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Abstract: 

Tacking by conjunction is a well-known problem for Bayesian confirmation theory. 

In the first section of the paper we point out disadvantages of orthodox Bayesian so-

lution proposals to this problem and develop an alternative solution based on a 

strengthened concept of probabilistic confirmation, called genuine confirmation. In 

the second section we illustrate the application of the concept of genuine confirma-

tion to Goodman-type counter-inductive generalizations and to post-facto specula-

tions. In the final section we demonstrate that genuine confirmation is a necessary 

condition for Bayesian convergence to certainty based on the accumulation of condi-

tionally independent pieces of evidence.  

 

 

1. From Tacking by Conjunction To Genuine Confirmation 

 

Tacking by conjunction is a deep problem of orthodox Bayesian confirmation theory. 

It is based on the insight that to each hypothesis H that is confirmed by a piece of ev-

idence E one can 'tack' an irrelevant hypothesis X so that HX is also confirmed by 



  2 

E, in the Bayesian sense of "confirmation" as probability-raising, i.e. P(H|E) > P(H) 

("P" for "probability"). To illustrate, according to the orthodox account each piece of 

evidence that confirms Newtonian mechanics also confirms the conjunction of New-

tonian mechanics and creationism, although creationism is irrelevant to both Newto-

nian mechanics and the given evidence. This does not accord well with the pre-

theoretic notion of confirmation that Bayesians purport to explicate.  

 Particularly counterintuitive is the special case of tacking by conjunction in which 

the irrelevant hypothesis is directly tacked to the evidence. Thus E confirms EX for 

every arbitrary hypothesis X, provided only that E and EX are P-contingent, where 

a proposition is called "P-contingent" if its probability is different from 0 and 1. For 

example, "snow is white" confirms "snow is white and creationism". Author (2014) 

calls this type of 'confirmation' "pseudo-confirmation". The probabilistic fact under-

lying pseudo-confirmation is simple (Proof in appendix A1): 

 

Theorem 1 (Fact underlying pseudo-confirmation):  

Assume H and E are P-contingent. Then E confirms H iff P(E|H) > P(E). Subcase: E 

|== H. Special case: H = EX. 

  

Recent years have seen an increasing interest in the tacking by conjunction problem. 

Existing Bayesian solution proposals try to soften the negative impact of this result 

by showing that although HX is confirmed by E, it is so only to a lower degree (cf. 
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Fitelson 2002; Hawthorne and Fitelson 2004, and Crupi and Tentori 2010 who ex-

tended the focus to cases where H is disconfirmed by the evidence). Although these 

solution proposals provide important insights to the Bayesian confirmation model, 

they suffer from two drawbacks:  

 (1.) In application to the special case of the tacking problem in which X is directly 

tacked to E one would intuitively expect the tacked-on hypothesis "EX" to not be 

confirmed at all, but it counts as confirmed according to 'diminished confirmation' 

proposals. 

 (2.) These proposals are measure-sensitive in the sense that the 'diminished con-

firmation' claim holds only for some of the prominent Bayesian confirmation 

measures, but is violated for others (cf. co-author and author 2019).  

 One can easily see, however, that E increases the probability of EX only because 

E is a content element of EX and increases its own probability to 1 (P(E|E) = 1), 

while E does not increase the probability of the content element X that logically 

transcends E, which means by definition that X is not entailed by E. More generally 

speaking, E does not need to raise the probability of the E-transcending content ele-

ments of a hypothesis H, in order to confirm H in the Bayesian sense. Gemes and 

Earman (Earman 1992, 98n5) have called this type of pseudo-confirmation "confir-

mation by (mere) content-cutting". To avoid this problem one ought to require that 

the confirmation takes place in those content elements of the hypothesis that are not 

logically contained in the evidence. Thus, in order for E to count as genuine confir-

mation of EX, E has to confirm X. This is the idea of genuine confirmation devel-
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oped in author (2014a) and co-author and author (2019).  

