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Abstract

In the contemporary philosophy of set theory, discussion of
new axioms that purport to resolve independence necessitates
an explanation of how they come to be justified. Ordinarily, jus-
tification is divided into two broad kinds: intrinsic justification
relates to how ‘intuitively plausible’ an axiom is, whereas extrin-
sic justification supports an axiom by identifying certain ‘desir-
able’ consequences. This paper puts pressure on how this dis-
tinction is formulated and construed. In particular, we argue that
the distinction as often presented is neither well-demarcated nor
sufficiently precise. Instead, we suggest that the process of justi-
fication in set theory should not be thought of as neatly divisible
in this way, but should rather be understood as a conceptually
indivisible notion linked to the goal of explanation.

Introduction

In what sense are mathematical claims justified and what, if any, pro-
cesses constitute relevant and legitimate justificatory processes?

These are crucial issues for the philosophy of mathematics (and for
philosophy, in general), as the answers to the questions above clearly
bear on the acceptance or rejection of fundamental pieces of mathemat-
ical knowledge. Notable historical examples relating to the problem of
justification in mathematics include the axioms of geometry, such as
Euclid’s Fifth Postulate and, more recently, set-theoretic propositions
such as the Axiom of Choice and the Continuum Hypothesis. As is
clear, a decision in favour or against the acceptance of each of these
axioms or statements has strong consequences for the practice of sev-
eral mathematical disciplines.

Justification has become even more pressing within contemporary
set theory as a consequence of the independence phenomenon. As
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is known, there are important set-theoretic statements that cannot be
decided by ZFC (our current most widely accepted theory of sets). A
central question in the philosophy of set theory has thus concerned
how we might settle these statements (and, indeed, if we should).

The project to settle independence through selecting and adopt-
ing new axioms was famously championed by Gödel in an influen-
tial paper on the Continuum Hypothesis and has since been known
as Gödel’s Programme.1 Since its formulation, it has become increas-
ingly clear that the fulfilment of Gödel’s Programme also requires ex-
amining (and making full sense of) the notion of mathematical justi-
fication. In this paper, we shall concern ourselves with examining the
two most widely discussed forms of justification, both of which appear
in Gödel’s writings, and which have gradually come to be viewed as
‘standard’ in set theory, namely intrinsic and extrinsic justification. In
particular, we shall focus on the way the distinction has been charac-
terised and its relevance construed in recent work by Penelope Maddy,
in particular her Defending the Axioms ([Maddy, 2011]).

Our goal is twofold:

(1.) To show that the distinction between intrinsic and extrinsic justi-
fication, and the notion that there might be a preferable kind, is
fraught with problems.

(2.) To propose arguments in favour of a conception of justification as
multi-faceted but fundamentally indivisible and linked to the notion
of explanation. ‘Intrinsic’ and ‘extrinsic’ justifications should (on
our view) be understood as manifestations of explanatory consid-
erations.

The structure of the paper is as follows. First (§1), we provide an
account of intrinsic and extrinsic justification as it appears in Maddy’s
aforementioned work. Next (§2), through analysing various case stud-
ies, we develop two problems for the account, one concerning the
tractability of the distinction, and the other concerning the demarcation
between the two kinds of justification. With these problems in view,
we then (§3) argue that an understanding of justification as a process
of determining which principles are explanatory yields a more satis-
factory account of justification in set theory. Moreover, we shall also
argue that our account is able to successfully respond to the issues
of tractability and demarcation, by partly dissolving and partly re-
considering the relevance of both issues. We then (§4) consider some
objections to the account proposed in §4. Finally (§5) we conclude with
some philosophical upshots and directions for future research.

1See [Gödel, 1947] and the re-write in [Gödel, 1964].
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1 Intrinsic and Extrinsic Justification

The distinction between intrinsic and extrinsic justification goes back
plausibly as far as [Russell, 1907], but is most famously introduced
and discussed in [Gödel, 1947] (with subsequent revisions in [Gödel,
1964]). Gödel’s ideas have been widely debated in the literature. In
particular, they have been extensively scrutinised by Penelope Maddy
in a series of influential papers and monographs,2 and more recently
additional exploration has been provided by Peter Koellner3. For the
purposes of this article, we will be primarily focussed on the origins of
the distinction in Gödel, and the subsequent developments in Maddy,
although we will relate back to the broader literature where possible.

We start with a couple of quotations from Gödel’s 1947 paper. Con-
cerning intrinsic justification, Gödel writes:

For first of all the axioms of set theory by no means form a
system closed in itself, but, quite on the contrary, the very
concept of set on which they are based suggests their ex-
tension by new axioms which assert the existence of still
further iterations of the operation “set of”. [...] Probably
there exist others based on hitherto unknown principles;
also there may exist, besides the ordinary axioms, the ax-
ioms of infinity and the axioms mentioned in footnote 17
[here Gödel means large cardinal axioms] other (hitherto
unknown) axioms of set theory which a more profound un-
derstanding of the concepts underlying logic and mathematics
would enable us to recognize as implied by these concepts.
[italics are all ours] ([Gödel, 1947], p. 181)

Immediately thereafter, Gödel also explains that there might be fur-
ther criteria for the acceptance of an axiom:

Furthermore, however, even disregarding the intrinsic ne-
cessity of some new axiom, and even in case it had no in-
trinsic necessity at all, a decision about its truth is possible
also in another way, namely, inductively by studying its “suc-
cess”, that is, its fruitfulness in consequences and in particu-
lar in “verifiable” consequences, i.e., consequences demon-
strable without the new axiom, whose proofs by means of

2See [Maddy, 1988a], [Maddy, 1988b], [Maddy, 1990], [Maddy, 1997], [Maddy,
2007], and [Maddy, 2011].

3See [Koellner, 2006] and [Koellner, 2009].

3



the new axiom, however, are considerably simpler and eas-
ier to discover, and make it possible to condense into one
proof many different proofs. [italics are all ours] (ibid., p.
182)

The quotations above provide us with the bones of an account of
what one should take the two forms of justification to consist in: In-
trinsically justified new axioms are those that follow from the concept of
set, or, more generally, ‘concepts’ underlying logic and mathematics,
whereas extrinsically justified new axioms are those which are justified
through studying their success, fruitfulness and consequences.

In more recent times Gödel’s distinction between intrinsic and ex-
trinsic justifications has been taken up and further developed. For ex-
ample, Maddy writes:

When a principle is defended in terms customarily classi-
fied as intrinsic, various descriptors typically appear: the
principle is intuitive, self-evident, obvious; it’s part of the
meaning of the word ‘set’; it’s implicit in the very concept
of set; and so on. Of course, each of these glosses raises its
own suite of questions. These days, I think that the most
common idea is the last-mentioned—implicit in the con-
cept of set—and that the concept of set intended is the it-
erative conception. ([Maddy, 2011], p. 124)

Intrinsic justification thus includes a cluster of ways in which we
might justify a particular principle. However, Maddy’s focus is what
we take to be ‘implicit’ in the relevant concept. Extrinsic justification,
on the other hand, is not concerned with whether or not a principle re-
sults from a successful conceptual ‘unfolding’, but rather concerns the
consequences that it has. For our purposes, this is the key aspect of the
distinction. For example, again, Maddy re-phrases Gödel’s description
of the two kinds of justification as follows:

It has become customary to describe these two rough cate-
gories of justification as ‘intrinsic’—self-evident, intuitive,
part of the ‘concept of set’, and such like—and ‘extrinsic’—
effective, fruitful, productive. ([Maddy, 2011], p. 47)

Thus, extrinsic justification consists in justifying a principle through
identifying its consequences. In particular, if a particular proposed
principle (axiom) has ‘effective’, ‘fruitful’, or ‘productive’ consequences,
then we can count it as receiving extrinsic justification.
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Now, for our purposes, it is important to emphasise the following
fact (that we shall question later): extrinsic and intrinsic justifications
are often seen as orthogonal and competing. For instance, Maddy is cir-
cumspect about the usefulness of intrinsic justifications for anything
stronger than the most basic set-theoretic axioms, and believes that ex-
trinsic justifications are to be preferred:

Ultimately we aim for consistent theories, for effective ways
of organizing and extending our mathematical thinking,
for useful heuristics for generating productive new hypothe-
ses, and so on; intrinsic considerations are valuable, but
only insofar as they correlate with these extrinsic payoffs.
This suggests that the importance of intrinsic considera-
tions is merely instrumental, that the fundamental justifi-
catory force is all extrinsic. This casts serious doubt on the
common opinion that intrinsic justifications are the grand
aristocracy and extrinsic justifications the poor cousins. The
truth may well be the reverse! ([Maddy, 2011], p. 136)

For Maddy then, the important facts are the consequences a principle
has.4 Her view is supported by the fact that mathematical practice
is usually dictated by the relative fruits of a body of mathematics at
any particular time. Many mathematicians care mainly about proving
theorems, and will (for the most part) use whatever available tools
seem most appropriate to them, no matter whether or not they have
intuitive arguments.

A view opposite to Maddy’s is that (set-theoretic) mathematics should
be derived from intuitively supported principles. For instance, Mary
Tiles counts as a supporter of such a view in the following quote:5

4At least the Maddy of [Maddy, 2011]. Her views change quite substantially from
the account provided in [Maddy, 1990]. It is with this more recent version of Maddy’s
conception that we are concerned in this paper.

5William Tait is another example here, as in the following quotation:

To introduce a new axiom as “true” on this [i.e. iterative] conception
because of its “success” would have no more justification than intro-
ducing in the study of Euclidean space points and lines at infinity be-
cause of their success. ... A “probable decision” about the truth of
a proposition from the point of view of the iterative conception can
only be a probable decision about its derivability from that conception.
Otherwise, how can we know that a probable decision on the basis of
success might not lead us to negate what we otherwise take to be an
intrinsically necessary truth? ([Tait, 2001], reprinted in [Tait, 2005], p.
284)
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To claim this [i.e. foundational] status for set theory it is
necessary to claim an independent and intrinsic justifica-
tion for the assertion of set-theoretic axioms. It would be
circular indeed to justify the logical foundations by appeal
to their logical consequences, i.e., by appeal to the proposi-
tions for which they are going to provide the foundations.
([Tiles, 1989], p. 208)

Tiles’ point is that set theory is precisely meant to be providing the
foundations for mathematical reasoning. To have foundations for our
mathematical reasoning, we need then to be based on intuitively ev-
ident principles. To appeal to the consequences of a principle is, for
Tiles, to presuppose the very thing for which we are trying to provide
foundations.

