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Abstract

The received concepts of axiomatic theory and axiomatic method, which stem from

David Hilbert, need a systematic revision in view of more recent mathematical and

scientific axiomatic practices, which do not fully follow in Hilbert’s steps and re-establish

some older historical patterns of axiomatic thinking in unexpected new forms. In this work

I motivate, formulate and justify such a revised concept of axiomatic theory, which for a

variety of reasons I call constructive, and then argue that it can better serve as a formal

representational tool in mathematics and science than the received concept.

Introduction:

The modern notion of the axiomatic method of theory building was formed
in the first half of the 20th century in works by David Hilbert (beginning with
his Foundations of Geometry, first published in 1899 [115]) and his followers. In
Russia the new axiomatic method was pioneered by Veniamin Fedorovitch Kagan
(1869-1953) who defended his master’s thesis entitled “The Problem of Foundation
of Geometry in the Modern Setting” in 1907 at Odessa University [133],[134].
Hilbert’s contribution to mathematical logic and the foundations of mathematics
allows us today to see him as a founding father of a new formal mathematical
approach in logic, which changed dramatically the shape of the discipline and led
to its booming continuing development, on equal footing with Gotlob Frege and
Bertrand Russell. Importantly, Hilbert was not a logician in the narrow sense of
the word; his scientific interests spread much wider, so his research in logic and
the foundations of mathematics was included in a larger scientific context, which
included pure and applied mathematics as well as mathematical physics. This is
why the notion of axiomatic method stemming from Hilbert involves not only a
set of formal logical techniques but also a general approach to applications of such
techniques in any given area of science and an epistemologically grounded view on
the place and the role of axiomatised theories in scientific research and scientific
education.

A wide philosophical discussion related to Hilbert’s axiomatic approach
has been triggered by limiting theorems (conventionally called the Incompleteness
theorems) obtained by Kurt Gödel in the 1930s, which showed that Hilbert’s
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program of axiomatic grounding of mathematics could not be realised in its
strong original form (and which later were followed by a number of other similar
limiting results). Without trying to downplay the philosophical significance of
this continuing discussion, we would like to stress that it leaves aside some
other epistemological questions about the axiomatic method, which are at
least as significant. Notice that Gödel’s Incompleteness theorems are primarily
mathematical statements, which have general epistemological implications only
insofar as the mathematical constructions related to these statements are
interpreted as general mathematical models of mathematical and scientific
theories. Hence the question, which plays the central role in the present study:
Are the formal axiomatic theories built by Hilbert’s receipt in fact adequate to
their real prototypes, i.e., to various mathematical theories developed by working
mathematicians not specifically concerned with logical and foundational issues as
well as to scientific theories beyond the pure mathematics?

As usual in the philosophy of science we talk here about the adequacy
of a formal model of a theory to its real prototype in a double sense, which
combines normative and descriptive aspects of the issue. On the one hand, we
assume after Hilbert that a logically and epistemologically grounded notion of
formal axiomatic theory can perform a normative function, i.e., to represent the
general formal structure of a well-formed contentful theory. On the other hand, we
also assume that the normative notion of well-formed theory cannot be grounded
by philosophical speculation alone but must be based on certain samples of our
contemporary scientific knowledge, which are judged to be pieces of the best
available science by the scientific community and by the epistemologist herself on
some informal grounds. Clearly, any judgement to such an effect can be a subject
of controversy.

A popular answer to the worry about the apparent (in)adequacy of the
standard axiomatic method to the current scientific practice is as follows. Surely,
so the argument goes, formal axiomatic theories are highly idealised schematic
images of real scientific theories and don’t account for certain significant informal
aspects of the scientific practice. The formal axiomatic approach provides for a
logical analysis of accomplished mathematical and scientific theories but it is not
useful for any other scientific purpose. Informal aspects of scientific practice as well
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as formal aspects of scientific theories can be a matter of philosophical reflection
and of epistemological study. However a confusion of these two aspects cannot be
helpful and is not justified.

In our view such an answer is not fully satisfactory because it takes it
for granted that the notion of formal axiomatic theory and its relationships
with scientific practice is fixed once and for all. However, this assumption is not
justified. The new axiomatic method designed by Hilbert in the beginning of the
20th century implements some contemporary logical and epistemological ideas,
which in their turn generalise upon the contemporary scientific and mathematical
practice. Hilbert’s approach to building axiomatic theories differs drastically
from earlier axiomatic approaches such as Euclid’s. However in the 20th century
logic and mathematics did not stagnate but, on the contrary, rapidly developed.
There is no reason to assume that these developments should leave the core
20th century conception of axiomatic method untouched and provide only for its
technical improvement. As we show in what follows, today the standard Hilbert’s
axiomatic architecture of theories is no longer unique. An analysis of some recent
mathematical practice helps us to specify certain alternative formal architectures
and alternative conceptions of axiomatic theory-building.

Brief overview of the content of this work:

In the first chapter we stress and analyse differences between the
Hilbert-style axiomatic method and more traditional axiomatic approaches in
mathematics. Toward this end, we compare the axiomatic theories of elementary
geometry by Euclid (Section 1.1) and by Hilbert (1.2), and show that these
theories are essentially different even though they share the same intuitive content.
We pay special attention to an accurate historical reconstruction of the axiomatic
architecture of geometrical theory presented in Euclid’s Elements. This historical
example, along with some examples of recent mathematical theories, serves us as a
motivation for our proposed concept of constructive axiomatic theory. In the same
chapter we consider in historical and theoretical perspectives, following Vladimir
Smirnov [266], the concept of genetic method of theory-building, and compare
this method with the standard Hilbert-style axiomatic method (1.3).

In the second chapter we provide a critical overview of the 20th century
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scientific and mathematical practices, which involve use of the standard Hilbert-
style axiomatic method. This covers pure mathematics, the natural sciences and
computer science. We start with an analysis of axiomatic set theory, where this
approach has been realised to a fuller extent than in any other area of mathematics
(Section 2.1). We then consider the attempt to introduce the axiomatic method
into broader mathematical practice, which is associated with the (pseudo-)name
of Nicolas Bourbaki [26], [29] and stress the specific model-based character of
Bourbaki’s axiomatic approach (2.2). In the last Section of this chapter (2.3) we
analyse attempts to use the Hilbert-style axiomatic method in the sciences and
show that to date they haven’t been fully successful.

In the third chapter we consider some alternative axiomatic approaches in
the mathematics of the 20th and 21st centuries.

In the first Section of this chapter (3.1) we analyse the philosophical
motivations for and conceptual foundations of Categorical logic and category-
theoretic foundations of mathematics in the works of William Lawvere. In this
context, we consider the axiomatic topos theory (aka theory of elementary topos)
first published by Lawvere in 1970 [162]. Lawvere’s axiomatic treatment of
topos theory on the basis of general category theory allowed for a significant
simplification of this theory and boosted its further development. Even if Lawvere
did not aim at a revision of the received concept of axiomatic theory stemming
from Hilbert, we show that Lawvere’s axiomatic approach was essentially different.

The second Section of this chapter (3.2) covers the Homotopy type theory
and the related project of building new foundations of mathematics, which by
Vladimir Voevodsky’s suggestion are called today the Univalent Foundations
[95]. Here we also pay attention to philosophical motivations and epistemological
implications of Voevodsky’s research program. The standard version of Univalent
Foundations involves the formal language of constructive Type theory (with
dependent types) due to Martin-Löf, which is given an intuitive spatial (to
wit homotopical) semantics and allows for computer implementation and thus
supports an automated form of proof-checking. The rule-based Gentzen-style
formal architecture of this theory and its proof-theoretic semantics motivate
(along with the aforementioned historical examples) our proposed concept of
constructive axiomatic method, which generalises and extends the received
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concept of axiomatic method, stemming from Hilbert.
In the concluding fourth chapter we summarise our results and set further

research plans. After giving a summary of results (Section 4.1) we systematically
present our proposed concepts of constructive axiomatic theory and constructive
axiomatic method (4.2) and finally describe a constructive approach to the formal
reconstruction of scientific theories and a strategy for further development of this
approach (4.3).

Claims presented to the defence:

1. A new feature, which distinguishes Hilbert’s axiomatic method from the
more traditional forms of axiomatics including Euclid’s is a sharp distinction
between the constructive deductive aspect (syntax) and the “existential”
objectual aspect (semantics) of a given mathematical theory. Such a two-level
formal construction allows for an effective analysis of the logical and semantic
structure of a given theory by mathematical means (meta-mathematics)
within the corresponding theoretical limits (imposed, in particular, by Gödel
Incompleteness). However, existing experience of applications of the standard
axiomatic method in 20th-century science makes it evident that this method
of formal representation does not effectively support many significant routine
tasks including formal proof-checking, which prevents wider use of this
method in the mathematical, scientific and industrial practices.

2. The axiomatic theory of elementary topos first published by Lawvere in 1970
connects the constructive deductive part of the theory and its objectual part
in a new way via the new concept of the internal logic of a given category.
Even if the theory of elementary topos can be represented as a standard
Hilbert-style axiomatic theory its logical and epistemological underpinnings
are very different. Lawvere’s axiomatic approach involves, in particular, a
non-standard notion of semantic interpretation (functorial semantics).

3. The continuing project of building new Univalent foundations of
mathematics initiated by Vladimir Voevodsky in 2006 uses a non-standard
constructive Gentzen-style axiomatic architecture of theories, which better
meets the needs of today’s scientific practice than the standard axiomatic
architecture; in particular, it supports formal proof-checking by computers.
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The constructive axiomatic method combines capacities of the received
axiomatic method and the more traditional “genetic” method of theory-
building. The constructive axiomatic method allows for the representation
of propositional knowledge along with procedural knowledge, and can be
used in digital systems of knowledge representation (KR).

By default, all non-English sources are quoted in the author’s translations
into English.
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1 From Euclid to Hilbert 1

In the Introduction to his Foundations of Geometry of 1899 [115] Hilbert
states that:

“Geometry, like arithmetic, requires for its logical development only
a small number of simple, fundamental principles. These fundamental
principles are called the axioms of geometry. The choice of the axioms
and the investigation of their relations to one another is a problem
which, since the time of Euclid, has been discussed in numerous excellent
memoirs to be found in the mathematical literature. This problem is
tantamount to the logical analysis of our intuition of space.” (Hereafter
[115] is quoted in English translation [107])

Notice Euclid’s name in the above quote. Evidently Hilbert had in mind
Euclid’s Elements when he prepared his Foundations of Geometry for publication.
Hilbert aims at developing Euclidean geometry on a wholly new conceptual basis.
In this sense Hilbert’s Foundations of 1899 qualifies as a fairly revolutionary work.
However one should not forget that rewriting geometrical chapters of Euclid’s
Elements in new terms is itself an old and well-establish tradition in the history
of mathematical thought. Hilbert’s Foundations of Geometry as well as Bourbaki’s
open-ended Elements of Mathematics produced later in the 20th century [26],[29]
form part of this long tradition, and can be compared with such groundbreaking
works of earlier generations as, for example, Restored Euclid by Borelli (1658)
[25], New Elements of Geometry by Arnauld (1667)[7] and Euclid Freed from All
Flaws by Saccheri (1733)[83]. Thus the Hilbertian revolution that still strongly
influences today’s mathematical practice is certainly not the first revolution of
this sort and hopefully not the last one.

1.1 Euclid: Doing and Showing

Reading older mathematical texts always involves a hermeneutical
dilemma: in order to make sense of the mathematical content of a given old

1This chapter is based on [223], [235], [233, Ch. 2-3] and [243].
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text one wants to interpret it in modern terms; in order to see the difference
between the modern mathematical thinking and older ways of mathematical
thinking one wants to avoid anachronisms and understand the old text on its
own terms [287]. Any scholar studying older mathematics needs to find a way
between the Scylla of “antiquarianism” that seeks the scholar’s conversion into
a person living during a different historical epoch, and the Charybdis of radical
“presentism” that finds in older texts nothing but a minor part of today’s standard
mathematical curricula and wholly ignores the historical change of basic patterns
of mathematical thinking [53].

My way through the channel is the following. We read Euclid’s text
verbatim (relying on Heiberg’s edition of the original Greek [65] and using
Fitzpatrick’s new English translation [64]), consider its most important modern
interpretations (including overtly anachronistic ones), criticize some of these
interpretations on the basis of textual evidence, and finally suggest some
alternative interpretations. In order to prevent the risk of losing the main
argument behind the historical details we formulate now our conclusion. Contrary
to popular opinion Euclid’s geometry is not a system of propositions some of
which have the special status of axioms while some others are derived from the
axioms according to certain rules of logical inference. Rather, it can be described
after Friedman as “a form of rational argument” [77, p.94] where certain non-
propositional principles play a major role. We share the opinion of Müller who
claimed back in 1974 that no system of modern logic adequately accounts for
Euclid’s form of geometrical reasoning [198], see also [196]. However, we also
specify in what follows (3.2) certain features of the new axiomatic architecture
developed within the Univalent Foundations project, which share certain features
with the axiomatic architecture of Euclid’s Elements.

1.1.1 Demonstration and “Monstration”

All Propositions of Euclid’s Elements (with few easily understandable
exceptions) fit into the scheme described by Proclus in his Commentary [215]
as follows:

“Every Problem and every Theorem that is furnished with all its parts
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should contain the following elements: an enunciation, an exposition,
a specification, a construction, a proof, and a conclusion. Of these
enunciation states what is given and what is being sought from it, a
perfect enunciation consists of both these parts. The exposition takes
separately what is given and prepares it in advance for use in the
investigation. The specification takes separately the thing that is sought
and makes clear precisely what it is. The construction adds what is
lacking in the given for finding what is sought. The proof draws the
proposed inference by reasoning scientifically from the propositions
that have been admitted. The conclusion reverts to the enunciation,
confirming what has been proved.” [215, p.203] (italic added)

It is appropriate to notice here that the term “proposition”, which is
traditionally used in translations as a common name of Euclid’s problems and
theorems, is not found in the original text of the Elements : Euclid numerates
these things throughout each Book without naming them by any common name.
(The reader will shortly see why this detail is important.) The difference between
problems and theorems is explained in 1.4 below. Let’s now show how Proclus’
scheme applies to Proposition 5 of the First Book (Theorem 1.5), which is a well-
known theorem about the angles of the isosceles triangle. References in square
brackets are added by the translator; some of them will be discussed later on.
Words in round brackets are added by the translator for stylistic reason. Words in
angle brackets are borrowed from Proclus’ quote above. Throughout this chapter
we write these words in italics when we use them in Proclus’s specific sense.

[enunciation:]

For isosceles triangles, the angles at the base are equal to one another,
and if the equal straight lines are produced then the angles under the
base will be equal to one another.

[exposition]:

Let ABC be an isosceles triangle having the side AB equal to the side
AC; and let the straight lines BD and CE have been produced further
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Fig. 1: Theorem 1.5 of Euclid’s Elements

in a straight line with AB and AC (respectively). [Post. 2].

[specification:]

I say that the angle ABC is equal to ACB, and (angle) CBD to BCE.

[construction:]

For let a point F be taken somewhere on BD, and let AG have been
cut off from the greater AE, equal to the lesser AF [Prop. 1.3]. Also,
let the straight lines FC, GB have been joined. [Post. 1]

[proof :]

In fact, since AF is equal to AG, and AB to AC, the two (straight lines)
FA,AC are equal to the two (straight lines)GA,AB, respectively. They
also encompass a common angle FAG. Thus, the base FC is equal to
the base GB, and the triangle AFC will be equal to the triangle AGB,
and the remaining angles subtended by the equal sides will be equal
to the corresponding remaining angles [Prop. 1.4]. (That is) ACF to
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ABG, and AFC to AGB. And since the whole of AF is equal to the
whole of AG, within which AB is equal to AC, the remainder BF is
thus equal to the remainder CG [Ax.3]. But FC was also shown (to
be) equal to GB. So the two (straight lines) BF , FC are equal to the
two (straight lines) CG, GB respectively, and the angle BFC (is) equal
to the angle CGB, while the base BC is common to them. Thus the
triangle BFC will be equal to the triangle CGB, and the remaining
angles subtended by the equal sides will be equal to the corresponding
remaining angles [Prop. 1.4]. Thus FBC is equal to GCB, and BCF to
CBG. Therefore, since the whole angle ABG was shown (to be) equal
to the whole angle ACF , within which CBG is equal to BCF , the
remainder ABC is thus equal to the remainder ACB [Ax. 3]. And they
are at the base of triangle ABC. And FBC was also shown (to be)
equal to GCB. And they are under the base.

[conclusion:]

Thus, for isosceles triangles, the angles at the base are equal to one
another, and if the equal sides are produced then the angles under the
base will be equal to one another. (Which is) the very thing it was
required to show.

An obvious difference between Proclus’ analysis of the above theorem and
its usual modern analysis is the following. For a modern reader the proof of
this theorem begins with Proclus’ exposition and includes Proclus’ specification,
construction and proof. Thus for Proclus the proof is only a part of what we call
today the proof of this theorem. Also notice that Euclid’s theorems conclude with
the words “which ... was required to show ” (as correctly translates Fitzpatrick)
but not with the words “what it was required to prove” (as inaccurately translates
Heath [100]). The standard Latin translation of this Euclid’s formula as quod erat
demonstrandum is also inaccurate. These inaccurate translations conflate two
different Greek verbs: “apodeiknumi” (English “to prove”, Latin “demonstrare”)
and “deiknumi” (English “to show”, Latin “monstrare”). The difference between
the two verbs can be clearly seen in the two Aristotle’s Analytics : Aristotle uses
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the verb “apodeiknumi” and the derived noun “apodeixis” (proof) as technical
terms in his syllogistic logic, and he uses the verb “deiknumi” in a broader
and more informal sense when he discusses epistemological issues (mostly in the
Second Analytics). Without trying to trace here the history of Greek logical and
mathematical terminology and speculate about possible influences of some Greek
writers on some other writers, we would like to stress the remarkable fact that
Aristotle’s use of the verbs “deiknumi” and “apodeiknumi” agrees with Euclid’s
and Proclus’. In ourview this fact alone provides sufficient motivation for taking
the difference between the two verbs seriously and distinguishing between proof
and “showing” (or otherwise between demonstration and monstration).

The question of the logical significance of the exposition, the specification
and the construction in Euclid’s geometry has been discussed in the literature;
in what follows we shall briefly describe some tentative answers to it. However
before doing this we would like to stress that this question may be ill-posed to
begin with. As far as one assumes, first, that the theory of Euclid’s Elements is (by
and large) sound and, second, that any sound mathematical theory is an axiomatic
theory in the modern sense, then, in order to make these two assumptions
mutually compatible, one has to describe the exposition, the specification and
the construction of each of Euclid’s theorems as parts of the proof of this theorem
and specify their logical role and their logical status. We shall not challenge the
usual assumption according to which Euclid’s mathematics is by and large sound.
However we shall challenge the other assumption according to which any sound
mathematical theory is an axiomatic theory in the modern sense. Since we do not
take this latter assumption for granted we do not assume from the outset that the
problematic elements of Euclid’s reasoning (the exposition, the specification and
the construction) play some logical role, which only needs to be made explicit and
appropriately understood. In what follows we describe how these elements work
without making any additional assumptions about them, and only then decide
whether the role of these elements qualifies as logical or not.
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1.1.2 Are Euclid’s Proofs Logical?

Let’s look at Euclid’s Theorem 1.5 more attentively. We begin its analysis
with its proof. Among the premises of this proof, one may easily identify Axiom
(Common Notion) 3 according to which

(Ax.3): If equal things are subtracted from equal things then the
remainders are equal

and the preceding Theorem 1.4 according to which

(Prop.1.4): If two triangles have two corresponding sides equal, and
have the angles enclosed by the equal sides equal, then they will also
have equal bases, and the two triangles will be equal, and the remaining
angles subtended by the equal sides will be equal to the corresponding
remaining angles.

We shall not comment on the role of Theorem 1.4 in this proof (which
seems to be clear) but will say few things about the role of the Axiom 3.

Here is how exactly the Axiom (Common Notion) 3 is used in Euclid’s
proof above. First, by construction we have

Con1: BF ≡ AF − AB and Con2: CG ≡ AG− AC

which is tantamount to saying that point B lays between points A, F and
point C lays between points A, G. Second, by hypothesis we have

Hyp: AB = AC

and once again by construction

Con3: AF = AG

Now we see that we have got the situation described in Ax.3: equal things
are subtracted from equal things. Using this Axiom we conclude that BF = CG.

Notice that Ax.3 applies to all “things” (mathematical objects), for which
the relation of equality and the operation of subtraction make sense. In Euclid’s
mathematics this relation and this operation apply not only to straight segments
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and numbers but also to geometrical objects of various sorts including figures,
angles and solids. Since Euclid’s equality is not interchangeable with identity we
use for the two relations two different symbols: namely, we use the usual symbol
for Euclid’s equality (even if this equality is not quite usual), and use symbol ≡
for identity. My use of symbols + and − is self-explanatory2.

The other four of Euclid’s Axioms (not to be confused with Postulates!)
have the same character. This makes Euclid’s Axioms in general, and Ax.3 in
particular, very unlike premises like Con1-3 and Hyp, so one may wonder
whether the very idea of treating these things on equal footing (as different
premises of the same inference) makes sense. More precisely we have here the
following choice. One option is to interpret Ax.3 as the following implication:

{(a ≡ b− c)&(d ≡ e− f)&(b = d)&(c = f)} → (a = b)

and then use it along with Con1-3 and Hyp for getting the desired
conclusion through modus ponens and other appropriate rules. This standard
analysis involves a fundamental distinction between premises and conclusion, on
the one hand, and rules of inference, on the other hand. It assumes that in spite of
the fact that Euclid remains silent about logic (as most of other mathematicians
of all times), his reasoning nevertheless follows some implicit logical rules. The
purpose of logical analysis in this case is to make this “underlying logic“ (as some
philosophers like to call it) explicit.

The other option that we have in mind is to interpret Ax.3 itself as a rule
rather than as a premiss. Following this rule, which can be pictures as follows:

(a ≡ b− c), (d ≡ e− f), (b = d), (c = f)

a = b
(1)

one derives from Con1-3 and Hyp the desired conclusion. So interpreted
Ax.3 hardly qualifies as a logical rule because it applies only to propositions of a

2The difference A−B of two figures A, B is a figure obtained through “cutting” B out of A; the sum A+B is

the result of concatenation of A and B. These operations are not defined up to congruence of figures (for there

are, generally speaking, many possible ways, in which one may cut out one figure from another) but, according

to Euclid’s Axioms, these operations are defined up to Euclid’s equality. This shows that Euclid’s equality is

weaker than congruence: according to Axiom 4 congruent objects are equal but, generally, the converse does

not hold. In the case of (plane) figures Euclid’s equality is equivalent to the equality (in the modern sense) of

their air.
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particular sort (namely, of the form X = Y where X, Y are mathematical objects
of appropriate types). This Axiom cannot help one to prove that Socrates is
mortal. Nevertheless the domain of application of this rule is quite vast and covers
the whole of Euclid’s mathematics. An important advantage of this analysis is that
it doesn’t require one to make any assumption about hidden features of Euclid’s
thinking: unlike the distinction between logical rules and instances of applications
of these rules the distinction between axioms and premises like Con1-3 and Hyp

is explicit in Euclid’s Elements.
There is also a historical reason to prefer the latter reading of Euclid’s

Common Notions. Aristotle uses the word “axiom” interchangeably with the
expressions “common notions”, “common opinions” or simply “commons” for what
we call today logical laws or logical principles but not for what we call today
axioms. Moreover in this context he systematically draws an analogy between
mathematical common notions and his proposed logical principles (laws of logic).
This among other things provides an important historical justification for calling
Euclid’s Common Notions by the name of Axioms. It is obvious that mathematics
in general and mathematical common notions (axioms) in particular serve for
Aristotle as an important source for developing the very idea of logic. Roughly
speaking Aristotle’s thinking, as we understand it, is this: behind the basic
principles of mathematical reasoning spelled out through mathematical common
notions (axioms) there are other yet more general principles relevant to reasoning
about all sorts of beings and not only about mathematical objects. The fact that
Euclid, according to the established chronology, is younger than Aristotle by some
25 years (Euclid’s dates unlike Aristotle’s are only approximate) shouldn’t confuse
one. While there is no strong evidence of the influence of Aristotle’s work on
Euclid, the influence on Aristotle of the same mathematical tradition, on which
Euclid elaborated, is clearly documented in Aristotle’s writings themselves. In
particular, Aristotle quotes Euclid’s Ax.3 (which, of course, Aristotle could know
from another source) almost verbatim 3.

3Here are some quotes:

“By first principles of proof [as distinguished from first principles in general] I mean the common

opinions on which all men base their demonstrations, e.g. that one of two contradictories must be

true, that it is impossible for the same thing both be and not to be, and all other propositions of
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However important Aristotle’s argument may be in the history of Western
thought, there is no reason to take it for granted today every time when we try
to interpret Euclid’s Elements or any other old mathematical text. Whatever
one’s philosophical stance concerning the place of logical principles in human
reasoning, one can see what kind of harm can be done if Aristotle’s assumption
about the primacy of logical and ontological principles is taken straightforwardly
and uncritically: one treats Euclid’s Axioms on equal footing with premisses like
Con1-3 and Hyp and so misses the law-like character of the Axioms. Missing
this feature doesn’t allow one to see the relationships between Greek logic and
Greek mathematics, which we have just sketched.

Having said that, we would like to repeat that Euclid’s proof (apodeixis) is
the part of Euclid’s theorems, which more resembles what we today call proof (in

this kind.” (Met. 996b27-32, Heath’s translation, corrected)

Here Aristotle refers to a logical principle as “common opinion”. In the next quote he compares mathematical

and logical axioms:

“We have now to say whether it is up to the same science or to different sciences to inquire into

what in mathematics is called axioms and into [the general issue of] essence. Clearly the inquiry

into these things is up to the same science, namely, to the science of the philosopher. For axioms

hold of everything that [there] is but not of some particular genus apart from others. Everyone

makes use of them because they concern being qua being, and each genus is. But men use them

just so far as is sufficient for their purpose, that is, within the limits of the genus relevant to their

proofs. Since axioms clearly hold for all things qua being (for being is what all things share in

common) one who studies being qua being also inquires into the axioms. This is why one who

observes things partly [=who inquires into a special domain] like a geometer or a arithmetician

never tries to say whether the axioms are true or false.” (Met. 1005a19-28, our translation)

Here is the last quote where Aristotle refers to Ax.3 explicitly:

“Since the mathematician too uses common [axioms] only on the case-by-case basis, it must be

the business of the first philosophy to investigate their fundamentals. For that, when equals are

subtracted from equals, the remainders are equal is common to all quantities, but mathematics

singles out and investigates some portion of its proper matter, as e.g. lines or angles or numbers,

or some other sort of quantity, not however qua being, but as [..] continuous.” (Met. 1061b, our

translation)

The “science of philosopher” otherwise called the “first philosophy” is Aristotle’s logic, which in his understanding

is closely related to (if not indistinguishable from) what we call today ontology. After Alexandrian librarians we

today call the relevant collection of Aristotle’s texts by the name of metaphysics and also use this name for a

relevant philosophical discipline.
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logic) than other parts of Euclid’s theorems. For this reason, in what follows we
shall call those inferences in Euclid’s proofs which are based on Axioms protological
inferences, and distinguish them from inferences of another type that we shall call
geometrical inferences. This analysis is not incompatible with the idea (going
back to Aristotle) that behind Euclid’s protological and geometrical inferences
there are inferences of a more fundamental sort, that can be called logical in the
proper sense of the word. However we claim that Euclid’s text as it stands provides
us with no evidence in favor of this strong assumption. One can learn Euclid’s
mathematics and fully appreciate its rigor without knowing anything about logic,
just like Moliere’s M. Jourdain could express himself well long before he learned
anything about prose!

Whether or not the science of logic really helps one to improve on
mathematical rigor — or it is rather the mathematical rigor that helps one to
do logic rigorously — is a controversial question that we shall discuss further
in this work. The purpose of our present reading of Euclid is at the same time
more modest and more ambitious than the purpose of logical analysis. It is more
modest because this reading doesn’t purport to assess Euclid’s reasoning from
the viewpoint of today’s mathematics and logic but aims at reconstructing this
reasoning in its authentic archaic form. It is more ambitious because it doesn’t
take today’s viewpoint for granted but aims at reconsidering this viewpoint by
bringing it into a historical perspective.

1.1.3 Instantiation, Objecthood and Objectivity

Let us now see where the premises Hyp and Con 1-3 come from. As we
have already mentioned they actually come from two different sources: Hyp is
assumed by hypothesis while Con 1-3 are assumed by construction. Here I shall
consider these two cases one after the other.

The notion of hypothetic reasoning is an important extension of the core
notion of axiomatic theory outlined above; it is well-treated in the literature
and we shall not cover it here in full. We shall consider only one particular
aspect of hypothetical reasoning as it is present in Euclid. The hypothesis that
validates Hyp, informally speaking, amounts to the fact that Theorem 1.5 tells
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us something about isosceles triangles (rather than about objects of another
sort). The corresponding definition (Definition 1.20) tells us that two sides of
the isosceles triangle are equal. However to get from here to Hyp one needs
yet another step. The enunciation of Theorem 1.5 refers to isosceles triangles
in general. But Hyp that is involved in the proof of this Theorem concerns
only the particular triangle ABC. Notice also that the proof concludes with
the propositions ABC = ACB and FBC = GCB (where ABC, ACB, FBC
and GCB are angles), which also concern only the particular triangle ABC.
This conclusion differs from the following conclusion (of the whole Theorem),
which almost verbatim repeats the enunciation and once again refers to isosceles
triangles and their angles in general terms.

The wanted step that allows Euclid to proceed from the enunciation to
Hyp is made in the exposition of this Theorem, which introduces triangle ABC
as an “arbitrary representative” of isosceles triangles (in general). In terms of
modern logic this step can be described as the universal instantiation :

∀xP (x) =⇒ P (a/x)

where P (a/x) is the result of the substitution of the individual constant a at the
place of all free occurrences of variable x in P (x). The same notion of universal
instantiation allows us to interpret Euclid’s specification in the obvious way.
The reciprocal backward step that allows Euclid to obtain the conclusion of
the Theorem from the conclusion of the proof can be similarly described as the
universal generalization :

P (a) =⇒ ∀xP (x)

(which is a valid rule only under certain conditions that we skip here).
As long as the exposition and the specification are interpreted in terms of

the universal instantiation these operations are understood as logical inferences
and, accordingly, as elements of a proof in the modern sense of the word. A
somewhat different - albeit not wholly incompatible - interpretation of Euclid’s
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exposition and specification can be straightforwardly given in terms of Kant’s
transcendental aesthetics and transcendental logic developed in his Critique of
Pure Reason [136]. Kant thinks of the traditional geometrical exposition not as a
logical inference of one proposition from another but as a “general procedure of
the imagination for providing a concept with its image”; a representation of such
a general procedure Kant calls a schema of the given concept (A140). Thus for
Kant any individual mathematical object (like triangle ABC) always comes with
a specific rule that one follows in constructing this object in one’s imagination,
and that provides a link between this object and its corresponding concept (the
concept of isosceles triangle in our example). According to Kant the representation
of general concepts by imaginary individual objects (which Kant also describes
as “construction of concepts” for short) is the principal distinctive feature of
mathematical thinking, which distinguishes it from philosophical speculation.

“Philosophical cognition is rational cognition from concepts,
mathematical cognition is that from the construction of concepts.
But to construct a concept means to exhibit a priori the intuition
corresponding to it. For the construction of a concept, therefore, a
non-empirical intuition is required, which consequently, as intuition, is
an individual object, but that must nevertheless, as the construction of
a concept (of a general representation), express in the representation
universal validity for all possible intuitions that belong under the
same concept, either through mere imagination, in pure intuition, or
on paper, in empirical intuition. [dots] The individual drawn figure
is empirical, and nevertheless serves to express the concept without
damage to its universality, for in the case of this empirical intuition we
have taken account only of the action of constructing the concept, to
which many determinations, e.g., those of the magnitude of the sides
and the angles, are entirely indifferent, and thus we have abstracted
from these differences, which do not alter the concept of the triangle.
Philosophical cognition thus considers the particular only in the
universal, but mathematical cognition considers the universal in the
particular, indeed even in the individual.” (KRV, A713-4/B741-2).
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[135], [136]

Kant’s account can be understood as a further explanation of what the
instantiation of mathematical concepts amounts to; then one may claim that
the Kantian interpretation of Euclid’s exposition and specification is compatible
with its interpretation as universal instantiation in the modern sense. However
the Kantian interpretation doesn’t on its own suggest the instantiation should
be interpreted as a logical procedure in a narrow sense, i.e., as an inference of
a proposition from another proposition. As the above quote makes clear, Kant
describes the instantiation as a cognitive procedure of a different sort.

Now coming back to Euclid, we must first of all admit that the exposition
and the specification of Theorem 1.5 as they stand are too concise to justify
preferring one philosophical interpretation rather than another. Euclid introduces
an isosceles triangle through Definition 1.20 providing no rule for constructing such
a thing. (This example may serve as evidence against the often-repeated claim
that every geometrical object considered by Euclid is supposed to be constructed
on the basis of Postulates beforehand.) Nevertheless given the important role of
constructions in Euclid’s geometry, which we explain in the next Section, the
idea that every geometrical object in Euclid has an associated construction rule
appears very plausible. There is also another interesting textual feature of Euclid’s
specification that in ourview makes the Kantian interpretation more plausible.

Notice the use of the first person in the specification of Theorem 1.5 :
“I say that ....”. In Elements Euclid uses this expression systematically in the
specification of every theorem. Interpreting the specification in terms of universal
instantiation one should, of course, disregard this feature as merely rhetorical.
However it may be taken into account through the following consideration. While
the enunciation of a theorem is a general proposition that can be best understood
á la Frege in abstraction from any human or inhuman thinker, i.e., independently
of any thinking subject who might believe this proposition, assert it, refute it,
or do anything else about it, the core of Euclid’s theorems (beginning with their
exposition) involves an individual thinker (individual subject) that cannot and
should not be wholly abstracted away in this context. When Euclid enunciates a
theorem this enunciation does not involve - or at least is not supposed to involve
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- any particularities of Euclid’s individual thinking; the less this enunciation
is affected by Euclid’s (or anyone else’s) individual writing and speaking style
the better. However the exposition and thespecification of the given theorem
essentially involve an arbitrary choice of notation (“Let ABC be an isosceles
triangle...”), which is an individual choice made by an individual mathematician
(namely, made by Euclid on the occasion of writing his Elements). This individual
choice of notation goes on par with what we have earlier described as instantiation,
i.e. the choice of one individual triangle (triangle ABC) of the given type, which
serves Euclid for proving the general theorem about all triangles of this type.
The exposition can also be naturally accompanied by drawing a diagram, which
in its turn involves the choice of a particular shape (provided this shape is of the
appropriate type), leaving aside the choices of its further features like color, etc.

