . . , xn, A1, . . . , Am). An
element s ∈ S(x1, . . . , xn, A1, . . . , Am) is the typification of Σ. The typ-
ification is written by Bourbaki as a formula T(x1, . . . , xn, s). Let now
R(x1, . . . , xn, s) be a transportable formula (see below) with respect to the
given typification, with the xi as the principal sets and the Aj as the aux-
iliary sets. This formula will be the axiom of the species of structures with
typification T. If we select some particular sets E1, . . . , En, U so that both
T(E1, . . . , En, U) and R(E1, . . . , En, U) hold, then U is said to be a structure
of species Σ. His first example is that of the species of structures of ordered
sets, where from a set A, we get (by a suitable echelon construction schema
S) the set P(A× A) and the typification s ∈ P(A× A) (a binary relation
on A), with the axiom s ◦ s = s (reflexivity) and s∩ s−1 = ∆A (transitivity),
being ∆A the diagonal of A (informally, the set ∆A = {(x, x) : x ∈ A}).
Other examples can be found in [5, pp.263ff].

Thus, the restrictions imposed to s constitute the axioms of the species
of structure (in the case of semigroups, the restriction is that s must be
associative). As we see, all of this relies on the notion of transportability,
for the axiom (the conjunction of the formulas we standardly use) must be
transportable. So, the predicate (4) defines the species of structure of semi-
groups, the semi-groups (the structures that satisfy the predicate) being
the structures of that species.

2.2 Transportable formulas

The notion of transportable formulas is important for our account, so that
it deserves a particular subsection. The definition is marked by Bourbaki
with the symbol ‘¶’, which means ‘difficult exercise’. So, let us go slow,
even without providing all the details. Important to remark that it does
not constitute a simple and easy definition. Interesting enough that peo-
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ple who mention Bourbaki’s account do not discuss it in full and, in our
opinion, neglect important aspects of it. This is why we shall give some
attention to it.

Think again of a semi-group. Remember that we (by hypothesis) in-
tend to develop the theory of semi-groups, which requires an axiomati-
zation of all of them (by the way, this is one of the main advantages of
the axiomatic method).9 So, we need to provide a definition that does
not exclude any semi-group from the list, which requires that our defi-
nition should not refer to any particularity of the domain M that could
leave some semi-group out, being not covered by the definition. So, we
cannot characterize semi-groups by saying things like ‘a semi-group is a
set M distinct from the set of the natural numbers so that blah-blah-blah’,
for in doing this we would be eliminating important semi-groups, such
as 〈N,+〉. In other words, the formula which characterizes the species of
structure must be transportable, or invariant by substitutions of the princi-
pal set(s), as we shall see soon.

Bourbaki calls (in our terminology) formulas ‘relations’. Suppose we
have an echelon construction schema S for n + m terms (sets), where there
are n principal sets x1, . . . , xn and m auxiliary sets A1, . . . , Am, which, as
before, is written S(x1, . . . , xn, A1, . . . , Am); let us abbreviate by S(xi, Aj).
As we have seen, an element s ∈ S(xi, Aj) characterizes a typification of s.
Notice that to typify something is just to select if from a certain set con-
structed by set-theoretical operations from base sets (principal and auxil-
iary). So, as seen before, ? ∈ P(M×M×M) is a typification of a binary
operation on the base set M. Another example is useful. Let us consider
vector spaces again, with V as principal set and K as the auxiliary set. We
form the Cartesian product K × V and chose an element · ∈ K × V. This
element can be written as

· = {〈k, α〉 : k ∈ K ∧ α ∈ V}. (6)

If we write 〈k, α〉 as k · α of simply kα for short, we see that the typifica-
tion characterizes the operation of multiplication of vectors by scalars.

The typification could involve several choices say s1 ∈ S1(xi, Aj), . . . ,
sp ∈ Sp(xi, Aj) if we have also several echelon construction schemes S1,
. . . , Sp. This of course defines a formula, which we write, as above, adapt-
ing Bourbaki’s notation, T(x1, . . . , xn, s1, . . . , sp). Now comes the ¶ part.