 The notion of genuine confirmation is based on the notion of a content element. A 

definition of this notion for predicate languages has been given in co-author and au-

thor (2017, def. 4.2) and Author 2014b, def. 3.12-2) as follows (where propositional 

variables count as 0-placed predicates):  

 

Definition 1: C is a content element of (hypothesis) H iff (i) H logically entails C (H 

|== C), (ii) no predicate in C is replaceable by an arbitrary new predicate with the 

same place number, salva validitate of H |== C, and (iii) C is elementary in the sense 

that C is not L(ogically) equivalent with a conjunction C1C2 of conjuncts both of 

which are shorter than C.  

 

The shortness criterion is related to the well-known concept of minimal description 

length in machine learning (Grünwald 2000); it is relativized to an underlying lan-

guage with , , , and  as primitive logical symbols, assuming that defined sym-

bols are eliminated by their definitions. In propositional logic an equivalent version 

of this definition has been given in terms of shortest clauses (co-author and author 

2017, def. 4.1; 2019, def. 3). Note that (pq)(pq) is not an admissible conjunc-

tive decomposition of p, which avoids the Popper-Miller (1983) objection to induc-

tive confirmation, which runs as follows: every hypothesis H is logically equivalent 

to the conjunction (HE)(HE). But HE is entailed by E and HE is provably 
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disconfirmed by E, so "inductive" confirmation is impossible. But neither (HE) nor 

(HE) are content elements of H. 

 Other technical definitions of content elements are possible  examples are Fried-

man's (1974) "independently acceptable elements", Gemes' (1994) "content parts" 

and Fine's (2017) "verifiers". The technical details don't matter as long as the core 

idea is captured, namely the decomposition of a hypothesis into a set of smallest con-

tent elements that are not further conjunctively decomposable in relevant ways and 

whose conjunction is L-equivalent to the original hypothesis.  

 The notion of genuine confirmation (GC) has been explicated by co-author and 

author (2019)  in three versions: qualitative full GC, qualitative partial GC and quan-

titative GC: 

 

Definition 2: Assume E does not entail H.
1
 Then: 

1.1 Qualitative full GC: E fully genuinely confirms H iff (i) P(X|E) > P(X) holds for 

all E-transcending content elements X of H.  

 1.2 Qualitative partial GC: E partially genuinely confirms H iff P(X|E)  P(X) holds 

for all and P(X|E) > P(X) holds for some E-transcending content elements X of H.  

1.3 Quantitative GC: The degree of genuine confirmation that E provides for H is the 

                                                 
1
  We leave it open whether one wants to count logical entailment (E |== H) as a 

case of 'genuine confirmation' or not. In this case, H has no E-transcending content 

elements. 
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sum of the confirmation degrees, conf(E,H), over all E-transcending content elements 

X of H, divided by their number (where "conf(E,H)" is one of the standard Bayesian 

confirmation measures, e.g., the difference measure). 

 

Note that although the notion of genuine confirmation (in particular that of genuine 

full confirmation) strengthens ordinary Bayesian confirmation considerably, it is 

spelled out within the ordinary Bayesian framework. 

 

2. Applications of Genuine Confirmation  

 

In co-author and author (2019) it is shown that the so-defined measure has a number 

of attractive features. For example, it can solve problem of measure sensitivity. 

Moreover, qualitative partial GC implies positive quantitative GC; thus the qualita-

tive and the quantitative notions of GC are in coherence. In this paper we elaborate 

some attractive features of qualitative confirmation.   

 Partial (qualitative) genuine confirmation is sufficient to rule out the special case 

of tacking by conjunction in which the irrelevant hypothesis X is directly tacked on 

the evidence. This includes an important subcase, namely the problem of Bayesian 

pseudo-confirmation of Goodman-type counter-inductive generalizations. Let E be 

the evidence that all observed emeralds have been green, H1* the hypothesis that all 

unobserved emeralds will be green and H2* the hypothesis that call unobserved emer-

alds will be red. Then the inductive generalization H1 is L-equivalent with EH1* and 
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the counter-inductive generalization H2 is L-equivalent with EH2*. Now, following 

from theorem 1, E confirms both H1 and H2 in the pseudo-sense. However, E's con-

firmation of H2 is not a genuine one, because E does not confirm H2's E-transcending 

content element H2*. Moreover, note that E will only confirm the E-transcending in-

ductive projection H1* of E, and thus genuinely confirm H1, if the underlying proba-

bility function P satisfies certain additional inductive principles, such as de Finetti's 

exchangeability (invariance of P under permutation of individual constants) and regu-

larity (P(S) ≠ 0, 1 for every analytically contingent S). 