Thus when in the specification of Theorem 1.5 we read “I say that the angle
ABC is equal to ACB” we indeed do have good reason to take Euclid’s wording
seriously. For the sentence “angle ABC is equal to ACB” unlike the sentence
“for isosceles triangles, the angles at the base are equal to one another” has a
feature that is relevant only to one particular presentation (and to one particular
diagram if any), namely the use of letters A,B,C rather than some others 4.
The words “I say that ...” in the given context stress this situational character
of the following sentence “angle ABC is equal to ACB”. What matters in these
words is, of course, not Euclid’s personality but the reference to a particular act of
speech and cognition of an individual mathematician. Proving the same theorem
on a different occasion Euclid or anybody else could use other letters and another
diagram of the appropriate type.

A competent reader of Euclid is supposed to know that the choice of letters
in Euclid’s notation is arbitrary and that Euclid’s reasoning does not depend
on this choice. The arbitrary character of this notation should be distinguished
from the general arbitrariness of linguistic symbols in natural languages. What
is specific for the case of exposition and specification is the fact that here the
arbitrary elements of reasoning (like notation) are sharply distinguished from
its invariant elements. To use Kant’s term we can say that behind the notion

4Although the choice of letters in Euclid’s notation is arbitrary the system of this notation is not. This

traditional geometrical notation has a relatively stable and rather sophisticated syntax.



25

according to which the choice of Euclid’s notation is arbitrary (at least to the
degree that letters used in this notation are permutable) and according to which
the same reasoning may work equally well with different diagrams (provided all
of them belong to the same appropriate type) there is a certain invariant schema
that sharply limits such possible choices. This schema not only allows for making
some arbitrary choices but requires every possible choice in the given reasoning
to be wholly arbitrary. This requirement is tantamount to saying that subjective
reasons behind choices made by an individual mathematician for presenting a
given mathematical argument are strictly irrelevant to the “argument itself” (in
spite of the fact that the argument cannot be formulated without making such
choices). In general talks in natural languages there is no similar sharp distinction
between arbitrary and invariant elements. When I write this text I can certainly
change some of the wording without changing the sense of our argument, but I
am not in a position to describe precisely the scope of such possible changes and
identify the intended “sense” of my argument with mathematical rigour. This is
because the present study is philosophical and historical, not purely mathematical.

Thus Euclid’s exposition serves for the formulation of a given universal
proposition in terms, which are suitable for a particular act of mathematical
cognition made by an individual mathematician. This aspect of the exposition
is not accounted for by the modern notion of universal instantiation. It may be
argued that this aspect of the exposition needs not be addressed in a logical
analysis of Euclid’s mathematics that aims at explication of the objective meaning
of Euclid’s reasoning and may well leave aside cognitive aspects of this reasoning.
We agree that this latter issue lies out of the scope of logical analysis in the usual
sense of the term but we disagree that the objective meaning of Euclid’s reasoning
can be properly understood without addressing this issue. Euclid’s mathematical
reasoning is objective due to a mechanism that allows one to make universally valid
inferences through one’s individual thinking. Whatever the “objective meaning”
might consist of this mechanism must be taken into account.
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1.1.4 Proto-Logical Deduction and Geometrical Production

Recall that the proof of Euclid’s Theorem 1.5 uses not only premiss Hyp

assumed “by hypothesis” but also premisses Con 1-3 (as well as a number
of other premisses of the same type) assumed “by construction”. We turn now
to the question about the role of Euclid’s constructions (which, but the way,
are ubiquitous not only in geometrical but also in arithmetical Books of the
Elements) and more specifically consider the question how these constructions
support certain premisses that are used in following proofs.

As is well known, Euclid’s geometrical constructions are supposed to be
realised “by ruler and compass”. In the Elements this condition is expressed in the
Elements through the following three

Postulates:
1. Let it have been postulated to draw a straight-line from any point to
any point.
2. And to produce a finite straight-line continuously in a straight-line.
3. And to draw a circle with any center and radius.

(We leave out of the present discussion Euclid’s two further Postulates including
the problematic Fifth Postulate.)

Before we consider popular interpretations of these Postulates and suggest
our own interpretation let us briefly discuss the very term “postulate”, which
is traditionally used in English translations of Euclid’s Elements. Fitzpatrick
translates Euclid’s verb “aitein” by the English verb “to postulate” following the
long tradition of Latin translations, where this Greek verb is translated by the
Latin verb “postulare”. However, according to today’s standard dictionaries the
modern English verb “to postulate” does not translate the Greek verb “aitein” and
the Latin verb “postulare” in general contexts: the modern dictionaries translate
these verbs into “to demand” or “to ask for”. This shows clearly that the meaning
of the English verb “to postulate” that derives from Latin “postulare” changed
during its lifetime5.

5I reproduce here Fitzpatrick’s footnote about Euclid’s expression “let it be postulated”:
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Aristotle describes a postulate (aitema) as what “is assumed when the
learner either has no opinion on the subject or is of a contrary opinion” (An.
Post. 76b); further he draws a contrast between postulates and hypotheses saying
that the latter appear more plausible to the learner than the former (ibid.). It is
unnecessary for our present purpose to go any further into this semantical analysis,
trying to reconstruct an epistemic attitude that Euclid might have had in mind
“demanding” the reader to take his Postulates for granted. The purpose of the
above philological remark is rather to warn the reader that the modern meaning
of the English word “postulate” can easily mislead when one tries to interpret
Euclid’s Postulates adequately. So we suggest reading Euclid’s Postulates as they
stand and trying to reconstruct their meaning from their context, forgetting for
a while what one has learned about the meaning of the term “postulate” from
modern sources.

Euclid’s Postulates are usually interpreted as propositions of a certain type
and on this basis are qualified as axioms in the modern sense of the term. There
are at least two different ways of rendering Postulates in a propositional form.
We shall demonstrate them at the example of Postulate 1. This Postulate can be
interpreted either as the following modal proposition:
(PM1): given two different points it is always possible to draw a (segment of)
straight-line between these points
or as the following existential proposition:
(PE1): for any two different points there exists a (segment of) straight-line lying
between these points.

Propositional interpretations of Euclid’s Postulates allow one to present
Euclid’s geometry as an axiomatic theory in the modern sense of the word and,
more specifically, to present Euclid’s geometrical constructions as parts of proofs
of his theorems. Even before the modern notion of axiomatic theory was strictly

“The Greek present perfect tense indicates a past action with present significance. Hence, the 3rd-

person present perfect imperative Hitesthw could be translated as “let it be postulated”, in the

sense “let it stand as postulated”, but not “let the postulate be now brought forward”. The literal

translation “let it have been postulated” sounds awkward in English, but more accurately captures

the meaning of the Greek.”
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defined in formal terms, many translators and commentators of Euclid’s Elements
tended to think about his theory in this way and interpreted Euclid’s Postulates
in the modal sense. Later a number of authors ([119], [127]) proposed different
formal reconstructions of Euclid’s geometry based on the existential reading of
Postulates. According to Hintikka and Remes

“[R]eliance on auxiliary construction does not take us outside the
axiomatic framework of geometry. Auxiliary constructions are in
fact little more than ancient counterparts to applications of modern
instantiation rules.” [120, p. 270]

The instantiation rules work in this context as follows. First, through
universal instantiation (which under this reading corresponds to Euclid’s
exposition and specification) one gets some propositions like Hyp about certain
particular objects (individuals) like AB and AC. Then one uses Postulates
1-3 reading them as existential axioms according to which the existence of
certain geometrical objects implies the existence of certain further geometrical
objects, and so proves the (hypothetical) existence of such further objects of
interest. Finally one uses another instantiation rule called the rule of existential
instantiation:

∀xP (x)

P (a)
(2)

and thus “gets” these new objects. Under this interpretation Euclid’s constructions
turn into logical inferences of a sort. As Hintikka and Remes emphasise in their
paper, the principal distinctive feature of Euclid’s constructions (under their
interpretation) is that these constructions introduce some new individuals; they
call such individuals “new” in the sense that these individuals are not (and cannot
be) introduced through the universal instantiation of hypotheses forming part of
the enunciation of the given theorem.

The propositional interpretations of Euclid’s Postulates are illuminating
because they allow for the analysis of traditional geometrical constructions in
modern logical terms. However they require a paraphrasing of Euclid’s wording,
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which from a logical point of view is far from being innocent. In order to see this
let us leave aside the epistemic attitude expressed by the verb “postulate” and
focus on the question of what Euclid postulates in his Postulates 1-3. Literally, he
postulates the following:

P1: to draw a straight-line from any point to any point.
P2: to produce a finite straight-line continuously in a straight-line.
P3: to draw a circle with any center and radius.

As they stand expressions P1-3 don’t qualify as propositions; they rather describe
certain operations ! And making up a proposition from something which is not a
proposition is not an innocent step. My following analysis is based on the idea
that Postulates are not primitive truths from which one may derive some further
truths but are primitive operations that can be combined with each other and so
produce some further operations. In order to make our reading clear we paraphrase
P1-3 as follows:

(OP1): drawing a (segment of) straight-line between its given endpoints
(OP2): continuing a segment of given straight-line indefinitely (“in a
straight-line)”
(OP3): drawing a circle by given radius (a segment of straight-line) and
center (which is supposed to be one of the two endpoints of the given
radius).

Noticeably none of OP1-3 allows for producing geometrical constructions out of
nothing; each of these fundamental operations produces a geometrical object out
of some other objects, which are supposed to be given in advance. The table below
specifies inputs (operands) and outputs (results) of OP1-3:

operation input output

OP1 two (different) points straight segment

OP2 straight segment (bigger) straight segment

OP3 straight segment and one of its endpoints circle
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PE1 as it stands does not imply that there exists at least one point or at
least one line in Euclid’s geometrical universe. If there are no points then there are
no lines either. Similar remarks can be made about the existential interpretation of
Euclid’s other Postulates. Thus the existential interpretation of Postulates by itself
does not turn these Postulates into existential axioms that guarantee that Euclid’s
universe is non-empty and contains all geometrical objects constructible by ruler
and compass. To meet this purpose one also needs to postulate the existence of at
least two different points — and then argue that the absence of any counterpart
of such an axiom in Euclid is due to Euclid’s logical incompetence. The proposed
reading of Postulates 1-3 as operations doesn’t require such ad hoc stipulations
and thus is more faithful to Euclid’s text 6.

Hintikka and Remes describe Euclid’s geometrical constructions as
auxiliary. Such a description may be adequate to the role of geometrical
constructions in today’s practice of teaching elementary geometry, but not to
the role of constructions in Euclid’s Elements. Recall that Euclid’s so-called
Propositions are of two types: some of them are Theorems while others are
Problems (see again the above quotation from Proclus’ Commentary ). In the
Elements, Problems are at least as important as Theorems and arguably even
more important: in fact the Elements begin and end with a Problem but not with a
Theorem. As we shall now see, when a given construction forms part of a problem
rather than a theorem, it cannot be described as auxiliary in any appropriate
sense. We shall also see the modern title “proposition” is not really appropriate
when we talk about Euclid’s Problems: while enunciations of Theorems do qualify
as propositions in the modern logical sense of the term, enunciations of Problems
do not.

We shall demonstrate these features using the well-known example of
Problem 1.1 that opens Euclid’s Elements ; our notational conventions remain
the same as in the example of Theorem 1.5.

[enunciation:]
6Since the concepts of infinite straight line and infinite half-line (ray) are absent from Euclid’s geometry, the

result of OP2 is always a finite straight segment. However this result is obviously not fully determined by its

single operand. This shows that OP2 doesn’t quite fit today’s usual notion of algebraic operation.
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Fig. 2: Problem 1.1 of Euclid’s Elements

To construct an equilateral triangle on a given finite straight-line.

[exposition:]

Let AB be the given finite straight-line.

[specification:]

So it is required to construct an equilateral triangle on the straight-line
AB.

[construction:]

Let the circle BCD with center A and radius AB have been drawn
[Post. 3], and again let the circle ACE with center B and radius BA
have been drawn [Post. 3]. And let the straight-lines CA and CB have
been joined from the point C, where the circles cut one another, to the
points A and B [Post. 1].

[proof :]
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And since the point A is the center of the circle CDB, AC is equal to
AB [Def. 1.15]. Again, since the point B is the center of the circle CAE,
BC is equal to BA [Def. 1.15]. But CA was also shown (to be) equal
to AB. Thus, CA and CB are each equal to AB. But things equal to
the same thing are also equal to one another [Axiom 1]. Thus, CA is
also equal to CB. Thus, the three (straight-lines) CA, AB, and BC are
equal to one another.

[conclusion:]

Thus, the triangle ABC is equilateral, and has been constructed on the
given finite straight-line AB. (Which is) the very thing it was required
to do.

As one can see in this example, enunciations of Problems are expressed
in the same grammatical form as Postulates 1-3, namely in the form of infinitive
verbal expressions. We read these expressions in the same straightforward way, in
which we read the Postulates: as descriptions of certain geometrical operations.
The obvious difference between (enunciations of) Problems and Postulates is this:
while Postulates introduce basic operations taken for granted (drawing by ruler
and compass) Problems describe complex operations, which in the last analysis
reduce to these basic operations. Such reduction is made through a construction of
a given Problem: it performs the complex operation described in the enunciation
of the problem through combining basic operations OP1-3 (and possibly some
complex operations performed earlier). The procedure that allows for performing
complex operations by combining a small number of repeatable basic operations
we shall call a geometrical production. In Problem 1.1 the construction of the
regular triangle is (geometrically) produced from drawing the straight-line between
two given points (Postulate 1) and drawing a circle by given center and radius
(Postulate 3). This is, of course, just another way of saying that the regular
triangle is constructed by ruler and compass; the unusual terminology helps us to
describe Euclid’s geometrical constructions more precisely.

Let us see in more detail how Euclid’s geometrical production works. Basic
operations OP1-3 like other (complex) operations need to be performed : in order
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to produce an output they have to be fed some input. This input is provided
through the exposition of the given Problem (the straight line AB in the above
example). OP1-3 are composed in the usual way well-known from today’s algebra:
outputs of earlier performed operations are used as inputs for further operations7.

Just like Postulates 1-3, enunciations of Problems can be read as modal
or existential propositions (in the modern logical sense of the term). Then the
(modified) enunciation of Problem 1.1 reads:

(1.1.M) it is possible to construct a regular triangle on a given finite
straight-line:

or

(1.1.E) for any finite straight-line there exists a regular triangle on this
line.

As soon as the enunciations of Euclid’s Problems are rendered into the
propositional form, the Problems turn into theorems of a special sort. In the case
of existential interpretation, Problems turn into existential theorems that state
(under certain hypotheses) that there exist certain objects having certain desired
properties. However this is not what we find in Euclid’s text as it stands. Every one
of Euclid’s Problems ends with the formula “the very thing it was required to do”,
not “to show” or “to prove”. We can see no evidence in the Elements that justifies
the idea that in Euclid’s mathematics doing is less significant than showing and
that the former is in some sense reducible to the latter.

According to another popular reading Euclid’s Problems are tasks or
questions of a sort. This version of a modal propositional interpretation of Euclid’s
Problems involves a deontic modality rather than a possibility modality:

7Problem 1.1 involves a difficulty that has been widely discussed in the literature: Euclid does not provide any

principle that may allow him to construct a point of intersection of the two circles involved in the construction

of this Problem. This flaw is usually described as a logical flaw. In our view it is more appropriate to describe

this flaw as properlygeometrical, and fill the gap in the reasoning with the following additional postulate (rather

than an additional axiom):

Let it have been postulated to produce a point of intersection of two circles with a common radius.

Even if this additional postulates is introduced here purely ad hoc, the way in which it is introduced gives an

idea of how Euclid’s Postulates could emerge in the real history.
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(1.1.D) it is required to construct a regular triangle on a given finite
straight-line:

Indeed geometrical problems similar to Euclid’s Problems can be found
in today’s Elementary Geometry textbooks as exercises. However the analogy
between Euclid’s Problems and school problems on construction by ruler and
compass is not quite precise. Enunciations of Euclid’s Problems just like the
enunciations of Euclid’s Theorems prima facie express no modality whatsoever.
A deontic expression appears only in the exposition of the given Problem (“it
is required to construct an equilateral triangle on the straight-line AB”). We
don’t think that this fact justifies the deontic reading of the enunciation because,
as we have already explained above, the exposition describes the reasoning
of an individual mathematician. That every complex construction must be
performed through Postulates and earlier performed constructions is an epistemic
requirement, which is on par with the requirement according to which every
theorem must be proved rather than simply stated. Recall that the expositions of
Euclid’s Theorems have the form “I say that...”. This indeed provides an apparent
contrast with the expositions of Problems that have the form “it is required to ....”.
However this contrast doesn’t seem to us to be really sharp. Euclid’s expression
“I say that...” in the given context is interchangeable with the expression “it is
required to show that...”, which matches the closing formula of Theorems, “(this
is) the very thing it was required to show”. Euclid’s expression “it is required to...”
that he uses in the expositions of Problems similarly matches the closing formula
of Problems, “(this is) the very thing it was required to do”. The requirement
according to which every Theorem must be “shown” or “monstrated” doesn’t
imply, of course, that the enunciation (statement) of this Theorem has a deontic
meaning. Nor does the requirement according to which every Problem must be
“done” imply that the enunciation of this Problem has something to do with
deontic modalities.

The analogy between axioms and theorems, on the one hand, and
postulates and problems, on the other hand, may suggest that Euclid’s geometry
splits into two independent parts, one of which is ruled by (proto)logical deduction
while the other is ruled by geometrical production. However, this doesn’t happen,
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and in fact problems and theorems turn out to be mutually dependent elements of
the same theory. The above example of Problem 1.1 and Theorem 1.5 show how
the intertwining of problems and theorems works. Theorems, generally, involve
constructions (called in this case auxiliary), which may depend (in the order
of geometrical production) on earlier treated problems (as the construction of
Theorem 1.5 depends on Problem 1.3.) Problems in their turn always involve
appropriate proofs that prove that the construction of the given theorem indeed
performs the operation described in the enunciation of this theorem (rather
than some other operation). Such proofs, generally, depend (in the order of the
protological deduction) on certain earlier treated theorems (just as in the case of
proofs of theorems).

Although this mechanism linking problems with theorems may look
unproblematic, it gives rise to the following puzzle. Geometrical production
produces geometrical objects from other objects. Protological deduction deduces
certain propositions from other propositions. How then it may happen that the
geometrical production has an impact on the protological deduction? In particular,
how may the geometrical production justify premises assumed “by construction”,
so that these premises are used in following proofs?

In order to answer this question, let’s come back to the premise Con3

(AF = AG) from Theorem 1.5 and see what if anything makes it true. AF = AG

because Euclid or anybody else following Euclid’s instructions constructs this
pair of straight segments in this way. How do we know that by following these
instructions one indeed gets the desired result? It is because the construction of
Problem 1.3 that contains the appropriate instruction is followed by a proof that
proves that this construction does exactly what it is required to do. Construction
1.3 in its turn uses construction 1.2 while construction 1.2 uses construction
1.1 quoted above. In other words construction 1.1 (geometrically) produces
construction 1.2 and construction 1.2 in its turn produces construction 1.3.
This geometrical production produces the relevant part of construction 1.5 (the
construction of equal straight segments AF and AG) from first principles, namely
from Postulates 1-3. In order to get the corresponding protological deduction of
premise Con3 from first principles we should now look at proofs 1.1, 1.2 and 1.3
and then combine these three proofs into a single chain. To save space, we leave



36

the details to the reader and report only what we get in the end. The result is
somewhat surprising from the point of view of modern logical analysis. The chain
of constructions leading to construction 1.5 involves a number of circles (through
Postulate 3). Radii of a given circle are equal by definition (Definition 1.15). Thus
by constructing a circle and its two radii, say, X and Y one gets a primitive (not
supposed to be proved) premise X = Y . Having at hand a number of premises
of this form and using Axioms as inference rules (but not as premises!) one gets
the desired deduction of Con3. The fact that first principles of the protological
deduction of Con3 appear to be partly provided by a definition helps to explain
why Euclid places his definitions among other first principles such as postulates
and axioms.

A logical analysis of Euclid’s geometry that involves a propositional (in
particular existential) reading of postulates aims at replacing these two sets of
rules by a single set of rules called logical. We would like to stress again that the
results of our proposed analysis do not exclude the possibility of logical analysis.
Such a replacement may be a good idea or not, but in any event logical rules
are not made explicit in the Euclid’s text, and we do not see much point in
saying that he uses rules of this sort implicitly. The fact that we can today use
modern logic to interpret Euclid is a completely different issue. An interpretation
of Euclid’s geometry by means of logical analysis can indeed be illuminating, but
one should not confuse oneself by believing that Euclid already had a grasp of
modern logic even if he could not formulate principles of this logic explicitly.
The fact that Euclid’s Axioms and Postulates can be easily reformulated and
expressed in modern formal languages does not mean that such a reformulation
can be easily extended to the whole of Euclid’s theory of geometry. As has been
demonstrated by Hilbert [115], such a logical reconstruction of Euclid’s theory
involves a dramatic change of its basic architecture.

1.2 Hilbert: Making It Formal

1.2.1 Thought-things and thought-relations

The first paragraph of the Foundations of 1899 reads:
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“Let us consider three distinct systems of things. The things composing
the first system, we will call points and designate them by the letters
A, B, C,. . . ; those of the second, we will call straight lines and
designate them by the letters a, b, c,..; and those of the third system,
we will call planes and designate them by the Greek letters α, β, γ
. [..] We think of these points, straight lines, and planes as having
certain mutual relations, which we indicate by means of such words
as “are situated”, “between”; “parallel”, “congruent”, “continuous”, etc.
The complete and exact description of these relations follows as a
consequence of the axioms of geometry. These axioms [..] express certain
related fundamental facts of our intuition. ”

The idea is this. The purpose of foundations of geometry is to develop
geometry ab ovo. This means that “fundamental facts of our [geometrical]
intuition” cannot be tacitly taken for granted here (as this is done in non-
foundational geometrical studies) but must be explicitly described and postulated.
The proposed method of describing these facts is the following. First, one identifies
a list of types of objects, which are primitive in the sense that they are not
defined in terms of some other (types of) objects; they are introduced without
any definition. Second, one identifies a list of primitive relations between primitive
objects; these primitive relations are also introduced without definitions. Finally,
one makes up a list of axioms, i.e., propositions, which involve only primitive
objects and primitive relations between these objects. Every consequence of these
axioms qualifies as a geometrical theorem. (I shall specify a relevant notion of
consequence in what follows; we shall see that there are in fact two different
notions of consequence, which are here in play.)

Hilbert’s axiomatic method does not assume that primitive objects and
primitive relations are given through the usual linguistic meanings of words like
“point”, “between”, etc. Primitive objects are assumed instead to be bare “things”
(possibly of several different types), which are called points, straight lines and the
like by a merely linguistic convention having no theoretical significance. Primitive
relations are treated similarly. Thus Hilbert’s list of types of primitive objects and
of primitive relations given in the above quote does not tell us anything except



38

that the given axiomatic theory involves three different types of primitive objects
and several different relations between these objects. All the relevant information
about these objects and these relations is supposed to be captured by axioms,
which specify certain facts about these objects and these relations without using
any assumption as to what these objects and relations are.

To see how this works consider the First Axiom of Hilbert’s Foundations
of 1899:

(A1.0) Two distinct points A and B always completely determine a
straight line a (op.cit., p.2).

and recall that the words “points” and “straight line” should not be read here in
the usual sense. Notice also a relation between the points and the line, which is
expressed by saying that the points determine the line; there is more than one
way to translate this expression in terms of relations but Hilbert uses here the
binary relation of incidence between a given straight line and a given point, which
can also be informally expressed by saying that the given point lies at the given
straight line (or equivalently by saying that the given straight line goes through the
given point). This semantic hygiene leaves us with the following formal reading
of A1.0:

(A1.1) Given two different primitive objects A,B of basic type P

(“points”) there exist a unique primitive object a of another basic type L
(“straight lines”), such that each of A,B and a hold a primitive relation
R (“incidence”).

Although A1.1 may not seem to be very informative, it presents what
Hilbert’s First Axiom “really says” more accurately than A1.0. The idea of
Hilbert’s axiomatic method is that a system of propositions like A1.1 provided
with an appropriate system of logic may completely determine (in a sense that we
try to clarify further in what follows) what the Euclidean (or some other) geometry
“really is”. The same method of theory-building is supposed to apply in various
domains of theoretical inquiry both within and outside the pure mathematics.
Whatever is the domain of application of the axiomatic method the axioms always
involve only abstract objects and abstract relations. What is specific for Euclidean
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geometry from Hilbert’s axiomatic viewpoint is the list of its axioms rather than
any particular subject-matter like space or extension.

Suppose a non-experienced reader looks at A1.1 and asks what this
proposition has to do with the Euclidean geometry. An appropriate explanation
can be given by translating A1.1 back to A1.0, followed by the “naive” reading
of A1.0, which turns it into a proposition similar to Euclid’s First Postulate.
This naive reading of A1.0 refers to a “fundamental fact of our intuition”, which,
in Hilbert’s words, this axiom “expresses”. However in the given context this
“fundamental fact of intuition” does not ground the corresponding axiom A1.0
but merely motivates it. We shall shortly see, however, that in a different version
of his axiomatic method presented in the Foundations of 1927 [108] Hilbert grants
a fundamental role to geometrical intuition of a special sort.

How may a proposition like A1.1 qualify as an axiom? In his letter to Frege,
Hilbert says:

“[A]s soon as I posited an axiom it will exist and be “true”. [..] If the
arbitrarily posited axioms together with all their consequences do not
contradict each other, then they are true and the things defined by these
axioms exist. For me, this is the criterion of truth and existence.” ([75,
p. 12]

Some comments are here in order.
(1) Unlike Frege [75], Hilbert does not think about mathematical axioms as self-
evident truths. In the above quote Hilbert speaks of axioms as sheer stipulations,
which are “true” in virtue of the fact that they are posited by someone. The only
rule restricting the positing of new axioms is the rule according to which each
axiom must be self-consistent and any set of such axioms (belonging to the same
theory) may contain only mutually consistent axioms. As Hilbert puts this in
the above passage, “If the arbitrarily posited axioms [..] do not contradict each
other, then they are true”. One may remark (as did Frege) that given a set of
true propositions it is impossible to infer from them a contradiction anyway.
This observation does not make Hilbert’s rule redundant because being true
does not have its usual meaning. Since being true reduces to being stipulated
the question “Which stipulations are allowed and which are not?” must be
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treated independently. Thus the consistency condition must be checked before
“axioms become true”, i.e. before one stipulates that a given set of expressions
represents a set of mathematical truths. Such a checking requires a special notion
of consistency, which applies to linguistic expressions having no definite truth-
values. At the time of writing his letter to Frege, Hilbert had not yet formulated
the appropriate notion of consistency rigorously; we shall shortly see how he tried
to solve this problem afterwards.
(2) Notice the peculiar form of Hilbert’s axioms, which involves terms with
variable meaning. An expression of this form turns into a proposition only when
the meaning of all its terms is determined. So in order to stipulate that a set
of axiom-like expressions represents a set of axioms, Hilbert needs to assume
that there exist “things defined by these axioms”, which (a) make all terms in
these axioms meaningful and (b) which make these axioms true. In the above
quote Hilbert states that the existence of such things is always granted when
the corresponding set of axioms is consistent. (“If the arbitrarily posited axioms
[..] do not contradict each other, then [..] the things defined by these axioms
exist”.) Notice that the existence of these things has no other prerequisites except
consistency. Whence there arise two mutually related questions: What are the
things “defined by axioms”? and How do the axioms “define” them? Let us consider
these two questions in turn.

The former question has at least three different answers. The first general
answer is this: given an expression like A1.1, which bears on “bare things” and “bare
relations” of multiple types, one instantiates these things and these relations in
one’s mind and so gets what Hilbert, after Kant, calls objects of thought or thought-
things (Gedankendinge in German), which are related by corresponding thought-
relations. These thought-things and thought-relations exist merely in virtue of
the fact that one thinks of them consistently. They may or may not be supported
by some sensual intuitions ; the sensual intuition is a separate issue which must
not be confused with the capacity to instantiate objects and relations between
objects as such. This latter capacity can be also called intuition - not in the
sense of Kant’s Transcendental Aesthetics but exclusively in the sense of Kant’s
Doctrine of Method [136]. Hintikka [116] quite rightly stresses the fundamental
role of this restricted notion of intuition in Hilbert’s axiomatic method. Even
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when we think of mathematical objects as “bare things” without associating with
these things anything over and above the relations stipulated through axioms like
A1.1 we think about these objects, in Kant’s terms, in concreto (which shows, by
the way, that the usual characterization of such object as abstract is somewhat
misleading). Mathematical intuition in the relevant restricted sense of the term
is the capacity to think concretely about objects and relations between objects
without associating these objects and these relations with any additional qualities.

The second answer concerns the role of sensual intuition. Recall that in
the introductory part of his Foundations of 1899 Hilbert says that his geometrical
axioms “express certain related fundamental facts of our intuition”. In 1894 Hilbert
explains his view on the nature of geometry as follows:

“Among the appearances or facts of experience manifest to us in the
observation of nature, there is a peculiar type, namely, those facts
concerning the outer shape of things, Geometry deals with these facts
[. . . ]. Geometry is a science whose essentials are developed to such a
degree, that all its facts can already be logically deduced from earlier
ones. Much different is the case with the theory of electricity or with
optics, in which still many new facts are being discovered. Nevertheless,
with regards to its origins, geometry is a natural science” (quoted after
Corry [49, p.45]

“[A]ll other sciences-above all mechanics, but subsequently also optics,
the theory of electricity, etc.- should be treated according to the model
set forth in geometry.” (ib. p.45)

What Hilbert says here about the empirical character of Geometry prima
facie is not compatible with his notion of Geometry as a free creation of mind
expressed in his letter to Frege quoted above. It is not impossible, of course,
that during this period of time Hilbert had conflicting ideas about the nature
of Geometry and could contradict himself. However it seems to us suggestive to
try to reconcile the two notions of Geometry. As a part of pure mathematics
Geometry is treated as a free creation of mind; the fundamental question here is
whether or not the given set of geometrical axioms is consistent while the question



42

where those axioms come from is irrelevant. As a natural science Geometry seeks
to express properties of physical space through an appropriate set of axioms, then
“logically deduce” from these axioms some further geometrical propositions and
finally check these deduced propositions against properties of the physical space.
So the two Geometries fit well together: the physical geometry takes care about
choosing axioms properly while the mathematical geometry takes care about the
consistency of any proposed set of geometrical axioms, and about the deduction
of new theorems from these axioms. This epistemological model is applicable to
all natural sciences; what makes geometry “more mathematical” than say, the
theory of electricity, is the fact that geometry more easily allows for an axiomatic
treatment because its “essentials” are better developed.

So we may consider geometry in a larger sense, which combines the
axiomatic mathematical geometry, on the one hand, and the empirical physical
geometry, on the other hand. Objects of this combined geometry are no longer
bare individuals but spatial physical bodies, light rays, etc. Interestingly, the
traditional notion according to which geometry presents properties of the physical
space in an idealized form is irrelevant to Hilbert’s axiomatic setting. Geometrical
objects are thought of here either as bare individuals detached from any sensual
intuition or as physical bodies as they are perceived by senses; Hilbert’s epistemic
scheme, which we reconstruct on the basis of the above passages, does not include
any intermediate “ideal” element between the axiomatic logical reasoning and the
sensual perception. We shall shortly see, however, that in his later works Hilbert
introduces such ideal elements.

The third answer to the question about Hilbert’s mathematical “things”
and their existence concerns the possibility of interpreting axioms of a given
axiomatic theory in terms of another mathematical theory. For example with
the help of standard tools of Analytic Geometry, A1.0 and Hilbert’s other axioms
translate into true propositions about real numbers. An interpretation M that
translates all axioms of a given axiomatic theory A into true propositions of
another theory T is called a model of A in T ; one says also that axioms of A
are true in model M . Suppose we know which proposition of T is true and which
is false. This allows one to reverse the order of ideas about A. Observe that in
order to check whether axioms of A are true in M , one does not need to establish
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the consistency of this set of axioms in advance. Moreover, if the axioms of A
are true in M (i.e., if M is indeed a model of A) then one may conclude that
A is consistent. Recall Hilbert’s remark according to which any consistent set of
propositions can be made by fiat into a system of axioms, which are true and
meaningful. Now we proceed the other way round: we first check that our axioms
are true and meaningful in some model and on this basis conclude that the given
set of axioms is consistent. However this conclusion is not valid unless T , which is
the background theory ofM , is consistent in its turn. So what the above argument
really proves is not the absolute but only the relative consistency of A, i.e., the
proposition of the form “if T is consistent then A is also consistent”.

From a mathematical point of view this third way of interpreting Hilbert-
style axioms turns out to be the most productive. Already in his Foundations of
1899 Hilbert applies this method systematically; in the course of the 20th century
this method develops into the modernmodel theory, which remains today an active
field of mathematical research still having some philosophical flavour. We would
like to stress here that interpreting a Hilbert-style axiomatic theory in terms of
another mathematical theory and interpreting such a theory in some intuitive
terms directly are two very different issues. Since both procedures go by the name
“interpretation”, they are too often confused in current debates. The idea that
Hilbert’s axiomatic theory of Euclidean geometry can be either interpreted “as
usual”, i.e., by associating with the terms “point”, “straight line”, “between”, etc.
their “usual” intuitive meanings, or alternatively, be interpreted arithmetically
by identifying points with pairs of numbers, etc., is plainly misleading because
it groups under the common title “interpretation” two procedures which do not
belong to the same general type.
(3) Let us finally discuss Hibert’s view according to which the axioms of a given
mathematical theory “define” the objects of this theory. Since Hilbert’s axioms
refer only to bare “things” and bare relations and since, according to Hilbert,
any consistent set of such axioms allows one to produce a “system of things” S
satisfying these axioms by fiat (or more precisely by the very fact that one forms
consistent thoughts “about” certain things), such S can be thought of as the
“definiendum” of the axioms. One may, however, ask whether a given consistent
set of axioms defines the corresponding system S uniquely. Here is what Hilbert
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says about this in the same letter to Frege:

“You say that my concepts, e.g. “point”, “between”, are not unequivocally
fixed [..]. But surely it is self-evident that every theory is merely a
framework or schema of concepts together with their necessary relations
to one another, and that basic elements can be construed as one pleases.
If I think of my points as some system or other of things, e.g. the
system of love, of law, or of chimney sweeps [..] and then conceive of
all my axioms as relations between these things, then my theorems,
e.g. the Pythagorean one, will hold of these things as well. In other
words, each and every theory can always be applied to infinitely many
systems of basic elements. For one merely has to apply a univocal and
invertible one-to-one transformation and stipulate that the axioms for
the transformed things be correspondingly similar.” (cit. by [75], p.13).

There are two important ideas in this passage. First Hilbert stresses here once
again that in his axiomatic setting primitive geometrical terms have no intrinsic
meaning: any system of things (i.e., model) satisfying Hilbert’s axioms counts as
a Euclidean space. This point has already been discussed earlier in this chapter
and we shall not return to it. Then follows this crucial observation: given a model
M of a given axiomatic theory one can always get another model M ′ of the same
theory through a one-to-one transformation of elements ofM into elements of the
new model M ′ in such a way that relations between elements of M ′ also satisfy
the axioms of the given theory. In the modern language the kind of transformation
described here by Hilbert is called isomorphism. Apparently Hilbert is thinking
here about an axiomatic theory that determines its models up to isomorphism,
i.e., such that all its models are isomorphic, i.e., are transformable into each
other by some isomorphisms. Such theories are called today categorical. (Beware
that that sense of being categorical has nothing to do with the category theory!)
Isomorphic models can be seen as “equal” and representing the same structure,
which is invariant under transformations between these models. This leads to a
philosophical view on mathematics known as mathematical structuralism that we
shall discuss in what follows ( 2.2.2, 3.2.5).