In sum, we have a distinction between intrinsic and extrinsic jus-
tification by which the former takes axioms to be following from and
being justified in view of the concept of set, whereas the latter views
justification as resulting from having desirable consequences. Many
authors have seen this taxonomy as providing distinct and possibly
competing kinds of justification.

In the next section, we will raise two problems for the distinction
(tractability and demarcation), before providing what we take to be
the beginnings of a solution.

2 Difficulties with the distinction: Epistemic
Usefulness, Tractability, and Demarcation

In this section, we want to address two main problems with the dis-
tinction between intrinsic and extrinsic justification. Although these
can be described separately, one could, in fact, view them as originat-
ing from a single incorrect attitude, namely that of taking ‘intrinsic’ and
‘extrinsic’ to be fundamental and distinct kinds of justification.

2.1 Epistemic usefulness

First, however, we need to set up the driving force behind our objec-
tions. The key problem concerns what we should expect from a theory
of mathematical justification.

On the one hand, we expect such a theory to fulfil certain descrip-
tive tasks, for example we would ideally like it to provide us with a
general conception of what it means to have justified knowledge of a
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statement. On the other hand, in a scientific context in which we look
to select from many distinct available hypotheses (some of which may
be in conflict with one another) we expect a little more. In particular,
we expect our account of justification to have normative force, and to
be of use in deciding between various possible axioms. We therefore
put the following desideratum on accounts of justification:

Epistemic Usefulness. We would like our account to be epistemically
useful in that it should be usable in either justifying new principles,
or explaining why justification is not possible. A theory of justification
that can be put to use in actually analysing the justification of scientific
claims is preferable to one that cannot be so used.

This simple requirement concerning justification will form the basis
of our criticisms of the intrinsic/extrinsic distinction.

2.2 Tractability

With the idea of Epistemic Usefulness in play, we first consider a prob-
lem of tractability. Simply put, the accounts of intrinsic and extrinsic
justification are not sufficiently tractable so as to be epistemically use-
ful. In particular, it is very hard to tell when a principle is or is not
intrinsically/extrinsically justified. We examine each kind of justifica-
tion with respect to tractability in turn.

2.2.1 The intractability of ‘intrinsic justification’

We begin with intrinsic justification. There appears to be no system-
atic way to ascertain whether an axiom conforms to the concept of set,
as would seem to be implied by the notion of ‘intrinsic’. One con-
strual of ‘conformity’ evokes the idea that new axioms could be lit-
erally derived from the concept of set analytically.6 But the concept of
analyticity is clearly a difficult one to work with. This can be brought
into sharper focus by considering justification under the iterative con-
ception7. There is a good deal of agreement on the fact that the ZFC
axioms are true of such concept (or at least heuristically justifiable on

6For example, in the Gibbs lecture (1951), Gödel says: ”I wish to repeat that ‘ana-
lytic’ here does not mean ”true owing to our definitions”, but rather ”true owing to
the nature of the concepts occurring [therein]”, in contradistinction to ”true owing
to the properties and the behavior of things” ([Gödel, 1990], p. 321).

7Under the iterative conception (very much the ‘standard’ choice of conception
of set), sets are formed in stages by iterating some well-defined operation (usually
power-set) along the ordinals.
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the basis of it). Certainly this has been suggested by the classical [Boo-
los, 1971]8, [Parsons, 1983], and [Wang, 1974]. However, in spite of the
general agreement that the ZFC axioms are all true under the iterative
conception, some authors have shown scepticism. Potter, for one, has
presented arguments that Replacement enjoys a special status, which
requires alternative justificatory strategies.9 Elsewhere, Feferman has
expressed worries about the power-set operation underlying the iter-
ative conception.10

As it stands, when considering what ‘follows from’ a concept, we
appear to have a stalemate: it is not clear what criteria one could ap-
peal to in trying to convince a different party who bluntly disagrees
with what follows from their concept of set. Without some methodol-
ogy for making progress on these debates, it is hard to see how intrin-
sic justification can gain traction and be epistemically useful.

There is a more general difficulty concerning what our concept is
like at a given point in time. It is common in the literature (or, at least,
this is the impression one might get from some set theory textbooks)
to introduce the axioms in close connection to, sometimes even moti-
vated by, the iterative concept of set.11 But this should not be taken to
be inevitable. As we know, the iterative concept fully emerged only af-
ter the set-theoretic axioms were formulated by Zermelo and Fraenkel
(with the significant contribution of Skolem).12 Of course, many au-
thors have retrospectively tried to reconstruct set theory in light of the
emergence of the iterative conception, but this is both historically and
conceptually inaccurate. As Potter remarks:

In contrast with the limitation of size conception, [the it-
erative conception] took a long time to emerge [...] How-
ever, in an attempt to make the history of the subject read
more like an inevitable convergence on the one true reli-
gion, some authors have tried to find evidence of the itera-
tive conception quite far back in the history of the subject.
([Potter, 2004], p. 36)

It is perhaps useful to briefly contrast the various routes that our
conception of sets might have taken before the iterative conception

8Though it is possible that Boolos later changed his mind, see [Boolos, 1989] and
[Boolos, 2000].

9See, in particular, [Potter, 2004], p. 211-237.
10See [Feferman et al., 2000], pp. 405-6.
11See, for example, [Drake, 1974], or [Enderton, 1977]. These examples can be

multiplied.
12For a careful reconstruction of the emergence of the ZFC axioms, see [Ferreirós,

2007], in particular, Ch. 9 and 11.
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was settled upon. The details will be familiar to specialists, but some
remarks help to illustrate the difficulty.

The limitation of size conception, under which sets are all those col-
lections which are not ‘too big’ (in a sense that can be made precise in
close but inequivalent ways) was, as pointed out by Potter, a lot closer
to the early set-theorists’ intents and ideas.13 This may partly be an el-
ement of sociological luck, but may also be motivated by the fact that
early set-theorists had no developed conception of the well-founded
hierarchy. Detailed discussion of well-founded sets appear for the first
time in [Mirimanoff, 1917], there are shades of the iterative conception
in [Zermelo, 1930] and Gödel’s presentation of L, but a full and precise
account of the iterative conception was not isolated until [Shoenfield,
1967] and [Boolos, 1971]. This contrasts sharply with the limitation of
size conception, which had already appeared in the work of Cantor.14

Moreover, these are not the only conceptions of sets, historically.
Gödel is also credited to have occasionally expressed the view that all
axioms of sets should reduce to just one, Ackermann’s Axiom, that
the ‘Absolute is unknowable’.15 If this represents Gödel’s thought cor-
rectly, then it would seem that Gödel’s views further evolved to in-
clude mentioning of the absolute infinite as part of the concept of set
(something which is not directly implied by the iterative conception).
It is, also, plausible, then, to conjecture that Gödel saw Reflection Prin-
ciples, which can be accounted for very easily using such a conception,
as the most general axioms of set theory.16 A fourth salient alternative
is the conception of sets as given by the extensions of definite concepts
(the so-called logical conception), which again appears in the work of
Cantor17 and Frege, whose conception, in turn, has been recently taken
up and further investigated by other authors (who have tried to isolate
its consistent fragments and base several theories upon it).18

13See here [Potter, 2004], §13.5.
14See, in particular, Cantor’s famous 1899 letter to Dedekind, [Cantor, 1899].
15See [Wang, 1996], p. 283.
16Gödel’s intentions seem to be oscillating on this point: it seems that, earlier, he

had claimed that the iterative conception alone could already justify Reflection Prin-
ciples and thus the existence of several ‘small’ large cardinals including inaccessibles,
Mahlos, etc. However, the later Gödel, on the contrary, may have held that the exis-
tence of an absolute infinite represented the most genuine justification of Reflection
Principles.

17Cf. Cantor’s remark that a set is a “many, which can be thought of as one, i.e., a
totality of definite elements that can be combined into a whole by a law” in [Cantor,
1883], p. 916.

18See [Incurvati and Murzi, 2017] (though the authors also present difficulties for
the ‘logical conception’) as well as the NF(U)-based theories in [Holmes, 1998] and
[Forster, 1995].
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So we have four main specifications of the concept of set at hand
here: one is based on the ‘construction’ of all sets iteratively, one on
the idea that sets are entities that are not ‘too big’, another one takes
sets to be the knowable portions of an unknowable ‘absolute’, and one
views sets as given by extensions of definitions or properties.

Of course, alternative conceptions may motivate alternative axioms.
For example, Reflection Principles appear naturally suggested by the
absolutist conception, whereas it is not clear that other conceptions,
such as the ‘logical conception’, sanction their introduction, and the
‘limitation of size conception’ seems to altogether discourage their use
(since they imply that there are ‘V -like’ sets in a certain precise sense).
Similar remarks can be made about other axioms.19 Looking forward,
there are competing ideas we might use in sharpening the iterative
concept of set: for instance, our conception might develop in such a
way as to include some idea of the universe as being ‘orderly’ and
‘L-like’ (as in Woodin’s Ultimate-L programme),20 or, alternatively, as
being ‘forcing-saturated’21, or, finally, it might incorporate stability of
structure existence under extension22. It is unclear how we could se-
lect one of these sharpenings on the basis of our current concept of set;
all seem like natural and legitimate possible future trajectories for our
set-theoretic practice.

So we have two main issues making the notion of ‘intrinsic’ in-
tractable: one is the absence of a clear methodology through which
one can ascertain that a statement is ‘derived’ from the concept of set;
the second one is the fact that there are many conceptions of set, all of
which may give rise to different versions of ‘intrinsicness’, and, thus
justify some axioms rather than others on intrinsic grounds.

2.2.2 The intractability of ‘extrinsicness’

The problem with extrinsic justifications is that practically all new ax-
ioms are ‘successful’ somehow. As it turns out, ‘success’ may be a very
volatile criterion. For example, consider:

19We lack the space to give a full survey of case studies here, but note, by way
of example, that: (1) the Power-Set Axiom seems problematic from a ‘limitation of
size’ perspective, follows immediately from the iterative conception, and it is unclear
whether it could be justified by the ‘absolutist’ and ‘logical’ conceptions; (2) Replace-
ment seems more dubious from the iterative conception, positively implied by the
limitation of size conception, and unclear on the absolutist/logical conceptions. See
[Hallett, 1984] and [Potter, 2004] for discussion of some of these issues.

20See [Woodin, 2017] for the state of the art.
21See [Magidor, U] for exposition of this conception.
22See [Arrigoni and Friedman, 2013] for a survey of this idea.
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Axiom of Constructibility. V = L.23

As is well-known, the power of V = L is stunning. Under V = L,
the Generalised Continuum Hypothesis (and, thus, the Continuum
Hypothesis) are decided, Suslin’s Hypothesis is decided, important
combinatorial principles (such as ♦) hold, and V = L also implies
that there are no measurable cardinals. V = L has far-reaching con-
sequences, and imposes a clear structure and conception of V as given
by iterated definability.