9Bourbaki emphasizes this. He says that the main task of axiomatization is that enable
us to study non-categorical theories (multivalent in his terminology). As he says, “The
study of multivalent theories is the most striking feature which distinguishes modern
mathematics from classical mathematics” [5, p.385].
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Let R(x1, . . . , xn, s1, . . . , sp) be a formula, and let y1, . . . , yn, f1, . . . , fn be
variables other than the xi and the sj. The fi are bijections from xi onto yi,
and Idj are the identity functions of the auxiliary sets Aj. Once we have
the canonical extension

〈 f1, . . . , fn, Id1, . . . , Idm〉S, (7)

we can get the s′j by applying these extensions to the sj, namely,

s
′
j = 〈 f1, . . . , fn, Id1, . . . , Idm〉Sj(sj), (8)

so that the formula R(x1, . . . , xn, s1, . . . , sn), by bijective mappings, gives
R(y1, . . . , yn, s′1, . . . , s′m). Then, the formula R is transportable if these two
formulas are equivalent, that is, iff we can prove in the system that

R(x1, . . . , xn, s1, . . . , sn)↔ R(y1, . . . , yn, s′1, . . . , s′m). (9)

The notation is in fact far-fetched. So, let us try to translate the defini-
tion to a language closer to that we use today. Let R(x1, . . . , xn, s) a formula
(we take just one s) and S be an echelon construction schema. If fi : xi → yi
(i = 1, . . . , n) are bijections, any canonical extension 〈 f1, . . . , fn〉S is also a
bijection. So, we get that

〈 f1 . . . , fn〉S
(

S(x1, . . . , xn, s)
)
= S(y1, . . . , yn, s′), (10)

being s′ = 〈 f1, . . . , fn〉S(s). Then, if R(y1, . . . , yn, s′) also holds, the for-
mula R(x1, . . . , xn, s) is transportable. Let us remark that (9) is speaking
in syntactical terms, that is, in proof. The equivalence must be shown on
syntactical grounds.10

But nowadays we are accustomed with semantics, so some authors
prefer to express the idea on semantical groundings [11]. In this case, we
can grasp the concept by considering two isomorphic structures A and B.
Let α be a sentence of the language appropriated for both structures.11 In
the present day ‘semantical’ language, α is transportable if and only if

10We emphasize once more the purely syntactical aspect of Bourbaki’s approach.
11We leave the formal definition of ‘appropriate’ out, keeping only with its intuitive

aspect. But see [11], [15].
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A |= α iff B |= α, (11)

that is, if and only if α is preserved under isomorphisms [11]. Let us take
an example. Think of the Peano’s axioms for arithmetics (within set the-
ory). The axioms can be written, in a standard language, as follows, where
the quantifiers range over the set of natural numbers N, except for the
third one, where quantification over subsets of N is also allowed, and
where 0 means ‘zero’ and n′ stands for the sucessor of n:

1. ∀n(0 , n′)

2. ∀n∀m(n′ = m′ → n = m)

3. ∀A(A ⊆N→ (0 ∈ A ∧ ∀n(n ∈ A→ n′ ∈ A)→ A = N))

Thus, N = 〈N, 0, ′〉 is a model of these axioms, the standard model.
According to Bourbaki, the axioms must be transportable. Let us prove
that using the semantic approach, by considering the first axiom. It is easy
to show that it is transportable. Really, let us consider another set N1 such
that N1 = 〈N1, 01, ”〉 is also a model of the above axioms (that is, it is
also a structure of that species). Thus, let f : N → N1 be a bijection such
that f (0) = 01 and f (n′) = ( f (n))”, the sucessor of f (n) in the second
structure. If m ∈ N1, let n = f−1(m) ∈ N, so that since n′ , 0, then
f (n′) , f (0) = 01. Thus m” , 01. In other words, N |= ∀n(0 , n′)
entails N1 |= ∀m(01 , m”). The converse is also easy to prove. With more
patience, we can prove that the other two axioms are also transportable.

