
Neural Oscillations as Representations1

2

Abstract3

We explore the contribution made by oscillatory, synchronous neu-4

ral activity to representation in the brain. We closely examine six5

prominent examples of brain function in which neural oscillations play6

a central role, and identify two levels of involvement that these oscil-7

lations take in the emergence of representations: enabling (when oscil-8

lations help to establish a communication channel between sender and9

receiver, or are causally involved in triggering a representation) and10

properly representational (when oscillations are a constitutive part of11

the representation).12

We show that even an idealized informational sender-receiver ac-13

count of representation makes the representational status of oscilla-14

tions a non-trivial matter, which depends on rather minute empirical15

details.16

1 Introduction17

A foundational hypothesis in cognitive science is that cognition progresses18

through the manipulation of representations: entities that are about, or stand19

for, other, generally extra-mental entities (Frankish and Ramsey 2012). Ac-20

cording to this hypothesis, information about the external world flows through21

the brain, encoded somehow in its states, modulating behavior in increasingly22

sophisticated ways. Much cognitive science aims at identifying those brain23

states, and uncovering their content—what it is that they say about the exter-24

nal world. In its turn, one of the central research programs in the philosophy25

of cognitive science aims at formulating a metaphysics of representations:26

what needs to be the case for a certain vehicle to qualify as a representa-27

tional state? What determines its representational content? (Cummins 1991;28

Ramsey 2007; Shea 2018)29
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The paragraph above is written in the abstract way characteristic of philo-30

sophical discussion on representations (e.g. Fodor 1974; Pylyshyn 1984); one31

that glosses over particular details of implementation. For example, philoso-32

phers often use the term ‘vehicle’ with the intention that it range over all33

possibly representational brain states (say, single neurons, populations of neu-34

rons, or neurotransmitter discharges) and all possible encodings (say, rate-35

or phase-based). Studying the metaphysics of representation in such non-36

committal terms is methodologically smart: it allows the resulting theory to37

apply to vehicles in general, and to capture whatever is common to all in-38

stances of representation in the brain. On the other hand, this approach tends39

to neglect the particular way in which representations are implemented, and40

the keys those particular ways might hold to the more general question of41

representation—apart from their intrinsic theoretical interest (Craver 2007;42

Boone and Piccinini 2016).43

In this paper we redress this situation with respect to one very interesting,44

philosophically underexplored kind of vehicle. Frequently, brain activity is or-45

ganized into synchronous, quasi-periodic patterns of activation which appear46

to contribute to many aspects of cognition, from pre-attentional grouping47

(Jensen, Kaiser, and Lachaux 2007; Zion Golumbic et al. 2013; Fries 2015;48

Pritchett et al. 2015) to the construction and modification of spatial maps in49

the hippocampus (Skaggs et al. 1996; Colgin et al. 2004). The question that50

will interest us here is whether these contributions are representational: do51

synchronous, periodic patterns of activity (we will call them ‘neural oscilla-52

tions’, for brevity) in and of themselves constitute representations?53

Investigation of these implementational details is not only interesting in54

its own right; it can also help philosophers reach conclusions about represen-55

tation in general. In particular, the results of this paper can be used as a56

response to the ‘trivialization’ objection against naturalistic theories of con-57

tent: many theorists have recently argued that theories that try to explain58

the notion of ‘representation’ in terms of functions, information, or causal re-59

lations (for example, teleosemantic approaches) are too liberal. According to60

this complain, if representational status merely depended on the presence of61

these features, almost any brain event would qualify as such (Ramsey 2007;62

Burge 2010; Schulte 2017; Gładziejewski and Miłkowski 2017; Butlin 2018;63

Williams and Colling 2018). This outcome would trivialize the notion of ‘rep-64

resentation’ and would put its explanatory role into question. Partly for this65

reason, some of these theorists suggest that attribution of representational66

status should be restricted to relatively sophisticated processes, such as those67
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involving map-like structures or constancy mechanisms.68

Neural oscillations show this to be a hasty conclusion: as we will see, under69

an understanding of representations that would certainly count as liberal70

by those theorists’ lights, some forms of simple oscillatory processes qualify71

as representational, whereas others do not. “Liberal” naturalistic theories of72

content can draw a meaningful, non-trivial distinction between brain events73

that are genuinely representational and those that are not.74

Our paper is structured in six main sections. In section 2 we sketch our75

preferred general approach to the question of the metaphysics of representa-76

tion. Our aim in this section is not to offer a fully developed metasemantics77

but, rather, to identify a common core to which many theorists working on78

this topic adhere. This common core will be enough to distinguish two roles79

neural oscillations can play, in the process of generating representations: we80

call them enabling and properly representational. We present these roles in81

section 3. The following two sections consider some scientifically prominent82

cases of brain function, with the goal of ascertaining which one, if any, of83

these roles neural oscillations play in them: section 4 discusses neural oscilla-84

tions that probably play an enabling role; and section 5 deals with what, we85

argue, are the properly representational cases. This taxonomy exemplifies a86

second lesson about the usefulness of investigating particular details of imple-87

mentation for the study of representations in general: while we have arrived88

at it from the consideration of rather minute such details, it is not unreason-89

able to think that it will prove helpful in the investigation and description of90

many other, unrelated representational phenomena. Section 6 wraps up and91

offers some conclusions.92

2 The core metaphysics of content93

In subsequent sections we will ask of certain kinds of brain activity whether94

they count or not as representations. In order to answer this question, we95

need a theory of what makes a certain state representational. A substantial96

discussion of this question is well beyond the scope of this paper; instead,97

we will present, without argument, two tenets that are widely (though by no98

means universally) thought to be part of what it is for a representation to be99

a representation. These tenets are most closely related with so-called teleose-100

mantic naturalistic metasemantics (Millikan 1984; Papineau 1987; Neander101

2017) but they also draw from the partially overlapping signaling games102
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framework (Skyrms 2010; Godfrey-Smith 2014).103

The first tenet is that all representational systems share an architectural104

motif: in all of them, representational vehicles, or ‘signals’, mediate between105

a mechanism producing the representation (called ‘sender’ or ‘producer’) and106

a mechanism using the representation (‘receiver’ or ‘consumer’). For a mech-107

anism to qualify as a sender or a receiver, it needs to have the right sort of108

biological function: the sender’s function is, roughly, to emit the above me-109

diating signals when certain states of affairs obtains, whereas the receiver’s110

functions is, roughly, to act in certain ways upon reception of the signal.111

The content of the representation will be fixed, among other things, by112

the relation it bears to the behavior of the producer/sender and the con-113

sumer/receiver. Although the specification of these relations vary from ac-114

count to account, information generated in the external world flowing from115

producer to the representation, and from the representation to the consumer,116

is usually taken to play a role: under a first approximation, contents are fixed117

by the information that representations carry about the world, under some118

designated set of optimal conditions. What these optimal conditions amount119

to is somehow fixed by the receiver/consumer’s biological function—this is120

the second tenet.121

Putting these two ideas together, our metasemantic sketch says that a122

certain mental vehicle, V, is a representation if:123

1. V is an intermediate state in a sender-receiver architecture, and124

2. V helps fulfil its consumer/receiver’s biological function by carrying the125

information that the state of affairs S is the case (information which126

has flown to V through its producer/sender)127

In such a situation, moreover, we may say that the content of V is that128

S is the case. In this paper, though, our main focus will be on establish-129

ing that certain neural oscillations are representations, and not so much on130

ascertaining their content.131

This metasemantic sketch is heavily simplified—Ruth Millikan, and many132

other theorists after her, have been developing related ideas for the best part133