However, V = L is not regarded as correct by many set theorists.
One reason is that it is incompatible with certain large cardinal hy-
potheses, and the latter are also supposed to be very successful and
fruitful axioms.

Another more controversial example is the:

Axiom of Determinacy (AD). Every two-player game GA on A ⊆ ωω is
determined.24

AD once again might be viewed as very fruitful. In particular, under
AD, sets of reals are all well-behaved, that is, they are Lebesgue mea-
surable, have the Baire property and all have an uncountable perfect
subset, that is, under AD we have an optimally informative picture of
the real continuum. However, as is known, AD is incompatible with
the Axiom of Choice, so ZF+AD is highly non-conservative over ZFC
(in fact, inconsistent with it!). Now, AC also seems to have fruitful con-
sequences, so how should one, in practice, make a choice between these
two, based on purely ‘extrinsic’ considerations?

There are thus different incompatible candidates for axioms, all of
which can be viewed as fruitful from some perspective. This calls into
question the epistemic usefulness of solely extrinsic justification, as we
can nearly always find a way for a particular axiom to be successful.

23L is the constructible universe, which has the same ordinals as V , but wherein,
at successor levels, only definable (in a technical sense) subsets of the previous level
are formed (contrary to what happens in V , where, at successor levels, all subsets of
the previous level are formed) and, at limit levels, unions of all previous levels are
formed.

24For details here, see [Jech, 2002] Ch. 33. A quick recap of the relevant definitions:
let GA be the following game on A ⊂ ωω : two players, I and II, play, in turn, natural
numbers. The resulting sequence of the choices of I and II may or may not be in
A. If the former is the case, then I wins, otherwise II wins. A winning strategy is a
strategy which makes one of the two players win. A game is determined if there is
a always a winning strategy. AD is the statement that every game GA is determined.
The Axiom of Projective Determinacy is AD restricted to projective sets of reals (for
a definition of a projective set, see Jech, [Jech, 2002], p. 144), ADL(R) is AD restricted
to L(R), the smallest inner model of V containing all reals.
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We therefore need to provide a more detailed philosophical account of
how and why these notions should provide justification.

One attempt to deal with this problem, probably one of the most
concerted attempts to build a clear philosophical underpinning for ex-
trinsic justification, comes from [Maddy, 2011], who remarks that, as it
stands, extrinsic justification is often applied “willy-nilly” to any jus-
tification that is not clearly intrinsic, and thus more precision is re-
quired.25 Recalling an earlier quotation, Maddy describes extrinsic
justifications precisely as those which identify that mathematics is ef-
fective, fruitful, and productive.26 These are then taken to track facts
concerning mathematical depth, which are, in turn, supposedly not sub-
jective:27

It also bears repeating that judgments of mathematical depth
are not subjective: I might be fond of a certain sort of math-
ematical theorem, but my idiosyncratic preference doesn’t
make some conceptual or axiomatic means toward that goal
into deep or fruitful or effective mathematics. ([Maddy,
2011], p. 81)

Perhaps, then, the non-subjectivity of these depth-facts can rescue
the friend of extrinsic justification from the charge of intractability?

We find Maddy’s appeal to mathematical depth to be at least as
problematic as the notion of merely ‘fruitful’ or ‘successful’ mathe-
matics was in the first place. What appears deep seems, to us, to be
a highly agent-sensitive matter.28 While it might be the case that this is
simply a situation in which our intuitions and Maddy’s clash, there is
some evidence from the cognitive sciences that seems to indicate that
the difficulty might run deeper.

25See [Maddy, 2011], p. 130.
26For the sake of the reader we repeat it in this footnote:

It has become customary to describe these two rough categories of
justification as ‘intrinsic’—self-evident, intuitive, part of the ‘concept
of set’, and such like—and ‘extrinsic’—effective, fruitful, productive.
([Maddy, 2011], p. 47)

27In fact, for Maddy, intrinsic justifications also track facts about mathematical
depth: sets are understood as tracking the ‘topography’ and ‘contours’ of mathe-
matical depth. However, as we’ve noted, Maddy is circumspect about the extent to
which the intrinsic justifications can take us beyond the most basic of axioms, so we
focus on mathematical depth as a possible source of support for the use of ‘extrinsic’
justifications.

28We thank [name removed for blind review] for discussions concerning the pos-
sible agent-sensitivity of mathematical depth.
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For instance, Inglis and Aberdein have found that, when presented
with a proof, mathematicians’ ascriptions of evaluative terms for proofs
vary along four main dimensions in a similar way to judgements of
personal character vary across five dimensions.29 They term these di-
mensions ‘aesthetic’, ‘utility’, ‘intricacy’, and ‘precision’. These terms
were chosen by the authors, but are fairly illustrative of the kinds of
terms included in each (for example ‘beautiful’ was an aesthetic term).
‘Deep’ correlated strongly with the aesthetic dimension, and ‘effective’
and ‘fruitful’ strongly with the utility dimension.

On these grounds, we can raise two problems for Maddy’s concep-
tion of extrinsic justification as fruitful mathematics. First, the empir-
ical evidence may suggest that ‘fruitfulness’ and ‘depth’ are not even
measuring the same dimension of human thinking (at least as far as
research-level mathematicians’ use of language is concerned). Second,
further work indicates that mathematicians strongly disagree with one
another on whether particular instances of proofs are fruitful. When
presented with an (anonymised) proof from Proofs from THE BOOK,
mathematicians appraisal of the proof varied wildly.30 In Inglis’s and
Aberdein’s words:

We found a remarkable level of disagreement between our
participants’ ratings of the proof. For each of the four di-
mensions of proof appraisal there were participants who
thought the proof should score high on that dimension, and
there were participants who thought the proof should score
low on that dimension. Furthermore, neither research area
nor career stage seemed to be predictive of mathematicians’
appraisals on any of the four dimensions. ([Inglis and Ab-
erdein, 2016], p. 10)

Thus, even if we could settle on a particular phenomenon that is be-
ing picked out by the term ‘fruitfulness’ in Maddy’s characterisation of
extrinsic justification, it is highly unclear that there is a non-subjective
sense to the term ‘mathematical depth’, or ‘fruitfulness’. At the very
least, current research-level mathematicians’ usage of the terms is not
close to being coextensive, at least insofar as proofs are concerned.

Of course, we should be careful as to what we take the above ob-
servations to have established. Any strong philosophical conclusion

29See [Inglis and Aberdein, 2015]. For the literature on personal character, see
[Donellan et al., 2006].

30See [Aigner and Ziegler, 2009]. Proofs from THE BOOK is a volume of the sup-
posedly most ‘beautiful’ proofs of various theorems. Interestingly, if participants
were informed of where the proofs came from, their appraisals were modified (as
one might predict).
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extracted from empirical data needs to be treated with scrutiny, both
with respect to the experimental methodologies employed, and to how
these might be taken to connect with the philosophical phenomena. It
may be that the tension in Maddy’s account can be resolved, or that
more work would result in a satisfactory sharpening. However, as it
stands, it is hard to see how we can use claims of mathematical depth
to move forward on the ‘extrinsic’ justification of new axioms if there
is (as a matter of empirical fact) little agreement on whether particular
proofs are deep or not.

To sum up, intractability seems to affect both intrinsic and extrinsic
justification, when conceived of as fundamentally distinct and com-
peting kinds. We now turn to the problem of demarcation.

2.3 Demarcation

Another problematic aspect of the standard view on justification is
that the force of an intrinsic justification cannot be neatly separated
from that of an extrinsic one. In the set-theoretic context even in cases
where one might have the impression that such a demarcation has
been clearly drawn are, on closer inspection, difficult to demarcate.
Whilst there is a sharp distinction between a principle itself and its
consequences, this is not so for the justificatory force attaching to intrin-
sic and extrinsic justifications.

We could summarise the situation in the following way:

Demarcation Problem in Set Theory. Is there a sharp boundary be-
tween the justificatory force associated to intrinsic, on the one hand,
and extrinsic, on the other, justification? If so, how should this bound-
ary be characterised?

Now, as we’ll outline in more detail below, we believe that the an-
swer to the first question is negative. The key issue is that the justifica-
tory force of intrinsic and extrinsic justifications seems, to our minds,
not to be sufficiently well-separated. Thus an account of justification
that sees one kind as privileged fails to be transparent with respect to
the grounds of asserting the ‘axiom’. In this way, such accounts fail
to be epistemically useful. In this section, we’ll make a case for this in
more detail, presenting historical case studies in which extrinsic claims
seem to be intimately related to intrinsic considerations.
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2.3.1 Zermelo on the Axiom of Choice

Even if Zermelo did not go as far as Cantor in asserting that the well-
ordering theorem was a law of thought31, he did find the success of AC
to be linked to its intrinsic justification. In the 1908 paper, where he
discusses the objections that his explicit use of AC raised, Zermelo says
that:

..this axiom, even though it was never formulated in text-
book style, has frequently been used, and successfully at
that, in the most diverse fields of mathematics, especially
in set theory, [...]. Such an extensive use of a principle can
be explained only by its self-evidence, which, of course, must
not be confused with its provability. No matter if this self-
evidence is to a certain degree subjective – it is surely a nec-
essary source of mathematical principles.32

Zermelo thus seems to surmise that the success of the Axiom of
Choice is precisely the indication that the axiom is self-evident. There-
fore, one could indirectly reconstruct Zermelo’s ideas on justification
in the following way: one starts with conjecturing the self-evidence
of some principle, and then verifies that the principle is successful,
something which is, ultimately, taken as an indicator that the princi-
ple is really self-evident (which was precisely what we were trying to
establish). Here we have a lucid case where there is no obvious dis-
tinction between the justificatory force of intrinsic and extrinsic justifi-
cations: because of this symbiotic back and forth between success and
self-evidence, the two seem inextricably linked, and so it is impossible
to demarcate the justificatory force of each from the other.33

31Cf. Cantor, [Cantor, 1883], in Ewald, [Ewald, 1996], p. 886: “In a later article
I shall discuss the law of thought that says that it is always possible to bring any
well-defined set into the form of a well-ordered set—a law which seems to me fun-
damental and momentous and quite astonishing by reason of its general validity.”

32[Zermelo, 1908], p. 187. Maddy also quotes this reference, but holds that it is
indicative of Zermelo’s despairing of giving a precise content to intuitive justifica-
tion (see [Maddy, 2011], p.46 and an earlier (if more neutral) use in [Maddy, 1988a],
p.487). Interestingly, in [Maddy, 1988a], Maddy regards this as providing only in-
trinsic considerations, despite the mention of ‘success’.