 For ruling out all sorts of tacking by conjunction, full (qualitative) genuine con-

firmation is needed. A further important application of full GC is the elimination of 

the pseudo-confirmation of post-facto speculations. By this we mean the confirma-

tion of hypotheses that contain  theoretical concepts or, more generally, latent varia-

bles that are not present in the evidence. By postulating sufficiently many latent vari-

ables and suitable principles connecting them with the observed variables, one can 

explain any observation whatsoever. For example, the fact that grass is green (E) 

pseudo-confirms the hypothesis (H) that "God wanted that grass is green and whatev-

er God wants, happens". Here "God's wishes" figure as the latent variable. Author 

(2014a) suggests to understand the pseudo-confirmation of post-facto speculations 

based on Worrall's (2016) concept of use-novel evidence. Worrall's account starts 

from the observation that the values of the latent variables of a general type of hy-

pothesis are fitted towards the evidence. Author (2014a) argues that the unfitted hy-

pothesis Hunfit should be understood as a content element of the fitted hypothesis Hfit, 
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which is obtained as the existential quantification over the possible values of the la-

tent variables. If Hunfit is so general that it can be fitted to every evidence, then Hunfit 

cannot be said to be confirmed merely by the fact that Hunfit was fitted to a particular 

evidence E1, leading to Hfít (although by theorem 1 Hfit's probability has increased, 

P(Hfit|E1) > P(Hfit)). For example, in the case of the "God-has-wanted-it" hypothesis, 

Hunfit would be the hypothesis "X(God wants X and whatever God wants, happens)". 

According to our account, this hypotheses cannot be genuinely confirmed by theolog-

ical post-facto explanations of events. This follows straightforwardly from P(E1|Hunfit) 

= P(E1|Hunfit), which holds because Hunfit can be fitted to any evidence whatsoever. 

Only if the fitted hypotheses is confirmed by a second use-novel piece of evidence E2, 

i.e. one to which Hunfit has not been fitted and which Hfit could have predicted, then 

Hunfit can be said to be confirmed via the confirmation of Hfit by E1 and E2. For obvi-

ously it is not possible to fit Hunfit to a given evidence E1 and then to confirm the so-

obtained Hfit  by any other evidence E2 whatsoever. In this way, the concept of genu-

ine confirmation provides a probabilistic justification of Worrall's criterion of use 

novelty. As a side remark we mention that the use-novelty criterion is by no means a 

purely philosophical invention, but is employed in a famous computational learning 

method, namely cross validation (Shalev-Shwartz and Ben-David 2014, sec. 11.2). 

 When we argued above that the probability of an E-transcending content element 

of H is or is not raised conditional on an evidence E that raises H's probability, we 

frequently argued by considerations of intuition. Probability theory itself does not tell 

us the value of P(E|C). Based on the considerations above we suggest the following  
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rationality criteria for the spread of the evidence-induced probability increase from a 

hypothesis H to its E-transcending content elements.: 

 

Necessary criteria for spread of probability increase:  

If H increases E’s probability, then the resulting probability increase of H by E 

spreads from H to an E-transcending content element C of H (P(C|E) > P(C)) only if: 

 (1.) C is necessary within H to make E probable, i.e., there exists no conjunction 

H* of content elements of H that makes E at least equally probable (P(E|H*)  

P(E|H)) but does not entail C, and  

 (2.) it is not the case that C is an existential quantification, C = xH(x), and H re-

sults from a parameter-adjustment of xin H(x) towards the evidence E, such that an 

equally good fitting ofH(x) would have been possible for every possible alternative 

evidence E'. 