Precipitating this further discussion, we would like only to stress here that
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not every Hilbert-style axiomatic theory is categorical. In fact this is a rather
strong property that most useful axiomatic theories do not enjoy. Apparently
Hilbert didn’t see this problem before he first published his Foundations in
1899; however in his lecture On the Concept of Number [103] delivered in the
same year 1899 and published in 1900, Hilbert already introduces an "axiom
of completeness"(Vollstandigkeitsaxiom), which requires from any model of a
given theory (this time it was arithmetic) this maximal property: any model
M of the given theory extended with some new elements is no longer a model.
Then he proves that among all models of his theory (without the completeness
axiom) there is only one model (up to isomorphism, of course!), which also
satisfies the completeness axiom, see [50, p. 160] for details. The second edition of
Hilbert’s Foundations of Geometry which appeared in 1903 [105] already contains
a geometrical axiom of completeness.

Today we would qualify the theory of Hilbert’s Foundations of 1899 as
informal or semiformal at best. This is because this theory is formulated in the
natural German with the help of some symbols like any typical introductory
mathematical text. Today’s paradigmatic examples of formal theories are given by
axiomatic theories of sets and of arithmetic like ZF and PA. These latter theories
differ from the theory of Hilbert’s Foundations of 1899 first of all by their symbolic
syntax.

1.2.2 Logicism and Objectivity

Consider once again Hilbert’s First Axiom A1.0

Any two distinct points of a straight line completely determine that line

and recall that certain words in this sentence including the words “points” and
“straight line”, are not supposed to be understood in their usual sense. Now remark
that some other words like “any” and “two” are supposed to be understood in
the usual sense. Clearly this second category of words plays an essential role
in Hilbert’s Foundations of 1899: unless at least some words in these axioms are
meaningful the axioms reduce to an abracadabra! In the last Section we elaborated
on words of the former category, now let us look more attentively at words of
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the latter category. First of all let us see how exactly words are sorted into two
sorts here. Words of the first sort refer to primitive geometrical concepts like
point, straight line and between (whether these primitive concepts are understood
traditionally or in the sophisticated formal way explained above). What about
words of the second category?

In order to answer this question it is helpful to paraphrase A1.0 as follows:

If different points A,B belong to straight line a and to straight line b
then a is identical to b

Now leaving out geometrical words and expressions “points A,B”, “straight line
a”, “straight line b”, “belong to” we get this list: “if”, “different”, “and”, “then”, “is”,
and “identical to”. So the last paraphrase helps us to see that the words belonging
to the second list stand for logical notions.

How can one distinguish between logical and non-logical terms more
formally? There exist in the literature two main approaches to defining the notion
of logicality : one develops the idea of logic being content-free (so that logical
signs are understood as “punctuation marks”) and the other, which describes
itself as semantic, develops the idea of logic being content-invariant [23]. This
later approach dates back to Tarski’s proposal [279] to identify logical notions
with invariants of all permutations of elements of some given set 8.

This latter approach obviously better squares with Hilbert’s axiomatic
method; the idea here is to make the fixity of meanings of logical terms and
the variability of meanings of non-logical terms into a formal criterion allowing
one to distinguish between these two sorts of terms. Tarski accounts for this
fixity as invariance under permutations of elements of a given set of individuals
(which represents here a certain universe of discourse). This approach to logicality
is motivated by Klein’s Erlangen Program in geometry [141]; it establishes
a conceptual link between Klein’s and Hilbert’s works in the foundations of
geometry, which is both conceptually significant and historically plausible.

8Bonnay [23] formulates Tarski’s Thesis as follows:

Given a set M , an operation QM acting on M is logical iff it is invariant under all permutations
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Now we would like only to stress Hilbert’s fundamental assumption behind
his axiomatic method (as presented in his Foundations of 1899) according to which
logic is the ground layer foundation of all theories built axiomatically. As Hintikka
puts this, for Hilbert

“The basic clarified form of mathematical theorizing is a purely logical
axiom system.” [116, p.20]

This does not mean, of course, that Hilbert, like Russell in [251], tries
to reduce mathematics to logic. This later version of logicism is certainly not
Hilbert’s. In this work we shall use the term “mathematical logicism” in a broader
sense indicating the epistemic primacy of logic over mathematics. In this broader
sense of the term Hilbert’s view on mathematics does qualify as a version of
logicism.

In the early 1900s Hilbert was not alone thinking about logic as the ground
layer foundation of mathematics. However there were also strong opposing voices
during the same period of time. Among prominent critics of logical approaches in
the foundations of mathematics were Henri Poincaré [55] and Luitzen Brouwer.
Consider, for example, this passage from Brouwer written in 1907:

“[M]athematical reasoning [. . . ] is no logical reasoning [. . . ;] it uses the
connectives of logic only because of the poverty of language, and thus
may perhaps keep alive the language accompaniment even after the
human intellect has already long ago outgrown the logical argument
itself. For, far from the fact that it would be a “strange company” that
does not reason logically, I believe that it is only a matter of inertia,
that the words that go with it [i.e., logic] as yet still exist in modern
languages. A pure use of these words hardly occurs, and [in] impure
[form] they are used in daily life, where they have led to all kinds of
misunderstanding and dogmatism [..]. Those misconceptions arose, not
because of insufficient mathematical insight, but because mathematics,
lacking a pure language, makes do with the language of logical reasoning,
although its thoughts reason not logically, but mathematically, which is
something totally different.” (letter to Kroteweg 21.01.1907 quoted after
[289, p. 128-129])
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The controversy between Hilbert and Brouwer is a founding event of
the 20th century philosophy of mathematics. It was Brouwer who in 1912 first
formulated the philosophical opposition between Hilbert’s Formalism and his own
philosophical view that he called Intuitionism [190]. Brouwer’s intuitionism stems
from Kant’s philosophy of mathematics and comprises a general philosophical
background, which will not be analysed in the present work in detail. Hereafter
we focus only on some key aspects of the Hilbert-Brouwer controversy including
the different views on relationships between logic and mathematics held by the
two thinkers. It should be borne in mind that this issue includes the question
about boundaries between the two disciplines (if any), which as we have already
seen, even today doesn’t have a commonly accepted solution. Nevertheless the
difference between Hilbert’s and Brouwer’s understanding of the function of logic
in mathematics is obvious and has important consequences, some of which are
discussed in what follows.

Nowadays the notion of mathematical intuitionism is usually understood
via works of Brouwer’s student Arend Heyting who expressed some important
aspects of Brouwer’s intuitionism in the form of intuitionistic logic [102].
According to a popular opinion Heyting in his seminal work distracted from
Brouwer’s philosophy, which the author himself described as a form of mysticism,
a rational core that triggered further important developments. We don’t want
to diminish the importance of Heyting’s work and reject the whole strategy of
reconciling Hilbert’s and Brouwer’s approach [190] that Heyting’s achievements
made possible. We don’t want either to deny that certain aspects of Brouwer’s
philosophy of mathematics have little or no relevance to logic and mathematics
as these disciplines are practiced today. Nevertheless we claim that some of
Brouwer’s insights, which have been left aside by Heyting’s formalisation, are
relevant and significant in the context of recent developments. This concerns
Brouwer’s view on the relationships between logic and mathematics. Notice
that the sheer replacement of Classical logic by the Intuitionistic logic in the
standard architecture of mathematical theories and, more generally, in the
standard foundations of mathematics, is compatible with the (weak) mathematical
logicism, which Brouwer definitely refuses. It can be argued that this weak form
of logicism is simply indispensable in any science and in any rational thinking.
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This argument, in our view, is plainly wrong; instead of trying to meet it
here with general epistemological arguments, we point in what follows to some
problematic aspects of the weak logicism and then describe certain mathematical
and logical approaches which are motivated by and support different views on the
relationships between logic and mathematics.

An important argument against Russell’s mathematical logicism was given
in the same year (1907) by Ernest Cassirer [41], apparently quite independently of
Brouwer at this point. Referring to Russell [251] and new formal logical methods
under the name of “logistics” Cassirer says:

“Here rises a problem that lies wholly outside the scope of “logistics” [..]
All empirical judgements belong to their domain: they must respect the
limits of experience. What logistics develops is a system of hypothetical
assumptions about which we cannot know, whether they are actually
established in experience or whether they allow for some immediate
or non-immediate concrete application. According to Russell even the
general notion of magnitude does not belong to the domain of pure
mathematics and logic but has an empirical element, which can be
grasped only through a sensual perception. From the standpoint of
logistics the task of thought ends when it manages to establish a strict
deductive link between all its constructions and productions. Thus the
worry about laws governing the world of objects is left wholly to the
direct observation, which alone, within its proper very narrow limits,
is supposed to tell us whether we find here certain rules or a pure
chaos. [According to Russell] logic and mathematics deal only with
the order of concepts and should not care about the order or disorder
of objects. As long as one follows this line of conceptual analysis the
empirical entity always escapes one’s rational understanding. The more
mathematical deduction demonstrates us its virtue and its power, the
less we can understand the crucial role of deduction in the theoretical
natural sciences. [. . . ] The principle according to which our concepts
should be sourced in intuitions means that they should be sourced in the
mathematical physics and should prove effective in this field. Logical and
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mathematical concepts must no longer produce instruments for building
a metaphysical “world of thought”: their proper function and their proper
application is only within the empirical science itself.” [41, pp. 43-44]

So, according to Cassirer, what the formal logical foundations of
mathematics can not possibly provide (whatever system of formal logic is one’s
favourite) are the notions of objecthood and objectivity appropriate for doing
modern mathematically-laden empirical science — as opposed to the traditional
Aristotle-style metaphysics. The popular idea of equating the notion of object
with that of logical individual, which stems from Frege [205], not only leaves
this problem open and but also hides it by eliminating a useful terminological
distinction. Even if Cassirer directs this arguments against the strong form of
mathematical logicism represented by Russell, it also applies to Hilbert’s weaker
form of mathematical logicism. An axiom system in Hilbert’s sense indeed qualifies
as a “system of hypothetical assumptions”, and what Cassirer says in the above
quote about the “strict deductive link” (between axioms and theorems of a given
theory) justly describes Hilbert’s idea of formal mathematical proof. The problem
of “laws governing the world of objects” in Hilbert’s formal mathematics remains
wholly open just as in Russell’s case

Like Russell, Cassirer believes that by 1900 “logic and mathematics have
been fused into a true, henceforth indissoluble unity” [41, p. 4]. This allows Heis to
qualify Cassirer’s views on mathematics in [41] as a form of logicism [101]. However
Heis also rightly remarks that unlike Russell, Cassirer does not qualify formal logic
as an independent foundation of mathematics. Here we use the term “logicism”
in a sense that implies what Heis calls the “foundationalist ambition”. From an
epistemological point of view this is a crucial aspect of relationships between logic
and mathematics. The moral is that such general terms as “logicism” or any other
similar “-ism” have a limited usefulness in philosophy, and in each particular case
one needs to explicate their contents.

9 .
9

“Cassirer’s logicism has no foundationalist ambitions. For many logicists, including Russell, the

appeal of logicism is that mathematics, whose certainty might otherwise be in doubt, gets to
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One may object that unlike Russell’s project Hilbert’s project of the
axiomatisation of mathematics assumes that every formal mathematical theory
comes with a certain class of its models which includes one or more intended
models, and that models and their elements qualify as objects of the given theory.
However, in our view, the standard concept of model of an axiomatic theory does
not solve the problem of objecthood stressed by Cassirer in the above quote. Even
if models and their elements indeed qualify as mathematical objects treated by the
corresponding formal theory, the only candidate for “laws governing the world of
objects” in this case are rules of formal deduction, which by default are interpreted
as laws of logical inference applied to propositions rather than as constructive rules
applied to these objects themselves.

Traditional Euclid-style geometry solves this problem by stipulating a
system of rules for object-building, i.e., geometrical construction, which Euclid
calls postulates. Kant famously provides a thorough analysis of the epistemic
significance of these rules and explains, having Newton’s Principia in his mind,
how these geometrical rules contribute to theories of physics [77]. Cassirer is fully
aware of the fact that Kant’s philosophy of mathematics and his account of the
epistemic role of mathematics in the natural sciences is in 1907 hopelessly outdated
and needs a profound revision. However he doesn’t accept the solution offered by
the mathematical logicism because he, quite rightly in our view, sees in it a revival
of a Scholastic pattern of doing science where logic and metaphysics are seen as
the ultimate foundations of all empirical science [237], [231].

Indeed as early as 1918 Russell supplements his philosophy of mathematics
with a metaphysical doctrine that he calls the logical atomism. This is how he

inherit the privileged epistemological status enjoyed by logic. Cassirer rejects this contention,

because he does not believe that formal logic has a place of “honor and security” not shared by

mathematics or natural science. On his view, the most fundamental kind of logic is transcendental

logic, the investigation of the preconditions of science. Since there is no epistemological route to

“formal logic” except through an analysis of our best current science, taken as a fact, any attempt

to ground the certainty of the latter in terms of the former is a fool’s errand. Cassirer’s logicism

is thus a “transcendental” logicism: mathematics is a branch of transcendental logic — the science

of the a priori principles that make (mathematical natural scientific) knowledge possible.” [101,

p.128]
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describes the relation of this doctrine to logic and mathematics in the Introduction
to his [252]:

“As I have attempted to prove in The Principles of Mathematics, when
we analyse mathematics we bring it all back to logic. It all comes back
to logic in the strictest and most formal sense. In the present lectures,
I shall try to set forth in a sort of outline, rather briefly and rather
unsatisfactorily, a kind of logical doctrine which seems to me to result
from the philosophy of mathematics - not exactly logically, but as what
emerges as one reflects: a certain kind of logical doctrine, and on the
basis of this a certain kind of metaphysic.”

As a biographer describes Russell’s work during this early period of his
career

“From August 1900 until the completion of Principia Mathematica in
1910 Russell was both a metaphysician and a working logician. The two
are completely intertwined in his work: metaphysics was to provide the
basis for logic; logic and logicism were to be the basis for arguments for
the metaphysics.” [126, pp. 7-8]

Thus an older pattern of intellectual work, which many people in the
19th century believed to be definitely sublated by Kant’s critical philosophy and
other new developments, reemerged in the beginning of the 20th century in the
context of new mathematics and new logic. Even more important is the fact
that this tendency towards the revival of the traditional alliance between logical
and metaphysical thinking is still very much alive today, and in fact since 1900
this intellectual project has firmly established itself in the philosophical school
known as Analytic Philosophy. Nowadays Analytic Metaphysics is a recognised
academic discipline taught at many philosophy departments, which claims a
scientific status. The fact that modern logic led by this school of philosophy indeed
tends to create “metaphysical worlds of thought” (in particular, under the name of
“possible worlds”) rather than make itself into a part of empirical science, appears
to us very unfortunate and worrisome. Even if so far this intellectual trend didn’t
significantly affect science itself, it certainly widened the gap between logic and
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logically-laden philosophy, on the one hand, and science and mathematics, on
the other hand [238], [239], [288]. We’ll come back to this issue in 3.2 and then
show how some recent developments in logic and mathematics may help to meet
Cassirer’s concerns .

1.2.3 “Axiomatisation of Logic”: Intuition Strikes Back

In his address of 1917 already quoted above Hilbert says among other
things the following:

“[I]t appears necessary to axiomatise logic itself and to prove that
number theory and set theory are only parts of logic. This method
was prepared long ago (not least by Frege’s profound investigations); it
has been most successfully explained by the acute mathematician and
logician Russell. One could regard the completion of this magnificent
Russellian enterprise of the axiomatisation of logic as the crowning
achievement of the work of axiomatisation as a whole.” [106, p. 1113]

Leaving aside the purported reduction of number theory (arithmetic) and
set theory to logic let us focus on the idea of the axiomatisation of logic. By
calling the axiomatisation of logic the “crowning achievement of the work of
axiomatisation as a whole” Hilbert suggests that the axiomatisation of logic
is a continuous extension of the axiomatisation of geometry, arithmetic and
of any other part of mathematics or natural science. However the notion of
axiomatisation, which we have tried to reconstruct above on the basis of Hilbert’s
Foundations of 1899 does not immediately allow for such an extension. In a
nutshell, axiomatisation in the sense of the Foundations of 1899 works like this:
using some fixed logical vocabulary one produces a finite list of axioms, which refer
only to abstract objects and abstract relations; an intended “naive” interpretation
of these axioms and of all theorems derivable from these axioms is supposed to
capture the content of the corresponding informal theory in a more precise and
“logically clear” form. Notice that this whole procedure applies logic as a tool; an
axiomatiser needs to have this tool in a ready-made form just like a carpenter needs
a ready-made hammer for putting down a nail. So if the above reconstruction of
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axiomatic method is correct in order to axiomatise logic one needs to use logic.
How may this possibly work?

Let us see how Hilbert axiomatises logic in his course on Theoretical Logic
[111] co-authored with Ackermann and first published in 1928. The Introduction
to this book opens with the following words:

“Mathematical logic, also called symbolic logic or logistic, is an
extension of the formal method of mathematics to the field of logic.
It employs for logic a symbolic language like that which has long
been in use to express mathematical relations. In mathematics it
would nowadays be considered Utopian to think of using only ordinary
language in constructing a mathematical discipline. The great advances
in mathematics since antiquity, for instance in algebra, have been
dependent to a large extent upon success in finding a usable and efficient
symbolism.” (quoted after English translation [112, p. 1])

From the very beginning Hilbert and Ackermann introduce here a new
kind of logic, which they call mathematical or symbolic10. As we shall shortly
see Hilbert’s notion of the axiomatisation of logic makes sense only in a
symbolic setting. The following description of mathematical (symbolic) logic as an
“extension of the formal method of mathematics to the field of logic” is puzzling.
If by “formal method” one understands the axiomatic method in the sense of
Hilbert’s Foundations of 1899 then it is unclear how this application can make
logic symbolic. Indeed, Hilbert’s Foundations of 1899 is written with the usual
mixture of informal prose, geometrical diagrams and the traditional algebraic and
geometrical symbols; Hilbert’s formal approach developed in this book is no more
symbolic than the approach taken in any other elementary geometry textbook
published in the 19th century.

Notice also that in the above passage Hilbert talks about the application of
the “formal method of mathematics” in logic. So he thinks here about the formal

10In saying that symbolic logic is a “new” kind of logic we mean that this kind of logic is new with respect to

the “informal” logic used in Hilbert’s Foundations of 1899; we don’t mean, of course, that symbolic logic first

appears in Hilbert and Ackermann’s book. In a part of the Introduction to this book, which we do not quote

here, the authors provide a brief historical sketch of symbolic logic tracing its history back to Leibniz.
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method of mathematics as something established independently of logic and then
suggests to “extend” this method to the new field of logic. However the formal
method of the Foundations of 1899 is certainly not independent of logic. So in
talking about a “formal method” in the above quote, Hilbert and Ackermann mean
something different. What then is this other formal method?

The authors’ reference to symbolic algebra provides an important hint.
However in the above passage they describe algebra only as a special case. This
is why we cannot derive the wanted sense of being formal from the notion of
algebraic form. A more general notion of form, which turns out to be appropriate
in this case, is Cassirer’s notion of symbolic form [42]. We shall not develop it
here in its full generality but focus only on its mathematical version, relevant to
Hilbert’s work.

The passage quoted above continues as follows:

“The purpose of the symbolic language in mathematical logic is to
achieve in logic what it has achieved in mathematics, namely, an
exact scientific treatment of its subject-matter. The logical relations
which hold with regard to judgments, concepts, etc., are represented by
formulas whose interpretation is free from the ambiguities so common
in ordinary language. The transition from statements to their logical
consequences, as occurs in the drawing of conclusions, is analysed into
its primitive elements, and appears as a formal transformation of the
initial formulas in accordance with certain rules, similar to the rules of
algebra; logical thinking is reflected in a logical calculus. This calculus
makes possible a successful attack on problems whose nature precludes
their solution by purely contentful [inhaltlische] logical thinking. Among
these, for instance, is the problem of characterising those statements
which can be deduced from given premises.” [112, p.1]

The first sentence of this passage clearly shows that Hilbert considers
here an application of mathematics to logic as a way to improve on logic with
mathematics. Hilbert and Ackermann claim here that by using the symbolic
methods mathematics achieves “an exact scientific treatment of its subject-
matter”; using this evidence the authors suggest that these methods may equally
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allow for an exact scientific treatment of logic. This project should be certainly
distinguished from the idea, purported by Hilbert in his Foundations of 1899,
of improving on mathematics through the clarification of its logical structure.
Nevertheless Hilbert tends to describe both projects in similar terms, namely in
terms of formalisation and axiomatisation.

In Hilbert’s thinking both kinds of formalisation and axiomatisation
are merged together, so he hardly distinguishes between them clearly. He
apparently assumes that a formal symbolic logical system unlike a formal symbolic
mathematical theory does not allow (and does not call) for multiple alternative
contentful interpretations but instead simply clarifies and purifies common vague
contentful logical notions expressed in the natural language. This additional
assumption apparently allows for systems of formal symbolic logic with a fixed
semantics for the logical terms. But in fact this assumption produces a tacit
shift in the meaning of being formal. If the given symbolic logical system pins
down the precise sense of logical notions, which outside the symbolic setting
don’t have any clear meaning, then the logical symbols used in this logical system
are used as proper names of corresponding logical concepts (like the symbol “&”
conventionally used for denoting the logical conjunction) rather than as variables
that may acquire different interpretations.

Not surprisingly, the replacement of the traditional non-mathematical
“informal” logic by the mathematical symbolic logic has a very significant
impact upon Hilbert’s ideas about the axiomatic method and the foundations
of mathematics. In the beginning of his paper Foundations of Mathematics [108]
that was delivered in July 1927 at the Hamburg Mathematical Seminar, Hilbert
describes his new project in the following words:

“With this new way of providing a foundation for mathematics, which
we may appropriately call a proof theory, I pursue a significant goal, for
I should like to eliminate once and for all the questions regarding the
foundations of mathematics in the form in which they are now posed,
by turning every mathematical proposition into a formula that can be
concretely exhibited and strictly derived, thus recasting mathematical
definitions and inferences in such a way that they are unshakable and
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yet provide an adequate picture of the whole science. I believe that I
can attain this goal completely with my proof theory, even if a great
deal of work must still be done before it is fully developed.
No more than any other science can mathematics be founded by logic
alone; rather, as a condition for the use of logical inferences and the
performance of logical operations, something must already be given
to us in our faculty of representation, certain extra-logical concrete
objects that are intuitively present as immediate experience prior to
all thought. If logical inference is to be reliable, it must be possible
to survey these objects completely in all their parts, and the fact that
they occur, that they differ from one another, and that they follow each
other, or are concatenated, is immediately given intuitively, together
with the objects, as something that neither can be reduced to anything
else nor requires reduction. This is the basic philosophical position that
I regard as requisite for mathematics and, in general, for all scientific
thinking, understanding, and communication. And in mathematics, in
particular, what we consider is the concrete signs themselves, whose
shape, according to the conception we have adopted, is immediately
clear and recognizable. This is the very least that must be presupposed;
no scientific thinker can dispense with it, and therefore everyone must
maintain it, consciously or not.” [108, pp. 464-465]

When Hilbert says that mathematics cannot be “founded by logic alone”
a modern reader acquainted with Hilbert’s Axiomatic Method readily agrees: of
course, for doing mathematics one needs in addition to principles of logic some
specific mathematical axioms like the axioms of set theory! As we shall shortly see
Hilbert indeed uses such specific axioms in his Foundations of 1927. But in the
above passage he refers to something completely different! He states here that no
logical inference is possible without “certain extra-logical concrete objects that are
intuitively present as immediate experience prior to all thought” and then specifies
that as far as mathematics is concerned those “extra-logical concrete objects”
are “the concrete signs themselves, whose shape, according to the conception
we have adopted, is immediately clear and recognizable”. Since mathematical
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symbolic logic does use concrete signs (symbols), Hilbert’s “logic alone” cannot
be mathematical; in the given context the mathematical logic should rather be
understood as pure logic provided with certain “extra-logical” (to wit symbolic)
means. According to Hilbert’s new view, the immediate intuitive givenness of
the “concrete signs”, which allows one to acknowledge “the fact that they occur,
that they differ from one another, and that they follow each other, or are
concatenated” is an indispensable ingredient of the foundations of mathematics.
For further references we shall call this specific sort of mathematical intuition,
which allows one to manipulate and calculate with mathematical symbols, the
symbolic intuition.

Let us compare Hilbert’s view on foundations expressed in the above
passage with his earlier views expressed in his comments on his Foundations
of 1899. In 1899 he founds geometry on “pure” (non-mathematical) logic and
some axioms formulated in terms of this logic. In 1927 Hilbert no longer relies
on the “pure” informal logic but stresses the foundational impact of symbolic
intuition. Here Hilbert explicitly describes symbols as “extra-logical”; the following
explanation does not allow one to reduce the notion of intuition pertaining to
these extra-logical objects to the minimal “logical” intuition. Indeed, while the
mere fact that these objects “occur” and “differ from one another” does not yet
make them extralogical, the fact that “they follow each other, or are concatenated”
certainly does! Thus Hilbert’s new foundational proposal of 1927 unlike that of
1899, essentially involves a non-logical notion of symbolic intuition.

This does not mean however that by 1927 Hilbert abandoned his earlier
idea according to which all mathematical theories require a logical background.
He rather upgrades this idea as follows: a system of logic, which is appropriate for
founding mathematics, is not a system of “pure” (non-mathematical) logic but a
system of symbolic mathematical logic (which includes an extra-logical symbolic
aspect). Here is how Hilbert describes this upgrade himself:

“[I]n my theory contentful inference is replaced by manipulation of signs
[ausseres Handeln] according to rules; in this way the axiomatic method
attains that reliability and perfection that it can and must reach if it is
to become the basic instrument of all theoretical research.” [108, p. 467]
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The replacement of the “contentful inference” by the manipulation of signs
involves two ways of formalisation, which work together here but nevertheless
can and should be carefully distinguished. The formalisation in the sense of 1899
remains at work, so that the manipulation of signs presents the logical form of
the given contentful inference. Simultaneously, manipulation with signs presents
the symbolic form of the same contentful inference.

What has been said allows us to specify Hilbert’s epistemological view
on the foundations of mathematics, which we qualified above (1.2.2) as a form
of logicism. Since Hilbert brought methods of symbolic logic into his project of
building new foundations of mathematics, he, as we can judge after his remarks,
did not change his core understanding of the epistemic function of logic in
mathematics and elsewhere. However, because of the involvement of symbolic
methods, Hilbert’s conception of logic gained important new features. In his [108],
Hilbert remarks that his new approach in the foundations of mathematics amounts
to “extending the formal point of view of algebra to all of mathematic” (p. 470),
which provides a ground for the usual qualification of his view as formalism. But
in fact the goal of Hilbert’s new project is not to make the formal symbolic algebra
into a foundation of mathematics, but to use symbolic algebraic methods in logic,
keeping untouched the basic axiomatic architecture of mathematical theories as
it is presented semi-formally already in the Foundations of 1899.

Toward this end Hilbert uses a feature of algebra that plays no special
role in earlier works in mathematical logic: we mean the algebraic method of
“ideal elements” like −1 or

√
−1. After the introductory remarks quoted above

he first introduces a system of symbolic logic similar to one presented in [111]
and, second, adds two further groups of axioms, which he describes as “specifically
mathematical”, namely “axioms of equality” and “axioms of number”. Then Hilbert
shows how this apparatus allows one to do the finitary arithmetic. One may
wonder if doing the finitary arithmetics with this heavy logical machinery indeed
provides any epistemic advantage over doing it in the traditional way. Hilbert’s
answer is: No, it does not! As far as the finitary arithmetic is concerned this
machinery allows one at best to “impart information”. If we understand Hilbert
correctly here, his thinking is this: since usual arithmetical manipulations with
natural numbers represented by strings of strokes or by the standard Arabic
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numerals are just as intuitively clear as the manipulation of symbols and formulas
in Hilbert’s symbolic system, from the foundational viewpoint the difference
between the two formalisms is after all not essential (notwithstanding the fact that
the former formalism has the advantage of being simpler and more convenient,
while the latter has the advantage of making explicit the logical structure of
reasoning). The new proposed formalism is, however, advantageous as soon as
one goes beyond the finitary arithmetic. Hilbert suggests thinking about such an
extension after the pattern of algebraic extension:

“Just as, for example, the negative numbers are indispensable in
elementary number theory and just as modern number theory and
algebra become possible only through the Kummer-Dedekind ideals, so
scientific mathematics becomes possible only through the introduction
of ideal propositions.” [108, p.471]

An “ideal proposition” is any proposition that is not provable from Hilbert’s
logical and arithmetical axioms, i.e., any proposition, which is not a proposition
of the finitary arithmetic. So any additional axiom and any formal proposition
obtained as a formal consequence of the extended axiom system (which includes
the same logical and arithmetical axioms plus the new axiom) qualifies as ideal.
The only requirement that limits such possible extensions is the requirement
according to which the extended system of axioms must be consistent. As soon
as the consistency is granted one may safely think of “ideal” objects and “ideal”
relations (see (1.2.1) above). And in fact one can do more. Since these ideal
objects and relations are represented by symbols and strings of symbols, which
(unlike the bare thought-things and thought-relations) are bone fide mathematical
objects on their own, any further interpretation of these ideal things is an option
but not a necessary requirement. In the new symbolic setting these ideal things
are concretely represented to begin with, and one may work with them just like in
algebra people work with

√
−1. Crucially, working with ideal objects and relations

involves the same type of syntactic manipulations as calculating with natural
numbers. So even if the Hilbert’s Foundations of 1927 is an overkill in the case
of the finitary arithmetic, its expected advantage is that it allows for a uniform
treatment of the whole of mathematics by means similar to those used in the
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finitary arithmetic.
The possibility of checking consistency is evidently crucial for Hilbert’s

project. Although in 1927 Hilbert offers no general solution to this problem he
suggests that this problem is relatively easy and “fundamentally lies within the
province of intuition just as much as does in contentful number theory the task,
say, of proving the irrationality of

√
2” [108, p. 471]. In the formal symbolic setting

where a proof is represented by a string of symbols and formulas are constructed
according to precise syntactic rules, the proof of the consistency of a given set of
axioms amounts to a proof showing that there is no string of formulas that ends
up with a formula expressing a contradiction like 0 6= 0 (a simple argument shows
that if 0 6= 0 cannot be formally proved, no other contradiction can be proved
either). Hilbert realises, of course, that such a consistency proof will not itself
qualify as formal but will belong to his proof theory, which in a different place [113]
Hilbert calls by the name of meta-mathematics. However since the whole of meta-
mathematics “fundamentally lies within the province of intuition just as much as
does in contentful number theory” this remark does not lead to an infinite regress
in foundations. Thus, intuitive proof theory aka meta-mathematics (in Hilbert’s
original sense of this term) in Hilbert’s view of 1927 becomes a foundation for the
rest of mathematics. As many scholars observed, Hilbert’s project in this mature
form shares certain features with Brouwer’s approach since it equally assumes the
epistemic reliability of mathematical intuition (in the case of finitary syntactic
constructions). However Brouwer’s approach, and the constructive approach in
mathematics more generally, does not involve anything like Hilbert’s division of
mathematics into its “real” and its “ideal” parts. This difference between the two
approaches remains significant.

The most advanced version of Hilbert’s project is presented in two volumes
[113] published by Hilbert in collaboration with Paul Bernays in 1934-1939. Here
the authors provide a sketch of a new formal theory of plane Euclidean geometry,
which this time involves a symbolic logical calculus. There is a significant difference
between this latter theory and the theory of the Foundations of 1899 [115], which
cannot be fully analysed in terms of “higher precision and explicitness” due to
the application of new symbolic methods. Recall that in the Foundations of 1899
Hilbert introduces three different “systems of things”, which are intended to be
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interpreted, respectively, as points, straight lines and planes. The new version of
the theory involves a single type of primitive object called points. Using a primitive
ternary relation Gr(x, y, z) informally interpreted as points x, y, z lie on the same
straight line (Gr stands for German Gerade), the first axiom of the theory now
reads:

(x)(y)Gr(x, x, y)

and translates into the prose as:

all points x, y lie on the same line

(parentheses (x) around a variable stand in Hilbert’s notation for the universal
quantifier).

The reduction of distinction between several types of primitive objects
is not innocent from a logical and foundational points of view. Arguably the
type distinction is fundamental in logic and mathematics and should be formally
expressed in any (theory of the) foundations of mathematics. We shall see in
what follows that this problem is equally present in the standard set-theoretic
foundations of mathematics and also how the recent Univalent Foundations solve
it (2.2.1, 3.2).

As we all know well today in 1927 Hilbert severely underestimated the
potential difficulties of his proof theory; Gödel’s famous incompleteness theorems
and all the following work in the area convinced many people that Hilbert’s
Program failed [304]. However even if Hilbert’s foundational project as described
in the Foundations of 1927 indeed failed, his axiomatic method constituting part
of this program certainly survived and until today remains standard. Hilbert’s
idea according to which an appropriate symbolic logical calculus provided with
certain elementary and intuitively transparent finitary mathematical methods of
reasoning may allow one to establish all needed meta-theoretical results, including
consistency proofs, of all consistent formal axiomatic theories, can be a sufficient
foundation for all contemporary mathematics, after Gödel’s results belongs to
history as a utopian project. But Hilbert’s notion of proof theory as a (meta-
)mathematical study of logical symbolic calculi survived and further advanced
via the application of more advanced meta-mathematical methods. The title
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of “The Mathematics of Metamathematics” appearing in 1969 [219] perfectly
illustrates this shift, which has relaxed the boundary between mathematics
and meta-mathematics. As Yu. Manin puts it “good metamathematics is good
mathematics rather than shackles on good mathematics” [182, p.3]. Hilbert’s
distinction between the “real” and the “ideal” mathematics does not reflect current
mathematical practice and belongs to history.

1.3 Axiomatic Method versus Genetic Method

In his popular lecture “Axiomatic Thought” [106], [109] Hilbert praises
Euclid as the founding farther of the axiomatic method. But Hilbert is also well
aware that his new version of this method differs essentially from Euclid’s. In this
Section we briefly summarise Hilbert’s views on how his novel axiomatic method
relates to more traditional approaches in theory-building, including Euclid’s.

1.3.1 Genetic and Axiomatic Methods in the Theoretical Arithmetic (1900)

In his early 1900 paper on the concept of number [103], [110] Hilbert
attempts to extend his novel axiomatic method of the Foundations of 1899 from
geometry to arithmetic. For this purpose he introduces a distinction between what
he calls the genetic and the axiomatic methods of introducing new theoretical
concepts. The genetic method is exemplified here by the well-known construals
of real numbers from rational numbers due to Cauchy and Didekind (Cauchy
Sequences and Dedekind Cuts) along with construals of rational numbers and
integers from natural numbers, which today still remain standard. In such cases
a new mathematical concept (e.g. that of real number) is, in Hilbert’s word,
“produced” [erzeugt] by another concept (e.g. that of rational number). Without
trying to analyse this notion of “production” (cf. the concept of geometrical
production introduced in 1.1.4 above) in modern logical terms Hilbert proposes
replacing the traditional genetic theory of arithmetic by a formal axiomatic theory.