33One objection might be that to argue that Zermelo meant to assert that the fact
the Axiom of Choice is widely used rather than successfully widely used is indicative
of its self-evidence. On this objection, it is simply the breadth of the use, rather than
the successfulness, that indicates self-evidence. (We thank [name removed for blind
review] for pressing us on this point.) We find this elimination of any notion of
success problematic since it fails to exclude intuitively attractive but false principles
like Naive Comprehension.
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2.3.2 Measurable cardinals and V = L

As seen in the previous subsection, V = L can be understood (roughly
put) as the claim that every set can be constructed via iterated defin-
ability (incorporating a restriction on the parameters used).34 Now,
whilst Gödel did consider the suggestion that V = L should be added
as an axiom (referring to it as “natural”), he ultimately felt that it was
not justified, and in fact should be regarded as false for intrinsic rea-
sons.35

Gödel’s sentiment is one shared by many set-theorists. L is the
‘smallest’ possible inner model (i.e. model containing all ordinals) and
in this sense, does not seem to mesh with the idea that the power-set
operation should be as ‘rich’ as possible. Moreover, the restriction on
bounded parameters in the definition of the hierarchy seems at odds
with the impredicative intuitions underlying higher set theory. In this
sense, V = L seemed intuitively restrictive, and should be rejected on
intrinsic grounds.

In Gödel’s own words:

...from an axiom in some sense opposite to this one [i.e.
V = L], the negation of Cantor’s conjecture could per-
haps be derived. I am thinking of an axiom which (similar
to Hilbert’s completeness axiom in geometry) would state
some maximum property of the system of all sets, whereas
the axiom A [i.e. V = L] states a minimum property. Note
that only a maximum property would seem to harmonize
with the concept of set explained in footnote 14. [i.e. the
iterative conception] ([Gödel, 1964] pp.262–263)

Shortly afterwards, consequences of V = Lwere discovered, that seemed
to reinforce the idea that it represented a restrictive principle. Con-
sider:

Theorem 1. [Scott, 1961] Assume there is a measurable cardinal. Then
V 6= L.

34See footnote 23.
35Cf. here [Gödel, 1938], p. 557: “The proposition [V = L]. . . added as a new

axiom, seems to give a natural completion of the axioms of set theory, in so far as it
determines the vague notion of an arbitrary infinite set in a definite way.”. For more
on the notion of ‘naturalness’ in set theory, also see [Venturi, 2018]. For his change of
mind, see [Gödel, 1964] (pp.262–263), quoted below, where he suggests that V = L
is minimising and only a maximising principle would harmonise with our concept
of set.
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Thus the intrinsic idea that V = L should be rejected as it is restric-
tive could now be made fully persuasive by using extrinsic considera-
tions, since V = L prevents the existence of certain large cardinals. But
intrinsic considerations (such as those appearing in Gödel’s quote) al-
ready suggested that V = L would naturally clash with ‘maximum’
principles (such as the existence of a measurable cardinal). Intrinsic
and extrinsic considerations are thus interacting and reinforcing one
another here, and cannot be neatly demarcated.36

2.3.3 Large cardinals and the case for axioms of definable determi-
nacy

More recent work on axioms of definable determinacy yields further
examples. As we shall argue below, here we have a case where af-
ter one has found good extrinsic grounds for the justification of a set-
theoretic principle/axiom, then one finds that there may have been
an intuitive conception underwriting the relevant set-theoretic princi-
ple/axiom from the beginning.

Axioms of definable determinacy and their connections with large
cardinals constitute one of the most thriving areas of research in set
theory.37 As seen, these axioms, such as Projective Determinacy and
ADL(R), prescribe that there are winning strategies for two-player games
of perfect information.38

The pioneering work of set-theorists in the 1980s showed thatADL(R)

is implied by strong large cardinal hypotheses at the level of many
Woodin cardinals. The direct converse does not hold, yet definable
determinacy axioms imply the existence of inner models with compa-
rable large cardinals. These facts have been interpreted in many ways.
No one has questioned the fertility of the hypotheses under consider-
ation, but as to their intrinsic justification, opinions have been some-

36There may even be a case to be made that Gödel’s views on V = L and its
intrinsic plausibility were directly influenced by the Scott result. In particular, if one
looks at sections 3 and 4 of the [Gödel, 1947] (see pp. 179–186 of [Gödel, 1990]), we
find a mention that perhaps an axiom opposite to V = L would result in a proof
of ¬CH. However, in the same part of [Gödel, 1964] (pp. 257–264 of [Gödel, 1990]
esp. footnotes 20 and 23), he mentions the Scott result, and then goes on to claim
that only an axiom opposite to V = L would harmonise with the concept of set (a
stronger claim than in 1947). Without further textual evidence, we relegate this point
to a footnote. Nonetheless, future developments (such as a greater availability of
Gödel’s unpublished papers) may deliver additional evidence for this claim, which
would greatly strengthen our case.

37For an overview of the main mathematical results and concepts, see [Koellner,
2006] and [Koellner and Woodin, 2010].

38See footnote 24.
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what pessimistic:

Is PD true? It is certainly not self-evident. ([Martin, 1977],
p813)39

However, ways to provide intrinsic support for those axioms have
been hinted at by some authors. For example, [Koellner, 2014] points
out that there are close relationships between determinacy axioms and
large cardinals (since one can prove determinacy axioms from large
cardinals, and reverse from determinacy axioms to inner models with
large cardinals). This idea has also occurred in [Hauser, 2001], which,
in addition, argues that the fact that two different and powerful strands
of set-theoretic research ultimately converged in a unified structure the-
ory is an illustration of a criterion he advocates as a fundamental source
of ‘internal’ evidence in favour of a set-theoretic axiom, identity through
differences. He says:

A particularly striking example in set theory is the afore-
mentioned subtle relationship between large cardinal ax-
ioms (global existence postulates motivated in part by a pri-
ori considerations about the inexhaustibility of the universe
of all sets) and axioms of determinacy (local principles jus-
tified by their fruitful consequences in second-order arith-
metic). [...] Whether this coherence necessarily reflects the
existence of a mind-independent realm of sets cannot be
analyzed any further here. Its main significance from the
viewpoint of methodology (our primary concern) is that
it confers objective validity to both kinds of axioms, [...].
([Hauser, 2001], p. 257)

Thus on Hauser’s conception of justification, the fact that deter-
minacy and large cardinal axioms represent a somehow unified phe-
nomenon confers to such axioms also an intuitive appeal, which is,
ultimately, linked to their expressing features of the ‘structure’ of V .
One could push the point even further and imagine that, as in the pre-
vious example of Zermelo’s AC, the intrinsicness of determinacy ax-
ioms/large cardinals has, in a sense, been confirmed by the progres-
sive unfolding of their fruitfulness.

39Similar comments by Martin (and others) can be found, for example in [Martin,
1976] (p. 90) and [Moschovakis, 1980] (p. 610). See [Maddy, 1988a] and [Maddy,
1988b] for discussion.
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2.3.4 Summary

In the above examples there appear to be difficulties in demarcating
intrinsic and extrinsic justificatory force. In our view, this amounts
to the following preliminary conclusion: looking at the historical con-
crete cases of the justification of new set-theoretic principles we cannot
draw a clear boundary between the force of intrinsic considerations
and that of extrinsic considerations. Combined with our observations
concerning the tractability of the distinction, this questions the epis-
temic usefulness of regarding the two kinds justification as neatly sep-
arable and competing.

3 Justification and explanation

We now find ourselves in something of a predicament. On the one
hand, set-theorists and philosophers of set theory seem to use some-
thing like intrinsic and extrinsic reasons in providing justification for
the use of different axiom systems, but on the other hand the distinc-
tion between the two kinds of justification suffers from problems, both
at practical and theoretical levels.

Our solution will be to provide an account of justification in set the-
ory that recognises the presence of different sources for the force of an
argument, but that does not regard the intrinsic or extrinsic as funda-
mental regarding justification. The problem of demarcation, thus, will
become feature (rather than weakness) of this account, and a response
to the problem of tractability will be facilitated, offering some condi-
tions for the selection of new axioms, that in our view perform better
then the competing accounts.

Our position can be summarised in the following way:

The Explanatory Account of Justification. Justification of axioms in set
theory consists of finding the best explanations for relevant mathemat-
ical data.

Of course, this needs to be made far more precise to not suffer from
similar problems as we identified for the standard accounts of intrinsic
and extrinsic justification. It is to this task that we now turn. First, we
will explain the details of the view, and why set-theoretic justification
has this nature. Then we will explain how it can be used to address
the problems of demarcation and tractability, providing case studies
for the latter.
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3.1 Beginnings of the explanatory account of justifica-
tion

In this subsection we describe what a theory of explanatory justifica-
tion in set theory amounts to and how it produces a cogent picture of
set-theoretic justification. Our basic contention is that we can make
sense of axioms as the best explanations of particular mathematical
data, and thus that the best-justified axioms are the most explanatory
ones. We thus have two tasks before us:

(1.) Outline and articulate a conception of mathematical data.

(2.) Provide an account of explanation in relation to this data, how it is
related to justification, and how it avoids the problems of tractabil-
ity and demarcation.

We tackle these problems in order.

3.1.1 Mathematical data

An essential component of our view is a notion of mathematical data.
Accounts of data in the philosophy of science often presuppose that
data are ‘made’. For example, Hacking argues that data are made
with recording marks that are obtained by human interactions with
various kinds of devices.40 Rheinberger takes data to be the result of
subsequent manipulations of Hacking’s ‘marks’, rather than the marks
themselves.41

All this raises a challenge for the philosophy of mathematics, since
there are not clearly any ‘marks’ that are obtained by recording de-
vices in the mathematical context. However, a wider view of data (one
that leaves it open whether or not the data are obtained via marks) is
available in the work of Sabina Leonelli, who defines data as follows:

I propose to view data as any product of research activities,
ranging from artifacts such as photographs to symbols such
as letters or numbers, which is collected, stored, and dis-
seminated in order to be used as evidence for knowledge
claims...Hence, any object can be considered as a datum as
long as (1) it is treated as potential evidence for one or more
claims about phenomena and (2) it is possible to circulate it
among individuals. ([Leonelli, 2015], p. 817)

40See, for example [Hacking, 1992].
41See here [Rheinberger, 2011].
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Leonelli’s view is designed to account for the mobility of data, in
that some data may be processed, modified, and manipulated into dif-
ferent formats, and then shared and used across multiple communi-
ties. Further, she argues, there is no clear difference between ‘data’
and the traces from which they are obtained.