 

 In the next section be explain a particular important application of the concept of 

genuine confirmation: it is a precondition for an important form of Bayesian conver-

gence. 

 

3. From Genuine Confirmation to Bayesian Convergence 

 

An important part of  Bayesian epistemology are convergence theorems. According 
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to them the conditional probability of a hypotheses can be driven to near certainty, if 

many confirming and mutually conditionally independent pieces of evidence for this 

hypotheses are accumulated (Earman 1992, 141ff.). Most versions of Bayesian con-

vergence theorems have been formulated for hypotheses not containing latent varia-

bles, typically hypotheses that are obtainable from the evidence by enumerative in-

duction. For example, it has been shown that if P is countably additive, then 

limnP(p(Fx)=r | (E1En)) = 1, where each Ei is Fai or Fai and F's frequency 

limit in the sequence (E1En) is r (this is a consequence of the theorem of Gaif-

man and Snir 1982). More important, however, is convergence theorem for hypothe-

ses containing latent variables. A well-known convergence theorem for this case is 

the following (proof in appendix A2): 

 

Theorem 2 - convergence to certainty: 

If a P-contingent hypothesis H satisfies the following conditions 

(a) H is confirmed by each of the P-contingent pieces of evidence E1,,En (i.e., 

P(Ei|H) > P(Ei) for all i{1,,n}),  

(b) the pieces of evidences are mutually independent conditional on H, i.e., 

P(Ei|HE1i = P(Ei|H for all i {1,,n} (and some ordering of the Ei's), 

(c) and they are also mutually independent conditional on H, 

then limnP(H|E1En) = 1. 
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Convergence to certainty in spite of a small prior probability is the ideal case of sci-

entific confirmation. The confirmation of Darwinian evolution theory by multiple 

pieces of evidence constitutes an example. Theorem 2 is  a reformulation of the Con-

dorcet jury theorem, with the agreeing reports of the independent witnesses being 

equated with the independent evidences (Bovens and Hartmann 2003; List 2004). 

Surprisingly, however, a necessary condition for convergence to certainty is full gen-

uine confirmation. The existence of only one E-transcending content element of H, 

call if C, that is not confirmed by any one of the evidences Ei, is sufficient to prevent 

convergence to certainty. Since C's probability is not raised by any of the Ei it holds 

that P(C|E1En) = P(C). But P(C|E1En) = P(C) is an upper bound of 

P(H|E1En), since H entails C. Thus P(H|E1En) is forced to stay below P(C), 

which is small, and cannot approach certainty.   

 

Theorem 3  failure of convergence to certainty: 

If a hypotheses H satisfies conditions (a) and (b) of theorem 2, but contains a content 

element C that is not confirmed by any of the evidences Ei, then 

(i) limnP(H|E1En)  P(C), and 

(ii) condition (c) of theorem 2 fails. 

 

 Note that if case of theorem 3(i) obtains and H starts from a low prior, then H's 

probability is still increasing conditional on the accumulating pieces evidence, how-
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ever, it does not converge to 1, but to P(C) (from below). 

  In conclusion, genuine confirmation is a precondition for the sustainable confirma-

tion of hypotheses that are allowed to contain latent variables. While the proof of the-

orem (i) is obvious from the arguments above, it is prima facie puzzling how this re-

sult squares with theorem 2. It turns out that entailment of an irrelevant content ele-

ments undermines the independence of the pieces of evidence conditional on the ne-

gation of the hypothesis, which is the content of theorem 3(ii). Theorem 3(ii) points 

towards a general limitation of the convergence theorem 3; because of its importance 

we state the proof right here in the text (not in the appendix). For whenever the nega-

tion of the hypotheses, H, can be decomposed into a partition of finer hypotheses 

that convey different probabilities to the evidence, then the independence of the piec-

es of evidence conditional on H fails. For example, assume H splits into two dis-

joint hypotheses H2, H3 such that P(Ei|H2) is much larger than P(Ei|H3) (for all i), alt-

hough (Ei|H2H3) = P(Ei|H) < P(Ei), which follows from P(Ei) < P(Ei|H) and the P-

contingency of Ei and H. Then P(Ej|HEi) > P(Ej|H) will hold, because the fact 

that Ei obtained makes it more probable that H2 and not H3 obtained, which in turn  

makes Ej more probable.  