of four decades. Still, it is detailed enough to accommodate a number of134

properties that many associate with, or even take to be necessary for, the ex-135

istence of representations. First, the possibility of erroneous representation,136

or misrepresentation: this will happen, among other things, in some cases137

4



of sender malfunction, the possibility of which is part and parcel of its hav-138

ing a biological function. Second, the fact that representations ought to be139

action-guiding—or, at least, somehow contribute to the production of behav-140

ior: this will fall out of understanding biological functions as contributions141

to the subsistence of the individual (Mossio, Saborido, and Moreno 2009)142

or contributions to selection for the functional device in question (Millikan143

2002). From section 4 onwards we will rely on these ideas in our discussion144

of the representational status of oscillations. Before that, we will briefly dis-145

tinguish two possible degrees of involvement for oscillations to have in the146

generation of representations.147

3 Enabling and representational roles148

The taxonomy we are about to present is not a theoretical assumption, but149

one of the results of the present investigation: after having surveyed many150

of the relevant empirical cases, it is the classification that suggests itself as151

most conducive to understanding and organizing the involvement of neu-152

ral oscillations in the generation of representations. In any event, of course,153

other useful taxonomies are certainly possible, and our preferred one does154

not aim at being exhaustive. The two roles under which we will classify the155

involvement of neural oscillations in representational phenomena are:156

Enabling: Neural oscillations enable or trigger the activation of a represen-157

tation.158

Representational: Neural oscillations properly are (or are a constitutive159

part of) a representation.160

First of all, neural oscillations play an enabling role when their main job161

is to help set up the communication channel between sender and receiver.162

To see what this means, we first note that a sender-receiver configuration163

is just a point-to-point information-processing pipeline in the Shannonian164

tradition (Shannon 1948; El Gamal and Kim 2011, section 3.1). Compare165

the entirely analogous figures 1 and 2. The sender/producer can be thought166

of as well as an encoder, and the receiver/consumer as a decoder. Efficient167

encoding/decoding is useful in order to get relevant information through in-168

herently noisy, limited-capacity channels, and some of the time it is coding-169

related roles that neural oscillations will play: for example, oscillations can170

5



help communicate to the encoder/decoder what is the task-relevant informa-171

tion they should focus on communicating (this is related to what information172

theorists call a distortion measure—see Martínez (2019) for details). This is173

our interpretation of the phenomena discussed in Subsection 4.1. They can174

also constitute the mechanism that allows the brain to move from reading175

representations to writing them, and back (Subsection 4.2). A third kind of176

enabling role is to help build a representation, without being a proper part177

of it (Subsection 4.3). There are probably many other purely representation-178

enabling roles that neural oscillation can play.179

Source Encoder Channel Decoder
original message

M

signal signal decoded message

M̂

Figure 1: A point-to-point information-processing pipeline

World Sender Messages Receiver
state act

Figure 2: A sender-receiver model

The job of neural oscillations, however, is not limited to facilitating (or180

disrupting) communication. Sometimes they seem to play a bona fide repre-181

sentational role. In other words, they are a constitutive part of the vehicle182

of communication—of the signals in figure 1. Neural oscillations not only183

enable the flow of information, but also convey information themselves. In184

Subsections 5.1 and 5.2 we discuss two cases in which oscillatory phenom-185

ena not just enable but are representations. Finally, in Subsection 5.3 we186

take a step back and canvass the general role that oscillations play in the187

generation of an important kind of representational vehicle—so-called neural188

sequences—across the brain.189
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4 Enabling oscillations190

In this section we review cases in which oscillations provide background con-191

ditions for representations to exist, or are causally involved in the tokening192

of representations, without being themselves representational.193

4.1 Attention and Communication Through Coherence194

Attention is a kind of modulation of sensory processing, whereby incom-195

ing stimuli are preferentially processed, or ignored, based on their current196

saliency, or behavioral relevance to the perceiver (Treue 2001; Gilbert and Li197

2013). Attentional influence helps target finite and expensive computational198

resources in higher cognition to the treatment of those aspects of the incom-199

ing sensory stream that most directly affect the perceiver. “As a consequence200

the perceptual quality of a visual stimulus located within an attended region201

is improved . . . at the expense of the perceptual quality of stimuli located202

elsewhere . . . ” (Chalk et al. 2010, p. 114).203

Attentional influence on sensory processing has been demonstrated to204

exist as early on as V1 (Posner and Gilbert 1999) but probably not earlier205

than that (Alilović et al. 2019); this influence increases as we move on to206

higher visual areas (Maunsell and Cook 2002) although “the magnitude of207

attentional effects depends on the nature of the task and the configuration208

of the stimulus” (Gilbert and Li 2013, p. 352).209

Spatial attention is often directed to concrete spatial areas in the visual210

field. The once ubiquitous metaphor was that attention is like a ‘spotlight’: it211

illuminates the attended area and singles it out for further processing (Bre-212

fczynski and DeYoe 1999; Hurlbert and Poggio 1985) More recent research213

has uncovered some limitations of this spotlight metaphor. First, the spatial214

resolution of neurons decreases as we go up in the visual processing hier-215

archy (that is, the receptive field size of these neurons increases, Dumoulin216

and Wandell 2008): the higher the visual area, the bigger chunks of the visual217

fields particular neurons are affected to. This makes intuitive sense: these neu-218

rons are often, though not always, attuned to global properties of the visual219

scene—to its gist; and not so much to fine-grained details, say, of texture or220

color. This means that attention cannot be just a matter of upstream neurons221

specializing on (directing a spotlight to) smaller, spotlight-sized, visual-field222

regions. Furthermore, the existence of attentional mechanisms that target223

objects and features, and not spatial regions, has been amply demonstrated224
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(Maunsell and Treue 2006; O’Craven, Downing, and Kanwisher 1999; Treue225

and Trujillo 1999). Attentional mechanisms, therefore, somehow are able to226

single out, from the whole input to a neuron’s receptive field, a relevant227

subset of activity for further treatment.228

One of the most widely accepted hypothesis as to how attention ac-229

complishes this, Pascal Fries’s communication through coherence (also CTC230

henceforth, Fries 2005, 2015), relies on synchronized1 oscillations in the gamma231

band (or gamma oscillation, for short, Pritchett et al. 2015; Jensen, Kaiser,232

and Lachaux 2007; Fell et al. 2003; Zion Golumbic et al. 2013; Fries 2009). In233

this section we first discuss the mechanism by which synchronized oscillatory234

behavior is accomplished; then how this solves the problem that attention235

faces; and, finally, whether attention-related gamma oscillation could be plau-236

sibly regarded as representational.237

Gamma oscillation depends crucially on the behavior of fast-spiking in-238

hibitory interneurons (Pritchett et al. 2015; Fries 2009). Simplifying some-239

what current computational models of the emergence of oscillatory behavior240

(see, e.g., Börgers, Epstein, and Kopell 2008, for a fuller picture), the main241

idea is that a stimulus presentation excites a group of interneurons, which in242