Her loosening of the definition of data though also permits applica-
tion to a mathematical context. For, in mathematics and its philosophy
we also have products of research activities that may be used in ev-
idence of knowledge claims; namely the theorems we have derived
so far from our currently accepted axioms. Thus we propose that the
mathematical data available to an agent or community comprises at
least the following:

Mathematical Data. The mathematical data available to a community
or agent at a time consists of (at least42) the body of axioms and theo-
rems accepted by that community at that time.

Several remarks are in order concerning this account of mathemat-
ical data:

First, the mathematical data may differ between agents and com-
munities, and indeed across time. This is a good thing, we should not
expect the justificatory challenges and relevant evidential base to be in-
variant across diverse contexts. The questions of justification are very
different for those studying subsystems of second-order arithmetic as
compared to those working on resolutions of the Continuum Hypothe-
sis. Similarly questions of justification were very different for the early
set theorists as compared to our current set-theoretic epistemological
state.43

Second, we note that an individual datum is defeasible. We may
take something to be a datum at one particular time that is subse-
quently removed since it is shown to be false given our other more
entrenched theoretical commitments. This can happen, for example,

42We leave it open that there may be more data. For example, in particularly ap-
plied areas of mathematics, non-theorem-like observations may play a role.

43A possible objection here is that it is unclear how mathematics got going given
this account of mathematical data. What about the earliest mathematicians, who had
no clear body of theorems that were taken as accepted by any particular community?
We set this aside for two reasons: (1.) We think that even for these mathematicians
it is likely that they possessed a body of mathematical or quasi-mathematical data,
even if it was relatively primitive. These might include components of basic compu-
tations in arithmetic (e.g. “one object taken together with a different object always
yields two objects”), and (2.) Even if our account does not apply to those mathemati-
cians, the fact still remains that agents and communities since at least the scientific
revolution do have a core bank of accepted mathematical premises to work from.
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when a theorem (or indeed axiom) is shown to be false, or the proof
flawed. A good example of the former is the rejection of Naive Com-
prehension. The latter phenomenon is common in mathematics, but a
good example from set theory is [Džamonja and Shelah, 1999] which
claimed to have shown that there are models of set theory in which
both ♣ (a particular combinatorial principle) is true but there are no
Suslin trees. Their methods, however, contradicted a well-established
theorem (namely Miyamoto’s Theorem) and so the proof was recog-
nised to be flawed44, and the (now open) question removed from the
established mathematical data.45

Third, it is important that the data need not be interpreted (or indeed
even truth-evaluable). There is not (without further argument) any a
priori reason why the acceptance of a particular mathematical datum
(say that the power set of the natural numbers has a greater cardinal-
ity than the natural numbers) implies the truth of any claim or that the
datum expresses a particular fact. Rather, data encapsulates what is ac-
cepted as requiring systematisation by a foundational framework. So,
for example, a Platonist (who actually believes there are sets) and a fic-
tionalist (who believes that strictly speaking our mathematical claims
are all false, but accepts set theory as a correct fiction) can coherently
have a conversation about mathematical justification on the basis of a
shared data set, even if they vehemently disagree on the interpretation
of that data. Again, we regard it as a desirable feature of our view that
it is not beholden to a particular account of mathematical truth and
ontology.

For now, we will assume that the data pertaining to set-theoretic
mathematics and justification constitutes at least ZFC and the cur-
rently accepted theorems (we will discuss some extensions shortly).
Explanation can then be understood as an epistemic virtue attaching
to particular coherent pictures systematising our data. Thus justifi-
cation is a particular kind of process on which certain statements are
taken as basic, and explanations thereby sought.

3.1.2 Explaining the data

With an account of mathematical data in hand, we turn to the notion
of explanation. There is already a substantial literature on mathemati-

44It bears mentioning that [Džamonja and Shelah, 1999] contains much useful ma-
terial, even if one result fails to go through.

45See [Brendle, 2006], p. 45, footnote 1 for some discussion and further references.
We thank [name removed for blind review] for bringing this example to our atten-
tion.
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cal explanation in the philosophy of mathematical practice46, largely
centring on the explanatoriness (or otherwise) of particular proofs.
From the outset, we should emphasise that the kind of explanation we
will be considering is rather different. Instead of concerning particu-
lar proofs, it will rather be similar to the notion of explanation found
in the philosophy of science, where there is a rich literature on what
the explanation of data might be (such as in the discussion of laws of
nature).47

We can begin to flesh out our account by defanging a natural imme-
diate objection, given the initial bare-bones statement of our account.
It goes as follows: If axioms are to be inferred by inference to the best
explanation, then we might be subject to a tu quoque, namely that
explanation is just as problematic a notion as depth (let alone ‘best’
explanation). This is especially so when we bear in mind that [Inglis
and Aberdein, 2016] showed that the notion of a proof being explana-
tory exhibited a similar level of diversity in appraisal by research-level
mathematicians as that of depth. So, in what sense is incorporating
explanation into our account better than depth?48

If we can provide an account of explanation, it might have cer-
tain advantages over a theory of axioms based on depth. First, one
might think that mathematical explanation is epistemically useful for
the selection of new axioms, whereas depth might not be. This goes
for many ways of interpreting explanation: Philosophers often distin-
guish (in the broader context of scientific explanation) between onto-
logical explanation (features of the world that explain each other) and
epistemic explanation (how our mathematical experiences can be or-
ganised in terms of explanation).49 Given either kind of explanation
we can see that either interpretation of explanation is epistemically
relevant for the choice of axioms; the first identifies the most funda-
mental features of mathematical reality and the second ascertains the
key features of our practice that helps us to organise our experience of

46See, [Mancosu, 2008], for a general presentation.
47There is, however, a deep question of how a notion of explanation independent

of proof might be related to the idea that certain proofs merely prove, whereas others
also explain. [Lange, 2017] represents an in depth study of some of these ideas.

48One (cheap) difference we might appeal to is that we are aiming at a notion
of explanatoriness independent of particular proofs, whereas [Inglis and Aberdein,
2016] are concerned with diversity in proof appraisal. It is thus open whether or not
our broader account of explanatoriness is open to the same kinds of issues in ap-
praisal as proofs, given that it is of a different kind. Since this response represents an
avoidance of the question, rather than tackling it head on (and so our conclusions are
stronger without it), we relegate it to a footnote. Thanks to an anonymous reviewer
for pressing us on this point.

49See, for example, [Salmon, 1984].
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mathematics. Either way, and whether or not one leans more towards
one of the two kinds of explanation (or a mixture of both), we have
salient features of mathematics that are useful for the selection of ax-
ioms. It is comparatively unclear how depth is meant to figure into an
epistemic story. The same is not so clear in the case of mathematical
depth where it is at least possible (without further argument) that a
piece of mathematics be deep without being particularly epistemically
significant. 50 So, in this sense even if explanation is a slightly prob-
lematic notion, if we can address these philosophical problems and
provide a sharper characterisation, we will automatically have some-
thing epistemically useful.

This of course is only to offer the possibility of a way out, rather
than actually providing one. Whilst we acknowledge that explanation
is a difficult notion to pin down, we have far more tractability on the
notion than that of depth, and can sharpen it into something epistem-
ically useful. Whilst we do not have necessary and sufficient criteria
for when a statement is the best explanation (and indeed these might
not exist), we can at least point to precise features that increase our
confidence that it has the character of a good explanation. Two obvious
examples, which will serve to illustrate the general strategy, are:

(1.) The sentence (or scheme) should obviously be consistent in the
background logic.

(2.) Given some especially entrenched mathematical data, the prin-
ciple should not contradict these. For example, basic number-
theoretic facts or simple (and now known) propositions of anal-
ysis should not be contradicted.

Whilst these two examples of criteria do not get us very far (they
are in some sense the minimal requirements on a sentence providing
an explanation of some accepted mathematical data), they serve to
outline the broad strategy, namely: There is no problem of tractabil-
ity with constraints of the above kind. Consistency is a technical no-
tion that can be unambiguously defined. Of course it may be that we
can never be certain that a theory is consistent (given Gödelian con-
siderations), but nonetheless there is no ambiguity as to whether a the-
ory is consistent, and often we have various reasons for accepting the
consistency of theories. For example, the existence of a rich structure
theory (in the case of ZFC and its extensions, the ones provided by

50Of course if one is already on board with [Maddy, 2011] that sets just are the
markers of mathematical depth, then of course depth is epistemically relevant. We
see no clear reasons to accept this claim.
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L and other fine-structural inner models51) and intuitive motivating
picture (such as stage theory for ZFC) give us confidence that a the-
ory is consistent. Concerning the second constraint, once we have set-
tled on what the more basic mathematical data are, consistency with
these data can also be assessed on similar grounds. Of course, there
may be some debate as to what are to count as the basic data around
the peripheries (or across research communities and time), but for the
purposes of mainstream classical mathematics and set theory we can
settle on a core of widely accepted axioms and theorems. This is quite
similar to theoretical physics, where the interpretation of experimen-
tal data can be challenged around the peripheries, such as in the recent
debate (and subsequent identification of experimental error) with re-
spect to faster than light neutrinos, but there is nonetheless a core of
accepted physical data. Similarly we may remain circumspect as to
whether a purported proof in mathematics contains a subtle flaw. De-
spite these wrinkles we can take some data to be basic (currently this
probably comprises at least ZFC) that can only be challenged in ex-
treme circumstances.

Certainly, however, these criteria only serve to weed out the really
bad putative explanations. Can we go further?

3.2 Prediction and explanation

The core claim we shall argue for is that there is a precise sense of
prediction and verification in set theory that counts in favour of prin-
ciples and is related to explanatory considerations. Shades of this idea
in fact already appear in [Maddy, 1988a] regarding reflection (p.503),
in [Maddy, 1988b] in a summary of different kinds of evidential sup-
port (p. 758–759), in [Maddy, 2011] (Ch. V, esp p. 127) discussing some
remarks of [Martin, 1998] (p. 224) concerning the Cone Lemma, and
in [Koellner, 2010] (§1.5 and p. 204) for the justification of determinacy
axioms. We will develop these ideas, in particular providing the fol-
lowing additional contributions: (1.) We identify an additional case in
which a notion of prediction and confirmation occurs, strengthening
the case that this is an integral part of set-theoretic justification, and
(2.) We will argue that, contrary to previous accounts, prediction and

51These models provide contexts of study for large cardinal principles which yield
a vast amount of information, for example, most fine-structural inner models satisfy
principles such as GCH as well as combinatorial principles like ♦ and �. This is
argued (e.g. by [Steel, 2014]) to constitute evidence in favour of the consistency of
the relevant principle, since we have a detailed picture of a structure in which it
holds. In the words of Steel “a voluble witness with an inconsistent story is more
likely to contradict himself than a reticent one.” ([Steel, 2014], p. 156).
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confirmation are not solely ‘extrinsic’, but mainly explanatory, integrat-
ing our justificatory enterprise with the account of mathematical data
provided above.