Notice that this ‘semantic’ account is an interpretation of Bourbaki’s no-
tions and, although we agree that most mathematicians will take it for
granted, it can’t t be shown to be equivalent to the original approach, for
there is no way of comparison between then: one is syntactical, the other
is semantical, and we know that set theory is not a complete theory (when
syntax agrees with semantics). So, we must take care.

We also remark that neither axiom poses a restriction on the principal
set (namely, N). The restriction of being different of 0 is ascribed to the
sucessor of n, and this does not violate the definition of transportability.12

But let us take the following formula s(s(0)) = {{∅}} (Zermelo’s ‘two’).
Notice that now we have something different, namely, the presence of the

12Really, the formula is a particular case of Bourbaki’s own example shown in the quo-
tation below, namely, that (the negation of) s1 = s2 is transportable, just taking s1 as n′

and s2 being 0, both in N.
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set {{∅}} which is not part of the formal language. And, of course, tak-
ing another definition of ‘two’, we could have s(s(0)) being associated to
another set, say {∅, {∅}} (von Neuman’s ‘two’). Thus, s(s(0)) = {{∅}}
is not transportable.

Bourbaki gives us the following not so clear example, as fas as we
know, never discussed elsewhere:

“For example, if n = p = 2 and if the typification (. . . ) is ‘s1 ∈
x1 and s2 ∈ x1’, [then] the relation s1 = s2 is transportable. On
the other hand, the relation x1 = x2 is not transportable.” [5,
p.262].

Our explanation is as follows. The typification takes elements of a same
set x1, hence we need no more than this set in our echelon. The (only)
bijection will be some f : x1 → y1, being y1 a set whatever. Hence the
canonic extension 〈 f 〉S is f itself. Then, the formula (1) s1 = s2 conduces
to (2) f (s1) = f (s2) by the bijection. Obviously, if (1) holds, so does (2).
For the second case, we have two sets x1 and x2, and two bijections f1 :
x1 → y1 and f2 : x2 → y2. But x1 = x2 doesn’t entail that the set x1 (or x2,
since they are equal) is lead by the two bijections f1 and f2 in the same set,
so that not necessarily y1 and y2 are equal.

This last remark and the example may suggest something already men-
tioned earlier, namely, why Bourbaki didn’t made the exigence that the
domain of a group (and this applies also to semi-groups) needs to be not
empty. Apparently, this could be due to the fact that the formula x , ∅
seems to be not transportable, for the negation of a transportable formula
is also transportable and we could just take x2 = ∅ above. But this is false.
The emptyset has specific properties; let us see. Suppose we have a set
M (to go along with our example) for defining the species of structures of
semi-groups; should we use (1) or (4) as the axiom? It is indifferent, and
this is due to the restriction. Really, suppose we have again another N
(which plays the role of y1 in the definition), and let f : M→ N be a bijec-
tion. Since M , ∅, we conclude that N , ∅, so the restriction doesn’t im-
pede the transportability of the formula (as we shall see with more details
below, this will be not the case with other non-empty sets). The difference
in using (1) or (4) is that, as we have remarked, with the first we enable
the emptyset to be a semi-group, something that is avoided in the second
case.

Of course the above reasoning is grounded on the following immediate
theorem:
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METATHEOREM 1 A formula α is transportable if and only if all subformulas of
α are transportable.
Proof: If α has some subformula β that is not transportable, then β will be not
invariant under isomorphisms, so not will be α. The converse is trivial.

So, from the perspective of Bourbaki, we cannot select some structures
to be the models of some set-theoretical predicate; we must consider all
structures that satisfy the predicate. As we shall see, this is precisely the
case of Suppes’ set-theoretical predicates when used to axiomatize theo-
ries. But, as anticipated, sometimes we are interested in selecting some
particular model or some class of models. Next, let us consider this.