turn inhibit a larger group of excitatory neurons in their vicinity. When the243

inhibition wears out (after approximately 15ms, hence the gamma frequency244

of the resulting rhythm, Pritchett et al. 2015, p. 254) there is a window of245

opportunity for the activity of excitatory neurons, which in turn generate the246

next cycle of inhibition by interneurons.247

Attention is hypothesized to work roughly as follows: the stimulus at-248

tended to by a population of neurons downstream, D, oscillating in the249

gamma band, is the one encoded by the population upstream, U , also oscil-250

lating and synchronized with D. The way in which this helps fix attention to251

the stimulus encoded by U is by enhancing the effective connectivity (Friston252

2011) between D and U (and impeding the connectivity between D and other253

possible neuronal populations upstream). First, focusing on the downstream254

neuron population, “input consistently arriving at high-gain phases benefits255

from enhanced effective connectivity” (Ni et al. 2016, p. 240). Second, focus-256

ing on the upstream population, “[presynaptic synchronization] . . . ensures257

that a presynaptic activation pattern arrives at postsynaptic neurons in a258

temporally coordinated manner” (Fries 2015), which in turn results in much259

enhanced impact in postsynaptic neurons because of feedforward coincidence260

1. Here, by “synchronized” we mean “in (delayed) coherence”, see Fries (2015).
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detection (Fries 2009). This is, in a nutshell, the mechanism that Fries calls261

CTC.262

Our main question is: are attention-related gamma oscillations represen-263

tational? To be precise, the putative representational vehicle is264

Vehicle: Populations U and D being synchronized in the gamma band.265

Under the simplified analysis of representations we are working with (as266

presented in section 2) a representation is, at least, a vehicle that mediates267

between a sender (or producer) and a receiver (or consumer). Now, on the268

one hand, it is possible to find a sender, or set of senders, for Vehicle. First,269

for saliency-based attention, the most salient stimulus is the one that will270

drive excitatory neurons most vigorously. This will kick off the process de-271

scribed above, that results in gamma oscillation for these neurons, which in272

turns “manages to entrain postsynaptic neurons and thereby achieves the in-273

crease in input gain at the postsynaptic neurons.” (Fries 2015, p. 226). The274

sender of the attentional vehicle, according to this picture, would be neural275

(e.g., retinal) activity vigorous enough to entrain gamma oscillation. For top-276

down attention, the CTC picture is somewhat less clear. Roughly, whatever277

volitional processes that result in a mandate to attend to a certain spatial278

region, feature or object would directly communicate with U (recall, this is279

the population of upstream, presynaptic neurons), causing them to synchro-280

nize, and thereby entraining D. The sender, according to this picture, would281

be something like the neural correlate of an intention to focus one’s attention282

on the feature encoded by D.283

But, on the other hand, it is very unlikely that Vehicle have a receiver:284

that D attends to U is not something that needs to be communicated to an-285

other area of the brain for further treatment. There is no further component286

that is sensitive to the synchronization and employs it to gather information287

about some state of the world. Here neural oscillations enable a better com-288

munication between two brain areas, but they are not supposed to represent289

or carry information about any particular aspect of the world. Attentional290

modulation of sensory processing is a very efficient way of optimizing the291

brain’s limited computational budget, but the information that this opti-292

mization might carry is of no use to other brain areas.2293

2. At least in usual cases, leaving aside comparatively uncommon situations of self-
monitoring of attention (Harris et al. 2005).
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Note that our claim here is just that Vehicle (that is, the actual neural-294

oscillatory implementation of attention) is not representational. We are not295

discussing other phenomena in the vicinity, such as, for example, the in-296

tention to focus our attention on some aspect of the visual field, which, as297

suggested above, could plausibly trigger an attentional process in some cases.298

The communication of this intention to neural population U could, for all we299

know, constitute an imperative representation with a content along the lines300

of “Attend to stimulus S!”. We will not discuss here this possible imperative301

representation3 among other things because the philosophical treatment of302

imperative representations is less mature than that of indicative ones. See303

Butlin (2018) and Artiga (2013) for related discussions.4304

What attention does falls squarely under channel management : given the305

available channel capacity from early vision to the extrastriate cortex, infor-306

mation relevant to current behavioral goals (top-down attention) or infor-307

mation that might potentially inform new behavioral goals (saliency-based308

attention) needs to be prioritized. Attention-related gamma oscillations play309

a purely enabling, non-representational role.310

4.2 Retrieval and encoding of cognitive maps311

Our second example concerns place cells. Research on these neurons began312

in the 1970s, when O’Keefe and Dostrovsy (1971) discovered that activity in313

some cells of the rat’s hippocampus (specially in areas CA1 and CA3) were314

not well correlated with significant events (such as food finding or lever press-315

ing), but were instead specially sensitive to location. Subsequent research has316

confirmed that these cells carry information about particular places and many317

have taken this to suggest that rats possess a cognitive map of the environ-318

ment (O’Keefe and Nadel 1978; Muller et al. 1994; McNaughton et al. 2006;319

Hartley et al. 2017).320

Cognitive maps must be stable enough that they can be re-used whenever321

the rat needs to navigate the same space. At the same time, in certain circum-322

stances (e.g. in new environments, or when familiar environments change in323

significant ways) a new map needs to be created, a process called ‘remapping’324

3. A representation which, by the way, would also be possibly mediated by gamma
synchrony, this time between the frontal eye field and V4 (Gregoriou et al. 2009). See
Baluch and Itti (2011) for a review of top-down influences in attention.

4. We would like to thank an anonymous reviewer for drawing our attention to this
point.
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(Muller and Kubie 1987). The exact circumstances that trigger remapping325

are not well understood, but it has been extensively shown that this process326

involves cells changing their place fields and establishing new connections327

between them. In case of global or complete remapping, the cell’s new place328

field does not bear any specific relationship with the previous one (Knierim329

2003; Latuske et al. 2018).330

The existence of remapping, however, raises a puzzle. When the rat needs331

to orient itself in a familiar environment, action needs to be driven by the332

information stored in the hippocampus and, when it finds itself in a new333

environment or when the old environment changes in significant ways, the334

new information needs to be stored. The problem, however, is that some of the335

very same brain regions containing place cells (e.g. C3, and CA1) are involved336

in both processes of encoding and retrieval (Leutgeb et al. 2005). How can a337

system deal with these two different goals? How can the hippocampus encode338

new information without interference from old memories, and retrieve an339

old map without interference from incoming input? One possible mechanism340

involves the use of neural oscillations.341

The entorhinal cortex (EC) is one of the main extrahippocampal relays de-342

livering new information to the hippocampus (Buhl and Whittington 2007).343

In encoding a new map, activity in the EC and CA1 is synchronized, meaning344

that cells in both regions tend to fire in-phase, whereas synaptic transmission345

between CA3 and CA1 is weak, which prevents interference. In contrast, in346

retrieval there is strong input from CA3 to CA1 and weak input from EC347

(Hasselmo, Bodelón, and Wyble 2002; Montgomery and Buzsáki 2007). In a348

nutshell, the idea is that, in encoding, oscillations are used in order to pro-349