We can simply state our third condition thus:

(3.) A principle has a better claim to being an axiom (i.e. good or best
explanation) if it predicts (new) mathematical data.

Again, what ‘predicts’ comes down to here is a difficult question.
However, we can provide a fully technically precise account of it by
revisiting Gödel talking about the consequences of a new axiom:

...in particular in “verifiable” consequences, i.e., consequences
demonstrable without the new axiom, whose proofs by means
of the new axiom, however, are considerably simpler and
easier to discover, and make it possible to condense into
one proof many different proofs. ([Gödel, 1947], p. 182)

Though Maddy and others do mention prediction, they often take
the consequences Gödel is interested in to be “nice” in some appro-
priate sense, constitutive of a notion of extrinsic justification which
we argued earlier to be problematic. However, notice that Gödel here
talks about consequences “demonstrable without the new axiom”. We can
then come to a precise account of prediction and confirmation; the pre-
diction of a stronger and more controversial theory should be verified
by an accepted and weaker one. For example, we might confirm some
axiom Ψ by proving some unknown statement φ from ZFC + Ψ, and
then subsequently verifying φ in ZFC. This would yield confirmation
of Ψ, and is a fully technically precise notion.

Does such prediction occur in mathematics? We will now argue
that it does using two case-studies.

Our first example concerns the Cone Lemma and is in fact discussed
in [Maddy, 2011], but fits especially well with our current purposes.
The Cone Lemma states that from AD one can prove that for any set
A of Turing degrees either A or its complement contains a cone. This
holds, mutatis mutandis, for Projective, Open, and Borel determinacy.
In the case of PD, we have that PD implies that every projective set
of Turing degrees either contains a cone or its complement contains a
cone. Now, during the study of determinacy axioms, Martin in fact
tried to show that a contradiction with ZFC resulted from projective
determinacy, as he discusses:

When I discovered the Cone Lemma, I became very excited.
I was certain that I was about to achieve some notoriety
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within set theory by deducing a contradiction... In fact I
was pretty sure of refuting Borel Determinacy. I had spent
the preceding five years as a recursion theorist, and I knew
many sets of degrees. I started checking them out, confi-
dent that one of them would give me my contradiction. But
this did not happen. For each set I considered, it was not
hard to prove, from the standard ZFC axioms, that it or its
complement contained a cone...

...I take it to be intuitively clear that we have here an exam-
ple of prediction and confirmation. What was predicted,
moreover, was not just individual assertions. Though there
had been much work on the structure of the degrees, no at-
tention at all had been paid to the notion of a cone. There
was one known theorem (Richard Friedberg’s ’criterion of
completeness’), which we would now describe as showing
that a certain set contains a cone. Afterwards cones and cal-
culations of ’vertices’ of cones became significant in degree
theory. In determinacy theory, the Cone Lemma became an
important tool. What was predicted by the Cone Lemma
was thus a whole phenomenon, not merely isolated facts.
The example seems fully analogous to striking instances of
prediction and confirmation in empirical sciences. ([Mar-
tin, 1998], pp. 224–225)

Martin’s point is that in these contexts PD actually predicted phe-
nomena (the existence of certain cones on Turing degrees) that were
subsequently verified in ZFC. This then increases our confidence (ce-
teris paribus) that PD should be added to our axiomatic framework.
Moreover, it does so completely precisely in terms of prediction of phe-
nomena (namely the existence of cones) by a stronger, more controver-
sial theory (namely ZFC+PD, and susequent verification by a weaker
one (namely ZFC).

Our second and perhaps less well-known example is represented
by Dehornoy’s work on braids (expanding on previous work by Laver,
Martin and others). Braids can be defined as collections of disjoint
polygonal arcs γ1, . . . , γi in R2 × [0, 1].

As it turns out, the study of these simple, finitary objects can be
more easily carried out using methods involving large cardinals, in
particular elementary embeddings.52 Many kinds of large cardinals are
most naturally defined in terms of elementary embeddings.

52It is useful to recall some fundamental notions here. Given two structures A
and B, an elementary embedding of B into A (denoted A ≺ B) is the isomorphism
of B into a submodel B′ ⊂ A. Large cardinals of the same strength as, at least,
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Now, earlier work on a very strong large cardinal hypothesis
made it possible to study algebraic operations associated to collec-
tions of elementary embeddings, such as composition and product.53 Let
Eδ = {j : Vδ ≺ Vδ} be a collection of such embeddings: one can de-
fine operations on elements of Eδ, in a way which is fully analogous to
how one defines operations on elements of the braid group Bn.54 De-
hornoy, then, puts the analogy to work by managing to prove further
crucial theorems on braids in an extension of the infinite braid group
B∞ using ZFC alone, thus eliminating the need for large cardinals.

In his comprehensive monograph on braids ([Dehornoy, 2000]), De-
hornoy acknowledges and emphasises the connection between large
cardinals and braids, as well as the crucial role this connection played
for his work, using the following unequivocal terms:

It seems to us that the role of set theory in such cases is quite
similar to the role of physics when the latter gives heuristic
evidence for some statements that mathematicians are to
prove subsequently. In both cases, the statements are first
established rapidly but at the expense of admitting some
additional hypotheses or approximative proof methods —
observe that adding a set theoretical axiom is nothing but
adding a new proof method — and the subsequent task is
to give a proof that does not use the additional hypotheses
any longer. ([Dehornoy, 2000], p. 600)

Thus, it really seems that we have another example of the notions
of prediction and confirmation at hand. Results on braids, predicted us-
ing a stronger theory (ZFC+large cardinals) are then verified in ZFC,
increasing our confidence that large cardinal axioms are well-justified.

One might think that considerations of parsimony could then be
brought against such a picture. For, our account of prediction depends
upon a particular prediction being subsequently confirmed through
proof in a weaker already accepted theory. But if the prediction can
be proved in the weaker theory, shouldn’t we simply plump for the

measurables may be defined in terms of elementary embeddings. In particular, the
existence of a measurable cardinal is equivalent to the existence of an elementary
embedding j : V → M , where the least κ such that j(κ) 6= κ, called the critical
point of j, is a measurable cardinal. The embedding notions related to braids are
stronger refinements of the definition above. Recent work has looked at embedding
characterisations of smaller large cardinals, see [Holy et al., 2019].

53The strong large cardinal hypothesis mentioned is I3: ‘For some δ there is a
j : Vδ ≺ Vδ’. I3 is currently not known to be inconsistent with ZFC. See also
[Kanamori, 2009], p. 325.

54Full details may be found in [Kanamori, 2009], pp. 329-331.
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weaker theory over the stronger one on the basis of explanatory parsi-
mony?

We think that the correct response to this claim is to point out that
there are different kinds of parsimony. We acknowledge that in terms
of logical parsimony, it is the weaker theory that receives the highest
praise. However, the ability to systematise wide ranging data, an abil-
ity manifested through prediction, tells strongly in favour of the pre-
dicting principle in terms of conceptual parsimony.55 This is evidenced
by Dehornoy’s remarks above where it is the large cardinals that show
the conceptual route to the proofs, even if it is subsequently eliminable
in ZFC.

In other terms, the examples above not only offer a more precise
account of prediction and confirmation, but they also show the unifi-
catory power of this perspective on explanation; again along the line
suggested by Gödel in [Gödel, 1947]56.

We thus have a further precise criterion on when we might take
a principle to be explanatory; namely prediction and confirmation.
However, we also need to make convincing the claim that such pre-
diction and confirmation should figure into an account of explanation
driving justification. We will argue that there are at least two senses in
which this is so.

(1.) Prediction and confirmation shows how a principle can systema-
tise a wide variety of data, and thus increase the chance that the
principle itself forms a part of explanations.

(2.) A natural explanation of the fact that the principle makes verifi-
able predictions is that it is correct.

We start again by considering Gödel, who was sensitive to the ex-
planatory role axioms have through systematisation. For example,
Mehlberg writes the following reporting on Gödel:

55Ideas similar to this appear in [Cartwright, 1980] and Essay 8 of [Cartwright,
1983]. There Cartwright argues that the truth (which may be messy) does not explain
in science, rather we need conceptually simple simulacra that help us to systematise
the phenomena. The application there is somewhat different, since this idea of ex-
planation is elucidated in terms of the number of bridge principles employed and
we do not have an obvious division between the theoretical and concrete. However,
we do hold that the brute provable facts of ZFC might not be what provide the best
explanations, rather we need the more theoretically elegant theories that incorporate
principles of greater consistency strength.

56On the unificatory power of explanation in science there is a vast literature. We
would like to recall here the contribution of Philip Kitcher [Kitcher, 1983] who also
believed in a methodological uniformity between pure and applied science and thus
suggested that his view on explanation extended easily to mathematics.
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According to Gödel, an axiomatization of classical math-
ematics on a logical basis or in terms of set theory is not
literally a foundation of the relevant mathematics, i.e., a
procedure aiming at establishing the truth of the relevant
mathematical statements and at clarifying the meaning of
the mathematical concepts involved in these theories. In
Gödel’s view, the role of these alleged ‘foundations’ is
rather comparable to the function discharged, in physical
theory, by explanatory hypotheses. Thus, in the physi-
cal theory of electromagnetic phenomena, we can explain
why the sky looks blue to us under normal circumstances,
and we are even able to produce the same phenomenon in
the laboratory. Both the explanation of the physical phe-
nomenon under consideration and its production under
laboratory conditions are due to the logical fact that the
statements describing the blue of the sky or that of an ar-
tificially produced area in the laboratory are theorems prov-
able within an axiomatic system the postulates of which
are concerned with hypothetical laws governing electro-
magnetic phenomena, the composition of the atmosphere,
etc. It would not occur to a physicist that these electro-
magnetic assumptions which enjoy the role of postulates
in an axiomatized, or axiomatizable physical theory, are
more dependably known to be true than the pre-scientific
phenomena (like the blue of the sky) which are being ex-
plained by being shown to be provable theorems in the
aforementioned physical theory. Thus, the actual function
of postulates or axioms occurring in a physical theory is to ex-
plain the phenomena described by the theorems of this system
rather than to provide a genuine ‘foundation’ for such theo-
rems. Professor Gödel suggests that so-called logical or set-
theoretical ‘foundations’ for number-theory, or any other
well established mathematical theory, is explanatory, rather
than really foundational, exactly as in physics. (Emphasis ours,
[Mehlberg, 1960], p. 397)

While we might diverge slightly from the author on the use of the
term ‘foundation’, we see clearly here that if we are to systematise
data, the fact that the known (and previously unknown) data can be
derived from the axioms is important for showing that the axioms are
good explanations in themselves, providing a wide systematisation of
diverse data. Thus prediction shows how diverse data are importantly
similar in being traceable to a common root.
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This has implications for explanation in mathematics. [Lange,
2017], for example, argues that explanation occurs when a proof ex-
hibits an explanatory and striking similarity between two domains.57

In particular, proofs are understood as explanatory when they exhibit
‘symmetries’ of natural properties between different objects or struc-
tures.58 In the case of prediction, we have multiple similar facts trace-
able to a common root. This results in an increased likelihood that
such similarities will be found, as Dehornoy already showed. There-
fore, systematising vast swathes of knowledge under a single assump-
tion (as is the case with prediction) increases the confidence that such
an explanatory symmetry may be found, even if it does not guarantee
it. Thus, prediction increases the likelihood that an axiom forms part
of an explanation.59

Turning to (2.), we might also think that explanatory considerations
independent of the proposed axiom should lead us to the acceptance
of axioms that predict. The debate over whether principles that predict
(i.e. prove some data without that data in mind) as opposed to accom-
modate (i.e. prove some data with that data in mind) is well-trodden
in the philosophy of science.60 The key thought is that prediction in-
creases the chance that an axiom is, in some sense, ‘correct’. Since we
appeal here to a notion of correctness the exact form of this relationship
will depend somewhat upon the underlying ontology.