 Now assume that H is a hypothesis that has an irrelevant content element C, H = 

H1C, where P(Ei|H1) > P(Ei) and C is irrelevant for Ei both unconditionally and con-

ditionally on H1. In this case the negation (H1C) splits into the finer partition 

H1C, H1C and H1C. While P(Ei|H1C) < P(Ei) holds for both C = C and 



  13 

C = C, the third element of the partition behaves differently, namely P(Ei|H1C) 

> P(Ei|H1), and this destroys the independence of the evidence conditional on 

(H1C). 

 Fortunately there is a generalized version of theorem 3 that is relativized to a given 

possibly large partition of hypotheses that are assumed to be sufficiently strong to 

guarantee mutual conditional independence of the pieces of evidence (proof in ap-

pendix A3): 

 

Theorem 4 - generalized convergence to certainty:  

Assume a P-contingent hypothesis H1 belongs to a partition of hypotheses 

{H1,,Hm} satisfying the following conditions: 

(a) every piece of evidence favors H1 over every other hypothesis by at least (for 

some >0), i.e., P(Ei|H1)  P(Ei|Hr)+for all r>1 and i{1,,n}, and 

(b) the pieces of evidences are mutually independent conditional on every Hk 

(k{1,,m}), i.e., P(Ei|HkE1i = P(Ei|H for all i (i{1,,n}), 

then (i) P(H1|E1En)   nδ)1(h)1(h

h



 

, and 

(ii) limnP(H1|E1En) = 1. 

 

If we apply theorem 4 to hypotheses that are conjunctions of several content ele-

ments, H = H1Hk, then the smallest partition of competing hypotheses that has 

to be checked in regard to conditional independence of the pieces of evidence is the 
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partition{H1Hk: Hi  {Hi,Hi}, 1ik}, which contains 2k elements 

 

Appendix: Proof of theorems: 

 

A1. Proof of theorem 1: 

This is well-known: Assuming H and E are P-contingent, then 

P(H|E) = P(H)P(E|H)/P(E), and P(E|H)P(H)/P(E) > P(H) iff P(E|H) > P(E). Q.E.D. 

 

A2. Proof of theorem 2:  

Theorem 2 follows from theorem 4 by substituting {H,H} for {H1,,Hm}. Note 

that for P-contingent E and H, P(E|H) > P(E) entails P(E) > P(E|H), which follows 

from the fact that P(E) = P(E|H)P(H) + P(E|H)P(H). Thus there exists a  such 

that P(E|H)  P(E|H)+, which is the assumption of theorem 3. Q.E.D. 

 

A3. Proof of theorem 4: 

We abbreviate P(Ei|H1) as pi and write {x1,,xn} and {x1,,xn} for the sum and 

the product of the numbers x1,,xn, respectively. We calculate as follows. By Bayes' 

theorem:  

 P(H1|E1En)  =  P(E1En|H1)P(H1)/{P(E1En|Hr)P(Hr): 1 < r  m}. 

Since P(E1En|Hr) = {P(Ei|HrE1Ei1): 1in} and condition (b) of theo-

rem 4 we continue: 
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  = 
p :h { 1 i n}i

| }) :p : r m , r }1:h { 1 i n } {P(H ) {P(E H 1 i n 1i ir r

  
        

     

  
:h {p 1 i n}i

}:h {p : } {P(H ) : r m, r 1} {(p δ) 1 i n1 i n 1i ir

  
          

 (from condition (a)) 

 = 
}ni1:)ip{()h1(}ni1:ip{h

}ni1:ip{h


   =  

}ni1::ip{

}ni1::)ip{(
h

h11

1





 . 

Because of  
}ni1:ip{

}ni1:)ip{(


   (1n we obtain the claim of theorem 4 (i), which 

entails theorem 4 (ii) because of limn(1n = 0. Q.E.D. 
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