mote the transmission of information between extrahippocampal areas and350

the hippocampus and inhibit interference from CA3, while, in retrieval, it is351

information between CA3 and CA1 that is privileged (Hasselmo and Stern352

2014; Colgin 2016). This seems, again, to be a clear example of communica-353

tion through coherence.354

Now, if this hypothesis is on the right track, what role are neural oscilla-355

tions playing? As in the case of attention reviewed earlier, here synchroniza-356

tion seems to to be the mechanism used for privileging the transmission of357

certain kinds of information: it facilitates communication between two neu-358

ronal assemblies and, at the same time, obstructs possible interferences from359

other brain areas. Neural oscillations do not seem to provide any new con-360

tent; they are just the mechanism that opens or closes the channels from two361

areas that store preexisting information or relay new information.362
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It is important to note that the fact that synchronized oscillation is estab-363

lished between CA1 and EC (CA3) does carry information about the system’s364

task currently being one of encoding (retrieval). It is sometimes suggested365

that the kind of metasemantic account sketched in Section 2 has the un-366

welcome consequence that most any informational connection will come out367

representational. Encoding/retrieval in the hippocampus shows this to be368

false: as no other part of the brain is receiving (or consuming, or decoding)369

this information, the relevant vehicle does not qualify as a representation.370

Again here, neural oscillations seem to play a merely enabling role.371

4.3 Theta precession in remapping372

Neural oscillations can also play a different sort of enabling role: sometimes373

they are instrumental in building a certain representation, but they are not374

themselves part of the actual representational vehicle. We offer theta preces-375

sion as an example of this kind of enabling.376

The mammal hippocampus presents a very strong pattern of oscillation377

in the theta frequency band, around 3–10 Hz (Buzsáki 2002). There appears378

to be a systematic timing relationship between the activities of single place379

cells in CA1 or CA3 and this background theta rhythm: O’Keefe and Recce380

(1993) found that as rats move through the place field corresponding to a381

certain place cell, the phase of spike trains of this cell tend to change their382

phase with respect to the background theta period: when the rat enters its383

place field, a place cell starts firing at the end of the first theta cycle, and384

subsequent spike trains progressively move forward, as the rat progresses385

through the field. By the time the rats leaves the place field, bursts might386

have advanced a whole cycle, i.e. almost 360◦, but never more, and most of387

the time the phase precession spans at most about 180◦ (O’Keefe and Recce388

1993; Maurer et al. 2006; Schmidt et al. 2009). This process is called ‘theta389

precession’ (Figure 3).390

Among the different proposals on offer about the role of theta precession391

(Jensen and Lisman 2000; Hasselmo 2005; Huxter, Senior, and Allen 2008;392

Jeewajee et al. 2014), another one of which we will discuss in Subsection 5.1,393

we will here focus on the relation between precession and remapping (Skaggs394

et al. 1996). Spatial representation in the hippocampus is not topological, in395

the sense that two cells that are close together are not more likely to represent396

adjacent areas than more distant cells. How can a stable map be formed397

in such a structure? How can distant neurons come to steadily represent398
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Figure 3: The colored area in b represents the place field of a partic-
ular hippocampal place cell when the rat crosses the field
represented in a. c shows that place cell spikes (shown in
red) precess against the theta oscillations: firings begin near
the peak and progressively move earlier in subsequent cy-
cles (from Huxter, Burgess, and O’Keefe 2003).

adjacent locations and how are their connections established? William Skaggs399

and colleagues suggest that precession plays a key role.400

In short, the suggestion runs as follows. When the rat initiates a process401

of remapping, place cells lose they preferred place fields and gain new fields402

that bear no predictable relationship to the old ones. Suppose that a rat403

engages in remapping and in the new environment an A-cell fires when the404

rat is in location A.5 Here precession is to be expected: the first spike train405

will take place near the peak of the last gamma cycle within the first theta406

cycle,6 but in subsequent theta cycles the firing pattern will take place at407

earlier phases as the rat traverses the field. At some point the rat will enter408

a new place field B and a B-cell (which might be located far away from any409

A-cells) will become active. Now, due to precession these two cells will fire410

5. In this paper we follow the convention of calling the cell that represents, e.g., location
A an “A-cell”; mutatis mutandis for other cells and their place fields.

6. For more on the relation between theta and gamma cycles see Lisman and Jensen
(2013) and Section 5.3 below.
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in the order AB and, since place fields partly overlap, this pattern will be411

repeated several times as the rat moves (see figure 4).412

Figure 4: From Skaggs et al. 1996: 169. Explanation in the main text.

More generally, as the rat traverses a sequence of places ABCDE, the413

following pattern will emerge (vertical lines represent the beginning of a theta414

cycle): . . . |ABC|ABC|BCD|BCD|CDE|CDE . . . . Note that spike trains in415

the A-cell will systematically take place a bit earlier than spike trains in416

the B-cell (or vice versa, if the rat is traveling in the contrary direction).417

This short time span between the spikes of two cells that represent adjacent418

locations A and B is crucial because it will help strengthen the connections419

between A- and B-cells through long-term potentiation (LTP).7 It has been420

suggested that LTP reinforces better the synaptic connections from A-cell to421

B-cell when the A-cell fires slightly earlier in time than the B-cell (Larson422

and Lynch 1989). If this is true, precession might facilitate LTP between423

neurons that carry information about adjacent places and this might explain424

how maps can be formed in which cells located at a (relatively) long distance425

from each other represent nearby places (Skaggs et al. 1996; Bechtel 2016).426

Let us suppose that this explanation is on the right track. Do neural oscil-427

lations play a representational role here? We lean towards a negative answer:428

neural oscillations should be construed as a mechanism that enables the con-429

struction of a map-like representation, but are not part of it. Certainly, the430

stable time lag between spike bursts of A- and B-cells, afforded by their occu-431

pying different phases in the gamma cycle, is sensitive to (carries information432

7. Long-term potentiation is a persistent strengthening of synapses caused by co-
activation patterns (Cooke and Bliss 2006).
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about) the adjacency of the related place fields, but we suggest that this is433

not enough to credit the underlying oscillations with a representational role.434

There are two main reasons for this.435

First, LTP occurs whenever there is a particular temporal delay between436

the activity of two cells, independently of how this delay is produced. In437

LTP, timing, not phase, is essential: firings of A- and B-cells need to be suf-438

ficiently close in time and, for example, keeping phase-delay constant, LTP439

will happen if the oscillation is sufficiently fast, but not if it is too slow.440

Compare this with the cases of communication through coherence in atten-441

tion reviewed above: there, persistently rhythmic, coincident activity (and442

not merely a certain time lag) seemed to play an essential role in upstream443

neurons entraining downstream activity. The second reason is that, in this444

mechanism, there does not seem to be any receiver sensitive to oscillations as445

such. There is no internal downstream mechanism sensing this phase delay446

and using it go gain information that could be used in some computational447

process.448

5 Representational oscillations449

So far we have discussed cases in which neural oscillations play a role in450

bringing about representational phenomena without being representations451

themselves, but rather partly constituting the communicative scaffolding nec-452

essary for representations to emerge. In this section we present cases in which453

neural oscillations do seem to play a properly representational role.454

5.1 Theta precession in prediction455

Apart from its contribution to remapping, theta precession plays a second456

role that might qualify as genuinely representational. In their seminal paper,457