For the realist about mathematical objects, we can take standard re-
alist arguments for the correctness of predictivism for the philosophy
of science. For example, one might argue (in line with [White, 2003])
that a good explanation for why predictive theories predict is simply
that they are more reliably aimed at truth than those that accommo-
date (the so called ‘Archer analogy’). Similarly, we can say for the re-
alist that the reason that their principles predict (possibly surprising)
results that can be subsequently verified in the weaker theory is that
they aim more generally towards truth. In this case, the correctness

57See here [Lange, 2017], Ch. 7.
58Note here that while we do talk about explanatory proofs, in the context of

Lange’s account of explanation such proofs are explanatory in virtue of being re-
lated to certain explanatory properties in the world. Thus we are not depending
here irreducibly on an account of explanatory proof.

59One could also consider [Steiner, 1978]’s account of mathematical explanation in
terms of characterizing properties, where a property is characterizing if it is “unique
to a given entity or structure within a family or domain of such entities or structures”
([Steiner, 1978], p. 151). Since there are several objections to Steiner’s account (for a
summary, see [Pease et al., 2019], p.4), and we are somewhat constrained by space,
we will not consider Steiner’s account.

60See [Barnes, 2018] for a recent survey.
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(i.e. truth) of an axiom can simply be inferred abductively.61

The situation is slightly more complex for anti-realists. However,
any anti-realist who holds that there is a project for justification of in-
dependent sentences requires that there is some notion of ‘correctness’
in foundations, even if it is not truth.62 For example, we might think
of predicting principles for a fictionalist as aiming at truth within the
set-theoretic story, and a good explanation for this being that they are
good candidates for continuation of that story (much as in the Archer
analogy).63 Given, then, any such notion of correctness, we can still
incorporate axioms as likely correct in virtue of making correct predic-
tions.

To summarise, we have now argued for the following claims:

(A) There is a sense in which set theory has a technically precise notion
of prediction and verification.

(B) This notion of prediction and verification can be linked to expla-
nation, supporting our account of the justification of new axioms
as an explanatory enterprise.

In the rest of the paper we accomplish the following three tasks:

(1.) We’ll explain how our account resolves the problems of tractabil-
ity and demarcation.

(2.) We’ll deal with some natural objections.

(3.) We’ll propose some open questions.

61The idea that axioms should be inferred abductively is suggested by
[Williamson, 2016], though not in as much as we do here. For other arguments con-
cerning prediction and abduction, see [Lipton, 2003].

62We acknowledge that for those who do not think that there is any notion of
‘correctness’ in set theory, such as the pure formalist (who holds that mathematics is
simply a meaningless game played with symbols), the only notion of ‘justification’
is one based on making choices of formal expedience, and so set these views aside.

63Another possible candidate would be Cartwright’s ‘simulacrum’ account of ex-
planation, that is anti-realist in that she thinks that explanations need not even get
the phenomena right (see Essay 8 of [Cartwright, 1983]). However, her account de-
pends upon a clear partition of the world into the mathematical and physical, with
mathematical simulacra roughly resembling physical concreta. In this way, it is not
clearly applicable to the purely mathematical context, and so we set it aside. For the
anti-realist, we should also discuss [Fraassen, 1980]’s suggestion that explanations
are context-sensitive answers to why-questions, we will consider this in the section
on objections below.
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3.3 Tractability and Demarcation: Redux

We are thus in a position in which we regard justification in set the-
ory as essentially a matter of assessing explanatory claims given some
mathematical data. Before moving on to an analysis of objections, it
will be helpful to pause and discuss how our problems of tractability
and demarcation are resolved.

We have just finished explaining our response to the problem of
tractability. Whether or not a principle figures in a good explanatory
story may be difficult to assess, but there are precise criteria that we
can point to that increase our confidence that a principle figures in
mathematical explanations. While we have canvassed several options,
there may well be (indeed we expect there to be) many other precise
criteria for when we should regard putative axioms linked to expla-
nations. We leave a full analysis to other work, but some possibili-
ties have already been suggested in the literature, without tying their
epistemic reliability to explanation. For example, not considered here
were convergence by a sufficiently strong theory ([Koellner, 2006]) and
maximising interpretative strength ([Maddy, 2011], [Steel, 2014]). Each
requires study and a story of why we think criteria should track expla-
nation in mathematics. For instance, Maddy considers the maximising
of interpretive strength to be justified by her conception of the founda-
tional goals of set theory and the axiom MAXIMIZE. Since that litera-
ture is already well-studied, we do not provide detailed examination
here. We do wish to note, however, that Maddy often comes close to
advocating something like the conditions we advocate here (for exam-
ple using her notion of restrictiveness), it is specifically her tying of
justification to mathematical depth that we take issue with.

Indeed much of Maddy’s work could be naturally utilised by
the current project. For example, we might consider ideas such as
Maddy’s MAXIMIZE, which is also a precise criterion, as would no-
tions of theoretical completeness.64 Detailed examination of these tech-
nically precise features and how they relate to explanation would be
required for a full answer to the tractability problem, but we hope to
have convinced the reader that this is at least a promising line of in-
quiry where depth seems to be more problematic (we discuss this fur-
ther in the objections).

The demarcation problem is, however, fully resolved. This is be-
cause there is no pressure, on our account, to regard justificatory force
as entirely intrinsic or extrinsic, or that the two can be separated in any

64A theory T1 is more theoretically complete than another T2 iff there is a sentence
implied by T1 that is not implied by T2 and not vice versa.
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meaningful way. Rather, we take it that there are various hallmarks of
a theory receiving some justification either by being explanatory or
correct through explanation. It might be appropriate to call some of
these features more ‘intrinsic’ or ‘extrinsic’, and we do not want crit-
icise the use of these terms as rough heuristics, but simply to argue
that the justificatory force is stemming from the explanatory role of
the axioms rather than anything else.

4 Objections

In this section we briefly consider some objections to our account.

Against mathematical explanation. One rejoinder to our account is
to argue that there is in fact no good account of mathematical expla-
nation. This has been pressed by Mark Zelcer who summarises his
arguments as follows:

My claim amounts to the following: philosophical accounts
of explanation for mathematics will not satisfy desiderata
established for explanation in other domains, like science.
Among other things, an account of mathematical explana-
tion would have to, but cannot, show (1) either that there
is a solid history of mathematics as a discipline with ex-
planatory concerns (or there is a good reason why these
concerns went largely unnoticed), (2) there is a good ac-
count of predictions in mathematics (or that prediction is
not important for science) that are symmetrical to expla-
nations, (3) the methodological differences between math-
ematics and science—that mandates that in science and not
mathematics we expect everything (beside perhaps certain
fundamental facts) to fall under an explanatory schema—
can be explained away, (4) reducing surprise (in an objec-
tive way) is not a desideratum in mathematics, and (5) that
mathematical explanation, despite appearances, does play
a significant role in mathematics. ([Zelcer, 2013], p. 3)

Considerations of space prevent a full and detailed rebuttal of Zel-
cer’s arguments. However, we can make a few remarks here. Regard-
ing (1), Zelcer argues that there are not good examples of mathemati-
cal explanation either in the historical or contemporary literature, and
those that there are (such as in [Hafner and Mancosu, 2005]) tend to
be rather “exotic”. Whether or not one finds the examples “exotic” is
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something of a matter of taste, but in any case there are studies that
suggest that mathematicians as a matter of empirical fact do use ex-
planatory terms in their reasoning. [Pease et al., 2019] found that, in
a study of the Mini-Polymath projects, mathematicians do regularly
use language normally associated with explanation (e.g. “expla∗”,
“underst∗”, “because”, “as”). So, even if it is at the ‘back’ of mathe-
matics65, explanation seems to be an important part of mathematical
discourse. (2) we take ourselves to already have responded to with
our account of prediction. In favour of (3), Zelcer argues that there
are some portions of mathematics that do not require explanations,
whereas in science even so called ‘brute’ facts do have explanations.
We have argued, however, that foundational axioms can be viewed
as explanations of the mathematical data as a whole, and so for us ev-
ery mathematical fact is an explanandum in virtue of being part of
this data set. For (4) Zelcer argues that surprise is a result of realis-
ing that out of many possible worlds, the actual world is the way it is
(or narrow down the space of possible worlds to a smaller set of more
probable ones). Since the truths of mathematics are necessary, no such
surprise is possible. However, aside from the data point that surprise
just is a natural part of mathematical practice (the history of mathemat-
ics is littered with surprises, but the Martin quotation above is fairly
representative), the appropriate notion of possibility for mathemati-
cal surprise is epistemic, not metaphysical, possibility. Thus we can
perfectly well have Zelcer’s notion of surprise in mathematics, if only
with merely epistemically possible worlds that tolerate metaphysical
impossibilities. Regarding (5) Zelcer argues that mathematical expla-
nations are not employed, and thus considerations of parsimony dic-
tate that we expunge them. Again, we hold ourselves to have flat out
argued against this, and in any case the results of [Pease et al., 2019]
tell in our favour.

Justification can be wrong. Another objection is the following: Un-
der our conception, justification does not aim at truth. Rather, since it
relates to what we view as explanatory, what we are justified in assert-
ing might depart radically from the truth.