Comparing the two approaches Hilbert states without further ado that

“[d]espite the high pedagogic and heuristic value of the genetic method,
for the final presentation and the complete logical grounding of our
knowledge the axiomatic method deserves the first rank.” [110, p. 1093]
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This remark clearly demonstrates the epistemological motivation behind
Hilbert’s new axiomatic method, but does not explain details of its philosophical
background. The notion of weak logicism that we attribute to Hilbert on the basis
of his contemporary and later writings provides a tentative reconstruction of this
background.

In the same paper [103] Hilbert makes a historical remark according to
which, traditionally, the genetic method has been reserved for Arithmetic while
Geometry has used the axiomatic method since Euclid. As we shall shortly see,
in 1934 in his joint work with Bernays [113, v.1] (English translation [114, v.1]),
Hilbert presents a different view on this matter and, in particular, associates the
genetic method with Euclid’s geometric theory. The difference between Hilbert’s
1900 and 1934 views on this matter, in our opinion, marks important progress
in Hilbert’s understanding of axiomatic method and its history during his career.
For this reason, in what follows we do not further elaborate on this controversial
part of Hilbert’s 1900 paper.

The notion of the genetic method as an alternative to the formal axiomatic
method has been discussed in the later literature, see [43], [208] 11, [52], [266], [154].
Jean Cavailles, Jean Piaget, Sergei S. Demidov, and Elaine Landry follow Hilbert’s
1900 line, presenting the genetic method as a genuine alternative to the formal
axiomatic method and taking it for granted that the two methods are theoretically
incompatible even if they can be jointly used in practice (for different epistemic
purposes). Vladimir Smirnov takes a different line, which is closer to Hilbert’s
1934 approach. He shows that genetic constructions allow for an effective formal
symbolic representation, and that such a formalisation of the genetic approach
can be direct rather than roundabout (via the standard axiomatic approach).

That the notion of genetic method in its original form may be confusing in
spite of its intuitive appeal is clearly seen in Landry’s 2013 paper [154]. Landry uses
the notion of genetic method in her argument against Feferman’s claim, according
to which axiomatic theories of categories (such as EM, ETCS and CCAF, see [194]
and 3.1.2 below) cannot be an independent foundations of category theory and
of the rest of mathematics because these theories allegedly use prior notions of

11Piaget calls the genetic method operational.
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collection (or class) and operation [67]. Landry argues back that these notions are
used in this context only for an heuristic genetic underpinning of category theory
but play no role in its logical axiomatic foundation. Instead of defining a category
in terms of classes of things called “objects” and “morphisms” Landry proposes
thinking of axiomatic theories of categories as follows:

“[T]he category-theoretic structuralist simply begins by assuming the
existence of a system of two sorts of things (namely “objects” and
“morphisms”) and then brings these things into relationships with one
another by means of certain axioms.” (op. cit. p. 44)

In a following footnote Landry explains that

“What is doing the work here is neither the notion of a system nor the
notion of an abstract system, rather it is the Hilbertian idea of a theory
as a schema for concepts that, themselves, are implicitly defined by the
axioms. Thus we don’t need a “fixed domain of elements” [..], we do not
need a system as a “collection” of elements [..]” (op. cit. p. 44)

For reasons that are explained in what follows (see 3.1), we share Landry’s
optimism about the possibility of axiomatic category theory independent of any
logically prior notion of class. However we are not convinced by her argument
and do not think that first-order theories such as EM, ETCS and CCAF achieve
this goal. Our objection to Landry is this. (To save space we shall refer to EM; to
ETCS and CCAF the same argument applies similarly.) We assume after Hintikka
[118]) that EM requires a notion of semantic consequence that forms part of
its underlying logic. In order to construe the relation of semantic consequence
properly one needs to fix some formal semantical framework (again as a part of
the logical machinery). When one uses a Tarski-style model-theoretic semantics to
this end, it does involve some notion of class (collection, universe) of individuals.
In this case thinking about categories introduced through EM in terms of classes
is not just a convenient way of representing categories, which has certain heuristic
and pedagogical values, but a proper part of the very axiomatic construction of
EM, which belongs to its logical machinery.
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Thus the distinction between the genetic and the axiomatic methods of
theory- and concept-building is less clear-cut than it might seem. Whether the
class-based definition of category qualifies as axiomatic or genetic depends on
one’s general conception of logic and logical semantics. If one opts for the Tarski-
style logical semantics then the class-based definition of category qualifies as
genuinely axiomatic. However if Landry’s “category-theoretic structuralist” opts
for a different logical semantics that does not involve the prior notion of collection
(which Landry leaves unspecified and which is not immediately available on the
existing logical market), she may justly conceive of the same definition as merely
genetic.

1.3.2 Revendication of the Genetic Method

Let us now turn to Hilbert’s late discussion on the genetic method in his
1934 monograph co-authored with Paul Bernays [113, v.1]. Here is a relevant
passage:

“The term axiomatic will be used partly in a broader and partly in a
narrower sense. We will call the development of a theory axiomatic in
the broadest sense if the basic notions and presuppositions are stated
first, and then the further content of the theory is logically derived with
the help of definitions and proofs. In this sense, Euclid provided an
axiomatic grounding for geometry, Newton for mechanics, and Clausius
for thermodynamics.

In Hilbert’s Foundations of Geometry [of 1899] the axiomatic standpoint
received a sharpening regarding the axiomatic development of a theory:
From the factual and conceptual subject matter that gives rise to the
basic notions of the theory, we retain only the essence that is formulated
in the axioms, and ignore all other content. Finally, for axiomatics in
the narrowest sense, the existential form comes in as an additional
factor. This marks the difference between the axiomatic method and
the constructive or genetic method of grounding a theory. While the
constructive method introduces the objects of a theory only as a genus
of things, an axiomatic theory refers to a fixed system of things (or
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several such systems), and for all predicates of the propositions of the
theory, this fixed system of things constitutes a delimited domain of
subjects, about which hold propositions of the given theory.

There is the assumption that the domain of individuals is given as a
whole. Except for the trivial cases where the theory deals only with
a finite and fixed set of things, this is an idealising assumption that
properly augments the assumptions formulated in the axioms.

We will call this sharpened form of axiomatics (where the subject matter
is ignored and the existential form comes in) formal axiomatics for
short.” [114, pp.1a-2a]

Hilbert and Bernays present in the above passage a more complex picture
of the relationships between genetic and axiomatic methods than one finds in
Hilbert’s 1900 paper [103]. The authors refer here to three closely related concepts:

1. being axiomatic in the “broadest sense”;

2. being axiomatic in the “narrowest sense” aka being formally axiomatic;

3. being constructive aka genetic.

According to this account a theory qualifies as broadly axiomatic (1) when
it is built on first principles while the rest of its content is obtained from these
principles via certain logical procedure, which in this case is not specified. The
following examples, which include the geometrical theory of Euclid’s Elements,
helpfully clarify the intended meaning of the authors’ term. Here is another quote
from the same source in which Hilbert and Bernays tell us more about Euclid:

“Euclid’s axiomatics was intended to be contentful and intuitive, and
the intuitive meaning of the figures is not ignored in it. Furthermore,
its axioms are not in existential form either: Euclid does not presuppose
that points or lines constitute any fixed domain of individuals.
Therefore, he does not state any existence axioms either, but only
construction postulates.” (ib., p. 20a)
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Hilbert’s idea of formal axiomatic method (2) has already been discussed
above. However in the above passage Hilbert and Bernays emphasise a distinctive
feature of this approach, which needs a further comment. Their concept of
“existential form” of axiomatics can be best understood by comparing the formal
axiomatic method (2) with the genetic method (3). While a genetic theory
constructs (or in the words of Hilbert 1900 “produces”) its objects from simple
elements via the recursive application of certain operations (such as constructions
by the ruler and compass in Euclid’s geometry), a formal axiomatic theory involves
the notion of interpretation (model) which, in its turn, comes with an assumption
that a model of the given theory exists in some appropriate sense of the word. So
by the “existential form” of axioms one should understand in this context not the
special character of existential axioms in the usual today’s sense, i.e., of first-order
axioms with existential quantifiers, but the character of all axioms of Hilbert-
style formal axiomatic theories as distinguished from Euclid-style constructive
postulates.

Hilbert and Bernays emphasise that the assumption according to which
a given axiomatic theory has a model “properly augments the assumptions
formulated in the axioms” of this theory, and further elaborate on this point later
in the same Introduction to [114]. The authors consider the case when the given
theory has a finite model to be unproblematic (as indicated in the above quote).
But the case of an infinite model in the author’s view constitutes a hard problem.
They rule out the idea that the existence of such a model can be justified on
empirical or phenomenological grounds. They stress that the existence of a model
implies consistency and then turn the tables and formulate in this context what
can be called, anachronistically, the main idea of the Hilbert Program: to develop
a theory that would allow one to prove or disprove the consistency of a given
axiomatic theory by finitary genetic (constructive) means; in case the given theory
is provably consistent one is in a position to stipulate for it a default abstract
model in terms of “thought-things and thought-relations”, as it has already been
explained in 1.2.1 above. An overview of the following development of the Hilbert
Program, which has been challenged by Gödel’s Incompleteness Theorems, and of
the related research in logic, mathematics and philosophy, is out of the scope of
this present work.
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The last quote makes it clear that Hilbert and Bernays now qualify Euclid’s
theory as genetic aka constructive. The genetic (aka constructive) (3) and formal
axiomatic (2) methods of theory-building both now fall under the concept of
being axiomatic “in the broadest sense” (1). The authors do not elaborate on their
generalised concept of being axiomatic (1) but their pointing to such a concept
suggests the possibility of unification of (2) and (3) within a single theoretical
framework.

In fact, the mature version of the formal axiomatic method presented
by Hilbert and Bernays in 1934 provides such a unification in a specific form.
Recall that in the symbolic setting mathematical proofs are construed as (properly
interpreted) chains of formulas built according to certain fixed syntactic rules. In
such a framework to prove a proposition expressed by formula F is to construct
an appropriate chain of formulas that ends up with F . Thus doing mathematics
in Hilbert’s formal axiomatic setting in its mature symbolic form does not reduce
contentful genetic constructions in mathematics altogether but only reduces all
such genetic constructions to constructions of a special sort, namely, to the finitary
symbolic constructions. For a mathematical study of such symbolic construction
(that may eventually bring a proof of the consistency of a given formal axiomatic
theory) Hilbert and Bernays reserve a special theoretical domain of meta-
mathematics. In order to avoid a vicious circle in their foundational reasoning the
author avoid using the formal axiomatic method in metamathematics and reserve
for this area of mathematical research the traditional genetic aka constructive
method. Bearing in mind the foundational role that meta-mathematics plays
in this theoretical framework it is fair to say that the genetic method in this
particular finitary application plays a crucial role in the mature version of Hilbert’s
formal axiomatic method.

Recall also that Hilbert’s special treatment of finitary symbolic
constructions among all other mathematical constructions (including traditional
geometrical constructions) is underpinned by Hilbert’s metaphysically-laden
and epistemologically relevant distinction between real and ideal mathematical
objects: according to this account only finitary symbolic constructions are real and
hence operational. Lifting or modifying this controversial philosophically-laden
distinction — without ignoring its properly mathematical content — opens room
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for new ways of combining genetic and axiomatic approaches in mathematical
reasoning. Some such new approaches are described in what follows.

1.4 Conclusion of Chapter 1

Let us summarise. Euclid’s geometrical theory is based on rules rather than
axioms in today’s sense of the term. These rules are of two different sorts. One
set of rules concerns equalities; these rules allow one to derive new equalities from
given equalities. Euclid calls such rules Common Notions ; after Aristotle these
rules are also commonly called Axioms even if they do not qualify as axioms in
the modern sense of the term stemming from Hilbert. We describe these rules
as being proto-logical, bearing in mind that they are analogous to rules of truth-
preserving logical deduction; the only difference being that Euclid’s “axioms” do
not apply to all propositions but to mathematical propositions of a specific form,
namely, to equalities (of figures or numbers).

The other set of rules Euclid calls Postulates ; these rules apply to
geometrical objects themselves (rather than propositions about the geometrical
objects). A recursive use of these rules provides for geometrical constructions
called in school mathematics constructions by ruler and compass 12. In order to
distinguish a result of rule-based geometrical construction from the procedural
aspect of this construction and at the same time stress an analogy between
derivation of equalities via Common Notions, we call this latter geometrical
procedure by the name of geometrical production.

Proto-logical deduction and geometrical production are closely intertwined
in Euclid’s geometrical reasoning: the results of relevant proto-logical deduction
are used in geometrical production and vice versa. Deduction and production
jointly generate a system of geometrical objects with certain required properties
(via solving problems) along with a system of justified propositions about
some geometrical objects (via proving appropriate theorems). This twofold
theoretical construction we conveniently call a geometrical theory. Even if the

12The Postulates are not sufficient for supporting these constructions since Euclid’s reasoning also involves

a number of tacit postulates that, in particular, allow him to determine the point of intersection of circles in

Proposition 1.1 of the Elements. This constructive incompleteness of Euclid’s theory has no direct bearing on

our present argument, however.
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above description of this notion of theory involves some modern logical concepts
such as that of existential instantiation, it does not qualify as a systematic
reconstruction of Euclid’s theory in today’s logical terms. In particular, it leaves
without a detailed analysis the nature of the relationships between proto-logical
inferences and geometrical constructions. Our experience of interpreting Euclid
in the context of today’s mathematics and logic confirms Ian Müller’s conclusion
according to which no system of modern logic accounts properly for Euclid’s form
of geometrical reasoning [198], [196]. However in what follows we describe some
recent logical and mathematical approaches, which are seemingly analogous to
Euclid’s approach. The notion of Curry-Howard Correspondence and its specific
rendering in the Homotopy Type theory (HoTT) allows for a precise formal
description of how propositional and non-propositional elements are related in
geometrical reasoning (see 3.2). Without trying to develop a more precise formal
reconstruction of Euclid’s geometry in today’s logical terms we shall use this
theory in what follows as a useful historical example motivating our further
considerations about today’s axiomatic approaches.

Unlike Euclid, Hilbert develops an axiomatic theory of Euclidean geometry
in the convenient modern sense of the term. Leaving aside details (some of
which have been considered above) this approach can be described as follows.
(Uninterpreted) theory T is a set of formal sentences aka propositional forms
with a distinguished subset A of such forms called axioms ; all other forms of T are
called theorems and formally derivable from the axioms according to some fixed
syntactic rules. The so-called Hilbert-style formal theories are characterised by the
fact that the number of such derivation rules is minimal (Hilbert himself uses only
modus ponens and substitution) while the number of axioms (and possibly axiom
schemes) is large. A key concept of this framework is that of interpretation, which
is an assignment of certain semantic values to elements of propositional forms;
an interpretation “fills the forms with a content” and thus make these symbolic
forms into contentful sentences with definite truth-values. The talks of “formal
sentences” and “propositional forms” refers to such an intended interpretation
(or more precisely, to a class of such possible interpretations because the same
formal sentence under different interpretations can bring about different contentful
sentences having different truth-values).
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An important further standard feature of this approach, which is often
taken for granted and left unnoticed, is the distinction between logical and non-
logical syntactic elements (symbols) of formal sentences. This distinction is clearly
semantic; moreover it assumes a notion of logicality according to which logical
and extra-logical concepts are distinguished. Yet, this fundamental distinction is
usually introduced in textbooks as a part of uninterpreted theories as if it would
belong to the row syntax itself. The procedure of semantic interpretation just
described usually applies solely to the non-logical part of the syntax while the
meaning of logical symbols (i.e., meaning of logical constants) is supposed to be
fixed independently beforehand. Even if Hilbert and his co-authors don’t have
a developed theory of formal logical semantics the idea that any mathematical
theory comprises a “purely logical” core is crucial for Hilbert since his Foundations
of 1899. According to this idea all formal syntactic derivations in a given theory
are interpretable as purely logical inferences, which do not depend on details of
(non-logical) interpretations of its axioms and theorems. This distinctive feature
of Hilbert’s conception of a formal theory is underpinned by his epistemological
view, which we have described above as a weak form of logicism (see 1.2.2).

Let us stress once again that the present Section does not aim at tracing
the historical development of axiomatic method from Euclid to Hilbert taking
into consideration all or some intermediate stages of this long route. Only some
fragments of this historical rout have so far been studied, so any narrative covering
the period of more than two millennia that separates Hilbert from Euclid would
lack the historical and theoretical precision that I’m trying to achieve in the
present study. This is why the above is nothing but a comparative historical and
theoretical analysis of Hilbert’s axiomatic method, which today is still commonly
called “modern”, with Euclid’s method. Even such a limited use of a historical
approach allows us to think of the axiomatic method in a historical perspective,
and avoid considering its contemporary standard form as final and immune to
possible revisions and further developments and modifications. In addition to its
historical significance the above reconstruction of Euclid’s axiomatic method has
a theoretical value because it helps us to analyse and describe some recent trends
of axiomatic reasoning in the following parts of this work.
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2 The Axiomatic Method at Work in Mathematical and

Scientific Practice 13

Hilbert’s work in the foundations of mathematics has been seminal in a
number of ways. As it has been already mentioned in the last chapter, Hilbert’s
Program along with Gödel’s Incompleteness Theorems boosted a large research
program that determined the mainstream development of the foundation of
mathematics over the course of the 20th century, and the opinion of some
researchers still occupies this distinguished position today. Today’s proof theory,
set theory (in its modern axiomatic form), the research program of Reverse
Mathematics, and a number of related areas of research at the crossroads of logic,
mathematics and philosophy, stem from Hilbert’s relevant works and constitute a
research field known as FOM (for foundations of mathematics). However, Hilbert’s
project in the foundations of mathematics was in fact even more ambitious. It
aimed to profoundly change contemporary research practices in mathematics
and mathematically-laden science by making the formal axiomatic method, in
Hilbert’s own words, into a “basic instrument of all theoretical research” [108, p.
467]. The present chapter focuses on this latter “practical” aspect of the axiomatic
method.

As we shall see, the axiomatic approach indeed had significant impact
on mathematics and mathematical education of the 20th century. The case of
science is different: in spite of continuing attempts to apply axiomatic approaches
in science, some of which are overviewed below (see 2.3) , these attempts so far
did not have a comparable effect. But even the case of pure mathematics is less
obvious than it may first appear. Outside axiomatic set theory, proof theory and
other mathematical disciplines constituting part of mainstream FOM research,
the formal symbolic version of Hilbert’s axiomatic method has no application
at all. What is commonly used in mainstream contemporary mathematics and
mathematical education is a semi-formal version of axiomatic method modelled
after Hilbert’s Foundations of Geometry of 1899 and supported by Cantor-
style informal (so-called “naive”) set theory (see 2.2 below). In addition, in the

13This Section includes material from [233, Ch. 4] and [250].
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mathematics and science of the 20th century we find interesting examples of
axiomatic approaches, which qualify as axiomatic in Hilbert’s “broadest sense” of
1934 but at the same time significantly diverge from Hilbert’s conception of formal
axiomatic method even in its semi-formal version. Such non-standard axiomatic
approaches are particularly interesting for the present study and will be treated
separately (Ch. 3 below).

Some researchers (including many FOM researchers) explain the fact
that FOM is relatively isolated from the mainstream of today’s mathematics
by appeal to a natural division of labor. They assume (i) that an ordinary
working mathematician needs not master the details of the foundations of her
discipline and (ii) that research in FOM, just like any other special mathematical
research, requires a very specific professional training and qualification (along
with an understanding of relevant philosophical matters), which cannot possibly
be provided for all working mathematicians. This argument may sound convincing
and be easily accepted by those working mathematicians who do not see a need to
care about the foundations of their discipline. Notice however that the argument
uses a notion of the foundations of mathematics that differs essentially from
the more traditional notion according to which the foundations of a theoretical
discipline comprise a core part of the content of this discipline known to all its
practitioners (whatever their areas of specialisation within the discipline) and thus
serves for its theoretical unification. In this traditional sense Euclid’s Elements
qualify as foundations of the Geometry and theoretical Arithmetic of his time, and
Newton’s Principia qualify as foundations of his then-novel theoretical physics 14.

Some working mathematicians among those who do care about foundations
are dissatisfied with the received conception of FOM and believe that the
traditional notion is more appropriate. Here is a harsh statement to this effect
from Lawvere and Rosebrugh:

“A foundation makes explicit the essential general features, ingredients,
14In Russian there is a tradition to referring to foundations in the logical and theoretical sense related to

FOM and to foundations in the traditional sense using two different words: “osnovania” and “osnovy”. This

terminological distinction is helpful in many situations but we are not going to use it in what follows, first,

because it cannot be applied in English without a terminological invention and, second, because our general

theoretical strategy, as it will be explained below, aims at convergence rather than divergence of the two notions.
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and operations of a science, as well as its origins and generals laws
of development. The purpose of making these explicit is to provide a
guide to the learning, use, and further development of the science. A
“pure"foundation that forgets this purpose and pursues a speculative
“foundations"for its own sake is clearly a nonfoundation.” [166, p.235]

Some researchers try to make a peaceful agreement between the two
concepts of foundations by reserving the name of practical foundations for
the traditional notion [280]. In a parallel (albeit chronologically more recent)
development in the philosophical camp a group of philosophers attempt to
constitute the philosophy of mathematical practice as a subfield of the philosophy
of mathematics, which takes into account mathematics as it is actually practiced
(today and in the past) outside FOM [181], and considers relevant philosophical
issues beyond the foundational issues. Since pure mathematics is a theoretical
discipline par excellence, the grounds of the relevant distinction between
mathematical theory and mathematical practice are far from clear, moreover so
that philosophers of mathematical practice usually refer to mathematical theories
as such rather than only to applications of these theories and historical details
of their emergence. The popular wisdom according to which “in theory there is
no difference between theory and practice, while in practice, there is” perfectly
applies to this case. Practically speaking, it is clearly the case that philosophers
who associate themselves with mainstream FOM research and philosophers of
mathematical practice are doing different research and form different communities.
But from a theoretical point of view it is not clear why these lines of philosophical
inquiry should be so different.

Without further exploring the distinction between mathematical theories
and mathematical practices, let us briefly formulate our take on the above
methodological problem. After Euclid, Hilbert and Lawvere, we do believe that
foundations of mathematics and science in the traditional sense of the term are
important both practically and theoretically. We also believe that the foundations
of mathematics in this sense, as well as foundations of any other scientific
discipline, need permanent revision and renewal along with the development of
the corresponding discipline itself. However important and valuable are the results
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achieved in mainstream FOM studies, we consider the fact that they don’t help
to build foundations of mathematics in the traditional sense of the term to be an
open problem that needs urgent solution.

One can think of two types of solutions: (i) reforming current mathematical
practice according to the theoretical standard established by the received FOM
and (ii) revising the theoretical fundamentals of FOM and designing on this basis
new foundations, which take into account the mathematical practice of the last
century and that can be better implemented in practice. In the present chapter
we analyse some attempts to apply strategy (i) and show that the success of this
strategy has so far been very limited. In chapter 3 we explore strategy (ii) including
the ongoing project aiming at new univalent foundations of mathematics [95].

2.1 Set Theory

Recall the notion of system of things used by Hilbert in an early description
of his formal axiomatic method [115]. Can one provide a formal axiomatic theory
of such systems? Unless one assumes that a system U of systems of things is
an element of itself, this project does not involve a circularity but provides a
somewhat restricted notion of system of things (as an element of U) that can
serve for developing various formal axiomatic theories on the top of the formal
theory of U . This anachronistic description of Zermelo’s idea of axiomatising set
theory explains why and how the later development of Hilbert’s formal approach
to the foundations of mathematics involved not only the formal axiomatic method
itself but also the axiomatic theory of sets 15.

Since Zermelo’s pioneering works in axiomatic set theory, mainstream
research in set theory has focused on studies of various formal theories of sets
and models of such theories. This makes set theory a rare and arguably the most
important example of a modern mathematical theory developed wholly within a
formal axiomatic setting. So in order to see how the formal axiomatic method
works in today’s mathematics, it is useful to consider the case of set theory quite
independently of any foundational claims made about this theory. To be more

15Zermelo’s principal motivation for axiomatising set theory was saving Cantor’s so-called “naive” set theory

from paradoxes [206]



77

concrete, let us consider Cantor’s Continuum Hypothesis (CH), which in 1900 was
listed by Hilbert [104] as the number one among 23 open mathematical problems
that Hilbert at that time judged to be the most important16.

CH is a very peculiar example of a mathematical problem because today
there is still no common opinion as to whether this problem is solved or still
remains open! And this peculiar situation is obviously due to the fact that the
modern set theory, unlike (almost) the rest of mathematics, is developed in a
formal axiomatic setting. The story in brief is the following. In 1938 Gödel [87]
discovered that ZF (which is an improved version of Zermelo’s axiomatic theory
of sets so called after the names of Zermelo and Fraenkel [71]) is consistent with
CH by building a model of ZF in which CH holds. In 1963 Cohen [47] discovered
that ZF is also consistent with the negation of CH by building a model of ZF in
which CH does not hold. So it is well established today that neither CH nor its
negation can be derived from the axioms of ZF [149].

What remains controversial is whether or not this independence result
provides a definite answer to the original question by allowing one to claim that
the original question is ill-posed. An additional axiom - or some wholly new system
of axioms for set theory - may eventually help, of course, to settle the problem in
the sense that CH or its negation can be deduced from the new system of axioms
17. There are obvious trivial “solutions” of this sort such as considering CH itself
as an axiom. Then, however, it remains to show that the system of axioms for
set theory that solves the CH problem is a “right” one, so that the proposed
solution is “genuine”. We cannot see how this can be done on purely mathematical
grounds; any possible argument to the effect that one system of axioms for set
theory is “more natural” than some other has a speculative nature and lacks any
objective validity. Even if one gets some non-trivial proof of CH from some system

16The Continuum Hypothesis conjectured by Cantor states that there is no cardinal number strictly bigger

than the minimal infinite cardinal number ℵ0 (which can be described as the “number of all natural numbers”)

and strictly smaller that the cardinal number 2ℵ0 of the set of all subsets of some set having the cardinal

number ω (for example, the set of all series of natural numbers, including infinite series). The number 2ℵ0 has

been identified by Cantor with the number of points on a given continuous line or surface; hence the name of

this conjecture
17In particular, this is the view of Hugh Woodin, a leading expert in set theory from Harvard University

(personal communication).
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of axioms that appear to be in some sense natural one can hardly claim that this
system of axioms is the “right one” solely because it solves the CH problem and
because such a proposed solution is smart and elegant. Although this situation
is not unprecedented and may be compared, in particular, with the fate of the
Problem of Parallels in geometry of the 19th century, it contrasts sharply with
mainstream mathematics, which still manages to provide yes-no answers to many
well-posed questions.

It may be argued that the formal axiomatic framework makes explicit the
relativistic nature of mathematics, which we should learn to live with; according
to this viewpoint it is pointless to ask whether CH is true or false without
further qualifications, and all that mathematicians can do is to study which
axioms do imply CH (modulo some specified rules of inference), which axioms
imply its negation, and which do neither (like the axioms of ZF). More generally,
the only thing that mathematics can do according to this point of view is to
provide true propositions of the if - then form: if such-and-such propositions are
true then certain other propositions are also true. We cannot see how such a
deductive relativism (or “if-thenism”) about mathematics could be sustainable.
It is incompatible not only with common mathematical practice but also, more
specifically, with the current practice of studying formal axiomatic systems.
Denote S the proposition saying that CH is independent from the axioms of ZF
(in the sense that neither S nor its negation can be derived from these axioms).
S is commonly seen as an established theorem on a par with any other firmly
established mathematical theorem. However S is not expressed in the if - then
form; it is expressed as an “absolute” mathematical truth about ZF and CH,
which does not refer to any particular formal framework. The proof of S (which
comprises the construction of Gödel’s model L verifying CH and Cohen’s forcing
construction falsifying CH) is a piece of rather sophisticated “usual” or “informal”
mathematics but not a formal inference within a certain axiomatic theory. So
a consistent if-thenist would not hold without further qualification that CH is
independent of the axioms of ZF, but would rather say that it depends on one’s
assumptions.

Thus, in spite of the fact that modern set theory no longer considers
sets naively but works instead with various formal axiomatic theories of sets
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this modern theory like any other modern mathematical theory relies on non-
formalised proofs. What is specific for modern set theory is its object rather
than its method. Instead of studying sets “directly” in the same way in which,
say, group-theorists study groups, set-theorists study formal axiomatic theories
of sets. However the methods used by modern set-theorists are not essentially
different from methods used in other parts of today’s mathematics. It remains,
in ourunderstanding, an open question whether or not such a roundabout way of
studying sets has indeed proven effective.

2.2 Bourbaki

2.2.1 Semantic Version of the Formal Axiomatic Method

The multi-volumed Elements of Mathematics [26], [29] produced by a
group of (mainly French) mathematicians using the pseudoname Nicolas Bourbaki
since 1939 (the year in which the first volume of Elements came out) is
the most recent serious attempt to write a self-contained compendium of the
core contemporary mathematics after Euclid’s example 18 . Although Hilbert’s
Foundations of 1899 fall under the same description the two works differ in their
purpose. Hilbert’s work of 1899 is focused on Euclidean geometry, which in the
end of the 19th century was already only a relatively small part of what was
commonly known under the name of geometry in the mathematical community.
Here, Hilbert rebuilt an old theory with his new axiomatic method, clarified the

18The original French title is Eléments de mathématique, which uses the unusual singular form “

mathématique” (while the usual French word for mathematics is “mathématiques”). So a more accurate English

translation of the title could be the Elements of Mathematic. This unusual singular form of the word is supposed

to stressed Bourbaki’s aim of the unification of mathematics. The Bourbaki group was formed in 1935, see [18]

for an account of its early history. Bourbaki’s volumes have been published and republished by several publishers.

The first series of the Elements’ volumes was published by Hermann (Paris) [26]; after a conflict between the

Bourbaki group and the publisher the rights to publish were given to Springer (via a number of intermediate

publishers) [29]. After a long break that continued from 1998 to 2016 Springer published a new original volume

of Bourbaki’s Elements on Algebraic Topology [30]; in 2019 a new edition of an older volume in the same series

came out. So the project is officially still in progress. To date Bourbaki’s Elements comprises 11 original volumes

(some of these in several books), which exist in multiple editions and are mostly translated into English and

Russian. Updated information about the Bourbaki project can be found at the website of Association of Nicolas

Bourbaki’s Collaborators at https://www.bourbaki.fr .
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logical structure of this old theory, and left it to other people to do a similar job for
more recent theories including, in particular, Riemanian geometry [294]. Unlike
Euclid, Hilbert does not attempt to introduce all basic mathematical concepts
sufficient for developing the rest of his contemporary mathematics. Bourbaki in
his turn, like Euclid, aims at providing a genuine self-contained introduction to
contemporary mathematics, which systematically presents not only its method
but also its basic content. A concise general description of this project, which
makes explicit some of the grounding ideas behind it, was published in 1950 as a
separate programmatic article entitled the “Architecture of Mathematics” [27].

The section of this article named “Logical Formalism and the Axiomatic
Method” begins as follows:

“After more or less evident bankruptcy of the different systems [..] it
looked, at the beginning of the present [20th] century as if the attempt
had just about been abandoned to conceive of mathematics as a science
characterized by a definitely specified purpose and method; instead
there was a tendency to look upon mathematics as a “collection of
disciplines based on particular, exactly specified concepts”, interrelated
by “a thousand roads of communications” [..] (quoted by the author
from [35, p.447]) Today, we believe however that the internal evolution
of mathematical science has, in spite of appearance, brought about a
closer unity among its different parts, so as to create something like a
central nucleus that is more coherent than it has ever been. The essential
aspect of this evolution has been the systematic study of the relation
existing between different mathematical theories, and which has led to
what is generally known as the axiomatic method.” [27, p.222]

After this recognition of the unifying power of the axiomatic method
Bourbaki makes an interesting move by distinguishing between the logical aspect
of the axiomatic method and another aspect, which can be called structural ; in
Bourbaki’s view it is the latter rather than former aspect that makes the axiomatic
method a powerful instrument of the unification; as we shall now see Bourbaki
points here to his proper version of the axiomatic method rather than Hilbert’s
formal axiomatic method in its original form:
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“[E]very mathematical theory is a concatenation of propositions, each
one derived from the preceding ones in conformity with the rules of a
logical system [..] It is therefore a meaningless truism to say that this
“deductive reasoning” is a unifying principle for mathematics. [..] [I]t
is the external form which the mathematician gives to his thought, the
vehicle which makes it accessible to others, in short, the language suited
to mathematicians; this is all, no further significance should be attached
to it.
What the axiomatic method sets as its essential aim, is exactly that
which logical formalism by itself cannot supply, namely the profound
intelligibility of mathematics. [..] Where the superficial observer sees
only two, or several, quite distinct theories, lending one another
“unexpected support” (quoted by the author from [35, p.446]) through
the intervention of a mathematician of genius, the axiomatic method
teaches us to look for the deep-lying reasons for such a discovery, to find
the common ideas of these theories, buried under the accumulation of
details properly belonging to each of them, to bring these ideas forward
and to put them in their proper light.” [27, p. 223].

In order to illustrate his point Bourbaki uses the example of the “abstract”
group theory; the author describes this theory as an axiomatic theory construed
after the pattern of Hilbert’s Foundations of 1899 [115] as a system of things, which
are subject to the following three axioms (modulo a slight change in Bourbaki’s
original notion).

G1: x ◦ (y ◦ z) = (x ◦ y) ◦ z (associativity of ◦)
G2: there exists an item 1 (called unit) such that for all x x◦1 = 1◦x = x

G3: for all x there exists x−1 (called inverse of x) such that x ◦ x−1 =

x−1 ◦ x = 1.
A system of things satisfying these axioms is called a group. Expression

x ◦ y = z stands here for an abstract binary algebraic operation, which in
the given context is to be understood as a (uninterpreted) logical ternary
relation. The above axiomatic theory of groups (which we denote GT for further
reference) have various interpretations, many of which which were known and
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studied before the emergence of axiomatic group theory: by interpreting variables
x, y, z, as invertible geometrical transformations (like motion) and interpreting the
operation ◦ as composition of these transformations one gets the notion of a group
of geometrical transformations; by interpreting variables x, y, z, as whole numbers
and interpreting ◦ as + (addition of whole numbers) one gets the additive group
of whole numbers, etc. But until group theory was axiomatically formulated and
thus brought about the precise general notion of group, those examples could not
be understood as instances and special cases of one and the same general concept,
and the links between these different groups, which were eventually guessed by
some smart mathematicians, looked unsystematic and sometimes even mysterious.