O’Keefe and Recce (1993) found that place cells tend to fire more vigor-458

ously in earlier phases of the background theta wave, as the rat approaches459

the center of their place field. In fact, they observed that the phase of the460

background theta wave at which place-cell activity is maximal appears to461

correlate much better with the exact location of the rat within the place field462

than with the time it has spent in it, or its velocity. Furthermore, in normal463

conditions this precession (i.e., the phenomenon by which the phase of pre-464

dominant place-cell activity moves towards the beginning of the theta wave)465
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vanishes when the rat is in the running wheel (Czurko et al. 1999; Hirase466

et al. 1999), which lends support to the idea that the relevant connection is467

not with its speed or the time it has spent in a place field, but with its lo-468

cation. As a result, some have suggested that theta phase is used to provide469

a more fine-grained representation of location: whereas activity in a given470

place cell indicates the broad area in which the rats finds itself (this would471

be rate coding), the degree of precession carries information about the rat’s472

location within the place field (and this would be phase coding). Jensen and473

Lisman (2000) provided further support for this hypothesis, when they used474

the activity recorded in 38 pyramidal cells to pinpoint the rats’ place within475

a linear track, and showed that by including phase information they could476

improve the accuracy by 43% (p. 2607). They were able to predict the rat’s477

position within a 2-meter track with a precision of 3 cm.478

Other, more recent work interprets the same results in a slightly differ-479

ent way: instead of taking them to support the idea that phase codes for480

fine-grained location information within one and the same place field, John481

Lisman and colleagues have claimed that phase coding is actually used to482

make predictions about which place field the rat is moving towards (Lisman483

and Redish 2009a; Lisman and Jensen 2013). This is, in a sense, a different484

gloss on the same main idea: you can think of place fields as being compar-485

atively big, and therefore interpret theta phase as coding for location within486

that field; or you can think of place fields as comparatively smaller, and then487

think of theta phase as predicting which place field the rate will be visiting488

next. Indeed, an important feature of the more recent Lisman and colleagues489

model is that “the ‘true place field’ . . . is taken to be approximately one-490

seventh of the apparent place field (the entire field where rate is elevated)”491

(Lisman and Redish 2009b, p. 1194). Below, though, we will review empirical492

data that seems to support the prediction interpretation as more than a mere493

gloss. It is also possible that there be both downstream consumers for this494

phase-coded information that use it as an aid to prediction or as fine-grained495

information about location (Colgin 2016, p. 245; Maurer and McNaughton496

2007, p. 325f). In the remainder of this section we will stick to prediction.497

The predictive role relies on the fact that neural oscillations at different498

frequencies can be nested, with faster oscillations locked to concrete phases499

of the slower ones. In particular, within a single theta cycle (called a ‘sweep’),500

there can be between 5 and 14 gamma cycles (Lisman and Redish 2009a, p.501
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Figure 5: From Lisman and Redish (2009a, p. 1196)

1194).8 In the current context, this means that a theta sweep accommodates502

a sequence of 5 to 14 place-cell gamma bursts. Lisman and colleagues’ idea503

is that this sequence is used for prediction: the order in which place cells fire504

within a single theta cycle corresponds to the order in which the rat expects505

to visit their place fields.506

Let us consider a particular example. Suppose A, B, C, D, E, F and G507

are the different sections of a path that leads to a certain goal. When the rat508

is in A, the A-, B-, C-, D-, E-, F- and G-cells will fire within a single theta509

cycle, in this order. The A-cell firing early in the theta cycle represents that510

the rat is in A. In contrast, the G-cell firing at the end of the cycle represents511

that the rat is moving towards G. In other words, the order in which cells512

fire within a sweep represents the location of their place field with respect to513

each other. A place cell firing early in the theta cycle represents the actual514

location, whereas firings in later phases of the cycle predict future positions515

(Jensen and Lisman 1996).516

Different kinds of evidence have been presented in support of this hy-517

pothesis. First of all, the postulated predictive role coheres very well with518

accounts of hippocampal memory (Jensen and Lisman 1996; Lenck-Santini,519

Fenton, and Muller 2008): the idea being that prediction relies on the hip-520

pocampus operating in “recall mode” (Jensen and Lisman 1996). There is521

also more direct evidence for a predictive role: as the rat familiarizes itself522

with a certain environment, it should be able to predict its future location523

8. “Seven to nine”, according to Buzsáki (2010, p. 370).

17



earlier; and this is indeed what is observed: as rats becomes more famil-524

iar with an environment, more gamma cycles are nested within every theta525

cycle—indicating that prediction starts earlier (Jensen and Lisman 1996).526

There is also evidence that rats make predictions about future locations be-527

fore choosing a path, by relying on this phase-coded information. Johnson528

and Redish (2007) showed that, at bifurcation points in a T-maze, theta529

sweeps go, successively, through the sequence of place fields corresponding530

to both arms, which suggests that the rat evaluates available possibilities in531

advance of deciding.532

Let us suppose that this phase-coding-as-prediction hypothesis is correct:533

a G-cell firing at the beginning of the theta cycle represents that the rat is534

in G, whereas the very same pattern of activity at late stages of the theta535

cycle would instead represent that the rat is heading towards G. In this case,536

it seems that oscillations-involving states such as, e.g., Vehicle below satisfy537

all the requirements for qualifying as representational states:538

Vehicle: G-cells firing early in the theta cycle.539

On the one hand, it is very plausible that Vehicle has a sender—that540

is, an internal mechanism that generates it in response to location-related541

worldly states of affairs.9 There are two main current hypotheses about this542

mechanism: that it relies on two different oscillators, and that it emerges543

from asymmetric connections among place cells (Maurer and McNaughton544

2007). Hybrid models have also been formulated. But our understanding of545

this mechanism is still in flux and, as Maurer and McNaughton note in their546

review, it might “turn out to be extraordinary” (p. 332).10
547

Vehicle also has a receiver, as it makes a clear functional difference down-548

stream (again, assuming that the prediction hypothesis is correct): distin-549

guishing a representation of the actual location from a representation of a550

future location the rat will be in. This is made most vivid in the role they551

9. Or perhaps we should think of this case as involving two senders: one in charge of
the actual place cell that gets activated, and another in charge of the phase in which
this activation happens. As far as we know, our current understanding of the relevant
mechanistic details does not allow us to adjudicate this question.
10. The asymmetric-connectivity model is related to the facilitation of long-term potenti-

ation discussed in Subsection 4.3. As far as we are aware, the particular details about how
the look-ahead role can be made compatible with the remapping role are still unknown.
In any event, the provisional consensus appears to be that both roles are compatible (cf.
Colgin 2016).
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seem to play in navigation-related decision making (see above.) We conclude552

that here neural oscillations appear to play a representation-constitutive role,553

rather than just an enabling role. What is their representational content? The554

most plausible reading, as we have argued, is that a late theta phase modifies555

a place-cell representation: G-cell firing in early theta-phases represents that556

the rat already is in G, whereas G-cell firing in late theta-phases represents557

that the rat is moving toward G.558

It could be objected that, in fact, it is just G-cell firings that are properly559

representational, with the background theta oscillation merely providing a560

syntactic scaffolding. After all, it is only place cell firings, not oscillations,561