3 Selecting classes of models

According to one of most widespread characterization of the semantic ap-
proach to scientific theories, a theory is specified by a family of structures,
the models of the theory [21, p.77]. Models of most scientific theories are,
as said already, set-theoretical structures. In first-order logic, models (of
first-order languages or theories) are order-1 structures, or structures com-
prising sets as their domain(s) and the relations (and operations) are de-
fined among the elements of the domain(s). No relation (operations are
particular cases of relations, so we shall speak of relations only) can have
as arguments other relations or sets of such elements, as the case of topo-
logical spaces illustrates.13 With respect of such languages, we have an
important theorem which goes as follows. Given a certain collection of
order-1 structures, there exists a necessary and sufficient condition for ax-
iomatizing such a collection, that is, a condition that says that there can ex-
ist a theory (set of postulates) whose models are exactly the chosen struc-
tures, namely, the collection must be closed by elementary equivalence
and by ultraproducts [8, Thm.4.1.12, p.220]. The right definitions are not
important here, but just the fact that there is such a criterium for first-order
languages. Concerning higher-order languages or classes of structures,
there is no a similar theorem; given classes of such structures, we need to
study them case by case. The importance of this fact is that most structures
that model postulates of a scientific theory are higher-order structures, or
order-n structures with n > 1. A typical example is that of classical par-
ticle mechanics, which can be summarized as follows (this is one of the

13A topological space (in terms of structures) is an ordered pair T = 〈X, τ〉 where τ is
a collection of subsets of X satisfying certain axioms [5, p.263], that is, τ comprises sets of
elements of the domain.
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most simple examples we have, so it is explored to exhaustion by several
authors too).

According to Suppes, going to the characterization of a theory in terms
of structures, “A system of classical (particle) mechanics is a mathematical
structure of the following sort . . . ”, and then specifies a basic finite domain
P of entities, the particles, a set T of instants of time (usually an interval
of the real number line), and some other elements which are not of our
interest here (but see [20, p.320]). All of this is collected in a structure
P = 〈P, T, . . .〉, subjected to suitable postulates.

The set-theoretical predicate would be something saying that some set
X is a classical particle mechanics iff it obeys the predicate

CPM(X) := ∃P∃T . . . (X = 〈P, T, . . .〉 ∧ P , ∅ ∧ T = [a, b] ⊆ R∧ . . . (12)

But there are two important restrictions in this definition: the princi-
pal set P must be finite and non empty, and the auxiliary set T must be
an interval of real numbers (ibidem). So, as we have seen already, the set-
theoretical predicate is a transportable formula (the other elements of the
structure are typifications), and so it defines a specie of structures in the
sense of Bourbaki, selecting a huge class of structures that satisfy it, the
models of the predicate or, as Suppes suggests, the ‘classical particle me-
chanics’.

But sometimes we may wish to consider just a small part of the whole
class of models. Let us take a simple example. Suppose again that we have
a set-theoretical predicate for semi-groups, but we wish, by some hidden
reason, to avoid considering all semi-groups having the set of real num-
bers as domain, say A = 〈R,+〉, the semi-group of the real numbers with
usual addition. How should we proceed? This is simple, one may say. Just
take the predicate (4) and impose that the domain must be different from
R, that is, something like

P(X) := ∃M∃ ? (X = 〈M, ?〉 ∧M , R∧ ? ∈ P(M×M×M) ∧ (2)). (13)

It is easy to see that the models of such a predicate are all semi-groups
(the empty set included) except those that have R as the domain. But wait!
The formula, as we have seen, is not transportable due to the imposed
restriction. So, it doesn’t axiomatize the theory of semi-groups, for in this
case no semi-group should be leaved out.