As an example of a theorem of GT Bourbaki mentions this proposition P

:
For all x, y, z if x ◦ y = x ◦ z then y = z

which follows from G1 - G3 almost immediately [27, p. 225]. We claim that
the simplicity of this example does not allow it to correctly represent Bourbaki’s
axiomatic method. Notice that among the objects of GT there are no (abstract)
groups, just like among the objects of Euclidean (3D) geometry developed in
Hilbert’s Foundations of 1899 there is no such thing as (3D) Euclidean space.
As a system of things (model) of GT, any group is a domain where all axioms
and theorems of GT hold; the objects of this theory are elements of the given
group but not this group itself. But Bourbaki’s theory of (abstract) groups (see
[26] vol. 2, Chapter 1, Section 6), like any other presentation of this theory, does
treat groups as its objects, distinguishes between different groups, classifies them
and makes various constructions with them. Notice that GT by itself does not
allow one even to formulate the notion of subgroup! Take also into consideration
that GT is not categorical (in the usual model-theoretic sense of the term), which
simply amounts to saying that not all groups are isomorphic. So axioms G1-G3

provide nothing but the general notion of abstract group and in this sense can be
compared to a definition of a traditional mathematical object like the triangle;
theorems of GT like P are to be compared with propositions like “all triangles
have three angles” implied by the definition of a triangle.

Let’s now see what kind of representation of the abstract concept of group
is used by Bourbaki in their volume on algebra, which includes group theory. As
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in other similar cases they use a set-theoretic representation for it; the relevant set
theory is developed in the first volume of Bourbaki’s Elements. One easily gets a
set-theoretic model of GT by interpreting variables x, y, z, as elements of some
set G and interpreting the group operation ◦ in terms of the Cartesian product
of sets which reduces it to the primitive set-theoretic relation of membership.
However, such a model of GT is just one particular group G, not a domain where
all groups accounted for by group theory live! So group theory as developed in
Bourbaki’s Elements is not just an interpreted version of GT but a theory of
set-theoretic models of GT, developed on the basis of (Bourbaki’s) set theory.
This conception of group theory certainly better squares with what is known in
mathematics under this name. Notice that even such an elementary concept of
group theory as that of subgroup (and hence, say, the Lagrange theorem) requires
considering two different groups, which from a formal point of view qualify as two
different models of GT. What is special in Bourbaki’s axiomatic presentation of
group theory is the fact that all Bourbaki’s groups live in the same universe of sets
(that interprets their set theory). The same is the case for objects (structures) of
other sorts treated in Bourbaki’s Elements. In this sense, set theory qualifies as a
foundation of all of Bourbaki’s mathematics.

The Bourbaki-style axiomatic approach can be more precisely described
using the syntactic concept of signature. From the logical point of view a signature
can be described as a list of non-logical symbols (or shortcuts to such symbols
and symbolic expressions such as the symbol ◦ for algebraic operation) of a formal
theory, which are apt to multiple interpretations that provide models of the given
theory. But to a working mathematician who reads a signature using its default
interpretation, the signature appears as a specification of the basic elements of the
corresponding mathematical concept, which is apt to multiple instantiations and
possibility some further specifications. For example, the signature for the group
concept construed as above

< G, ◦ >

tells one that a group comprises an “underlying” set G and binary algebraic
operation ◦ defined on this set 19 ; in order to complete the introduction of the

19The above is a very basic and incomplete form of signature for groups which however is appropriate for the
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group concept, it remains to be postulated that set G and operation ◦ satisfy
axioms GT. Set G with operation ◦, i.e., a group, which by abuse of notation is
usually also denoted as G, can now be thought of as an arbitrary group that can
be instantiated by various “concrete” and more specific examples. This notation
is similar to the traditional geometrical notation where ABC may denote an
arbitrary general triangle; notice that this traditional notation also expresses
important information about the concept of a triangle, reflecting the fact that
a triangle is uniquely determined by its three vertexes A,B,C. Thus Bourbaki-
style mathematical reasoning squares with the traditional Euclidean pattern being
at the same time evidentially translatable, at least in principle, into the Hilbert-
style formal reasoning. In this way Bourbaki’s version of the axiomatic method
can be seen as a practical compromise between the requirements of Hilbert-
style formalism and the traditional Euclidean pattern of contentful mathematical
reasoning, which very much remains alive in the 20th century and in today’s
mathematics (see 2.2.4).

Explaining away Bourbaki’s deviation from Hilbert’s formal axiomatic
method by referring to the practical needs of working mathematicians or
mathematical educators does not do full justice to Bourbaki. Since the signature
< G, ◦ > and axioms GT are read contentfully as a set with group operation
satisfying the axioms, which indeed is their default reading, the given axiomatic
presentation is contentful rather than formal. However, unlike traditional
contentful reasoning which associates with linguistic and symbolic expressions
certain intuitions and concepts defined in terms of these very expressions,
Bourbaki uses for semantic purposes a special theory formally developed in the
first volume of their Elements, namely their version of set theory. This allows
one to qualify the default semantics of Bourbaki’s group theory (and all other
similarly presented mathematical theories) as a formal semantics20. As we shall
now see, this formal semantic character of Bourbaki’s axiomatic style has an
usual Bourbaki-style presentation of group theory in standard mathematical university courses. It is incomplete

because, among other things, it does not specify the arity of the group operation. The precise complete form of

signature depends on the underlying logical calculus.
20The notion of formal semantics is present in an explicit form neither in Hilbert nor in Bourbaki, and we use

it here anachronistically.
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epistemic significance beyond merely “practical” issues of mathematical education
and research.

Bourbaki’s presentation of mathematical theories does not provide details
of their underlying formal languages. A version of such a formal language is
presented only in the first volume of Elements on set theory. It guarantees
the translatability of Bourbaki’s mathematics into a Hilbert-style formalism in
principle — albeit hardly in practice because of the length of the required symbolic
expressions and other feasibility reasons. So “officially” Bourbaki’s notation that
they use for presenting group theory and the remaining mathematical content of
their Elements can be understood as a shorthand. However as their remarks some
of which are quoted below make clear, this “shortened” semantic notation also
expresses the idea that those logical and syntactic details are not essential and
not relevant to the mathematical contents expressed with this notation, and that
these theoretical contents are sufficiently robust and invariant to allow for different
strictly formal representations. We shall shortly see how this idea is further
developed outside pure mathematics by Patric Suppes and other proponents of
the semantic view of theories (2.3 below).

2.2.2 Mathematical Structure according to Bourbaki

In fact, Bourbaki’s view on the semantics of their theories, expressed in
the 1950 manifesto, is even more complex:

“We take here a naive point of view and do not deal with the thorny
questions, half philosophical, half mathematical, raised by the problem
of the “nature” of the mathematical “beings” or “objects”. Suffice it to say
that the axiomatic studies of the nineteenth and twentieth centuries have
gradually replaced the initial pluralism of the mental representation
of these “beings” thought of at first as ideal “abstractions” of sense
experiences and retaining all their heterogeneity by an unitary concept,
gradually reducing all the mathematical notions, first to the concept
of the natural number and then, in a second stage, to the notion of
set. This latter concept, considered for a long time as “primitive” and
“undefinable”, has been the object of endless polemics, as a result of



86

its extremely general character and on account of the very vague type
of mental representation which it calls forth; the difficulties did not
disappear until the notion of set itself disappeared (and with it all the
metaphysical pseudo-problems concerning mathematical “beings”) in the
light of the recent work on logical formalism. From this new point of
view, mathematical structures [my emphasis - A.R.] become, properly
speaking, the only “objects” of mathematics.” [27, p. 225-226]

Let us comment on this interesting passage in some detail. The concept of
mathematical structure is informally described in the same 1950 paper [27] and
demonstrated with the example of group structure presented above. According
to this description a structure is determined with a set with certain relations
between elements of this set. This informal description can be compared with
a formal notion of structure given in Bourbaki’s volume on set theory, Ch.4.
This comparison shows that the informal description of structure concept given
in the 1950 manifesto is not only simplified but severely oversimplified and for
this reason misses some essential points. What in the 1950 paper Bourbaki calls
a structure, they qualify in the 1939 volume as a type of structures. Axioms of
group theory GT determine such a structure type, viz., that of groups. What
then is an “individual” structure, in the given example an “individual” group?
This question is tricky and does not have a definite answer. One the one hand,
the identity criterion for groups and other alike structures can be borrowed from
the underlying set theory; it that sense two groups G,G′ are the same only if
their underlying sets are the same (beware that this necessary condition is not
sufficient). On the other hand, such a conception of identical structures is at odds
with the existing practice of identification of isomorphic groups and isomorphic
structures of all other types. Groups < G, ◦ >,< G′,� > are called isomorphic
if there is a bijective map f between their underlying sets

f : G
∼−→ G′

such that for all g1, g2 from G we have f(g1 ◦ g2) = f(g1) � f(g2) or, to put it
in words, the group operations defined on sets G and G′ mutually agree. In this
latter sense mathematicians conveniently talk about the symmetric group S3 (the
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group of permutations of three elements), etc. This convenient conception of being
identical up to isomorphism also squares with Hilbert’s idea according to which
two isomorphic models of the same formal theory are essentially the same.

This ambiguous identity criterion of mathematical structures (and in
particular, models of formal theories) can hardly be ignored in any discussion
of Bourbaki’s concept of mathematical structure, however informal. It plays a
major role in continuing philosophical debates over mathematical structuralism
and set-theoretic substantialism [20]. As we shall see in 3.2.5 the Univalence
Axiom resolves this ambiguity in an original and fruitful way.

An interesting point that Bourbaki do emphasise in their informal
description of the structure concept in the 1950 paper is the abstract character of
the involved set concept, which, on the one hand, allows one to reason at a high
level of abstraction and generality and, on the other hand, instantiate a given
structure by many “concrete” examples known in advance. An abstract group
construed à la Bourbaki can be exemplified in this way by groups of permutation,
groups of geometrical transformations and all other groups known before the
advance of Bourbaki-style abstract mathematics. As we have already stressed this
feature of Bourbaki’s mathematics supports its continuity with more traditional
patters of mathematical reasoning and thus contributes essentially to its (however
limited, see below) success.

Since Bourbaki’s Elements is intended as a compendium of contemporary
mathematics like Euclid’s Elements, rather than as a philosophical or logical
treatise, the author’s unwillingness to explore the related philosophical and logical
issues expressed in the above quote is understandable. Bourbaki’s intention to use
the concept of set, leaving aside problematic and polemical details of its logical
foundations, is also clear. However the author’s words about the “disappearance
of sets in the light of recent work on logical formalism” are puzzling. The two
references given in the following sentence provide a general overview of the
contemporary logical approaches in the foundations of mathematics but contain
no original material and thus don’t quite clarify the situation. My guess is that
in mentioning the “recent work on logical formalism”, Bourbaki point here to the
whole body of works in the foundations of mathematics motivated by Hilbert’s
general conception of a formal theory as a “schema of concepts”. Such an emphasis
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on the formal aspect of mathematics is apparently at odds with the above
observation concerning the semantic character of Bourbaki’s axiomatic approach.
However Bourbaki make a specific practical combination of these two conflicting
ideas, which drive their research. Let us see how it works.

The talk of “disappearance of sets” reveals the controversial epistemic
status of the concept of set in Bourbaki’s conception of mathematics. The same
problematic epistemic status of sets shows up in the conventional description
of algebraic groups and other mathematical objects construed à la Bourbaki as
“sets with additional structure”. In the case of groups the “additional structure”
is the group operation satisfying the axioms of GT. This conventional talk is
at odds with the above definition of a group as a structure that comprises a
set and an operation defined on this set. Is the underlying set a proper part of
the structure or it is a mere external background that helps one to represent a
structure? Here once again we come to the controversy between the mathematical
structuralism and set-theoretic substantialism, which is the sort of philosophical
controversy that Bourbaki deliberately avoid discussing. However, when in the
above quote they talk about the “disappearance of sets”, they definitely point
to the latter structuralist option. The intended notion of “self-standing structure”
(without an underlying set) is nowhere rigorously defined in Bourbaki’s Elements.
But as a matter of practical implementation of this intended notion Bourbaki
systematically disregard details of their own set theory and its formal logical
machinery — notwithstanding the fact that this machinery constitutes an “official”
logical foundation of all of Bourbaki’s mathematics. Accordingly, they feel free
to describe the group concept and many other mathematical concepts using the
“language of sets” without specifying the details of this language, and thus combine
the “semantic approach” with an emphasis on formal mathematical structures.
This pragmatic compromise is described by Bourbaki in an unpublished draft in
the following words 21:

“The reader will see that the nature of elements of fundamental sets
can be always easily left undetermined and that this point of view is

21The exact date of the draft is missing but it apparently dates back to 1938-1939 as a part of preparation of

the first volume of Elements.
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often useful. From here there is only one step to thinking that only
structure matters and that the true aim of mathematical theory is
a study of structure independently from sets that may represent it.
Perhaps it is indeed possible to study structures themselves and forbid
oneself to consider fundamental sets. However because of the commodity
of language and the invincible habit of mind we take the “ontological”
approach, i.e., stipulate fundamental sets for each theory.” [28].

Thus the notion of self-standing mathematical structure independent of
any set-theoretic background remains in Bourbaki’s Elements wishful thinking
or, on a more charitable interpretation, their regulative idea in the Kantian sense
of the word. Hilbert’s notion of theory as conceptual schema motivates Bourbaki’s
structuralism but does not help the authors to implement this idea.

The informal structuralist notion of “mathematical reasoning up to
isomorphism” can be formulated more precisely (albeit anachronistically, see [2] for
historical details) in the form of the following isomorphism equivalence principle
(IEP):

LetG,H be two mathematical structures of the same type T (in Bourbaki’s
sense) and let G,H be isomorphic. Then for any structural property P it is the
case that structure G has property P if and only if H has property P . In symbols:

∀P. (G ∼= H)⇒ (P (G)↔ P (H))

Another conventional way to express IEP verbally is by saying that
structural properties of T -structures (unlike their non-structural properties) are
invariant under T -isomrophisms (i.e., isomorphisms between structures of type
T ).

Reasoning up to isomorphism about T -structures is tantamount to taking
into consideration only isomorphism-invariant properties of these structures, i.e.,
only T -structural properties. Other properties of these structures belong to their
set-theoretic foundation and/or their informal presentation, not to the theory of
T -structures in the desired sense of the term. Beware that we are now talking
about theories of T -structures not as axiomatic theories in Hilbert’s sense but as
theories built with Bourbaki’s semantic method (which are theories of set-theoretic
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models of the corresponding axiomatic theories).
Here is how IEP applies in group theory. Consider two isomorphic groups:

the full group of permutations of letters a, b, c, let’s denote it Γ, and the group
∆ of symmetries of Euclidean regular triangle. IEP implies that only structural
(i.e., isomorphism-invariant) properties of these groups fall under the scope of
group theory, while all the information about the letters a, b, c and geometrical
properties of the regular triangle do not — however important and relevant these
details can be in other mathematical and non-mathematical contexts. That is why
in the context of group theory Γ and ∆ are presentations of the same symmetric
group S3. IEP applies similarly to all Bourbaki’s other types of structures.

IEP has various pragmatic, mathematical, scientific and philosophical
grounds and motivations, some of which we discuss in 3.2.5. At this point it
suffices to stress that IEP is constitutive for Bourbaki-style mathematics because it
specifies its central subject of study: mathematical structures up to isomorphism.
In 3.1.2 we shall consider a more general equivalence principle used in category-
theoretic mathematics.

2.2.3 Bourbaki and Mathematics Education

Bourbaki’s Elements is the most systematic and far-reaching project that
belongs to a larger body of contemporary works aiming at a radical renewal
of contemporary mathematics and mathematical education, including school
mathematics and university textbooks of all levels. Some of these works have
been influenced by Bourbaki to some degree, while others followed the same trend
independently. This large body of work cannot by fully reviewed here; below we
describe only some key points of relevant developments in school mathematics.

Early attempts to reform mathematical education in line with Hilbert’s
axiomatic approach were made in the beginning of the 20-th century. In the US
a key figure in this development was George Bruce Halsted (1853-1922), who
translated Bolyai’s and Lobachevsky’s works into English and in 1904 published
a geometry textbook entitled Rational Geometry based on Hilbert’s Foundations
of Geometry of 1899 [97]. In a parallel development Veniamin Fedorovitch Kagan
published his version of axiomatic foundations of geometry in Russia in 1905,
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which was also in line with Hilbert 1899, but also took into account other
contemporary axiomatic approaches in Geometry including works by Peri and
other members of Peano’s circle [133]; the second volume of this work, published
in 1907, contains a useful historical overview of axiomatic geometry from Euclid
to Hilbert [134]. Applications of these novel approaches in contemporary school
and university mathematics education require a special historical study, but it is
clear that at this point in history such applications were rather exceptional, and
in any event remained very limited.

A major attempt at reforming school mathematical education on the
national level according to the new standards known as the New Math was made
in the USA at the end of 1950s as a key element of the American response to
the Soviet launch of the first Sputnik in 1957, that aimed at the reinforcement of
national technological and intellectual power [207]. This educational reform, which
promoted the Bourbaki-style (rather than the original Hilbert-style) approach
even at the elementary school level, was predictably opposed by the majority
of school teachers and pupils’ parents. More importantly, this reform was also
severely criticised by certain leading mathematicians and scientists, including such
a prominent figure of the time as Richard Feynman [68]. The opinion that the New
Math was a pedagogical error prevailed already in the early 1970s [142], and this
controversial reform was soon largely abandoned.

Ironically or not, in the Soviet Union a similar radical reform of
mathematical education was started almost simultaneously with the American
New Math. In 1959 Boltyansky, Vilenkin and Yaglom published a programmatic
paper [296] where they urged for renewal of standard school mathematical
curriculum. This early 1959 proposal did not include elements of set theory and
Bourbaki-style axiomatics but when in the late 1960s the reform of mathematical
education was supported by Soviet authorities and soon developed into a project
of national scale, a Bourbaki-style version of school mathematical curriculum was
chosen for implementation in school textbooks, developed by a group of leading
mathematicians and mathematical educators under the general supervision of
Andrey N. Kolmogorov, see for details and further references [200]. The fate
of this Soviet reform was similar to that of the American New Math: in the
late 1970s under the pressure of complaining school teachers, pupils’ parents
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and harsh critique of some mathematicians, this reform was abandoned and new
mathematical textbooks were again replaced by more traditional ones.

It is important to stress that both aforementioned national reforms
of school mathematics did not proceed in isolation; they were parts of an
international trend in mathematics education where the leading role belonged, not
surprisingly, to French mathematicians including some members of the Bourbaki
group. Bourbaki member André Lichnerowitcz, who was the key figure of the
contemporary Bourbaki-style pedagogical reform in France (that developed along
the same pattern), was also the Head of the International Commission on
Mathematical Instruction of the International Mathematical Union in 1963-1966.
At its final preparatory stage the Kolmogorov reform was strongly influenced,
in particular, by discussions during the educational section of the International
Congress of Mathematicians held in 1966 in Moscow.

The rise and fall of the Bourbaki-style approach in mathematics education
(which also involved the university education) had many reasons and consequences
that cannot be discussed in the present work. At least one aspect of this story
is relevant to our present research, however. The proponents and critics of the
Bourbaki-style approach in mathematics and mathematics education agree that
it is not helpful for pointing to, illuminating and supporting applications of
mathematics in science and technology [268], [68], [8]. The difference between the
proponents and the opponents is in their evaluations of this fact, which depend
on one’s understanding of the nature of mathematics and its relationships with
science. Marshall Stone, a prominent mathematician who was a leading figure
of the New Math movement, expresses his understanding of this general issue in
his programmatic 1961 paper entitled The Revolution in Mathematics with the
following strong claim:

“While several important changes have taken place since 1900 in our
conception of mathematics or in our points of view concerning it, the
one which truly involves a revolution in ideas is the discovery that
mathematics is entirely independent of the physical world.” [268, p.716].

Stone’s talk of “our” conception of mathematics is obviously rhetorical. We
don’t know if he realised that the (in)dependence of mathematics on/from the
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physical world is not a mathematical conjecture that can be proved or disproved
by mathematical methods alone. But he was certainly aware of the fact that a
significant part of his fellow mathematicians and scientists disagreed with his view.
Let us quote a renowned harsh Russian critic of Bourbaki, Vladimir Arnold:

“Mathematics is a part of Physics. Physics is an experimental empirical
science, a part of Natural Science. Mathematics is a part of Physics
where experiments are cheap.” [8, p. 229].

Notice that Arnold’s views on mathematics as a proper part of physics
square with Cassirer’s aforementioned view according to which the “proper
function and proper application” of logical and mathematical concepts is “only
within the empirical science itself” while “building a metaphysical world of
thought” with these tools is their misuse (see 1.2.2 above).

Since applications of mathematical research are usually expected by the
larger scientific community, industry, and taxpayers, the issue of the relationships
between mathematics, science and technology has an obvious pragmatic aspect.
However, as the above quotes clearly demonstrate, it also has an epistemological
aspect. It is remarkable that both of the above claims were made not in the course
of a philosophical dispute about the nature of mathematics, as one could imagine
in reading these words without their context, but in the course of continuing
debates about mathematics education and the possible role of the Bourbaki-style
approach in it. One may wonder if these philosophical remarks made by prominent
mathematicians are really relevant, since Bourbaki’s Elements is a mathematical
work and as Bourbaki clearly state in their 1950 manifesto, they don’t want to be
involved in philosophical disputes around it. We believe that they are relevant, but
some methodological care is indeed needed in order to treat these philosophical
remarks correctly. Here is our methodological take on this problem.

True, Bourbaki’s axiomatic architecture of mathematics has a purely
mathematical and logical content that can, and in some situations definitely
should, be understood in full abstraction from all motivating and otherwise
related epistemological and philosophical ideas associated with this architecture
— notwithstanding the fact that such a separation of mathematical contents
from the related philosophical matters in the field of logical foundations is
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always problematic and by itself constitutes a difficult epistemological problem.
In this purified mathematical form, Bourbaki’s formal architecture does not
imply by itself any particular philosophical view on mathematics and is open to
different philosophical and epistemological interpretations. However Bourbaki’s
Elements, like any other foundations of mathematics, is not neutral with respect
to such possible epistemological interpretations. Evidently it better squares with
epistemological interpretations intended by its developers and only reluctantly
admits (or does not admit at all) some alternative non-intended interpretations.
In that sense it remains true that Bourbaki’s approach supports and promotes
a particular epistemological conception of mathematics, which weakens and
underplays the traditional strong conceptual links between mathematics, science
and technology.

The precise reasons why set-theoretic Bourbaki-style axiomatic
mathematics is unfriendly to science and technology will be discussed in
4.3 below. Let us only notice here that the specification of such reasons crucially
depends on one’s epistemological views of science, which are also a subject
of philosophical controversy. As far as mathematics education is concerned, it
seems to us clear that a mere rebuking of Bourbaki-style reforms in mathematics
education and a return to older educational practices cannot be a final solution.
Following Lawvere and many other working mathematicians, we believe that
mathematics education and the foundations of mathematics should not fall apart.
In that sense we understand and approve of attempts to reform the mathematics
education in the 20th century on the basis of the contemporary set-theoretic
foundations of mathematics. The fact that these reforms were not successful in
spite of all efforts, in ourview, is a reason (one among a number of other) to
consider a reconstruction of these foundations.

2.2.4 Bourbaki and Euclid

The axiomatic architecture of Euclid’s geometry presented in his Elements
and analysed in 1.1 above may appear to be an archaic pattern of mathematical
thinking that has little to do with today’s mathematics. However, this impression
is wrong. In fact the Euclidean structure, perhaps in a slightly modified form, is
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still present in today’s mathematics. Consider the following example taken from
a standard mathematical textbook ([144, p. 100)]:

Theorem 3:

Any closed subset of a compact space is compact

Proof:

Let F be a closed subset of compact space T and {Fα} be an arbitrary
centered system of closed subsets of subspace F ⊂ T . Then every Fα is
also closed in T , and hence {Fα} is a centered system of closed sets in
T . Therefore ∩Fα 6= ∅. By Theorem 1 it follows that F is compact.

Although the above theorem is presented in the form of “proposition-proof”
as is usual for today’s mathematics, its Euclidean structure can be made explicit
without re-interpretations and paraphrasing:

[enunciation:]

Any closed subset of a compact space is compact

[exposition:]

Let F be a closed subset of compact space T

[specification: absent]

[construction:]

[Let] {Fα} [be] an arbitrary centered system of closed subsets of
subspace F ⊂ T .

[proof :]

[E]very Fα is also closed in T , and hence {Fα} is a centered system of
closed sets in T . Therefore ∩Fα 6= ∅. By Theorem 1 it follows that F is
compact.



96

[conclusion: absent ] The absent specification can be formulated as follows:

I say that F is a compact space

while the absent conclusion is supposed to be a literal repetition of the enunciation
of this theorem. Clearly these latter elements can be dropped for reasons of
parsimony. In order to better separate the construction and the proof of the
above theorem, the authors could first construct set ∩Fα and only then prove
that it is non-empty. This deviation from the classical Euclidean scheme seems to
us rather negligible, however.

2.3 Axiomatic Approaches in Science and in the Philosophy of Science

In this Section we provide a general overview of current axiomatic
approaches in the natural sciences, Computer Science and the related
developments in the philosophy of science. Considering particular physical or other
scientific theories from the axiomatic point of view is out of the scope of the present
work.

2.3.1 Physics

At the Second International Congress of Mathematicians held in 1900 in
Paris, Hilbert presented his famous list of 23 open mathematical problems [104];
the 6th item on the list is the problem of the axiomatisation of fundamental
physical theories. This problem still remains largely open, and there are different
and often contrary opinions about its pertinence.

The existing axiomatic presentations of physical theories are of two kinds.
Presentations of the first kind apply Hilbert’s concept of a formal axiomatic
theory. Presentations of the second kind use an informal notion of axiomatic
theory, sometimes supported with the idea of non-Classical Quantum logic. While
presentations of the first kind are developed and used only by logicians and
philosophers, presentations of the second kind are due to working physicists
themselves. As we shall now see, “axiomatics of logicians and philosophers”
and “axiomatics of physicists” found in the recent literature are very different;
moreover, a significant part of today’s logical and philosophical community simply
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does not recognise the “axiomatics of physicists” as a logically coherent form
of axiomatics. The problem of the adequacy of “axiomatics of logicians and
philosophers” to current scientific practice is even more acute in case of physics
and other natural sciences than in pure mathematics. However, in our opinion,
a convergence of different approaches to axiomatisation of scientific theories is
nevertheless possible.

A detailed overview of research on the axiomatisation of physics made
before 1972, as well as an interesting discussion of the significance of the axiomatic
method in science, are found in [36] and [37]. In the same works Mario Bunge
also presents his own axiomatic presentations of some physical theories. Bunge’s
axiomatic theories of physics as well as most of the works that he reviews
belong, according to the above classification, to the “axiomatics of logicians and
philosophers”. Following Tarski [276], Bunge describes his axiomatic approach to
physics in these words:

“There is a single theory that starts from scratch: mathematical logic
[. . . ]. All other theories presuppose at least logic and usually a lot
more. More precisely, the least a mathematical or a scientific theory
takes for granted is the so-called ordinary [i.e., Classical]ґ(two-valued)
predicate calculus enriched with the microtheory of identity. This
theory is necessary and sufficient to analyse the concepts, formulas,
and reasonings occuring in mathematics and in science — or rather to
analyse their form. In fact, every statement in mathematics or in science
is, as far as its form is concerned, a formula of that calculus; and every
valid reasoning is an instance of an inference pattern consecrated by
that same theory.” [37, p. 136]

The author calls his above claim a “platitude” (ibid.), pointing to the fact
that his point of view on the matter is not his original. However, this doesn’t
mean that this view is (or ever was) shared by all interested parties including
physicists, logicians and philosophers. Before we consider some objections and
alternative views, let us stress that Bunge’s claim is normative rather than
descriptive; it tells us how physicists and other scientists should build their theories
but not how they actually do it. Bunge’s axiomatic physics is physics rebuilt
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according to a certain conceptual scheme adopted on independent grounds. Even
if the intended reconstruction of physics concerns only the logical form of its
theories and not the content of these theories, it amounts to an application to
physical theories of certain pre-established standards, namely, formal standards.
Using such standards, Bunge apparently assumes that they wholly belong to the
competence of logicians and philosophers and don’t need to be evaluated from
a physical viewpoint. Moreover, Bunge assumes that the general problem of the
logical form of scientific theories has already been fixed with Hilbert’s concept of
axiomatic theory and the concept of Classical First-Order Logic (CFOL).

In the last chapter we already described some of the historical and
philosophical background behind this approach. Let us now point to some
objections and alternative views. According to Hilary Putnam, the logical part
of a given physical theory is a subject of empirical test on equal grounds with the
rest of this theory [217]. Since Quantum Theory (i) has been empirically tested
with a high degree of precision and (ii) leads to logical paradoxes it makes sense,
according to Putnam, to abandon the ordinary logic and replace it with a new
Quantum logic where such paradoxes would not arise. In Putnam’s view, to use
the old logic in the new fundamental theory of physics is to underestimate the
novelty of this new physical theory. A critical evaluation of Putnam’s argument
and interesting counter-arguments can be found in Michael Dummett’s paper [57].
We would like to stress that the standard Hilbert-style axiomatic architecture used
by Bunge and many other researchers in the field indeed allows one to replace
CFOL by another logical calculus including a version of Quantum logic. However,
in our view, such a replacement cannot solve the problem of the adequacy of
axiomatic (re)presentations of scientific theories. As a prospective solution to this
problem we propose in what follows a modification of this axiomatic architecture
itself (see 4.2-3).

The idea that Quantum Theory may include a specific non-classical logic
was put forward by John von Neumann in his 1932 book [301], in which the
author made an attempt to present Quantum Theory axiomatically; the concept
of Quantum logic was developed in a more systematic way by the same author
in his 1936 paper co-authored by G.D. Birkhoff [79]. Von Neumann’s axiomatic
treatment of Quantum Theory definitely belongs to the “axiomatics of physicists”
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kind. Unlike works by Bunge and other philosophers, von Neumann’s book [301]
became a classic of physical literature and had a significant impact on the
further development of quantum physics. Bunge’s reaction to this seminal work
demonstrates well the uneasy relationships between logically-oriented philosophers
interested in the contemporary science and scientists interested in logic and
philosophy:

“In his epoch-making book ([301]), which enriched the mathematical
framework of the theory, von Neumann is wrongly supposed to have laid
down the axiomatic foundations of quantum mechanics. As a matter of
fact his exposition lacks all the characteristics of modern axiomatics:
it does not disclose the presuppositions, it does not identify the basic
concepts of the theory, it does not list all the initial assumptions
(axioms), it fails to propose a consistent physical interpretation of
the formalism, and it is ridden with inconsistencies and philosophical
naivetés. Yet for some strange reason it passes for a model of physical
axiomatics.” [37, p. 132]

Bunge quite rightly points to the fact that von Neumann’s theory does not
even approximately fall under the standard “modern” concept of being axiomatic,
stemming from Hilbert and later further developed by many logicians and
philosophers including Bunge himself. In particular, von Neumann’s presentation
lacks anything like the distinction between syntax and semantics. It is axiomatic
only in the very general sense of being built upon few well-distinguished first
principles. Other examples of “axiomatics of physicists” are of the same informal
character. In addition to von Neumann’s classics we can point here to Macky’s
work [175] not mentioned by Bunge; for a more recent literature see [44] and [216].

The idea of an axiomatic reconstruction of Quantum Theory on the basis of
Quantum logic was also explored (albeit not realised) by Louis de Broglie’s student
Paulette Destouches-Fevriér [54]. Fevriér’s project has been harshly criticised by
P. Suppes and J.C.C.McKinsey [193] who argue that this project is unrealistic
because it also involves a reconstruction Classical Mathematical (allegedly based
on Classical logic). Bas van Fraassenn in his 1974 paper with the telling title “The
Labyrinth of Quantum Logics” [290], attempts to reformulate the early informal
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ideas of von Neumann, H. Reichenbach and some other thinkers according to
then current logical standards. The result of this work is not one particular
logical calculus but a family of such calculi. In 2004, a similar work was done
by M.D.Chiara, R. Giuntini and R. Greech on the basis of more recent literature;
the authors come to the expected conclusion according to which “The ’labyrinth
of quantum logic’ described by van Fraassen (1974) [since then] has become more
and more labyrinthine.” [44, p. 268-269]. However valuable this research can be
from logical and philosophical points of view, it is clear that it has very little to
do with today’s physics.

In spite of the fact that logical approaches presently do not belong to the
mainstream of theoretical physics, research on Hilbert’s 6th Problem continues.
For a recent case study, see [3] and references therein.

2.3.2 Biology

An early attempt to build biology axiomatically was made in 1937 by
J.H. Woodger [303]. Woodger’s project was practically oriented in the sense
that it aimed at a theory that could be used by working biologists for teaching
and research. Preparing his monograph J.H. Woodger collaborated in person
with A. Tarski and tried to implement Tarski’s conception of deductive science
in biology. Just as in the case of physics, Woodger’s attempt to apply in
biology a formal framework designed by logicians and philosophers was rejected
by the contemporary biological community [93]; in addition it was severely
criticised by philosophers of biology of the younger generation [201]. Remarkably,
both proponents and opponents of axiomatic biology often talk about the
axiomatisation of biology as an application in this field of methods and tools
already successfully used in mathematics and physics: the proponents argue that
this helps to build for biology a more solid theoretical basis and make it more
precise and rigorous, while the opponents argue that the specific character of
biology and its subject matter do not allow one to borrow for this science the
formal tools and standards of rigour used in physics and in mathematics. From a
larger perspective explored in this work, such arguments appear to be misleading
in both cases, because in fact the application of axiomatic approaches in physics
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and mathematics in its turn is very far from being unproblematic.
All more recent attempts to build biological theories axiomatically, which

we have reviewed, aim at logical and epistemological analysis of these theories
and are not designed for biological education and research. For a typical example
of such work and for further references see [63].

2.3.3 Semantic View of Theories

An important new development in the axiomatic presentation of physical
and other scientific theories, which some authors describe as a “revolution” [66],
occurred in the 1950s via works by P. Suppes and his collaborators [129]. The
proponents of the new axiomatic approach used the titles “semantic view of
theories” and “non-statement view”, and opposed their view of scientific theories
to the received “syntactic view”, which they attributed to earlier enthusiasts of
the Hilbert-style axiomatic method in science [98]. According to the semantic
view a scientific theory cannot be identified with any particular set of axioms
and theorems expressed with an appropriate symbolic syntax — even if such a
formal syntactic structure is provided with a default semantic interpretation or
a certain class of such interpretations. (This is how theories are identified from
the standard Hilbertian point of view, which the proponents of the new method
call “syntactic”.) Instead a scientific theory should by identified with a certain
class of its models, which, generally, may allow for many different axiomatisations
that involve different syntactic choices. Notwithstanding the fact that the term
“model” is used in science and in logic in a number of very different ways, Suppes
argues that the notion of model due to Tarski, which provides a uniform set-
theoretic semantics for CFOL and is commonly used in mathematical Model
theory, accounts for all relevant cases [274], [275]. Suppes’ idea that scientific
theories are in a certain sense invariant with respect to their syntactic axiomatic
presentation was strongly motivated by the concept of the role of invariance in
geometry and physics. By a physical analogy a chosen syntactic representation of
a given theory can be seen as a mathematical representation of physical object or
process made in a fixed frame of reference a particular coordinate system; such a
representation works properly only if one knows how to distinguish between its
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invariant features, which don’t depend on the given frame and superficial features
that vary from one frame to another and don’t express any objective physical
content [275, p. 99]).