that carry the relevant information about present and future locations. But562

theta phase does not have a merely syntactical role. Early (late) phases of563

the theta wave have something akin to predicative content:564

λx{I am currently at (moving towards) x}

Another possible deflationary understanding of the role theta phase plays565

is that it is merely contextual: its contribution to the meaning of Vehicle566

would be analogous to the contribution time makes to an utterance such as567

‘Whiskers is at G now ’. While the time at which the utterance is made sup-568

plies the reference for “now”, this is compatible with refraining from claiming569

that time is literally part of the representation. But this is not a good model570

for the role theta phases play: time contributes itself to the meaning of “now”,571

but theta phases are not themselves part of the content—they stand in for572

times, like representations do.573

Finally, phase differences are as information-carrying as firing rates: if we574

want to infer where the rat currently is from hippocampal activity, simply575

focusing on the rate of activation of place cells will not do. We need to take576

into account the phase of activation as well.11
577

5.2 Feature Binding578

One of the first modern discussions of the role that synchrony plays in brain579

function is von der Malsburg (1981). Here, von der Malsburg suggests that580

the “correlation between two cellular signals” should be defined “in terms581

of synchrony and asynchrony between spike trains” (we are citing from the582

11. We would like to thank an anonymous reviewer for pressing us on these points.
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4th edition of this paper, von der Malsburg 1994, p. 110). Von der Mals-583

burg presents his synchronicity-based “correlation theory” of brain function584

as a way of solving, among others, the problem of detecting specific percep-585

tual patterns—among the very many possible combinations of colors, shapes,586

movement, etc. that could make up a visual scene. Postulating the existence587

of a set of specialized units that differentially respond to each such pattern588

(the variously called cardinal, gnostic, pontifical or grandmother cells, see589

Quiroga 2013), he claims, will not do, as “the number of [such units] required590

would . . . be forbidding” (von der Malsburg 1994, p. 101). This is known as591

the problem of combinatorial explosion: if we are to keep track of n simulta-592

neous features (color, shape, etc.), each of which could take m values (blue,593

yellow, square, etc.), we would need mn grandmother cells. Synchronization594

between cells, on the other hand, can result in dynamically created “synap-595

tic networks”, in which individual cells respond to rather simple stimuli, but596

which collectively function as “complex composite feature detectors” (p. 112).597

Another important early theory of brain function which predicts a role598

for synchrony in feature binding along these lines is Grossberg’s Adaptive599

Resonance Theory [ART]. In a recent review of ART, Grossberg states that600

Coherent binding of the attended features to the category give601

them a meaning as a context-sensitive “event” rather than as602

just isolated pixels. Such coherent states between distributed fea-603

tures and symbolic categories are often expressed dynamically604

as synchronously oscillating activations across the bound cells605

. . . (Grossberg 2013, p. 9)606

This “coherence between distributed features and symbolic categories” is607

what we would now call feature binding (of the former features into an object608

conceptualized under the latter symbolic category).609

Many experimental results support these ideas: Gray et al. (1989) fa-610

mously demonstrated that oscillatory responses were evoked by stimuli which611

showed coherent motion, but not by stimuli which moved in opposite direc-612

tions (Gray et al. 1989; Gray et al. 1990, p. 335). That is: synchronous activity613

marks the presence of coherent motion, which (as Gestalt theorists suggested)614

is in its turn evidence that the two stimuli in question are not in fact separate615

entities, but belong to one and the same object. Kreiter and Singer (1996)616

showed that two cells with overlapping receptive fields, but such that each617

of them is tuned to a different direction of movement, can be driven to fire618
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in synchrony by the movement of a single bar, yet not by two bars each one619

moving in the preferred direction of one cell—again here, synchronization620

goes with co-boundedness, even trumping the tuning features of individual621

neurons. Synchronization appears to be responsive to other Gestalt-grouping622

principles as well, besides coherent motion (Singer and Gray 1995; Engel et623

al. 1992; Gray 1999). Tallon-Baudry and Bertrand (1999) review much other624

relevant evidence. Modeling work also supports the link between oscillations625

and feature binding (Eckhorn et al. 1990) and suggests that synchroniza-626

tion can be sufficiently fast in long-range interactions (Yazdanbakhsh and627

Grossberg 2004).628

The most ambitious contemporary version of this binding by synchrony629

[BBS] hypothesis claims that synchrony is the main code for feature binding.630

This seems to be the position taken by proponents of the temporal binding631

model (Engel and Singer 2001; Engel, Fries, and Singer 2001, and papers632

cited therein), who claim that “neural synchrony . . . is crucial for object rep-633

resentation” (Engel, Fries, and Singer 2001, p. 706). There are good reasons634

(both theoretical (Shadlen and Movshon 1999; Di Lollo 2012)12 and empir-635

ical (Palanca and DeAngelis 2005)) to think that synchrony is not the only636

feature-binding code. Still, the results discussed above and many others (in-637

cluding ones by Palanca and DeAngelis in the critical paper just cited) sug-638

gest that it does make a contribution to representing the fact that different639

features are co-bound to the same object (cf. Hommel 2004, Box 1).640

Let us assume that this putative contribution takes the following form:641

“the mechanism that evaluates temporal relations among responses for per-642

ceptual grouping interprets synchronous responses as related and segregates643

them from responses that are temporally offset.” (Singer 1999, p. 51) where,644

as we have just discussed, “interprets” should not be taken to mean that645

synchronicity determines the status of responses as related or unrelated,646

but rather that it provides evidence for it, possibly to be combined with647

other mechanisms such as, e.g., task-dependent alterations in neural tuning648

(Gilbert and Li 2013, p. 5). Should we interpret this less ambitious version649

of BBS as vindicating a representational role for synchrony?650

In a nutshell, the hypothesis is that synchronous activity between two651

populations that code for two different perceptual features would represent652

12. Di Lollo is sceptical about the very existence of a feature-binding problem. He defends
that something like gnostic cells are actually available in the brain, but doesn’t explicitly
discuss how combinatorial explosion is therefore dealt with.
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that these features are co-bound. Again, we unpack this idea by trying to find653

occupants for the different roles in our metasemantic sketch. First, there is a654

plausible occupant for the role of representational vehicle:655

Vehicle: A population of neurons P1 (that encodes a perceptual feature F1)656

and another population P2, (that encodes a perceptual feature F2) firing657

in synchrony.13
658

Now, is there a plausible sender/encoder for Vehicle? What this encoder659

has to do is to subsume populations P1 and P2 into a larger coherent assembly,660

as a reaction to the fact that onset and offset of activity in P1 and P2 is more661

or less simultaneous (which in turn is explained by features F1 and F2 being662

actually co-bound in the world, and therefore appearing and disappearing663

more or less simultaneously).664

There are at least two goals that this encoder must meet. First, note that665

the fact that F1 and F2 are reliably co-instantiated is not the same as, nor666

sufficient for, synchrony. Co-instantiation is indeed sufficient for sameness667

of onset and end of firing, but not for the fact that, during the duration668

of the firing episode, this firing is synchronized, which it is, “over periods669

ranging from tens to thousands of milliseconds” (Gray 1999, p. 38), more-670

over showing sophisticated oscillatory structure (Singer and Gray 1995, p.671

1094). Second, this synchronic firing must start quickly and reliably after672

stimulus onset if it is to be an ecologically viable way of signaling feature673

boundedness. This job description is far from computationally trivial, and it674

is met by a rather specific pattern of lateral interconnections in the relevant675

neuronal population, with the right mix of excitation and inhibition (Fries676

2015; Yazdanbakhsh and Grossberg 2004, see Section 4.1 above). This kind677

of network architecture is a good candidate for our sender/encoder.678

There is also a plausible receiver for Vehicle: the whole point of binding679

by synchrony is that dynamic assemblies formed by synchronized neurons are680

treated as a unit. One often proposed mechanism in this connection is that681

coincidence-sensitive neurons (Engel and Singer 2001, p. 18; Abeles 1982;682

König, Engel, and Singer 1996) would be specially driven by neurons fir-683

ing synchronously (see Fries 2015, on effective connectivity). We will discuss684