A more relevant example should be the following. Suppose we wish
to consider just those models characterized by a representation theorem our
theory may admit. Let us say something on this point. Suppes emphasizes
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that sometimes a theory is so that there is a subclass of models with the
following property: for every model of the theory, there is in this class
a model which is isomorphic to the given model. In mathematics, it is
simple to give examples, namely, every group is isomorphic to a group of
permutations (Cayley’s representation theorem) or Stone’s representation
theorem, which says that every Boolean algebra is isomorphic to a a certain
field of sets. Thus, in a certain sense, it is enough to have this subclass in
order to know all possible models of a theory (up to isomorphisms). (Just
to comment, as Suppes recalls, in the case of empirical theories it may be
quite difficult to find a representation theorem, or to prove it. But let us
move on without discussing the details.)

The important fact is that we may be interested in some specific class
of models, or then we wish at to disregard some specific model of the the-
ory which is not interesting to us. In the case of the example, we need to
impose that the models of the predicate will be precisely those we wish
and not others. Although we shall not provide the details here, it is to be
acknowledged that this can be done. The problem is that this step, which
seems to be justified by the interest of the scientist, finds problems with
the above definition of a set-theoretical predicate or Bourbaki’s species
of structures. Really, as we have seen, the formula which stand for the
predicate that defines the theory must be transportable, that is, we cannot
impose arbitrary restrictions on the principal sets, which need to be instan-
tiated by any sets whatever (with possible exceptions such as the empty
set, as seen earlier).

So, we see that set-theoretical predicates can be used both to define
theories and also to select classes of structures, yet that sometimes things
may go to not useful results, as in the case when we take the predicate
P(x) := x = ∅ [11], which apparently does not define any theory whatso-
ever, yet selects a structure having the emptyset as its domain (and vacu-
ous typifications, of course).

Two things need to be enlighten: the first is that, as we have said, in
considering such (set-theoretical) predicates for defining theories or classes
of structures, all the step theories are being presupposed. Secondly, re-
member that (in general) we are working within a set theory such as the
ZF system, and we could be interested in finding a set-theoretical predi-
cate for ZF itself. In this case, as it results from Gödel’s incompleteness
theorems, being consistent, ZF does not admit ZFC-sets as models, that is,
models that are sets of ZF. For doing that, we need to strengthen ZF with
additional postulates, say by assuming the existence of universes,14 or go-

14Universes, initially introduced by Alexander Grothendieck (who was a member of
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ing to another stronger theory. But this (apparently) is not necessary for
most theories in the empirical domain.

The fact is that there is no one solution to all problems. The use of set-
theoretical predicates will depend on the set-theory being used and the
needs of the scientist. Important is to be aware of the technique and of its
importance. The details must be fulfilled in each particular case.

4 Conclusion

In this paper we have shown the dependence of Bourbaki’s notion of species
of structures to the concept of transportable formulas. Furthermore, we
have enlighten that his definition of transportable formulas does not en-
able us to introduce arbitrary restrictions on the principal sets, for once
some restriction is made, the formulas may not be invariant by isomor-
phisms. So, there is a strong difference between Bourbaki’s species of
structures and Suppes’ set-theoretical predicates, which also characterize
certain structures, the models of the predicate, but enabling us to intro-
duce restrictions on the principal sets, thus allowing the selection of just
the models we may be interested in. But, when the set-theoretical pred-
icate is a transportable formula, Suppes’ approach coincides with Bour-
baki’s.

Summing up, Bourbaki’s approach and Suppes’ account using trans-
portable formulas are directed to the axiomatization of theories, where no
model can be left out, while the use of set-theoretical predicates without
such a restriction (of being a transportable formula) is more general, for it
enables also to grasp just some relevant models of a certain class of models.
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Schemas (SGA 4): Tome 1 – Théorie des Topos, Exposés I à IV. Lec-
ture Notes in Mathematics 269, 270 and 305.

[4] Bourbaki, N. (1989), Algebra I – Chapters 1-3. Berlin & Heidelberg:
Springer.

[5] Bourbaki, N. (2004), Theory of Sets. Berlin & Heidelberg; Springer-
Verlag.
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