From a more technical point of view, the “revolution in Stanford” that gave
rise to the semantic view of scientific theories amounts to taking into account the
formal semantics and model theory (that have been developed by A. Tarski shortly
before this development) and using the Bourbaki-style set-theoretic axiomatic
presentation of theories rather than the Hilbert-style axiomatic method in its
original form. What has been said above about the differences between Bourbaki’s
and Hilbert’s axiomatic approaches in mathematics (see 2.2.1) remains relevant
to the Bourbaki-style axiomatic approach applied by Suppes and his followers for
representing scientific theories. More details concerning the origins and the early
history of the semantic view as well as a standard presentation of this view can
be found in [273, p. 3-5]; for a recent overview see [98].

From the early 1970s onwards the semantic view was further developed
by J.D. Sneed [262], W. Stegmüller [267], W. Balzer, and U. Moulines [14],
[16], [15] who support their Bourbaki-style formal approach with a version of
philosophical structuralism. The body of works produced within this project
arguably clarifies the logical structure of various scientific theories and structural
relationships between different theories. However we would like to stress the fact
that the obtained “semantic” axiomatic presentations of scientific theories play no
role and have no prospective application in current scientific practices including
science education at all levels. However controversial the role of Bourbaki in
20th century mathematics and mathematics education, it is a brute historical
fact that the Bourbaki-style presentation of mathematical theories was used in
many significant developments in pure mathematics, and strongly influenced
mathematics education over the passed century. However, the attempt by P.
Suppes and his many followers to apply Bourbaki’s method in science was
not, practically speaking, successful, and did not have a comparable effect. We
postpone a more principled discussion on the semantic view until 4.3 where we
argue that the update of Hilbert’s formal axiomatic method proposed by the
proponents of this view is not sufficient for an effective and adequate formal
representation of scientific theories, and then suggest a remedy.
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2.3.4 Computer Science and Engineering

With the rise of Computer Science (CS) and the computer revolution of
the second half of the 20th century the axiomatic method and, more generally,
formal logical approaches in mathematics and natural science became significant
in a new way. The traditional concept of Knowledge Representation (KR) is
twofold: on the one hand, it is a routine practical concern of working scientists,
scientific editors and university lecturers. On the other hand, it is a research
subject for epistemologists and historians of science, theoreticians of education
and some other experts. These traditional functions of KR remain important
today. However, with the rise of Artificial Intelligence (AI) — first as a theoretical
possibility and more recently as an existing information technology — KR also
became a research area in CS, a domain of Software Engineering and existing
digital technology having industrial applications. The relationships between
existing KR technologies and formal logical methods including the standard
Hilbert-style axiomatic method are far from simple and straightforward. Early
works in Artificial Intelligence (AI) and KR were logically-oriented and aimed at
direct computational implementations of standard logical frameworks including
Hilbert-style formal axiomatic systems [191]. However it was soon realised that
since effective computability constitutes a hard theoretical and practical problem,
computer-based AI and KR require further theoretical work and engineering
invention. This development boosted very fruitful research in the Computational
Logic, with a close interaction with CS [32]. However, even in this special form
logic did not remain the only theoretical foundation for KR research and KR
engineering: many important ideas came to KR from linguistics and more recently
from neurobiology. With the recent emergence of KR technologies based on non-
parametric statistical methods such as Machine Learning and Deep Learning, the
role and relevance of logical foundations in KR has once again been seriously
questioned [145].

Many problems and concerns arising in computer-based KR such as
the aforementioned question of the role and place of logic have an obvious
philosophical character. In the present work we focus only on issues related
to axiomatic approaches in KR. For a more general philosophical discussion of
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computer-based KR and its logical and epistemological foundations see [178].
Our proposed notion of Constructive Axiomatic Method (see 4.2

below) unlike the received Hilbert-style axiomatic method allows for a direct
computational implementation: we design this method on the basis of a certain
formal calculus (Homotopy Type theory) that has already been computationally
implemented (in AGDA and some other software). Integration of this approach
into the existing KR technology is an ongoing project [249], [146].

A form of axiomatics currently used in CS and Engineering is Axiomatic
Design (AD) [270] [167] [62] [69]. AD is not a computational implementation of
the Hilbert-style axiomatic method, but it shares some essential features with it.
The idea of AD is to design complex industrial products (say, aircrafts or new
composite materials) in a top-down way rather than the traditional bottom-up
way: one begins with customer’s requirements (aka “axioms”), translates them
into appropriate functional requirements, specifies needed ingredients for the
production and, finally, designs on this basis the optimal technological process
with the desired outcome. The traditional way of designing new technologies
works into the opposite direction: one experiments with the ingredients, eventually
obtains some new interesting product and then looks for its applications. The
analogy between AD and Hilbert’s formal axiomatic method can be better seen
if this latter method is understood by contrast to thegenetic method of building
mathematical concepts and theories (see 1.3 above). This analogy (and apparently
a motivation) is further reinforced by the fact that AD essentially employs the
independence axiom according to which functional requirements must always be
mutually independent. As in the case of von Neumann’s “axiomatic” Quantum
Theory we see here a fruitful application of Hilbert’s axiomatic method as a
general idea and insight but not as a ready-made logical technique.

2.4 Conclusion of Chapter 2

In this chapter we made an attempt to describe and evaluate the integral
impact of the Hilbert-style axiomatic method on mathematics and science. In
Section 2.1 we considered set theory, where the role of the formal axiomatic
method is more significant than in any other area of today’s mathematics.
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However in this and some other related cases this role is very special. In modern
axiomatic set-theory (as distinguished from Cantor-style so-called “naive” set
theory) axiomatic theories such as ZFC are typically involved as objects of
further mathematical study rather than as fragments of established mathematical
knowledge. Similar remarks can be made about the standard Proof theory
developed after Hilbert’s pioneering works in this field. Proofs and conjectures
in these mathematical disciplines are typically presented in the same semi-formal
mathematical style as in any other area of mathematics — even if people working
in FOM usually more tightly control the theoretical resources used in their proofs
than mathematicians working in other areas. Thus in set theory, proof theory
and other FOM-related mathematical disciplines the Hilbert-style axiomatic
representation of theories is used primarily for meta-mathematical purposes,
namely, as a means for studying the represented theories using various (meta-
)mathematical methods, but not for more pedestrian purposes such as storing,
communication, dissemination and reproduction of mathematical knowledge.

In Section 2.2 we described and analysed different aspects of the most
significant and systematic attempt to introduce the Hilbert-style axiomatic
method (as an element of set-theoretic foundations) into a broad mathematical
practice, which is associated with the (pseudo-)name of Nicolas Bourbaki. We
have stressed the fact that Bourbaki’s axiomatic approach is not quite the same
as Hilbert’s. Unlike Hilbert’s original version, Bourbaki’s version of the axiomatic
method is semantic, which means that Bourbaki-style axiomatic theories are
equipped with default set-theoretic models, which are, generally, not isomorphic.
This important point has never been emphasised by Bourbaki himself. It has,
however, been emphasised and widely discussed in a different context by Patrick
Suppes and some other philosophers who tried to use Bourbaki’s axiomatic
approach to represent scientific theories beyond pure mathematics. Proponents of
this approach coined the term “semantic view of theories” as a name of the view
according to which a theory is essentially characterised by a class of its models
rather than by its axioms and theorems in a non-interpreted form. This approach
allows one to abstract away from syntactic details, which working mathematicians
usually consider to be irrelevant to their object of study, and thus more effectively
use this method for representational purposes. A drawback of this approach is
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that mathematical proofs presented in Bourbaki-style are not formally checkable
in practice (beyond trivial cases). Given a valid proof so presented one is always
in a position to show that the conclusion of this proof can in principle be logically
deduced from the axioms of set theory, but typically not in a position to perform
such a formal deduction syntactically and check its correctness.

As we have seen, the impact of Bourbaki’s continuing project is
controversial. Outside a narrow group of enthusiasts who continue today to push
Bourbaki’s project further forward, there are very few research mathematicians
and mathematics educators who are ready to use Bourbaki’s volumes in their
teaching and research. Attempts to reform elementary mathematics education
along Bourbki’s line, which were undertaken in many countries from the1950s to
the 1970s are almost universally seen today as “pedagogical errors” (see 2.2.3

above). However, it is hardly disputable that Bourbaki succeeded creating a
certain vision of mathematics as a unified discipline and producing a semi-formal
“set-theoretic language”, which is routinely used today in various fields and areas
of mathematical research helping their cross-fertilisation. Even if there are serious
reasons to regard Bourbaki’s set-theoretical FOM as outdated today, its basic
ingredients still serve mathematicians and students of mathematics for many
everyday purposes.

In Section 2.3 we overviewed some past attempts to implement the Hilbert-
style axiomatic architecture in physics, biology, computer science and engineering.
We observed that such attempts have so far failed to make axiomatic theory-
building into a standard and commonly recognised scientific practice. Already in
the 1950s the community of people interested in the application of formal logical
methods in science divided into a group of working scientists who tried to make
progress in their scientific fields using new logical methods, on the one hand, and a
group of logically-minded philosophers who tried to provide the existing scientific
theories with new logical foundations and to represent these theory axiomatically
according to rigorous logical standards, on the other hand. Some members of the
second group quite rightly pointed to the fact that scientists tended to interpret
logical methods too liberally and fell short of any reasonable logical standard
in their attempts to apply the axiomatic method in science. In spite of recurring
attempts to bridge this disciplinary gap between science and the logically-oriented
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philosophy of science it remains today quite wide.
Some researchers don’t see a problem here assuming that a logical analysis

of scientific theories is a special philosophical task, which need not be seen as a
part of science itself. This point of view is clearly at odds with the idea according
to which the philosophy of a scientific discipline should be in close interaction
with the ongoing research in this discipline and be well informed by its latest
achievements. Proponents of logical approaches in the philosophy of science of the
older generation, such as Ernest Nagel and Mario Bunge, spent significant efforts
aimed at bridging the gap between science and its philosophy; they hoped that
modern logical tools could help them to achieve this goal. However, in retrospect,
it appears to us that this goal was never achieved. We believe that the goal is
rightly set and attempt in this work to achieve it by reconsidering the received
notion of axiomatic method and designing a new conception of this method having
in mind its possible applications in science.

3 Novel Axiomatic Approaches

In this chapter we describe two non-standard axiomatic mathematical
theories: the theory of elementary topos built by W. Lawvere as a part of his
project of developing category-theoretic foundations for mathematics and the
Homotopy Type theory built by V. Voevodsky and his collaborators as a part
of the project of developing Univalent Foundations for mathematics. We qualify
these axiomatic theories as “non-standard” and “novel” because they use axiomatic
architectures that differ significantly from Hilbert’s axiomatic architecture (which
in this context we call “standard”). In the next chapter we formulate on this basis
a new version of the axiomatic method that we call “constructive” and show that
it is more appropriate for the formal representation of scientific theories than the
standard axiomatic method.
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3.1 Category-theoretic foundations of mathematics and Topos

theory22

3.1.1 Language of Categories

The mathematical concept of category emerged in the 1940s, its official
birth marked by a 1945 paper by S. Eilenberg and S. MacLane [60]. Its motivation
and basic content can be explained using Bourbaki’s concept of mathematical
structure, discussed above (see 2.2.2). Recall the concept of isomorphic algebraic
groups and observe that

• The relation of isomorphism between groups is defined in terms of the
existence of an isomorphism as a map. Such maps are, generally, many and
form a further structure.

• Recall that a group isomorphism

f : G
∼−→ G′

is a bijective (aka invertible) map such that for all g1, g2 from G we have
f(g1 ◦ g2) = f(g1) � f(g2) where ◦ and � are group operations in G and
G′ correspondingly. If we now take f to be any (not necessarily invertible)
function and preserve the above condition we get a more general concept of
map between algebraic groups, which is known as group homomorphism.

Similar observations can be made about other types of Bourbaki-style
mathematical structures: algebraic rings, lattices, topological spaces, etc. The
moral is that every type of structure is equipped with a special type of map
between structures of the given type. In current mathematical argo it is said that
such maps “respect” or “preserve” the corresponding structure (even if what is
respected and preserved here is the type of structure and not a singular structure
up to isomorphism). It should also be stressed that such maps are not defined
automatically for all types of structures: in some cases there is room for different
choices. For example, standard maps between topological spaces called continuous
transformations do not, strictly speaking, preserve the topological structure but
reflect it : open subsets in the target space are images of open subsets in the

22This Section includes some materials from [233, Ch. 5].
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source space but open subsets of the source space may also map to closed subsets
of the target space. Arguably the concept of a map aka transformation between
structures of the same type is at least as fundamental as the concept of the
corresponding structure type itself. Consider again the concept of topological
space. It is apparently impossible to explain this concept properly without
referring to continuity and continuous transformations. This and similar examples
motivate the idea that Bourbaki’s definitions of structure types are incomplete,
and that an adequate definition should also specify a corresponding type of maps
between structures of the given type.

The category of mathematical structures of a certain type T can be
informally described as a collection of all structures of the given type together with
all maps between these structures that respect it (so that the type of such maps
is also specified). The category of groups G, which comprises all groups and all
homomorphisms between the groups, is an example. Another important example
is the category of sets SET that comprises all sets and all functions. Crucially, the
maps between structures, which in category theory are called morphisms, support
a further structure of an algebraic kind: morphisms f : A → B and g : B → C

induce the composition morphism h = g ◦ f : A → C as it can be also shown in
a more geometric way with the following diagram:

B
g

  
A

f
??

h
//C

The equality h = g◦f translates into the statement that the above diagram
commutes (or is commutative).

Algebraically speaking, the operation of composition ◦ defined on
morphisms of a given category is partial in the sense that it is defined not for all
ordered pairs of morphisms found in the given category but only for those pairs
of morphisms where the target object of one morphism (called its codomain)
coincides with the source (domain) of the other morphism. Notice that the
structure determined by the composition of morphisms in a given category is not
precisely a Bourbaki-like structure, because the collection of objects of the given
category (sets, groups, topological spaces, etc.) and the collection of all morphisms
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belonging to this category are, generally, not sets but proper classes as in the case
of the category SET of “all” sets and in the case of the category G of “all” groups.
Nevertheless, categories also admit a natural definition of structure-preserving
map that is called functor. An easy example of functor is the forgetful functor
U : G → SET that maps every group to its underlying set “forgetting” about
the group operation. The notion of functor allows one to consider categories of
categories of various sorts, i.e., categories such that their object are also categories
and morphisms are functors. Functors of the form f : A→ B also form categories
(called functor categories and denoted [A,B]), where morphisms are structure-
preserving maps between functors called natural transformations.

More formally, a category comprises:

• a class of objects A,B,C, . . . ;

• for every pair of objects A,B a class (usually a set) of morphisms f, g, h, . . .
of form A → B where A is called the domain and B the codomain of the
given morphism f , in symbols Dom(f) = A and CoDom(f) = B;

• the operation of composition h = g ◦ f defined for all pairs of morphisms
f, g such that CoDom(f) = Dom(g), which is associative, i.e., h ◦ (g ◦ f) =

(h◦g)◦f whenever the composition is defined (in what follows we often omit
the composition sign ◦ and write h = gf);

• the identity morphism 1A associated with every object A such that for every
morphism f with CoDom(f) = A, 1A ◦ f = f and for every morphism g

with Dom(g) = A, f ◦ 1A.

The notion of identity morphism or “null transformation” formally
introduced here is similar to the notion of unit of algebraic group, but since the
operation of composition defined on morphisms is partial, each object of the given
category has its own identity morphism. Since the above definition of category
implies the uniqueness of identity morphisms for each object of the given category,
the notion of object can be formally identified with that of identity morphism.

Categories of various Bourbaki-style mathematical structures are
important examples of categories, but they are not the only such examples. The
concept of category can be also fruitfully used in a more abstract way. Notice that
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an algebraic group can be identified (up to isomorphism) with a category with a
single object provided with a set of invertible morphisms, i.e., isomorphisms into
itself. The morphisms here are elements of the group, the identity morphism of
the object is the unit, and the composition of morphisms is the group operation.
The invertibility of morphisms grants the existence of inverse elements. In this
case the category concept is used not as an abstraction that captures a common
structure of independently introduced mathematical concepts and constructions
(such as sets with functions, groups with homomorphisms, etc.), but as an
autonomous elementary conceptual tool for the construction (or reconstruction)
of mathematical concepts.

Category theory (CT) proved to be a useful mathematical language that
in the second half of the 20th century helped to organise a number of emerging
concepts and new results into a stable theoretical form. For early examples that
justified the usefulness of CT in the eyes of many mathematicians, see [61], [59],
[218]. Some new mathematical concepts and mathematical theories developed
during the same period would not even have emerged without CT: in particular,
this is true of the concept of topos invented by A. Grothendieck in the 1950s.
A number of today’s mathematical disciplines, including Algebraic Geometry,
Homological Algebra, Functional Analysis, use CT as their basic language [147],
[183].

As Yu. Manin puts it, “at the next stage of this historical development
[that began with the rise of Set theory at the end of the 19th century], sets gave
way to categories” [182, p.7]. This is a robust “fact of science” in Hermann Cohen’s
sense [45, 119-120], which calls for historical and philosophical reflexion and
analysis. Here we mention only one reason why the category-theoretic language
was at certain point preferred to the set-theoretic one in a significant number
of mathematical disciplines. The concept of map aka transformation (French
application, German Abbildung, Russian otobrazhenie) has a geometrical origin; it
has been increasingly important in mathematics at least since Gauss’ pioneering
works on the geometry of curve surfaces in the first half of the 19th century
[78]. In particular, it plays a central role in Felix Klein’s Erlangen Program of
1872, which aims at a characterisation of geometric spaces in terms of groups
of their transformations and invariants of these transformations [141]. Cantor’s
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set theory also uses this concept at a fundamental level in the form of one-to-
one correspondence between sets, without which the key notion of cardinality
of a set cannot be defined. In the 20th century mathematics the importance of
map concept in a number of key mathematical disciplines became even more
obvious. The fact is strongly evidenced by the successful application of CT in the
aforementioned works by H. Cartan, S.Eilenberg, N. Steenrod and D. Quillen, and
in many contemporary mathematical works.

The standard axiomatic approach in set theory started by E. Zermelo
in 1908 [305] uses as its only non-logical primitive predicate the relation of
membership (x ∈ y or in words “x is element of set y”), not the concept of map
or some of its modifications. This has an effect on how the standard axiomatic
approach is used in the Bourbaki-style set-theoretic semantic setting. Surely, maps
between mathematical structures, e.g., group homomorphisms, are representable
in this setting. But the set-theoretic details of such representation have been
perceived by many mathematicians as wholly irrelevant. Recall the aforementioned
puzzling fragment of the Bourbaki 1950 manifesto in which the author claimed
that “the notion of set itself disappeared . . . in the light of the recent work on
logical formalism”, so that “mathematical structures become, properly speaking,
the only ’objects’ of mathematics” [27, p. 225-226], see 2.2.2 above. Bourbaki
doesn’t stress the importance of maps in this article but his dissatisfaction with the
standard set-theoretic grounding of mathematical structures is manifest. In this
context the success of CT as an alternative language that allowed mathematical
structures to be effectively theoretically accounting for in terms of their maps
bypassing the redundant set-theoretic details, appeared to many mathematicians,
among them some Bourbaki members (including H. Cartan, S. Eilenberg and A.
Grothendieck) to be a way to realise Bourbaki’s dream about the “disappearance
of sets”.

Given the fact that CT emerged during the early stage of Bourbaki’s
project and the fact that such important figures in the early history of CT as
S. Eilenberg and A. Grothendieck were at the same time Bourbaki members, one
might wonder how it could happen that CT never made its appearance in the
Bourbaki’s volumes. In fact such plans existed: as evidenced in extant working
materials of Bourbaki’s in 1956, the group planned to supplement their first
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volume of Elements (Set theory) with an additional chapter on categories and
functors, and in 1961 — to produce a separate volume on the Abelian Categories
[48]; see also [195] for further historical details. These plans were never realised,
however. Different members of the group had contrary opinions about the merits
and the usefulness of categorical approaches; as a result the language of categories
did not gain Bourbaki’s official recognition (in spite of the fact that many category-
theoretic ideas and concepts were used in disguise in a number of places of
Bourbaki’s Elements.)

In our view, the absence of CT in Bourbaki’s Elements is not contingent
on, and cannot be fully explained by, an analysis of conflicting views of Bourbaki
members on that matter. A deeper reason is that the category-theoretic language,
in the form in which it has been proven effective, is not merely a conservative
extension of Bourbaki’s set-theoretic semantic framework; it could not be be easily
integrated into this framework without revising its basic principles. As we have
already explained above using the example of group theory, Bourbaki-style set-
theoretic presentations of mathematical theories can be analysed and understood
in standard logical terms including model theory (see 2.2.1 above). This allows
one to think of set theory not only as a mathematical language but also as a
foundation of mathematics. It is not immediately clear how this or a similar
analysis may proceed in the case of theories presented using the category-theoretic
language. The introduction of categories on equal footing with groups, topological
spaces and other mathematical structures not only encounters technical difficulties
(including the size problem in the case of categories of “all” sets, groups, etc.) but
is also at odds with the existing practice of “categorical reasoning”, which makes
the Bourbaki-style set-theoretic underpinning wholly redundant (at least from the
viewpoint of a working mathematician). While we cautiously say that CT “helps
to organise” some mathematical contents into a “stable theoretical form” (in order
to avoid misunderstanding on the part of logical and philosophical readers), S.
Eilenberg and N. Steenrod in the Preface to their [61] as well as D. Quillen
in [218] boldly claim that they build “axiomatic” theories. Like von Neumann
in [301], these authors use the notion of axiomatic theory in the very broad
sense of theory built on explicit first principles; they don’t formally specify any
particular axiomatic architecture and don’t provide any other logical details of
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their axiomatic approach. In the next Section we overview the contribution of W.
Lawvere, who since the early 1960s has been working on the transformation of
the categorical language into full-fledged foundations of mathematics.

3.1.2 Category Theory as a Foundation

A) Diagrammatic Syntax
The standard definition of category presented above straightforwardly

translates into the language of CFOL, provided that objects are identified with
their identity morphisms (in order to avoid distinguishing between objects and
morphisms as two different types). Such a theory has four primitive terms:
“morphism” as a general name of individuals (like “sets” in ZFC) and three
primitive predicates, namely, two binary relations of being domain and codomain
of a given morphism (Dom(A, g) and CoDom(B, f)) and a ternary relation for
the composition of morphisms (Comp(h, g, f), which holds when Dom(A, g),
CoDom(B, f) and A = B hold). The axioms of such a theory are sometimes
referred to in the current literature as Eilenberg-MacLane axioms, and the theory
itself is called EM for that reason (see 1.3.1 above). Such a list of axioms for
general CT was published in 1963 by W. Lawvere in his Ph.D. thesis [155].
Interestingly, Lawvere introduces in the same move a non-standard syntactic
convention that allows one to read a categorical diagram as a logical (first-order)
formula:

“[In a category w]e identify objects with their identity maps and we
regard a diagram

A
f //B

as a formula which asserts that A is the (identity map of the) domain
of f and that B is the (identity map of the) codomain of f . Thus, for
example, the following is a universally valid formula

A
f //B ⇒ A A //A ∧ A

f //B ∧ B B //B ∧ Af = f = fB

”

From a formal point of view, this is nothing but an unusual symbolic
convention or a shorthand, which does not change the sense of the matter. But in
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fact it touches upon the core of the standard (Hilbert-style) axiomatic method.
Recall from 1.2.3 Hilbert’s distinction between “real” and “ideal” mathematical
constructions: only symbolic constructions qualify in this sense as real while all
their interpretations qualify as ideal. As we have already stressed, this distinction
creates a gap between the formalised and the usual non-formalised mathematics
because manipulations with symbols in formal theories represent some logical
operations but not operations with the “ideal” objects themselves. This is an
essential feature of Hilbert-style formal mathematics, which does not disappear if
one simply ignores the metaphysical distinction between real and ideal objects
and the historical origin of this mathematics. Let us demonstrate this point
with a simple example. Hilbert and Bernays in [113] use the symbolic expression
Zw(x, y, z) to denote a predicate saying that a given point y lies between
given points x, z. As soon as values of x, y, z are fixed, Zw(x, y, z) expresses a
proposition. Now let us tentatively identify Zw(x, y, z) with a geometrical object
(construction), which makes the corresponding proposition true, namely with a
triple of points < x, y, z > such that y lies between points x and z. So we hope
that our formula will refer both to a geometrical object (construction) and a true
proposition “about” this object — just as in the case of the expression f : A→ B,
read both as a particular morphism f and, by Lawvere’s convention, also as a
judgement that A is the domain and B is the codomain of f .

In some special cases such a constructive interpretation of Hilbert’s
formalism seems to work. Consider the formula

Zw(x, y, z)→ Zw(z, y, x)

and read it, first, as intended (i.e., as a logical implication) and second, as a
description of the geometrical operation, which turns this geometrical construction

X Y Z

into that
Z Y X

by permuting endpoints X, Y . In this particular case there is indeed a structural
similarity between operations with symbols x, y, z in Hilbert’s formulas and
operations with symbols X, Y, Z forming part of the traditional geometrical
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notation, used together with traditional geometrical diagrams. However, such
a geometrical interpretation of logical formulas obviously does not extend to
the whole of Hilbert’s formalized Euclidean geometry. Notice that the formula
Zw(x, y, z) is meaningful even if it expresses a false proposition; in such cases
we still have a symbolic construction but have no corresponding geometrical
construction. Further, if we consider a slightly more complex formulas like this
one

∀x∀y∀z(Zw(x, y, z)→ Zw(z, y, x))

(which under the intended interpretation says that Zw(x, y, z) → Zw(z, y, x) is
universally valid) we find no obvious geometrical interpretation for the symbol ∀,
and no geometrical counterpart of this whole formula.

The use of diagrammatic category-theoretic syntax as a logical syntax (or,
equivalently, a logical interpretation of category-theoretic commutative diagrams)
proposed by Lawvere does not by itself solve, but only highlights, the problem
of mismatch between the logical syntax of formalised theories and the symbolic
means used in everyday mathematics. We shall shortly see, however, that Lawvere
accomplishes much more toward its solution, in particular, by developing a
geometric interpretation of logical quantifiers (see 3.1.4).

B) Elementary Theory of Category of Sets
An important result obtained by Lawvere in [155], which has also been

published as a separate paper [156], is a category-theoretic axiomatic theory of
sets known as ETCS (Elementary Theory of Category of Sets), where the word
“elementary” refers to the first-order character of this theory. See also [164] for
a more detailed exposition of this work. Unlike the aforementioned theories of
Homological Algebra and Homotopy [61], [218] that also use the language of
categories and are called by their authors “axiomatic”, ETCS is an axiomatic
first-order theory in the standard sense of the term familiar to logicians and
philosophers. At the same time, ETCS has some unusual features, as we shall
shortly see. Lawvere’s idea is to extend EM with additional axioms to the effect
that a category that satisfies the additional axioms is in an appropriate sense
(which will be specified shortly) equivalent to the “concrete” category of sets SET
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built with (all) ZFC-based sets and functions.
Here we provide only a partial description of ETCS’s concepts and axioms,

which helps one to understand the basics of Lawvere’s category-theoretic approach
to set theory. First, one needs to reconstruct the primitive set-theoretic concept
of membership in the category-theoretic setting. To that end, one postulates the
existence of a terminal object, which is an object of the given category that has
exactly one incoming morphism from every object of this category (including
itself). If such an object exists in a category then it is unique up to canonical
(unique) isomorphism (exercise). In SET the terminal object is “the” singleton
object (albeit the identity relation used in ZFC distinguishes between different
singleton sets). Now an element x of a given object (set) A in category C is
identified with arrow x : T → A from the terminal object T to that object.
Elements of objects in a category, so defined, are also colloquially called points.
Thus the concept of set-theoretic membership as reconstructed in ETCS is no
longer primitive but derived. Moreover it is no longer a relation between two
sets, but a relatively complex construction that involves all objects of the given
category (via the universal property of terminal object).

In addition to the existence of terminal object ETCS postulates the
existence of certain other universal constructions, which is the defining property
of Cartesian Closed category or CCC for short (see 3.1.3 C below). Among
these constructions is the exponent object BA, which in SET represents the set of
functions of the form A→ B.

Further, ETCS comprises an axiom which describes the special property of
SET that morphisms in this category, i.e., functions, are determined pointwise: if
the values of two functions f, g : A→ B coincide on all their arguments, i.e., for
all x ∈ A we have f(x) = g(x), then the two functions are the same: f = g. Using
the category-theoretic reconstruction of set-theoretic membership, this property
can be expressed via the statement that the following diagram commutes for all
x:

T
x

��

y

��
A

f //
g

//B



118

This property is known as function extensionality (but Lawvere in [155],
[156] does not use this terminology, which is more recent and comes from different
sources). In topos theory (see 3.1.4 below), the same property is called well-
pointedness.

The Axiom of Choice (AC) is expressed in category-theoretic terms as
follows. Morphism e is called epic aka epimorphism if it is right-cancellable in
the sense that for all morphisms f, g, fe = ge implies f = g (provided the
compositions are well-defined). A morphism e : A→ B is called split epimorphism
if there is a morphism s : B → A such that es = B. Every split epimorphism is an
epimorphism (exercise). The category-theoretic version of AC postulates that all
epimorphisms in a given category are split. In SET, epimorphisms are surjective
functions. The splitting condition es = B in SET amounts to saying that given a
surjective function e : A → B, there exists a choice function s : B → A that for
every element b ∈ B picks up a particular a ∈ A such that e(a) = b.

In total Lawvere introduces 8 axioms (on the top of the Eilenberg-MacLane
axioms). As in the case of the EM axioms, the translation of these ETCS axioms
into CFOL is straightforward; this allows one to qualify ETCS as a first-order
formal theory in the standard sense of the term.

The appropriate notion of equivalence used in ETCS for the meta-theoretic
purpose indicated above is itself category-theoretic. Consider categories A,B with
two functors f, g going into the opposite directions:

A
f //B
g
oo

;
consider compositions fg and gf . If fg = A and gf = B then the functors f and
g are said to be mutually inverse, being invertible and being isomorphisms, and
categories A,B are called isomorphic. The equivalence of categories is a weaker
property, which amounts to the existence of invertible natural transformations
(natural isomorphisms ) η : fg → A and θ : gf → B. Isomorphic categories
are equivalent but equivalent categories are not, generally, isomorphic. The
equivalence of categories so defined is obviously an equivalence relation in the
usual sense of the term.
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Why has this particular form of equivalence been used by Lawvere along
with ETCS (recall that it is introduced in [156] not as a proper part of ETCS
but as a meta-theoretic concept)? Category-theoretic properties such as Cartesian
closedness (and all other properties of categories used in Lawvere’s axioms that
extend EM to ETCS) are invariant not only under the isomorphism of categories
(which is a trivial fact) but also under the equivalence of categories (which is not
a trivial fact). The idea according to which category theory studies properties
of categories, which are invariant under the equivalence of categories, can be
understood on equal footing with the idea according to which Bourbaki-style
structures are studied up to isomorphism. We have shown in 2.2.2 how this latter
idea can be spelled out more precisely using the isomorphism equivalence principle
(IEP). Category theory applies a more general equivalence principle, namely the
category equivalence principle (CEP), where the equivalence in question is the
equivalence of categories [2]:
Let G,H be two equivalent categories. Then for any categorical property P it is
the case that category G has property P if and only if category H has property
P . In symbols:

∀P. (G ' H)⇒ (P (G)↔ P (H))

CEP is not a part of (and does not follow from) the standard definition of
category above, but it plays a major role in category theory. Small categories, i.e.,
categories where classes of objects are sets, can be seen and studied as Bourbaki-
style structures. However, the categories of Bourbaki-style structures of various
types such as SET, G, etc., which arise “naturally” in the context of Bourbaki-style
mathematics, are large and only locally small — in the sense that all collections
of morphisms from a fixed object A to fixed object B in such categories are sets
of the form Hom(A,B), known as hom-sets. Locally small categories are not
structures in Bourbaki’s sense and their theory cannot be built using Bourbaki’s
semantic axiomatic method. The invention of category-theoretic constructions
with properties invariant under the equivalence of categories (but not only
isomorphism-invariant), which form the bulk of basic CT, has been a definite step
beyond Bourbaki-style mathematics. Thus CEP provides an additional theoretical
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argument in support of our above claim that CT could not possibly be integrated
into Bourbaki’s Elements without a very substantial revision of this work (see
3.1.1).

Just as the set-theoretic foundations of Bourbaki-style mathematics are
not isomorphism-invariant all the way down (Benaceraf problem [20]), the lower
level of ETCS, namely, the Eilenber-MacLane axioms (EM), are not fully category-
invariant (i.e., not invariant under the equivalence of categories). Recall that these
axioms include the condition of composability of morphisms f, g expressed in
terms of the equality of objects (composition g ◦f exists if and only if the domain
of g and the codomain of f are the same), which, unlike the isomorphism of
objects, is not category-invariant. (The equality of morphisms with shared domain
and codomain in locally small categories is category-invariant.) This foundational
difficulty was not treated by Lawvere in [156] but was later addressed by Michael
Makkai, who used a multi-sorted language that allowed him to formulate the
concept of morphism composition without referring to the equality of objects
[179]. In 3.2.5 below we describe a more recent approach to equivalence principles
and related identity issues based on Homotopy Type theory [2].

Lawvere’s “metatheorem” [156, p. 1510] according to which models of
ETCS are equivalent to SET holds under additional completeness conditions that
cannot be expressed in the first-order form. In that respect ETCS is similar to
standard first-order theories like ZFC and PA, where non-standard models can also
be ruled out only via further higher-order assumptions. Thus ETCS satisfies the
usual standards of formal axiomatic theories with the following mutually related
reservations: (i) the intended model of this theory is not a set model but a proper
class model and (ii) the intended model is specified up to category equivalence but
not up to isomorphism. However significant these reservations may be, they hardly
change the core of Hilbert’s axiomatic method. ETCS first demonstrated how
category theory could be used to build formal axiomatic theories in the sense of
“axiomatic” acceptable both to working mathematicians interested in applications
of CT in various mathematical disciplines and to logicians and logically-oriented
philosophers interested in foundations.
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3.1.3 Categorical Logic23

Along with his work on ETCS Lawvere developed a more general project
of category-theoretic foundations of mathematics, namely, an axiomatic theory
of the Category of Categories (Category of Categories as a Foundation or CCAF
for short) [157]. For an analysis of this work see our [233, ch. 5.2]. We turn now
to a different, albeit closely related, development in category theory that can be
labelled the internalisation of logic. We shall argue that the concept of the internal
logic of a given category has far-reaching epistemological implications and calls
for a more profound revision of standard formal axiomatic approaches. In order
to explain this important development, we need some preliminaries.

A) Type theories
The idea of a logical calculus that does not simply apply to different

domains of individuals but explicitly distinguishes between different types of
individuals dates back to Bertrand Russell, who coined the term “theory of
types” [251, Appendix B] (we leave aside Russell’s motivations for developing
this theory). The idea can even be traced further back to Aristotle’s distinction
between different genus of things, and his principle according to which switching
between different genus in a piece of reasoning (metabasis) is not allowed.