13. Shouldn’t the vehicle be just the coinstantiation of P1 and P2 firings, rather than
full-blown synchrony? Not according to the defenders of the BBS hypothesis: synchrony
(i.e., rhythmic, congruent activity), and not mere coinstantiation, is necessary to entrain
postsynaptic activity in a sufficiently vigorous way (Fries 2015; Engel, Fries, and Singer
2001, p. 705).
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“reader-classifiers” of these neuronal assemblies in more detail in Subsec-685

tion 5.3.686

It seems, thus, that in the case of BBS all of the links in our metase-687

mantic sketch have a plausible occupant. We therefore tentatively conclude688

that Vehicle is a representation. Note that here synchrony is not merely an689

enabling mechanism: synchronized oscillations are a constitutive part of the690

representational vehicle. Moreover, and more importantly, these same oscil-691

lations are directly causally involved in the decoding behavior. That is, it is692

by virtue of its oscillatory profile that Vehicle means what it means.693

5.3 Sequences694

An impressive body of work associated mainly (but not only) with György695

Buzsáki’s lab (Buzsáki 2006; 2010; Buzsáki and Watson 2012, among many696

others) has aimed at uncovering “syntactical” units in brain processing: how697

does the brain go about providing vehicles over which computations can be698

performed? As we will see, neural oscillations play an essential role in the699

construction of these various syntactical units. It will turn out, though, that700

there is some, perhaps ineliminable, indeterminacy between taking some cases701

of neural activity as constituting one such unit (e.g., a “neural word”) or as702

a process of computation of one unit from another. In our framework, this703

will translate to indeterminacy in their status as properly representational.704

Constructing these vehicles is a difficult task, if only because it involves705

arbitrating between two desiderata that pull in different directions. First,706

the repertoire of available vehicles needs to be sensitive enough: it should707

be possible to token, reliably, different vehicles in the presence of different,708

but similar, external conditions. Brains need to keep track of fine-grained709

differences in external events (say, in the velocity of looming or receding ob-710

jects, Maier et al. 2004) and this requires provisioning a sufficient number of711

different vehicles to stand in for each member in a sufficiently fine-grained712

partition of such events (say, for a sufficiently fine-grained range of differ-713

ent looming velocities). Note that this sensitivity requirement is not met by714

simply generating states that count as different under some third-personal715

criterion: it must be possible for these different states to make a difference716

to the system itself—they must be possibly treated as different downstream.717

Second, this repertoire needs to be robust enough: the vehicles in question718

need to be somehow resistant to the very noisy environment in which they719

are tokened (see Faisal, Selen, and Wolpert 2008, for a review of noise in the720

23



brain). Sensitivity and robustness are in tension: sensitive processing involves721

tokening noticeably different vehicles in response to very similar world states;722

yet, robust processing involves preventing ambient noise from conflating the723

processing trajectories of the vehicles that are triggered by those world states.724

As we are about to see, it has been suggested that neural oscillations play725

an important role in solving this conundrum.726

Buzsáki and colleagues have claimed that the fundamental “syntactical”727

units in brain processing (that is to say, the fundamental unit in the construc-728

tion of vehicles) is not the single neuron but the cell assembly : “a collection729

of neurons that come together . . . to produce a composite downstream effect730

that cannot be produced by single neurons alone” (Buzsáki 2010, p. 364, recall731

that von der Malsburg uses a very similar expression). Because the existence732

of a cell assembly depends on the existence of these “composite downstream733

effects”, there must be a downstream “reader-classifier” that treats the as-734

sembly as a functional unit (ibid.). According to Buzsáki, the most basic735

assembly reader-classifier in the brain is the integration of presynaptic ac-736

tivity : the process whereby a certain neuron treats presynaptic events (say,737

action potentials coming from different presynaptic neurons at slightly differ-738

ent times) as a unit. How far apart from each other these events can be and739

still be treated as a single whole depends on the so-called membrane time740

constant τ (ibid.) but, in general, the closer in time those events are, the741

most likely it will be that they will be treated as a unit. Obviously, a reader-742

classifier such as this one, that mainly detect coincidences in presynaptic743

activity, will greatly benefit from synchronized activity upstream. This is the744

first place where neural oscillations play a role in the generation of vehicles:745

locking presynaptic firings to concrete phases of an oscillation cycle leads to746

postsynaptic neurons treating each such phase-locked collection of firings as747

a functional unit.748

These cell assemblies should be thought of as the phonemes (or perhaps749

letters) of the neural syntax. One step up in the Buzsákian hierarchy of750

vehicles we find neural words, made up of “sequences” of these assemblies,751

quickly following one another through the duration of a (typically gamma)752

cycle (ibid., p. 365). E.g., we can think of a neural word as assemblies A, B,753

C, D succeeding one another through a gamma cycle (each, say, occupying 90754

degrees of the full 360 degrees in a cycle). The sequence consisting of assem-755

blies A, C, D, B would constitute a different word, possibly discharging an756

entirely different processing role. Again, neural words will only be real insofar757

as some entity downstream treats them as a unit: for example, mechanisms758
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with a longer integration window than the membrane time constant, such759

as NMDA or GABAe receptors (ibid., p. 366). A more important, and more760

general, class of reader-classifiers with different integration windows is again761

provided by neural oscillations (ibid.). From the point of view of electronics,762

neural oscillations are relaxation oscillators (Wang 1999): this kind of circuit763

(which is used, for example, in the blinking turn signals of cars) works by764

periodically charging and discharging a capacitor (a storage of electrical en-765

ergy); when the capacitor reaches a certain threshold, the oscillator is “reset”.766