Before we respond, we should remark that the objection presup-
poses a very strong version of set-theoretic realism on which all (or at

65See [Hersh, 1991] for an explanation of the difference between the ‘front’ and the
‘back’ of mathematics. Roughly speaking, the ‘front’ is the part of mathematics that
is presented to the public (e.g. in journals, conference presentations etc.) whereas
the ‘back’ is reserved for professionals (e.g. when collaborating on a proof using a
blackboard, or on MathOverflow or MathStackexchange).
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least many/most) set-theoretic sentences are either true or false. On
the contrary, we see it as an advantage of our position that it is com-
patible with many different conceptions of the nature of set-theoretic
discourse. We might, for example, have concepts of set that agree on
ZFC with large cardinal axioms added, but disagree on CH (something
like this idea is advocated in [Steel, 2014]). We see it as an advantage
of our view that it can be integrated into many different positions, and
can serve as a point of common ground between dissenting parties.

Our response to this general question is just to acknowledge that
what is regarded as best justified on our framework may be false for
a very strong realist. What is regarded as explanatory or inferred ab-
ductively may turn out to be false. But this is simply an epistemic fact
of life, and is not a problem limited to mathematics. We are open, in
principle, to our justifications failing. But failure does not undermine
the theoretical value of the guiding principles that lead our research
and justification.

Second, we should emphasise that justification is a fundamentally
dynamic process. The account depends on a basis of mathematical data
that requires systematisation. In this way, we are not providing a static
account of justification (on which we take ourselves to be supplying an
account of how mathematical statements in general are justified), but
rather how, given some accepted mathematical facts at a point in time,
we can come to justify new principles.66 Justification should thus be
understood as a stepwise process of increasing credences, rather than
an all-or-nothing matter, fixed eternally.

Is what we have suggested extrinsic? A second line of objection
would be to argue that the kinds of criteria we appeal to are actually
simply extrinsic. Thus we would not have actually shown a problem
with the intrinsic/extrinsic distinction, but have rather advocated a
new account of extrinsic justification. To support this, one might point
to the fact that one of our examples (the Cone Lemma) is taken up by
Maddy67 as evidence of the priority of extrinsic justifications. Clearly
the notion of prediction and verification we have appealed to is tightly
linked to the notion of consequence, and hence should be viewed as
extrinsic. This is not a criticism of our view per se, but rather a dialec-
tic point about how it sits in the wider context of our criticisms and
rebuttals.

The point we wish to emphasise is that while prediction of a da-

66We thank [name removed for blind review] for pointing out this feature of our
account, and subsequent discussion.

67See [Maddy, 2011], p. 127.
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tum and subsequent verification is conducted using a notion of con-
sequence, the overall package of prediction and verification involves
more. In particular, verification is only possible once a set of auxiliary
assumptions has already been fixed (in the case of the Cone Lemma
and braids ZFC). But holding these auxiliary assumptions fixed oc-
curs within a wider justificatory framework, and parts of that involve
what we might call ‘intrinsic’ considerations.

For example, it is partly because of the way that ZFC interacts with
a wider ‘intuitive’ picture that we take it to be a good theory for assess-
ing verification and fixing auxiliary assumptions, since this intuitive
picture increases the confidence that explanation is being conferred.
We do not wish to bar the set theorist or philosopher from the use
of the terms ‘intrinsic’ and ‘extrinsic’ justification, just to insist that
the fundamental feature of the world they latch on to is explanation,
and there are no solely ‘intrinsic’ or ‘extrinsic’ justifications. For exam-
ple, the existence of a roughly ‘intuitive’ picture such as the iterative
conception, while normally regarded as an ‘intrinsic’ justification, has
also facilitated a particularly ‘fruitful’ way of thinking about set the-
ory, and so is also ‘extrinsic’ in some sense. Our point here is just that
the existence of an intuitive picture should increase confidence that
explanation is being provided.

Fixing the axioms of ZFC as auxiliary assumptions is part of the
examples of prediction and confirmation we have provided, since it
provides the metatheory for the study of braids. However, many of
these are naturally linked to more ‘intuitive’ considerations. For ex-
ample, concerning the Axiom of Foundation Potter remarks that:

Because the axiom of foundation did not have mathemati-
cal consequences, mathematicians showed no inclination to
adopt it: interest in it was limited to specialists concerned
with its metatheoretic consequences.

Matters began to change only when Gödel ([Gödel, 1947],
p. 519) presented the grounded collections not merely, as
Mirimanoff had done, as a sub-universe of the universe of
collections but rather as an independently motivated hier-
archy which, as he pointed out, ‘has never led to any anti-
nomy whatsoever’. Since the 1960s the assumption that
every collection is grounded has been adopted enthusias-
tically by set theorists, and the idea that the only coher-
ent conception is the iterative one has become widespread.
([Potter, 2004], p. 52)

However, of course the Axiom of Foundation has ‘extrinsic’ sup-
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port in terms of the systematisation into the iterative picture it pro-
vides. Our point is not that the Axiom of Foundation is either clearly
intrinsically or extrinsically justified, but rather that it is not clearly
either, and that this axiom is needed to fix the background in which
we conduct our predictions and verifications. It therefore can’t be ar-
gued that the notion of prediction and verification we have explored
is solely intrinsic or extrinsic.

No best explanation. The next objection is that perhaps there is no
best explanation, or that explanatory considerations do not tell firmly
in favour of competing axiom systems. Would we not then be stuck in
a non-epistemically-useful deadlock?

Our response is that while we may indeed end up in a deadlock
this would not be epistemically useless. First, given the emphasis on
explanation, we may have already ruled out several putative axioms,
and this would at least be somewhat useful. Second, at least we will
have outlined in precise terms the considerations underlying each ax-
iomatisation and why we take them to be justified. Third, an account
of truly distinct competing explanatory frameworks might well pro-
vide a justification for genuine pluralism about set theory, and be epis-
temically useful in telling us why no resolution of certain independent
questions is possible. In short, epistemic usefulness need not mandate
the provision of definitive yes/no answers, but does require a suffi-
ciently tractable notion to explain why answers to questions are or are
not possible.

This relates to a similar criticism from a different angle: Might
mathematical explanation be context-sensitive? This question is natu-
rally motivated by viewing explanations as answers to why-questions
(as proposed by [Fraassen, 1980], taken up by [Lange, 2017], and em-
pirically confirmed by [Pease et al., 2019]) since the why question can
vary and hence so can the explanation. But then we would have the
criticism that our view might result in the context-sensitivity of ax-
ioms.

Two responses are relevant here: First, in the context of the jus-
tification of set-theoretic foundations we have quite a restricted class
of contexts, namely those in which we look at the entire mathemati-
cal data set and ask what axioms concerning sets might systematise
that. In this sense, we have a kind of holism at play; we should not
be cherry-picking individual data-points in looking for foundational
axioms. These restrictions increase the likelihood that there will be
agreement in explanations. Second, if there truly is disagreement in
explanation between differing contexts, then this will provide an epis-
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temically useful underpinning of why there is genuine pluralism in
set theory; there are legitimately different mathematical contexts re-
quiring different axiomatisations.

5 Conclusions

In this paper, we’ve argued for two main claims: First that the ap-
peal to intrinsic and extrinsic justifications as fundamental and com-
peting is problematic, and second that explanatory considerations are
the fundamental driver in set-theoretic justifications. Whilst we take
ourselves to have taken a first step in this direction, the piece is some-
what exploratory, and there are many open questions to be resolved.

One obvious and key issue is that the notion of explanation in
mathematics needs a good deal of further work for a full account to
be provided. We canvassed only a few possible constraints on good
explanations in this essay, however there is space for an entire litera-
ture here. We therefore open with the following question:

Question 2. Can a complete list of precise justification-conferring fea-
tures be compiled?

In particular, while we have focussed on prediction, it is presum-
ably only one explanatory good among many. In discussing justifica-
tion more generally, there has been much good work done by Maddy,
Koellner, Martin, and others in providing a taxonomy and analysis of
different kinds of justification, and we do not wish to discredit their
work. From our perspective there is much to be done in explaining
how the criteria they provide, many of which can be given precise
characterisations (e.g. restrictiveness of theories68, level of theoreti-
cal completeness69, convergence70), can be integrated into our own ex-
planatory account.

Further, while we have provided explanation of how our view re-
sponds to the demarcation and tractability problems, our response to
the latter is only partial. We have shown how certain theories can re-
ceive more confirmation than others on the basis of prediction and ver-
ification. We have not, however, shown how we can (if at all) choose
between the well-confirmed theories. To a degree this is to be expected,
and reflects a usual problem at the cutting edge of any foundational
research (it would be unfair to force physicists to choose between rel-
ativity theory and quantum theory because of their incompatability).

68See [Maddy, 1998].
69See [Koellner, 2010], §3.3.
70See [Koellner, 2010], §3,4.
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However, some way of comparing the theories (possibly with a cal-
culus of confirmation analogous to those used in the philosophy of
science) is desirable. The following question is thus of interest:

Question 3. Is it possible to come up with a way of assigning different
theories weights and comparing them satisfactorily?

One final point of contact is with notions of grounding. Often ex-
planation is regarded as a species of this wider dependence relation,
and there are several distinctions we have not examined here (e.g. the
difference between ontic and explanatory grounding, and the different
grounding axioms that might thereby be argued to apply). We there-
fore ask:

Question 4. Can we make progress on mathematical explanation and
the justification of axioms on the basis of the study of grounding?71

In sum, we have seen that the distinction between intrinsic and ex-
trinsic justification, when regarded as fundamental and indicative of
a conflict in justificatory force, is beset by the difficult problems of de-
marcation and tractability. A better response is to regard justification
as as linked to explanation, with possible precise hallmarks of expla-
nation. We have proposed an initial step in this direction, but much
more is still to be done.
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[Džamonja and Shelah, 1999] Džamonja, M. and Shelah, S. (1999). ♣
does not imply the existence of a Suslin tree. Israel Journal of Mathe-
matics, 113(1):163–204.

[Enderton, 1977] Enderton, H. (1977). Elements of Set Theory. Aca-
demic Press.

[Ewald, 1996] Ewald, W. B., editor (1996). From Kant to Hilbert. A
Source Book in the Foundations of Mathematics, volume I. Oxford Uni-
versity Press.

41



[Feferman et al., 2000] Feferman, S., Friedman, H., Maddy, P., and
Steel, J. (2000). Does mathematics need new axioms? Bulletin of
Symbolic Logic, 6(4):401–446.

[Ferreirós, 2007] Ferreirós, J. (2007). Labyrinth of Thought A History of
Set Theory and Its Role in Modern Mathematics (2nd Edition). Springer,
Birkhäuser.
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