One may remark that the type distinction reflects a feature of our natural
languages:

“Types are inherent in everyday language, for example, when we
distinguish between “who” and “what” or between “somebody” and
“something”” [171, p.125].

and further remark that distinguishing between different types of objects is tacitly
done in mathematical practice:

“In our mathematical practice we have learned to keep things apart. If
we have a rational number and set of points in the Euclidean plane,
we cannot even imagine what it means to form the intersection. [. . . ] If
we think of a set of objects, we usually think of collecting things of a
certain type, and set-theoretical operations are to be carried out inside

23For a broader overview of the subject see [51].
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that type. Some types might be considered as subtypes of some other
types, but in other cases two different types have nothing to do with
each other. That does not mean that their intersection is empty, but
that it would be insane to even talk about the intersection.” ([34, p.
31])

The problem stressed in the above quote concerns the fact that the
standard set-theoretic foundations of mathematics do not support a formal
distinction between different types of objects, and thus do allow for the absurd set-
theoretic constructions mentioned in the quote. Since every mathematical object
is a set, one may always form an intersection of two objects. Interestingly, the type
distinction between points and straight lines, which is made explicit in Hilbert’s
Foundations of 1899, disappears in his Foundations of 1934, where Hilbert’s formal
axiomatic method takes its mature symbolic form; in the latter case Hilbert treats
only points as primitive objects. This is not surprising because the symbolic logical
calculus used by Hilbert is not typed. One could expect that the replacement of
the underlying logical calculus by a typed logic may solve the problem without
any significant effect on the axiomatic architecture. However it turns out that
this is not the case. Attempts to use type theories in the foundations of logic and
mathematics gave rise to a novel axiomatic architecture of formal theories, which
is quite unlike Hilbert’s.

В) Combinatorial Logic and Curry-Howard Correspondence
In 1924 Moses Schönfinkel published a paper [255], [256] aimed at

deepening Hilbert’s formalisation of logic, which in the author’s view did not
provide a purely formal treatment of logical concepts such as proposition and
variable. Schönfinkel’s approach was to reduce the logical concepts, which so far
were generally seen as basic, to a small number of more fundamental syntactic
operations like substitution and permutation of signs [261]. Independently similar
ideas inspired Huskell Curry in the1920s (before he first came across Schönfinkel’s
paper during the academic year of 1927-1928), who gave to this field of study its
current name of Combinatory Logic [39], [260]. Here is how Curry describes the
aim and the scope of Combinatory Logic in a later co-authored monograph:

“Combinatory logic is a branch of mathematical logic which concerns
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itself with the ultimate foundations. Its purpose is the analysis of
certain notions of such basic character that they are ordinarily taken for
granted. These include [(i)] the process of substitution, usually indicated
by the use of variables; and also [(ii)] the classification of the entities
constructed by these processes into types or categories, which in many
systems has to be done intuitively before the theory can be applied. It
has been observed that these notions, although generally presupposed,
are not simple; they constitute a prelogic, so to speak, whose analysis
is by no means trivial. ” ([96, p. 2])

Purposes (i) and (ii) mentioned by Curry in the above quotes are mutually
dependent. Since a formal logical calculus is seen as a bare symbolic calculus where
signs do not have any previously assumed meaning, one needs to make explicit
certain distinctions between different types of symbolic constructions without
which this calculus cannot qualify as logical. This includes, in particular, the
distinction between individuals, propositions and logical connectives. The idea of
Combinatory Logic as Curry describes it requires making all such distinctions
formal without appealing to the usual meanings of the words “individual”,
“proposition”, etc. Thus, pushing the formal approach to logic to its extreme shows
the necessity of typing. One may argue on this ground that the type distinction is
always present in logic whether one describes it explicitly or not. As Bart Jacobs
puts this ‘A logic is always a logic over a type theory” [128, p.1].

In 1969 William Howard reformulated and extended Curry’s results in a
note [125] that was first published only in 1980. Instead of using Combinatorial
Logic, Howard used the formalism of (simply) typed lambda calculus invented
by Alonzo Church in the late 1920s [39] and first published in 1933. Curry was,
of course, aware about the fact that the formalism of lambda-calculus comes
close to that of Combinatory Logic, but he claimed that his formalism provides
a deeper foundational analysis [96, p.6-9]. Unlike Curry, Howard did not stress
the philosophical motivation and the foundational significance of this result, but
formulated it in terms of structural correspondence between two families of formal
calculi, namely, the simply typed lambda calculi, on the one hand, and certain
Getzen-style deductive systems, on the other hand. Such a presentation has certain
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pedagogical advantages for mathematical students not interested in foundational
issues but it leaves wholly behind the philosophical content of Curry’s work
and gives a mistaken impression that we are dealing here with an unexpected
mathematical fact rather than with a contentful logical principle.

Recall that in 1.4 we described the fact that problems and theorems
in Euclid’s Elements share a common structure as a form of Curry-Howard
correspondence. Now we are in a position to explain this comparison. The Curry-
Howard correspondence amounts to the observation that the rules of simply
typed lambda calculus can be used mutatis mutandis for making (constructive)
formal deductions. Lambda calculus (both typed and untyped) is a formal
model of computations or, to put it in the language of computer science, of
algorithms. Algorithms solve Euclid’s geometrical problems. Logical deductions
prove theorems. The two types of operations have different kinds of content, but
share a common formal structure.

A more recent development in mathematical logic that is conceptually
closely related to the Curry-Howard correspondence is the BHK semantics of
the intuitionistic propositional calculus, so called after the names of Brouwer,
Heyting and Kolmogorov. In his Calculus of Problems published in 1932 Andrey
Nikolayevitch Kolmogorov uses a version of the syntax of Heyting’s intuitionistic
propositional calculus but provides it with a different semantics by interpreting
this calculus in terms of solving problems or performing computational tasks
rather than inferring propositions from other propositions [143].

C) Cartesian Closed Categories and Categorical Logic
By means of category theory, the mathematical structure behind the

Curry-Howard correspondence can be presented in an invariant form that does not
depend on arbitrary syntactic choices. An appropriate category that in Lawvere’s
words “serve[s] as a common abstraction of type theory and propositional logic”
[160, p.134] is known as the Cartesian closed category or CCC for short. CCC first
appears under this name in Lawvere’s 1969 paper [160]. The concept of CCC itself
is, however, already present in Lawvere’s dissertation [155] and, as we have already
seen, in his 1964 ETCS paper. Lawvere’s ideas about the logical relevance of CCC
were systematically developed by Joachim Lambek in the late 1960s and early
1970s, see [151], [152], [153]; a systematic analysis of the relationships between
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Combinatory Logic, lambda-calculus and Cartesian Closed categories, which also
contains some historical notes, is found in Lambek’s and Scott’s monograph [171].
This work gave rise to the new research field of Categorical Logic, which today
also involves different approaches that combine logic with category theory [291],
[51].

The aim of Lawvere’s 1969 paper [160], as the author described it more
recently, was to “demystify the incompleteness theorem of Gödel and the truth-
definition theory of Tarski by showing that both are consequences of some very
simple algebra in the cartesian-closed setting” [165, p.2]. Lawvere’s idea here is to
build a minimal conceptual setting that supports the diagonal proofs (aka diagonal
arguments) so-called after Cantor’s famous proof that there exists no one-to-one
elementwise correspondence between the set R of real numbers and the set N of
natural numbers, which involves an infinite matrix of 01-sequences and its inverted
diagonal. Similar arguments involving impossible constructions have been used to
prove impossibility results (and other related results), in particular, by Gödel (the
First Incompleteness theorem), Tarski (the undefinability of arithmetical truth in
arithmetics), Russell (Russell Paradox), Brouwer (his Fix Point theorem) and
Turing (the undecidability of the Halting Problem over Turing machines). Before
Lawvere’s 1969 paper, however, no precise notion of generalised diagonal argument
covering all such case was known. Lawvere showed that CCC is an appropriate
abstract setting in which the argument in its general algebraic form goes through.

As we saw in 3.1.2, ETCS specifies “the” category of sets as CCC of a
special sort. The logical relevance of CCC explained above allows one to think of
ETCS in a new way. In the last Section we presented ETCS as a formal first-order
axiomatic theory similar to ZFC and PA (with certain reservations). Recall that
the standard axiomatic architecture of such theories comprises (i) a background
logical calculus equipped with a logical semantics that specifies, in particular, the
meaning of logical constants and the concept of logical inference in some form) and
(ii) the extra-logical part that involves non-logical constants, concepts (like that
of membership in ZFC) and axioms that are not logical tautologies. In ETCS the
extra-logical part has two layers: the general category theory EM (the lower layer)
and Lawvere’s 8 additional axioms and their consequences (the upper layer). Now
it turns out that a fragment of this upper layer, namely the theory of CCC, admits
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a logical semantics and in this sense is logically relevant. This fact perturbs the
standard axiomatic order according to which logic fully belongs to the background
layer and is shared by many or even all (in case one accepts logical monism, i.e.,
the thesis that there is only one true Logic) such theories, while all higher extra-
logical levels of axiomatic constructions deal with more and more specific features
of particular theories. The idea of such a hierarchical theoretical order is central
in the standard axiomatic architecture as described, for example, in [276], and is
incompatible with the idea that Lawvere’s 8 axioms may have a bearing on the
logical part of ETCS along with its extra-logical part. As we shall shortly see,
Lawvere does take this latter idea very seriously and it leads him eventually to
the concept of the internal logic of a given category. In this present work we make
an attempt to develop this idea more systematically and propose on this basis a
novel view on the axiomatic method.

The idea that the relationships between logic and set theory are more
intimate and more specific than the standard axiomatic view suggests was around
long before the emergence of Categorical Logic and before the emergence of
modern axiomatics and set theory itself. Thinking of propositions in terms
of extensions of concepts was a key feature of George Boole’s pioneering
mathematical approach in logic [24]. This extensional approach in logic, where
the concepts of universe of discourse and logical class of individuals are central,
was later further developed by John Venn [295], widely known today thanks to
his useful logical diagrams. Boolean algebra in its present form is a mathematical
structure that is shared by Classical Propositional logic with standard connectives
and the powerset of a given set with standard set-theoretic operations. Lawvere’s
discovery that CCC is a categorical structure shared by SET, simply typed
lambda-calculus, and the constructive fragment of Natural Deduction calculus,
continues the same line of research in the mathematical logic. Before we discuss the
epistemological implications of this discovery, let us describe another of Lawvere’s
achievements that demonstrates that an analysis of basic logical concepts in
category-theoretic terms is indeed illuminating and non-trivial.

D) Quantifiers as Adjoints
An adjoint situation (called also an adjunction) is a pair of categories A,B

with two functors f, g going in opposite directions:
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A
f //B
g
oo

and natural transformations α : A→ gf and β : fg → B such that (fβ)(αg) = g

and (βg)(fα) = f provided that the following two triangles commute:

g
αg //

1g !!

gfg

gβ
��
g

f
fα //

1f   

fgf

βf
��
f

(As above we do not distinguish in categories between objects and their identity
morphisms.) Given an adjoint situation as above functor g is called left adjoint
to functor f and functor f is called right adjoint to functor g, in symbols g a f .
A given functor has at most one (up to unique isomorphism) left adjoint and one
right adjoint (exercise).

Let us now for simplicity think of the given category as SET but have
in mind that the described construction in a slightly more abstract form can be
done in more general categories (in particular, in toposes, as we shall shortly see
in 3.1.4 ). Suppose that we have a one-place predicate (a property) P , which is
meaningful on set Y , so that there is a subset PY of Y (in symbols PY ⊆ Y ) such
that for all y ∈ Y P (y) is true just in case y ∈ PY . Now using these data and
morphism f : X → Y we can define a new predicate R on X as follows: we say
that for all x ∈ X R(x) is true when f(x) ∈ PY and false otherwise. So we get
the subset RX ⊆ X such that for all x ∈ X, R(x) is true just in case x ∈ RX .
Let us assume in addition that every subset PY of Y is determined by some
predicate P meaningful on Y . Then given morphism f as above, we can associate
with every subset PY a subset RX and, correspondingly, a way to associate with
every predicate P meaningful on Y a certain predicate R meaningful on X. Since
subsets of a given set Y form a Boolean algebra B(Y ), we thus get a map between
Boolean algebras (notice the change of direction!):
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f ∗ : B(Y ) //B(X)

Since Boolean algebras themselves are categories (with objects subsets and
maps inclusions of subsets), f ∗ is a functor. For every proposition of the form P (y),
where y ∈ Y , functor f ∗ takes some x ∈ X such that y = f(x) and produces
a new proposition P (f(x)) = R(x) (for a single given y it may produce a set of
different propositions of this form). Since it replaces y in P (y) by f(x) = y it is
appropriate to call f ∗ a substitution functor.

The left adjoint to the substitution functor f ∗ is the functor

∃f : B(X) //B(Y )

which sends every R ∈ B(X) (i.e. every subset of X) into P ∈ B(Y )

(subset of Y ) consisting of elements y ∈ Y , such that there exists some x ∈ R

such that y = f(x); in (some more) symbols

∃f(R) = {y|∃x(y = f(x) ∧ x ∈ R)}

In other words, ∃f sends R into its image P under f . Now if (as above)
we think of R as a property R(x) meaningful on X and think of P as a property
P (y) meaningful on Y we can describe ∃f by saying that it transformes R(x) into
P (y) = ∃fxP ′(x, y) and interpret ∃f as the usual existential quantifier.

The right adjoint to the substitution functor f ∗ is functor

∀f : B(X) //B(Y )

which sends every subset R of X into subset P of Y defined as follows:

∀f(R) = {y|∀x(y = f(x)⇒ x ∈ R)}

and thus transforms R(X) into P (y) = ∀fxP ′(x, y). Notice that functors ∃f and
∀f are defined here as adjoints to substitution functor f ∗.

The fact that in this setting quantifiers arise “naturally” through functorial
adjunction is remarkable from a mathematical point of view. According to Marquis
and Reyes “[t]his was a key observation that convinced many mathematicians that
this was the right analysis of quantifiers” [184, p.710].
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The idea of quantifiers as adjoints to substitution was first mentioned by
Lawvere in [158] and then fully elaborated in the Dialectica paper [159] with
the help of the notion of CCC; the categorical construction, which supports
quantification and in fact the full first-order logic, Lawvere calls a hyperdoctrine
[161]. Along with first-order logic, Lawvere’s hyperdoctrines internalise the
equality relation. For an analysis of this work of Lawvere see [233, ch. 5.5]. Let
us only mention here an interesting historical detail. When Lawvere discusses the
internalised equality relation in hypodoctrines, he mention the possibility to think
about it in terms of homotopy theory but does not develop this idea further [161,
p. 3-4]. This is a clear precipitation of the equality concept in Homotopy Type
theory as it was developed in the late 2000s, see 3.2 below.

Lawvere and Rosenbourgh provide an interesting conceptual explanation of
the construal of logical quantifiers as adjoint functors presented above [166, p.193-
194]. They develop a view according to which the usual idea that the same logical
formalism can be repeatedly applied to various universes of discourse arbitrary
chosen on pragmatic or other external grounds (defended, in particular, by Venn
[295]), gives only a local and essentially incomplete picture of how logic works.
According to Lawvere and Rosenbourgh, the multiplicity of universes represented
by objects of a given base category, and the structure of “passages” of translations
between these universes, which are represented by morphisms of this category,
essentially determine the (internal) logic of this category. Thus the category-
theoretic approach in logic makes the global picture explicit and, in particular,
shows where logical quantifiers come from. It goes without saying that the view
on logic developed by Lawvere and Rosenbourgh also rules out the Fregean view
according to which there exists just one universe of discourse, which is the actual
world itself [117, p.x-xi]. Notice that the view on logic developed by Lawvere and
Rosenbourgh can be reformulated in more technical terms if multiple universes
of discourse are understood as multiple types in the sense of Type theory. A
contemporary systematic analysis of basic Categorical logic from a type-theoretic
point of view (before the emergence of Homotopy type theory) can be found in
[128].

E) Objective and Subjective Logic according to Lawvere
Lawvere’s thinking about logic and the foundations of mathematics was
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strongly motivated by Hegel’s philosophy, particularly by Hegel’s distinction
between objective and subjective logic. Some details concerning Lawvere’s reading
of Hegel and application of Hegelian ideas in Lawvere’s mathematical work can
be found in [233, ch.5.8] and [232]. Here we leave these details aside and explain
Lawvere’s approach in its own terms without referring to Hegel. As we shall now
see the distinction between objective and subjective logic made by Lawvere (after
Hegel) has not only philosophical but also a technical mathematical content. This
is how Lawvere draws this distinction in his 1994 paper [163]:

“Arising [. . . ] from the needs of geometry, category theory has developed
such notions as adjoint functor, topos, fibration, closed category, 2-
category, etc. in order to provide (i) a guide to the complex, but
very non-arbitrary constructions of the concepts and their interactions
which grow out of the study of space and quantity. It was only the
relentless adherence to the needs of that basic subject that made
category theory so well-determined yet powerful. [. . . ] If we replace
“space and quantity” in (i) above by “any serious object of study”, then
(i) becomes my working definition of objective logic. Of course, when
taken in a philosophically proper sense, space and quantity do pervade
any serious field of study. [..] Category theory has also objectified as
a special case (ii) the subjective logic of inference between statements.
Here statements are of interest only for their potential to describe the
objects which concretize the concepts.” [163, p. 16]

Lawvere’s subjective logic is logic in a familiar sense of the word, which
accounts for inferences between statements or judgements and can be formally
construed as CFOL or another similar calculus. However in Lawvere’s view it is a
serious philosophical mistake to think of such logical calculi as self-sustained and
use them as foundations of mathematical and scientific theories as the standard
axiomatic method requires . Lawvere argues that logic in this familiar sense itself
needs a grounding in theories of “space and quantity”, i.e., in geometrical and
arithmetical theories. Thus Lawvere’s view of subjective logic, i.e., of logic in
the usual sense of the word, reverses the order of ideas assumed in the standard
axiomatic architecture as described in [276].
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It can be argued that standard logical calculi including CFOL meet this
requirement since they involve at the fundamental level some mathematical
concepts (which “grow out of the study of space and quantity”) such as the concept
of function. It can be also argued that the standard axiomatic architecture is
compatible with the idea of the ontological grounding of logic, many versions of
which are found in the old and the current philosophical literature. Considering
Lawvere’s Hegelian views of logic in such broader contexts makes perfect sense, but
at present we would like to stress that Lawvere’s philosophical views of logic are
tightly connected with his mathematical contribution to this discipline. Lawvere’s
claim that (subjective) logic is a “special case” of a more general structure that
he calls objective logic has a precise mathematical sense. Consider the concept
of adjoint functor explained above. It has a fundamental role in category theory
and hence — assuming that CT provides a foundation of mathematics — in all
of mathematics [159]. This is why the concept of adjoint functor qualifies as
an element of objective logic in Lawvere’s sense. In particular, the concept of
adjoint functor allows for representation (and arguably also for a deep conceptual
analysis) of logical quantifiers, which are elements of usual subjective logic. So
the (subjective) logical structure of a given theory appears as an integral part
of a wider mathematical and conceptual structure; this “subjective” part of the
theoretical structure can be abstracted away and studied independently, but
it should not be thought of as a self-sustained independent foundation of this
structure. In the next Section we shall see how this view on logic and its place
in mathematical theories is further developed in Lawvere’s axiomatic theory of
topos.

3.1.4 Toposes and their Internal Logic

A) Elementary topos
The mathematical notion of topos first appeared in the circle of Alexandre

Grothendieck around 1960 as a twofold upgrade of the notion of topological space.
The first upgrade amounts to considering a given topological space T together with
the sheaves of functions from open subsets of this space to some target sets; a sheaf
respects gluing conditions, which allow for seeing the target sets as “momentary
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images” of the same continually variable set varying over T . If the target sets are
provided with an extra structure, say, with the group structure, one may similarly
think of groups continuously varying over a given topological space. In order to
get from the notion of sheaf to that of topos, one needs first to render the former
notion in category-theoretic terms. Think of T as a category with objects open
subsets of T (opens for short) and morphisms set-theoretic inclusions of these
subsets, so in the resulting category there is at most one morphism going from
one given object to another. (For any pair of opens U, V we either do or do not
have U ⊆ V ; categories with at most one morphism with a fixed domain and a
fixed codomain are called partial orders). Then a sheaf can be defined as a functor
T op → S from the category T op obtained from T by the “reversal of arrows” to
the category of sets S, which satisfies gluing conditions assuring that the target
variable set varies continuously with respect to T . The fact that the arrows must
be reversed in this case was difficult to understand without using the category-
theoretical notion of functor; this was a major difficulty for earlier attempts to
develop a “topology without points” [131]. One gets a basic example of topos
by considering the category of all sheafs on a given topological space together
with maps between those things; since sheafs are functors the maps are natural
transformations.

The second upgrade amounts to a generalization of the usual notion of
topology. Given topological space T one may always associate with a given open
U its covering family CU , which is a collection of opens Vi such that their union
contains U :

⋃
i

Vi ⊇ U

, i.e., each point of U belongs to at least one of Vi. In particular, T itself is always
covered by at least one collection of its opens. Grothendieck observed that the
notion of covering family makes sense not only for partial orders but also for
categories of a more general sort, and defined a covering family of a given object
to be a collection of incoming morphisms closed under certain operations. This
led him to a more general notion of topology called Grothendieck topology, defined
by distinguishing among all collections of morphisms sharing a codomain those
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which count as covering families of this given object. A category C provided with
a Grothendieck topology J is called a site (C, J). A sheaf over a site is defined
just as in the case of topological space. The Grothendieck topos is a category of
sheaves over some given site. For a systematic introduction see [177, ch. 2-3].

The notion of topos invented by Grothendieck and developed by his
collaborators was not originally supposed to have any special relevance to logic;
the discovery of such a special relevance is wholly due to Lawvere. In the beginning
of his seminal 1970 paper [162] Lawvere provides his definition of topos usually
called today the definition of elementary topos ; the title “elementary” reflects
the fact that Lawvere’s definition, unlike Grothendieck’s original construction,
almost straightforwardly translates into the standard first-order formal language
[194]. According to this definition an (elementary) topos T is CCC with a subobject
classifier, which plays in a general topos the role similar to that played by 2 (the
two-point set) in SET, which equally qualifies as an elementary topos. 2 classifies
subsets of a given set S in the sense that if one asks whether a given element
p ∈ S belongs to subset U ⊆ S there are just 2 possible answers: yes and no;
this allows for identifying every subset U with a particular function u : S → 2,
which sends every p belonging to U to “yes” and every p not belonging to U to
“no”. Correspondingly the set 2S of all such functions is identified with the set of
all subsets (the powerset) of set S.

Given two objects A,B of CCC the exponential object AB always exists
but in order to get a distinguished object Ω playing the role of “object of truth
values”, so that for all A ΩA represents the space of subobjects of A, one needs
an additional postulate. By a subobject of A one means here any incoming
monomorphism f , i.e., such f that for all g, h f ◦ g = f ◦ h implies g = h

(cancelability from the left ). Given two subobjects f1, f2 of the same object A
consider morphism h such that f1 = f2 ◦ h; according to the above definition
of subobject there is at most one such morphism. This shows that subobjects
of a given object are partially ordered. In SET the partial order of subobjects
is the complete Boolean lattice while in the general case the lattice is Heyting.
Evidently Lawvere’s earlier work on ETCS helped him to formulate the axioms
for elementary topos. It was Lawvere who first thought of sheaves as continuously
variable sets and observed that the category of such things shares a number
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of basic properties with the category of usual “static” sets. For a systematic
presentation of topos theory from the elementary viewpoint see [194], [132, p.
68-119].

The concept of elementary topos is more general than that of Grothendieck
topos : there is a class of elementary toposes, which are not Grothendieck. In
particular, the category FinS of (all) finite sets is an elementary topos but
not a Grothendieck topos because FinS lacks infinite limits. Another important
example of a non-Grothendieck topos is the effective topos which can be thought of
as a set-theoretic-like universe where all (total) functions from natural numbers
to natural numbers are recursive. An exact necessary and sufficient condition
under which a given elementary topos is Grothendieck topos was found in 1972
by Grothendieck’s student Jean Giraud [86].

Lawvere’s axioms for elementary topos helped many people outside the
community of experts in Algebraic Geometry enter this field and conduct a
fruitful research in it. Everyone who learns the topos theory today begins with
Lawvere’s axioms for elementary topos. This makes Lawvere’s axiomatisation
of topos theory a true success story of the axiomatic method in 20th century
mathematics. On the one hand, the theory of elementary topos has the same
pragmatic advantages as Quillen’s “axiomatic” homotopy theory [218] and the
“axiomatic” theory of Homological Algebra by Eilenberg and Steenrod [61] :like
these theories, it dramatically simplifies and clarifies a difficult mathematical
subject, and boosts its further research and development. On the other hand,
unlike the aforementioned theories by Quillen, Eilenberg and Steenrod, Lawvere’s
theory of elementary topos along with ETCS meets the standard of logical rigour
that allows one to qualify this theory as axiomatic without reservations (or with
only minor reservations that we have made above in the case of ETCS). However,
this theory also has another unusual feature, to an analysis of which we now turn.

B) Internal logic of topos; Logic and geometry
Lawvere’s 1970 paper “Quantifiers and Sheaves” where the axioms for

elementary topos first appear in press, begins as follows:

“The unity of opposites in the title is essentially that between logic
and geometry, and there are compelling reasons for maintaining that
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geometry is the leading aspect. At the same time [. . . ] there are
important influences in the other direction: a Grothendieck “topology”
appears most naturally as a modal operator, of the nature “it is locally
the case that”, the usual logical operators, such as ∀, ∃, ⇒ have
natural analogues which apply to families of geometrical objects rather
than to propositional functions, and an important technique is to lift
constructions first understood for “the” category S of abstract sets to
an arbitrary topos . We first sum up the principle contradictions of the
Grothendieck-Giraud-Verdier theory of topos in terms of four or five
adjoint functors [. . . ] enabling one to claim that in a sense logic is a
special case of geometry.” [162, p. 329]

“The unity of opposites in the title” of this paper is that between logic
and geometry because the concept of quantifier is logical while that of sheaf is
geometrical. Leaving aside the Hegelean notion of unity of opposites we shall
describe here the unity of geometry and logic in toposes in mathematical terms.
Lawvere’s axioms for elementary topos are motivated by his idea to look at toposes
as generalised “variable” sets; the resulting axiomatic theory is a generalized
version of ETCS that admits other subobject-classifiers than 2. What was said
above in 3.1.2 about the internal logical structure of SET also applies to the
theory of elementary topos. Moreover, in the topos theory the concept of internal
logic allows for rigorous formalisation. To this end one associates with a topos a
symbolic calculus called the Mitchell-Bénabou language or the internal language
of the given topos and then provides this calculus with a formal logical semantics
(called the Kripke-Joyal semantics) which is fully determined by the structure of
that given topos; the internal language so construed is sound and complete with
respect to this semantics, see [177, p. 296-318] for details. The construction of
internal language implements mathematically Lawvere’s notion of objective logic
as follows: the (subjective) logical structure of a topos, i.e., its internal language,
is determined by its ambient topos structure, which has an objective geometrical
(and possibly physical) content. As Lawvere puts it, logic turns out to be a special
case of geometry.

If topos theory is built with the standard axiomatic architecture that
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assumes that the logical part of a given theory is self-sustained and fixed in
advance, then the internal logic of a topos appears as an additional structure
on top of the given topos. This standard axiomatic approach in Topos theory is
used by Colin McLarty in [194]. After introducing categories and toposes in the
usual semi-formal way, McLarty comes to the internal logic of toposes [194, ch. 14]
and finally in [194, ch. 16] entitled “From the Internal Language to the Topos”,
shows how a given topos can be re-described internally with its own internal
language. The internal description of a topos does not, generally, fully coincide
with its external description because the external language always has greater
expressive power (for otherwise it could not be used for the specification of the
internal language), and so certain details discernible “from outside” can be missing
in the internal description.

This interesting effect can be compared with a similar effect in Riemanian
Geometry, where details of the embedding of a manifold into an outer space are
not reflected in intrinsic geometrical descriptions of this manifold. Draw a straight
line L on a sheet of paper and then fold the paper. Extrinsically L is no longer
straight but intrinsically it has not changed. The distinction between intrinsic and
extrinsic geometrical properties was first described in precise mathematical terms
by Carl Friedrich Gauss in his 1828 dissertation on curve surfaces [78] (the result
is commonly known today under its original Latin name of Theorema Egregium).
Bernhard Riemann took a further step suggesting that a curve surface or a higher-
dimensional manifold determined only in terms of its intrinsic properties can be
thought of and studied as a geometrical object in its own right [222]. Today this
“intrinsic” approach in geometry is standard; let us mention that it also plays a
major role in General Relativity theory, which accounts for physical space-time
in intrinsic geometrical terms, which in this case have a physical meaning; see our
[224] and [226].

Lawvere’s idea, according to which the logical part of Topos theory needs
to be grounded by and be an integral part of a geometrical structure (which can
be a part of a physical theory [227]), squares with the notion of the internal logic
of a topos, but at the same time is at odds with the idea that the Topos theory,
as any other axiomatic theory, also needs some sort of underlying base logic in
its foundation. In Lawvere’s view, as we understand it, the internal logic of topos
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is the only “true” logic of Topos theory. Bearing in mind the above geometrical
analogy, it is suggestive to think of the possibility of specifying a topos by means
of its own internal language without using any external logical resources. In a
simple form this possibility can be realised as follows. Instead of construing the
internal language LT of topos T as an additional structure on T , one introduces
the syntax of LT independently, provides it first with some preliminary intuitive
semantics, and then step-by-step upgrades this semantics to the full-fledged formal
topos Kripke-Joyal semantics.

This is how John Bell develops what he calls the local set theory (LST) [19],
which provides a “view on topos from the inside”. From this internal viewpoint a
topos appears as a set-like universe where “sets” are “local” in the sense that “some
of the set-theoretic operations, e.g. intersection and union, may only be performed
on sets of the same type, [. . . m]oreover, variables are constrained to range only
over given types” [19, p.99]. Bell shows that LST-sets and LST-functions form a
topos (like classical ZFC-sets) and then, after tackling soundness and completeness
issues, proves a fundamental equivalence theorem, according to which :
For any topos E and its internal language LE the category (topos) C(LSTE) of
LST-sets built with LE is category equivalent to E, in symbols,

E ' C(LSTE)

.
Topos C(LSTE) is conventionally called linguistic (since it is built with an
essential use of formal language LE). Bell’s equivalence theorem can be succinctly
expressed in words by saying that every topos is equivalent to its linguistic topos
[19, p. 105-113].

The equivalence theorem along with the soundness and completeness
theorems proved by Bell, according to which truth in the linguistic toposC(LSTE)

corresponds precisely to derivability in LSTE, show that a topos is indeed uniquely
(up to category equivalence) determined by LST, based on the internal language
of this topos. Does this fact allow one to qualify LST as an axiomatic construction
of Topos theory? Topos C(LSTE) is not one of the local sets treated by LSTE just
as category (topos) SET is not a set with additional structure. From this point of
view it is fair to say that LST does not qualify as an axiomatic theory of topos,
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just as ZFC does not qualify as an axiomatic theory of SET. At the same time,
LST provides a precise formal internal description of topos, which shows that

“Any topos may be regarded as a mathematical domain of discourse
or ’world’ in which mathematical concepts can be interpreted and
mathematical constructions performed.” [19, p.238].

So this formal theory certainly provides at least a useful logical perspective
on topos. Peter Johnstone in his encyclopaedic work on Topos theory entitled
“Sketches of an Elephant” [132] compares a topos with an elephant from a popular
Indian tale about three blind men feeling different parts of this animal and
giving each other very different reports. Johnstone calls Bell’s internal logical
perspective on topos “toposes as theories” view on the “elephant”. Johnstone
provides an accurate systematic presentation of this logical approach, along with
and independently from the geometrical approach that he calls “toposes as spaces”;
both these approaches are preceded by the “toposes as categories” approach, which
remains basic in Johnstone’s presentation, at least in the pedagogical sense.

Johnstone’s work makes it clear that the reduction of geometrical contents
to logical contents in the vein of Hilbert’s Foundations of Geometry of 1899 [115]
does not go through in Topos theory; a major reason for this is that the axiomatic
architecture designed by Hilbert in that work does not do justice to the concept
of internal logic that arises in Topos theory. This standard axiomatic architecture
can be compared with geometry before Lobachevsky and Riemann, that takes
Euclidean space for granted as a universal stage where all geometrical reasoning
and geometrical construction takes place. Hilbert’s axiomatic method allows for
designing multiple geometrical stages using a universal “logical stage”, i.e., a fixed
background logic. If one is a logical pluralist one may apply the same theoretical
scheme but use more than one background logic and justify the proliferation of
mathematical and non-mathematical theories that may emerge in this way [292].
However, this doesn’t help one to make sense of the concept of internal logic
in Topos theory, which quite evidently plays a fundamental role in its logical
foundations.

Indeed, in spite of the fact that the Mitchell-Bénabou language and the
Kripke-Joyal topos semantics are rigorous mathematical constructions, the very
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concept of internal logic of a given category still needs more conceptual clarity.
This clarity can hardly be achieved without a revision of the closely related logical
concepts of semantics and model in the context of categorical logic. Given the
internal language L of category C, people often refer to C as an element of the
semantics for L (categorical semantics) or as a model of L. This depends on
the chosen point of view. In 3.2.5 we consider an interesting suggestion due
to Vladimir Voevodsky as to how these fundamental logical concepts can be
disentangled in the new context.

Even if Topos theory in its existing form does not provide a clear-cut
alternative axiomatic architecture, it effectively demonstrates problems of the
standard axiomatic architecture. In the next Section we consider a more recent
formal approach in the foundations of mathematics known as the Univalent
Foundations, which is essentially intrinsic and supports a distinction between
logical and geometrical properties at the formal level. This latter approach
will give us a clearer picture of alternative axiomatic architecture of theories.
Before we introduce the Univalent Foundations, we discuss some relevant logical,
mathematical and historical issues.

3.2 Homotopy Type theory and Univalent Foundations24

3.2.1 Rules versus Axioms. Hilbert-style and Gentzen-style formal systems

Hilbert and Tarski after him conceive of a theory T as a set of formal
sentences with an additional structure induced by the derivability relation, which
is satisfied by the class of its intended models and, ideally, not satisfied by
any non-intended interpretation. (The latter is a desideratum rather than a
definite requirement.) An interpretation of a given sentence s in this context
is an assignment of certain semantic values to all non-logical symbols of the
base formal language that are found in s. Thus this approach assumes that one
distinguishes in advance between logical and non-logical symbols of the given
alphabet. This requirement reflects the epistemological assumption according to
which logic is epistemologically prior to all theories, which are “based” on this
logic. The standard version of axiomatic method described by Tarski in [276]

24This Section includes material from [233, Ch. 6-7], [240], [297] and [244].
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explicitly requires that one first fixes logical calculus L and then applies it in
an axiomatic presentation of some particular non-logical theory T . All existing
approaches to the formal representation of scientific theories and the standard
axiomatic approach in mathematics use this familiar axiomatic architecture. If L
is the CFOL with identity then Suppes talks about a “standard formalization” of
the given theory [275, p. 24].