The concept of neural word relies on two features of relaxation oscillators:767

first, the phase during which the capacitor is being charged naturally corre-768

sponds to an integrator window (Buzsáki 2010, p. 366)—recall that this is769

just a period during which incoming neural activity is treated as an undifer-770

entiated whole. Second the oscillator “reset” acts as a natural gap between771

different neural words.772

There is ample empirical evidence of the existence of neural words, under-773

stood along those lines. For example, Jones et al. (2007) show how neurons774

in the gustatory cortex of rats go through four different sequences, each com-775

prised of four different states, whenever the rat is exposed to sweet, bitter,776

sour or salty flavors, respectively. The four states that are part of the se-777

quences are different for different flavors, but always the same within each778

flavor (see figure 6). Laurent (2002, p. 886) similarly reports population-779

level representations in the antennal lobe of insects and the olfactory bulb780

of mammals that are “dynamic, carried by an assembly of neurons . . . that781

evolves in a stimulus-specific manner over time”. In sections 4.3 and 5.1 we782

have reviewed in detail theta sweeps in the hippocampus, which provides yet783

another important example of assembly sequence.784

Further syntactic structure is provided by nested oscillatory rhythms: for785

example, the number of assemblies that fit in a theta cycle has consequences786

for the “memory ‘buffer’ of the gamma-nested theta-cycle” (ibid.). More gen-787

erally, “[theta-gamma] oscillations form a code for representing multiple items788

in an ordered way.” (Lisman and Jensen 2013, p. 1002)789

Now, how do neural vehicles constructed out of these syntactic building790

blocks trade off sensitivity and robustness? First of all, reader-classifiers will791

help with robustness by failing to distinguish between different sequences of792

events (say, different sets of arrival times of presynactic activities) as long as793

they fall within the same activation window—e.g., neuron 1 firing now and794

neurons 2 and 3 firing in the next 5ms will be indistinguishable from neuron795
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Figure 6: Neural words in the gustatory cortex. From Jones et
al. (2007)
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3 firing now and neurons 1 and 2 firing in the next 5ms.14 As for sensitivity,796

the production of sequences might be such that initially minute differences in797

input are taken, as more evidence comes in, into rapidly divergent trajecto-798

ries corresponding to different sequences that are much easier to distinguish:799

those initially minute differences, for example, might result in two different800

sequences with an overlapping initial part, as in the ABCD / ACBD example801

above (Harvey, Coen, and Tank 2012).802

The most straightforward way to think of these neural words is as repre-803

sentational vehicles: they are hypothesized to solve a problem (the sensitivity804

/ robustness tradeoff) that is precisely the kind of problem a representational805

system in a noisy environment would face. Furthermore, the empirical evi-806

dence for neural words links them in every case to concrete representational807

roles (the representation of flavors in Jones et al. (2007), odorants in Laurent808

(2002), or paths to be taken in space in Jensen and Lisman (1996)).809

Still, closer examination of the available evidence, and the attitude of810

researchers toward that evidence, reveals that this representational reading811

is not without problems. First, note that the mechanisms through which,812

we suggested, sensitivity and robustness are accommodated by neural words813

are somewhat at odds with one another: robustness depended on a reader-814

classifier with a large enough activation window that it may be able to take815

the full neural word in as a unified whole; while sensitivity depended on816

neural words being interpreted as diverging trajectories—crucially, their di-817

achronic unfolding, and their responsiveness to incoming evidence that co-818

heres with the trajectory chosen, is part of what makes them robust. Indeed,819

many researchers are skeptical that sequences have readers of their own. So,820

for example, according to Lauren Jones and colleagues, “[c]oherent state se-821

quences . . . probably do not represent pure ‘sensory codes’ to be interpreted by822

downstream ‘grandmother neurons’ ” Jones et al. (2007, p. 18776, emphasis823

added). According to these researchers, the sequences we see in sensory corti-824

cal ensembles should be interpreted, not as pure codes, but as computations825

of motor codes from purely sensory ones.826

Laurent (2002), on the other hand, claims that sequences of assemblies827

do play a role in generating a “ large coding space in which to spread repre-828

sentation clusters” (ibid., p. 885f, emphasis added). While this is one of the829

main points of his paper, highlighted in abstract and conclusions, Laurent830

14. This is just a straightforward example of what information theorists call channel
coding, or error correction (MacKay 2003).
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also warns that, conceivably, “slow temporal patterns, although crucial for831

the separation of representations, are never actually decoded as such. More832

generally, the creation of spatiotemporal representations by circuit dynam-833

ics might be a transient phase in signal processing, used simply to spread834

out those representations in a larger coding space and to facilitate decoding”835

(ibid., p. 891, emphasis added). That is, it is not clear that the olfaction-836

related neural sequences in insects and mammals that Laurent is interested837

in have receivers—i.e., are pure sensory codes. Rather, they would amount838

to encoding stages along which representational vehicles are progressively839

optimized.840

This hybrid (part code, part encoding process) nature of spatio-temporal841

sequences is fleshed out most clearly by Harvey, Coen, and Tank (2012).842

They show that an ideal observer is able to predict behavioral choices in843

mice from spatio-temporal neural sequences but not from the synchronic844

behavior of neuronal populations (see also Yuste 2015, p. 492). The model845

proposed by Harvey and colleagues is one in which incoming sensory informa-846

tion initiates a (firstly decision-agnostic) sequence which gets progressively847

decision-specific as incoming information modifies it. When the sequence848

overlaps sufficiently with a decision-specific trajectory, this corresponds to849

the personal-level state of the mouse having decided. The subsequent, en-850

dogenously generated unfolding of the decision-specific sequence corresponds851

to the personal-level state of keeping the decision in mind.852

The upshot of this discussion is that, while very prominent models of brain853

function accord an important role to neural oscillations in the generation of854

representational vehicles, there is some vacillation in the literature regard-855

ing what counts as code (of incoming sensory information); what counts as856

computation (of decisions from sensory information); and what counts as en-857

coding processes (whereby sensory codes gets optimized into decision codes).858

This indeterminacy between merely enabling and properly representational859

status for neural-sequence-related oscillations will perhaps be remedied as860

our knowledge of brain processing improves; perhaps it is ineliminable.861

6 Conclusion862

The main goal of this paper was to examine whether neural oscillations in863

the brain actually are representations. As we have seen, whether they do864

often depends on rather intricate facts about the relevant mechanisms where865
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they participate, and the role they play in these mechanisms. We offer this866

to philosophers as a cautionary tale: representational status, like the devil,867

is often in the detail.868

But we can also glean a few big-picture lessons from the foregoing discus-869

sion. First, our results shows that the core metaphysical theory of content870

put forward in Section 2 is a useful tool for understanding and modelling neu-871

ral representations. It suggests important questions, and provides theoretical872

instruments with which to answer them.873

Secondly, the discussion of case studies revealed that neural oscillations874

can play at least two different roles, enabling and properly representational, in875

the implementation of representations in the brain. This distinction is a result876

of the careful consideration of specific cases, rather than a pre-conceived anal-877

ysis. We hypothesize that this distinction will also apply to the mechanisms878

subserving other representational phenomena; and that it can potentially be879

extended by considering other roles that cognitive processes can play that are880

not representational, but are defined in relation to properly representational881

states.882

Thirdly, following a recent call for multi-level analysis (Craver 2007;883

Boone and Piccinini 2016), our results show that paying attention to imple-884

mentational details is relevant for understanding higher-order levels. Even885

though ‘representation’ is a functional category, considering which specific886

brain structure actually play a representational role can help us vindicate a887

particular analysis of the nature of representation and distinguishes different888

non-representational roles brain states can play, among others.889

Finally, against recent suggestions to the contrary, we argued that low-890

level processes can qualify as representational. Furthermore, this result has891

not been obtained by defining representation so cheaply that just anything892

can count as such, since we have identified some processes employing os-893

cillations in which they fail to play a representational role (e.g. attention,894

retrieval and encoding). The results of this paper support the idea that rep-895

resentations can be found all the way down without trivializing this notion.896

This provides some vindication for naturalistic theories of representation.15
897

15. For discussion of the objection that naturalistic theories of content are too liberal,
see Artiga (2016, 2020).
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