The above formal architecture of theories is not unique, however. Back in
1935, Hilbert’s associate Gerhard Gentzen argued that

“The formalization of logical deduction, especially as it has been
developed by Frege, Russell, and Hilbert, is rather far removed from
the forms of deduction used in practice in mathematical proofs.” [81,
p.68]

and proposed an alternative approach to the syntactic presentation of deductive
systems, which involved relatively complex systems of rules and didn’t use logical
tautologies as axioms. In [80], [81] Gentzen builds in this way two formal calculi,
known today as Natural Deduction and Sequent Calculus.

Gentzen’s remark quoted above constitutes a pragmatic argument but
hardly points to a specific epistemological view on logic and axiomatic method.
However his further remark that

“The introductions [i.e. the introduction rules for logical symbols]
represent, as it were, the ’definitions’ of [semantic values of] the symbol
concerned.” [81, p.80]

is seen today by some authors as an origin of an alternative non-Tarskian
conception of logical semantics, which was developed in an explicit form only
in the late 1990s and is known today under the name of proof-theoretic semantics
(PTS) [257, 209]. We shall say more on PTS in the next Section.

Recall that Hilbert’s axiomatic method is based on the idea that a theory
conceived of as a potentially infinite set of sentences T can be formally presented
via a subset (preferably finite and as short as possible) A ⊆ T of these sentences
called axioms, and a set of logical rules that allow one to deduce all other
T -sentences from the axioms. It is further assumed that the logical rules are
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shared by all theories (logical monism) or at least by a large class of theories
(logical pluralism). This familiar picture of formal theory invites two independent
objections, which are partly motivated by the historical study of axiomatic method
presented in chapters 1-2 of the present work.

First, the familiar notion according to which a theory (scientific or
mathematical) can be safely identified with a set of sentences (provided that a
sentence is understood as alinguistic expression that expresses a logical proposition
or judgement ) is more problematic that it may appear. As we have seen,
Euclid’s geometrical theory does not fall under this conception of theory : its
first principles are rules rather than sentences and in addition to theorems, which
are sentences, it comprises problems, which are not (1.1.4 above). To put it in
modern terms, Euclid’s geometry in its original form is a Gentzen-style theory
but not a Hilbert-style theory. Recall that a version of the non-statement view
of theories has been put forward and defended by Patrick Suppes and other
enthusiasts of the semantic approach to the formal representation of scientific
theories (2.3.3 above). Let us point to the fact that the non-statement view
has a strong consequence for logic. As we shall see in the next Section Tarski’s
model-theoretic logical semantics supports the view according to which logical
rules are essentially syntactic while logical contents expressed with these rules
have a propositional form. An alternative approach in logical semantics, which in
our view is more adequate to the task of the formal representation of theories,
will also be considered in the next Section.

Second, the assumption according to which all inferences of theorems from
axioms should in all cases be logical inferences, is equally problematic. This is a
strong epistemic normative principle that motivated Hilbert to pursue his projects
in axiomatic mathematics. Obviously, this principle has a definite content only
when one uses it along with a criterion for distinguishing logical from non-logical
inferences, i.e., a criterion of logicality. Hilbert did not use any explicit criterion
of logicality but took his conception of logic for granted.

Criteria of logicality should not be confused with criteria of the validity
of a given inference. It is a trivial remark that certain non-logical inferences are
valid as, for example, certain of Euclid’s geometrical inferences. Once the body
temperature of a human individual is higher than 37◦C, one concludes that the
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individual is sick. This inference rule is valid but it is not logical because the
domain of its applicability is limited. As we have already mentioned above, the
problem of logicality is difficult and cannot be discussed systematically in this
work (1.2.2 above). We use here only a weak necessary criterion of logicality that
in the contrapositive form can be formulated as follows: if an inference rule is
valid only in a limited theoretical domain and not in any other domain, it does
not qualify as a logical rule. Euclid’s Axioms and Postulates are examples of non-
logical rules. While the Postulates apply to geometrical constructions, Euclid’s
Axioms apply to propositions just like logical rules. However the Axioms are not
logical because they apply only to propositions about numbers and geometrical
magnitudes but not to propositions of other sorts. Various examples of useful non-
logical rules of propositional inference are found in today’s computer science and
information technology: computer systems implementing such rules are known
under the name of expert systems, which are systems of automated reasoning
about certain limited domain such as human health and disease, car traffic, etc.
[31].

The claim that every valid inference rule is analysable into a logical
inference rule and a set of specific assumptions is a strong epistemic thesis. If
a necessary and sufficient criterion of logicality is fixed, this principle still allows
for two different readings. The normative reading is that a system of reasoning
qualifies as a theory only if all its inference rules are logical. The descriptive
reading is that all scientific reasoning is analysable in this way. In an actual
situation in which criteria of logicality are debated, the normative thesis is, in our
view, too strong. In addition, it is hard to make sense of this thesis unless one
accepts logical monism in some form. As for the descriptive thesis, in simple cases
it appears plausible. Let T (p) be “the body temperature of person p is higher than
37◦C” and S(p) be “person p is sick”. Then rule

T (p)

S(p)
(3)

can be replaced by axiom T (p) → S(p) and an inference relying on the logical
rule of modus ponens to the same effect:
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T (p);T (p)→ S(p)

S(p)
(4)

However there is no theoretical justification for the claim that a similar reduction
of non-logical rules to rules that may qualify as logical according to a reasonable
logicality criterion is possible in all cases of interest. A similar replacement of any
specific inference rule

Γ, A

B
(5)

by axiom A→ B used along with modus ponens

A;A→ B

B
(6)

that allows for conversion of Gentzen-style formal proofs into Hilbert-style
axiomatic proofs is possible for any formal theory T that has the following
Deduction Propertry (aka Deduction Theorem for T ) [140]:

If in T formula B is derivable from formula A in context Γ then the
implication A→ B is also derivable in T in the same context. In symbols:

Γ, A `T B entails Γ `T A→ B for all Γ, A and B in T .
The Deduction Theorem holds for CFOL, for Intuitionistic First-Order logic (in
both cases for closed formulas), and for some other logical calculi. The Deduction
Theorem fails in von-Neumann’s Quantum Logic [180]. This latter fact is well-
known, and it can give a mistaken impression that the situation in which a formal
calculus doesn’t have the Deduction Property is somewhat exotic. In fact, when
a Gentzen-style calculus is designed to formally represent some specific form of
contentful reasoning rather than represent “logic” as a universal form of reasoning,
the Deduction Property can hardly be expected. For an example of such a formal
system with the intended semantics in Cryptography, which provably does not
have the Deduction Property, see [148]. Notice also that the Deduction Property
of a given formal calculus T could possibly help to convert non-logical inferences
into logical inferences by modus ponens only if the implication symbol that T
comprises admits of a logical semantics. If the intended semantics of this symbol
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in T is not logical, but determined in terms of the intended domain of application
of T , then there is no reason to think of inferences using modus ponens with T -
implication as logical, either. It is clear how the Deduction Property helps one to
reduce a set of logical rules to the single logical rule of modus ponens and thus
convert Gentzen-style logical reasoning into Hilbert-style axiomatic reasoning but
it is not clear after all whether it can help to convert non-logical inferences to
logical ones. This issue requires further study.

Unlike Hilbert, Gentzen never tried to apply his rule-based approach
beyond pure mathematics and even beyond arithmetic. Today, Gentzen-style
presentation of formal calculi is well known and popular among logicians
(particularly proof theorists), but less known in the broader community of
researchers working on applications of formal approaches in science. A study of
the potential of Gentzen-style formal systems for representing mathematical and
scientific theories has so far been a little explored issue in formal epistemology. An
important practical advantage of this approach is that rule-based formal systems
are more easily and straightforwardly implementable on computers than are
axiom-based Hilbert-style formal theories. In order to demonstrate the potential
of Gentzen-style formal approach with a concrete example we consider in what
follows a particular Gentzen-style calculus, namely, Martin-Löf Type theory
(MLTT), the related Homotopy Type theory (HoTT), and the project of Univalent
Foundations of mathematics (3.2.3-5 below).

To conclude this Section, let us fix a terminological issue. Gentzen-style
formal systems unlike Hilbert-style systems are rule-based but not axiom-based.
Nevertheless we shall call formal theories formalised in Gentzen-style axiomatic
theories, on equal footing with Hilbert-style theories. We motivate and justify this
terminological choice as follows. It is common to describe the theory of Euclid’s
Elements as an axiomatic theory — disregarding the fact that this is a Gentzen-
style, i.e., rule-based, theory but not a Hilbert-style axiomatic theory. Given the
historical significance of Euclid for Hilbert’s axiomatic project it would be odd
to call Euclid’s Elements otherwise. At the same time we remark that Hilbert
uses the traditional logical term “axiom” in a very specific way, namely to refer to
hypotheses of a certain form. In the history of logic this term has been used in a
number of different senses. In particular, Aristotle uses this term to refer to logical
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rules such as the rule of perfect syllogism. Calling a Gentzen-style system (such as
MLTT, for example) that has no axioms in Hilbert’s standard sense of the term by
the name of axiomatic theory may appear to be a strange idea, but from a wider
historical perspective it appears to do justice to the long-term Euclidean tradition
of rigorous mathematical reasoning from first principles. Hilbert’s work on the
axiomatic approach in mathematics and science, which began in the 19th century,
has today also become a part of history. However important this particular episode
in the overall history of axiomatic method may be, it should not be seen as
the last word on this chapter of intellectual history, nor as a single foundational
moment that cancelled the earlier history and triggered a wholly new development.
So, understanding the risks of confusion and mitigating these risks by detailed
explanations, we opt for using the name of axiomatic theory in a wider sense
than is usual. Doing this, we also have in mind that Hilbert himself conceived of
such a broader notion of being axiomatic in his joint work with Bernays [113]; see
1.3.2 above. By calling Getzen-style theories axiomatic along with Hilbert-style
theories we generalise the received notion of formal axiomatic theory but do not
thereby make the notion of being axiomatic less formal or less rigourous.

3.2.2 Model-theoretic and Proof-theoretic Logical Semantics. General Proof

theory

Hilbert never explicitly elaborated on the concept of logical inference
but it is plausible that in his Foundations of Geometry [115] he had in view
a prototype of the model-theoretic truth-conditional semantical concept of logical
consequence later formulated by Alfred Tarski [278]. Tarski’s concept of logical
consequence belongs to the core of what we call in this work the standard (Hilbert-
style) axiomatic method. Along with the standard truth-conditional semantics
of propositional connectives and the standard explanation of predicates and
quantifiers in terms of their extensions the metatheoretical logical consequence
relation belongs to the standard formal semantics of CFOL.

Tarski defines logical consequence as follows:
Propositional form B is a logical consequence of propositional forms

A1, . . . , An iff every interpretation I of the given language, which makes
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A1, . . . , An into true propositions AI
1, . . . , A

I
n makes B into true proposition BI ,

in symbols A1, . . . , An |= B.
Notice that this conception of logical consequence does not involve that of

rule. On this view, syntactic rules that regulate derivations of th formA1, . . . , An `
B are viewed (granting their soundness with respect to the given semantics) as
a mere symbolic representation of the fundamental relation A1, . . . , An |= B.
Gödel’s First Incompleteness theorem implies that in the case of consistent and
sufficiently strong theories such a symbolic representation of logical consequence
cannot be faithful, i.e., semantically complete. The consequence relation A |= B

is construed according to the above definition as a meta-theoretical sentence that
expresses a fact of the matter. The rule

A

B
(7)

on this view is nothing but an element of theoretical syntax (on equal footing
with rules for building well-formed formulas from the given alphabet of symbols),
allowing one to express the same fact with the language of a given formal theory.

Until recently, such a semantics of syntactic derivations, due to Tarski,
was the only available formal logical semantics found in logic textbooks. Since
the late 1990s Peter Shröder-Heister and his colleagues have been developing an
alternative proof-theoretic logical semantics or PTS for short [257]. Since the rise
of PTS, the more familiar Tarski-style logical semantics that includes the standard
notion of logical consequence is often referred to as model-theoretic semantics.

In order to explain the basic idea of PTS and its relevance to the axiomatic
method we need to introduce some more context. Proof theory in its modern form
stems from the aforementioned work by Hilbert and Bernays [113, vol. 2] where a
proof is understood as and identified with a syntactic derivation of theorems from
axioms. This notion of formal proof still remains standard today in mainstream
proof theory, which can be described as a mathematical study of syntactic
derivations in various formal calculi of interest including Peano Arithmetic and its
modifications. The fact that such formal proofs don’t quite resemble mathematical
proofs as they appear in everyday mathematical practice is usually explained
away by saying that proof theory as a part of mathematical logic and foundations
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of mathematics studies what mathematical proofs are in principle, while details
and styles of proofs as they appear in the actual mathematical practice, however
interesting and important they may be for historians, sociologists and philosophers
of mathematics, and for working mathematicians themselves, have no logical
significance.

Since the early 1970s Dag Prawitz has published a number of papers where
he criticises the received conception of formal proof stressing the fact that this
conception leaves wholly aside the epistemic aspects of proofs, which in his view
are essential; in order to distinguish between proof theory in the standard sense
and a broader discipline that includes a study of epistemic and practical aspects
Prawitz calls the latter the General Proof theory [210], [211], [212], [213]. A formal
proof (= a syntactic derivation from axioms) according to its default semantics
preserves the truth of its premises (axioms): a theorem derived from true axioms
is also true. Tarski’s notion of logical consequence helps one to make this notion
of preservation of truth formal and precise. Prawitz agrees that proofs should
preserve truth in this sense, but he argues that this condition is not sufficient:

“[A] valid argument must preserve truth. But the preservance of truth
is clearly not a sufficient condition for validity; nobody would consider
e.g. Peano’s axioms followed by Fermat’s last theorem as a proof, even
if in fact Fermat’s last theorem follows from these axioms. As every
examiner stresses, it is not enough that the steps of a proof happen to
follow from the preceding ones, it must also be seen that they follow. ”
[212, p. 26]

One may argue that one’s “seeing” that a given theorem logically follows
from the axioms of the corresponding theory is a merely psychological and
pedagogical matter that has no properly logical relevance and significance.
However, this commits one to a very narrow conception of logic that is hardly
tenable. Indeed, what Prawitz in the above quote calls “seeing” has not only a
cognitive and psychological but also (and primarily) an epistemic content: he
stresses the fact that anything that counts as a proof functions as a piece of
evidence that supports a certain sentence, namely, the one that it is a proof of.
Let PA be the Peano axioms, FLT be Fermat’s last theorem and PA |= FLT
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be the meta-theoretical sentence saying that FLT is a logical consequence of PA.
At the time of this writing FLT is known to be true (thanks to Andrew Wiles
proof), while PA |= FLT remains an open conjecture. Consider a hypothetical
situation in which PA |= FLT is proven by proof P . Assuming PA and using the
same P , we get a new proof of FLT . However the sentence PA |= FLT , whether
true or false, cannot possibly qualify by itself as a proof of FLT .

Remarkably, this Prawitz’s view on proofs is in accord with Wittgenstein’s
late view according to which “a mathematical proof must be surveyable” [302,
p.75], see [197] for an analysis and discussion.

One who wants to argue that the issue stressed here is out of the scope
of logic, and insists that logic deals with truth and falsity but not with what one
may know or not know about the truth and falsity of certain propositions, needs
either to accept that such epistemically-laden concepts as evidence, justification
and proof do not belong to logic, or somehow strip away from these concepts their
epistemic contents. While saying that the concept of proof does not belong to logic
is a sheer absurdity, the standard notion of a formal proof as an idealised syntactic
object that represents a derivation of proven formula may look respectable even if
its epistemic content, if any, is not specified. Admittedly, a hypothetical syntactic
derivation of FLT from PA would comprise more than one step in any reasonable
formal proof system. Since formal proofs typically involve the application of
syntactic rules such as modus ponens that have a standard logical interpretation,
it may be argued that formal proofs in fact do have the wanted evidential
force and do prove the corresponding sentences in a strong epistemic sense of
“prove”. However since one agrees that the concept of proof is both logical and
essentially epistemic, one wants to be more specific and describe the epistemically-
laden proof-theoretic semantics of syntactic proof-objects and syntactic proof-
procedures more carefully. This is the principle subject matter of PTS. As Thomas
Piecha and Peter Shröder-Heister formulate it, “in contrast to a truth-conditional
meaning theory, [in PTS] one should explain the meaning of a sentence in terms
of what it is to know that the sentence is true, which in mathematics amounts to
having a proof of the sentence.” [209, p.5-6].

The idea of PTS is partly motivated by a broad philosophical view on
meaning (and hence on semantics), which is conventionally called “meaning-as-
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use”. This view on meaning goes back to Wittgenstein and more recently has been
defended and further systematically developed by Robert Brandom [33] under the
name of inferentialism. Since PTS is a formal semantical theory, the reference to
“use” amounts here to referring to syntactic rules, which specify the use of symbols
and symbolic expressions in formal calculi. Gentzen’s original insight according
to which rules of inference provide the semantic value of symbolic expressions is
preserved in all the various existing versions of PTS.

For a review of the current state of affairs in PTS see [257], [209], [72] and
the literature therein. In this work, we consider more specifically only one family
of formal calculi with a PTS-style semantics, namely Martin-Löf Type theory
(MLTT) and MLTT-based Homotopy Type theory (HoTT).

Goran Sundholm, in his recent paper [272], traces the historical roots of
what he calls the “neglect of epistemic considerations in logic” — meaning by
logic mainstream logical research in the 20-th century. We provide here one more
historical piece of evidence that shows that epistemic considerations have not only
been systematically neglected in mainstream 20th-century logic, but also expected
by some authors who tried to apply contemporary logic in science.

In their general introduction to logic, written for scientists and published
in 1934 [46], Morris Cohen and Ernest Nagel argue that the most distinctive and
valuable feature of science is its method which they identify with logic:

“[T]he constant and universal feature of science is its general method,
which consists in the persisting search for truth, constantly asking: Is
it so? To what extent is it so? Why is it so? [. . . ] And this can be
seen on reflection to be the demand for the best available evidence,
the determination of which we call logic. Scientific method is thus the
persistent application of logic as the common feature of all reasoned
knowledge.” [46, p. 192].

In a similar vein the authors make explicit their general conception of logic as a
“study of what constitutes a proof, that is, complete or conclusive evidence” [46, p.
5]. After describing their philosophical understanding of logic and its role in science
the authors introduce some elements of the contemporary symbolic logic and the
Hilbert-style axiomatic method. Even though the authors are enthusiastic about
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possible applications of this logical machinery in science, they notice that it does
not meet their expectations. This sort of logical machinery certainly does not help
one to handle and evaluate evidence (including empirical evidence). The authors
go as far as to suggest that Hilbert’s conception of formal proof is unwarranted,
and that a better name for Hilbert’s formal “proof” is “deduction” [46, p. 7]. The
contemporary symbolic logic exposed in this book is anything but the “study of
what constitutes a proof”, in the intended sense of “proof” as conclusive evidence.

Surely, the “neglect of epistemic considerations in logic” of the 20th century
has never been total. Epistemic considerations played a particularly important role
in logical developments motivated by constructive and intuitionistic approaches.
MLTT emerged in the1970s against this intellectual background, and was called
by its author the ’Intuitionistic Type theory’ [189], [186]. As Per Martin-Löf
stresses, his study and work at Moscow State University under the supervision of
Andrey Nikolaevitch Kolmogorov in the 1960s, and more specifically Kolmogorov’s
logical ideas [143] where an important part of the motivation behind MLTT
(private communication). Nowadays, the recognition of the epistemic dimension
of logic is rapidly growing, as evidenced, in particular by the recently published
comprehensive monograph on Justification Logic by Sergei Artemov and Melwin
Fitting [9].

3.2.3 MLTT and its Proof-theoretic Semantics

In this Section we explain some basic concepts of MLTT and highlight
its special features, which are important for our general theme. For a systematic
presentation of MLTT in its original form see [186] and for a modern introduction
(which involves the homotopical interpretation absent in the original version) see
[95].

MLTT is a Gentzen-style typed calculus that comprises no axiom. Its
distinctive feature is the presence of dependent types, which are types of the
form B(a) : TY PE where A : TY PE and a : A; in words: types dependent on
base type A is a family of types indexed by terms of the base type. The concept of
a dependent type has a pragmatic motivation in computer science and practical
programming: think of lists of variable length; this structure can be described in
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type-theoretic terms as a family of types that represent the lists, which depend
on the base type of natural numbers.

The meaning of the syntactic rules and other syntactic elements of MLTT
is provided via a special semantic procedure that Martin-Löf calls the meaning
explanation. In [185] the author compares the meaning explanation with a
program compiler, which translates a computer program written in a higher-
level programming language into a lower-level command language. According
to Martin-Löf a similar appropriate translation of MLTT syntactic rules into
elementary logical steps gives these rules their meaning and simultaneously
validates them [188]. As we shall now see Martin-Löf’s meaning explanation
qualifies as an informal version of PTS.

Basic syntactic expressions in MLTT are called judgements. This term is
widely used today in a technical sense, but unlike some other technical logical and
mathematical terms it is not arbitrarily chosen. Behind MLTT Martin-Löf has a
systematic philosophical conception of logic that does full justice to the epistemic
aspect of logic [187], [188]. According to Martin-Löf, the notion of judgement is
logically fundamental, while the notion of proposition is derived and obtained via
an analysis of judgement into a proposition and its proof (or proofs).

MLTT comprises the following four basic forms of judgements:
(i) A : TY PE;
(ii) A ≡TY PE B;
(iii) a : A;
(iv) a ≡A a′

In words (i) says that A is a type, (ii) that types A and B are the same, (iii) that
a is a term of type A and (iv) that a and a′ are the same term of type A.

The first 1971 version of Martin-Löf’s theory allowed types to be terms of
themselves and for this reason did not include the “type of types” TYPE aka type
universe aka big type. However in his doctoral thesis published in 1972 Jean-Yves
Girard discovered a paradox known today by his name [84], which showed that the
presence of judgements of the form a : a makes Martin-Löf’s theory inconsistent
(just as sets that are members of themselves lead to Russell’s paradox). Hence
the presence of the judgement forms (i),(ii) in the standard 1984 version of the
MLTT. Meaning explanations for (i),(ii) are the same as for (iii), (iv) except that
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(i),(ii) are placed at the next higher level of the type-theoretic hierarchy. Let us
now provide some explanations of (iii) and (iv).

Martin-Löf offers four different readings of (iii) [186, p. 5]:

1. a is an element of set A

2. a is a proof (witness, evidence) of proposition A

3. a is a method of fulfilling (realising) the intention (expectation) A

4. a is a method of solving the problem (doing the task) A

(1) expresses the common idea of extensional thinking about types as collections
of their terms; “sets” referred to in this meaning explanation should not be
confused with sets of ZFC, which is a type-free theory. (2) expresses the
“propositions-as-types paradigm” (as it is called in CS) related to the Curry-
Howard correspondence (see 3.1.3 above).

According to this interpretation a proposition is true when it has a proof,
i.e., when type A is not empty. This constructive conception of truth is a part of
PTS semantics and has an obvious epistemic content (since the relevant concept of
proof is epistemic). It should be mentioned, however, that it also admits a realistic
interpretation in which proofs are understood as truth-makers [271]. Think, for
example, about the event of Socrates’s death as a truth-maker of and also a
conclusive piece of evidence for the claim that Socrates is mortal.

(3) is Martin-Löf’s analysis of judgement in terms of Husserl’s
Phenomenology and (4) refers to Kolmogorov’s Calculus of Problems [143] and
the BHK semantics of the Intuitionistic propositional calculus.

Martin-Löf argues that the above interpretations of judgement form (iii)
not only share a logical form but also are closely conceptually related; in particular
the author argues that in the last analysis the concepts of set and proposition are
the same:

“If we take seriously the idea that a proposition is defined by lying down
how its canonical proofs are formed [. . . ] and accept that a set is defined
by prescribing how its canonical elements are formed, then it is clear that
it would only lead to an unnecessary duplication to keep the notions of
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proposition and set [. . . ] apart. Instead we simply identify them, that
is, treat them as one and the same notion.” [186, p. 13]

We shall shortly see how the homotopical interpretation of MLTT modifies,
clarifies and systematises the mixture of ideas that form the intended semantics
of MLTT in its original 1984 version25.

We now turn to the meaning explanation of the judgement form (iv).
Judgement a ≡A a′ asserts that terms a, a′ of the same type A are equal.
Notice that terms of different types in MLTT are not compared. This is a major
difference between MLTT-types interpreted as sets and ZFC-sets: while in ZFC
sets can share some elements, this is not the case in MLTT. In some contexts this
feature appears to be counter-intuitive, but at the same time it provides desired
limitations that allow one to rule out as absurd questions like “Is number pi equal
to the Euclidean space?” on formal grounds. Assuming that these mathematical
objects are represented by certain ZFC-sets one needs also assume that the above
question is meaningful and has a definite answer.

The equality relation ≡A that appears in (iv) is called in MLTT
judgemental or definitional equality. Notice that a ≡A a′ is a (form of) judgement
but not a proposition. However the concept of propositional equality a =A a′ is
also present in MLTT; it qualifies as a type on its own (a =A a′ : TY PE), which
is called an identity type. In accordance with reading (2) of the judgement form
(iii), a term of identity type is a proof of this proposition. MLTT validates the
following rule, according to which a judgemental equality entails the corresponding
propositional equality:

a ≡A a′

refla : a =A a′
(8)

where reflx is the canonical proof of proposition a =A a′ called the reflection of
term a.

The difference between judgemental and propositional equality is reflected
in many popular programming languages in which the two relations are expressed
by different symbols, and in this form is familiar to anyone with minimal

25For a different extension of MLTT intended semantics see [242]
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experience in programming. In programming, the judgemental aka definitional
equality A ≡ B is usually interpreted as an assignment to symbol A of a value B
determined in advance; think of A as a newly defined term (definiendum) and B
as its definition (more precisely, its definiens). Clearly, such an equality does not
require a proof: it holds by fiat or by definition. By contrast, the propositional
equality A = B is, generally, a non-trivial equality that, if it holds, requires a
proof. However, for reasons of uniformity, the trivial case in which A = B holds
on the ground that A ≡ B also needs to be covered. This explains the above
formal rule.

In 1984 Robert Seely showed that MLTT is the internal language of locally
Cartesian closed categories (LCCC) [259]. In the Type-theoretic community the
same result is usually described by saying that LCCC is a model of MLTT26.

Remarkably, LCCC (taken along with its base category) is also a canonical
example of a hyperdoctrine in Lawvere’s sense (see 3.1.3 D above). Thus, Seely’s
result made explicit the fact that Martin-Löf and Lawvere, working with different
formal techniques and different philosophical motivations (that were strong in
both cases) discovered the same fundamental logical structure.

LCCC verifies an additional rule called the Reflection Principle (RP),
which does not constitute part of the core of MLTT:

p : a =A a′

a ≡A a′

RP can be expressed in words by saying that every equality (identity) reduces
to equality by definition. Before 1993, when Thomas Streicher published his

26Category C is called locally Cartesian closed if for every object A ∈ Ob(C) the slice-category C/A is CCC.

C/A-objects are C-arrows of form C → A (with fixed base object A) and C/A-morphisms are C-morphisms of

form C → D such that triangles

C //

��

D

��
A

commute. Composition of morphisms in C/A is the same as in C (the closure of C/A-morphisms under the

composition in C is easily checkable).
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habilitation thesis [269], all known models of MLTT had the reflection property.
It was conjectured that PR, or at least the weaker property that if a propositional
equality has a proof then this proof is judgementally unique (abbreviated as UIP
for the uniqueness of identity proves), might be a theorem provable in MLTT.
Thomas Streicher and Martin Hoffman refuted these conjectures by providing
a model of MLTT in which RP does not hold [122], [123]. The main idea of
Hoffman and Streicher was to represent types (more precisely, judgements of
form A : TY PE) as groupoids and terms a : A as elements of these groupoids.
The identity type a =A a′ is represented in this model by the arrow groupoid
of groupoid A, which is a functor category of the form [I, A] where I is the
connected groupoid having exactly two non-identical objects and a single non-
identity isomorphism between these objects (the “generic path”). Clearly this
model allows groupoid a =A a′ to be non-empty when terms a and a′ are
not definitionally equal 27.

Since it has been established that RP is not a theorem of MLTT the
version of MLTT that does not comprise this rule is conventionally referred to as
the intensional MLTT, while the version that comprises this additional principle
is called extensional. The motivation for using these traditional logical terms in
this specific context can be explained by appeal to Frege’s popular Venus example
[73], [74].

Frege considers three different names — Venus, Morning Star and Evening
Star — which all refer to the same planet. Frege wonders how it is possible that
while the identity statement

27The algebraic concept (structure) of groupoid is similar to that of group (see 2.2.1-2 above); the key

difference is that unlike the group operation the groupoid operation is partial: for some pairs of elements the

result of the operation is determined while for some other pairs of elements it is not. A groupoid can be

alternatively described as a category G such that all its morphisms are invertible, i.e., are isomorphisms. By

collapsing all objects of G into one object one gets a group. This remark shows that the groupoid structure is,

generally, richer than the group structure. As we shall explain in the next Section the Hofmann&Streicher

groupoid interpretation of MLTT is a step toward the homotopical interpretation of MLTT discovered

independently by Steven Awodey and Vladimir Voevodsky in the mid-2000s; in order to proceed from the

former interpretation to the later one should think of Hofmann&Streicher’s groupoids as groupoids of paths

between points of a topological space.



156

Morning Star is Morning Star (9)

and the identity statement,

Morning Star is Venus (10)

which expresses a mere linguistic convention that “Venus” is an alternative name
to Morning Star, are trivial, the statement

Evening Star is Morning Star (11)

is a non-obvious astronomical fact that needs an accurate justification, which
involves both a solid theoretical background and appropriate observational data.
Where does the difference between informative and non-informative identity
statements come from? Frege does not provide a full answer to this question but
does provide a theoretical framework for answering it. To this end he distinguishes
between the sense (aka meaning) and the reference of any given linguistic
expression.

At first glance, Frege’s example supports the Reflection Principle: however
the identity of Morning Star (MS) and Evening Star (ES) is discovered and
justified, MS and ES are merely two different names of the same entity. So it
is plausible that the propositional identity e : MS = ES (where e is the
evidence that justifies this proposition) should entail the definitional identity
MS ≡ ES. This point of view is called extensional in the sense that different
senses (meanings) of the expressions “Morning Star” and “Evening Star” are not
taken into account. Only the referent of these two names matters — and the fact
that in both cases the referent is the same. So the linguistic expressions ‘Morning
Star” and “Evening Star” are analysed from this point of view as bare names, on
equal footing with the name “Venus”, which also refers to the same entity. The
linguistic choice of each of these three names has certain historical (or mythological
as in case of the name “Venus”) motivations but this issue is not a part of logic.

Notice that the above (extensional) point of view assumes that our theory
of Venus represents facts about Venus but leaves it aside how these facts are
known and, in particular, how known facts about Venus are justified. Arguably,
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this is not what one wants to call a theory. Indeed, scientific and mathematical
theories do not only tell us how things are but also support such claims with
proofs, evidence and perhaps justifications of other sorts. The presence of such
justifications is an essential feature of science. So it is reasonable to conceive of a
theory where, using a mathematical metaphor, the identity of the Morning Star
and the Evening Star is not an axiom nor a definition but a theorem. The proof of
this “theorem” should not necessarily be thought of as a derivation from axioms
even if it may have a deductive structure. For the moment let us think of this proof
as evidence e that combines theoretical and empirical (observational) elements.
In the next Section, we show how it can be construed in terms of HoTT.

So one can conceive of a theory that comprises two different different
definitions (descriptions) of MS and ES and the evidenced statement (judgement
e : MS = ES) that MS and ES are the same planet. This theory violates
RP: MS and ES are provably the same but not definitionally/judgementally the
same. This theory takes it for granted (i.e., assumes as already known) what the
Morning Star is and what the Evening Star is; then it establishes using evidence
e that MS and ES are the same planet. The difference between what is known in
advance and what is established within the theory matters in this case. In such
a situation, it matters what MS and ES mean, not only what these expressions
refer to. Since MS and ES are the same entity, every property P of MS is also a
property of ES and vice versa. However John may happen to know that MS has
certain property P (for example that it is observable during the morning hours)
but not know that ES has the same property. Such contexts in which the meaning
(sense) of linguistic expressions, as distinguished from their reference, matters are
conventionally called intensional contexts.

Thus Frege’s Venus example helps to explain the terminology used for
distinguishing between two versions of MLTT. It should be stressed, however, that
using traditional logical terms with a long history and a heavy philosophical load
(that does not remain quite stable through the history of logic) in specific technical
contexts like that of MLTT creates a risk of confusion. As we shall see in 3.2.5 D,
the Univalence Axiom used along with intensional MLTT (without RP) entails
functional extensionality, and on this ground can be seen as an extensionality
principle (in a different sense). Generally, there is more than one sense in which
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a logical calculus can be said to be extensional or intensional; it is important to
carefully disentangle these different senses.

3.2.4 From MLTT to HoTT

Here we provide a very informal exposition of the mathematical
background involved to the homotopical interpretation of MLTT, and provide
references to literature in which the same topics are treated systematically.

A) Higher categories
Given abstract category C and a pair of its objects A,B consider the class

Hom(A,B) of morphisms f, g, ... of the form A→ B. We turn Hom(A,B) into
a new category, formally introducing morphisms of the form α : f → g, that is,
morphisms between morphisms of C:

A
f ''

g
77�� B

Notice that the new morphisms can be composed in two different ways:
horizontal composition:

A
f ''

g
77�� B

h ''

i
77�� C −→ A

k ''

l
77�� C

where k = fh and l = gi

A
f ''

g
77�� B

A
g
''

h
77�� B
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↓
vertical composition:

A
f ''

h
77�� B

Requiring appropriate equational conditions called coherence laws, which
are expressed in the form of commutativity of certain diagrams and guarantee that
compositions of morphisms at both levels are properly coordinated, one obtains
a 2-category that comprises:

• objects A,B, . . . (as in C);

• morphisms f, g, .. between objects (as in C) called in this context 1-
morphisms and the operation composition for 1-morphisms (as in C);

• 2-morphisms α, β, .. and two operations of composition for 2-morphisms.

An example of a 2-category which has been around from the very beginning
of category theory (though it was not called by this name) is the 2-category
2− CAT that has all small categories as objects, functors between these categories
as 1-morphisms and natural transformations between the functors as 2-morphisms
[176].

The “rising of dimension” by introducing higher-level morphisms can be
continued, bringing about various concepts of n-category and ω-category [225].
This construction involves a number of different possible technical and conceptual
choices, which lead to a proliferation of n-category concept. Such a proliferation
concerns, primarily, the general concept of weak (as distinguished to strict) n-
category, which we explain below with the example of the path groupoid (3.2.4
C). In his 2002 paper [168], Thomas Leinster overviews and compares ten different
concepts of weak n-category. During the following decade, the application of
homotopical approaches in this area of mathematical research allowed for a
considerable stabilisation of the basic concepts of higher category theory [265].

B) Paths, Homotopies and Higher Homotopies
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Fig. 3: Path in a topological space

The relevant concept of path is defined as a continuous map p : I → S

from some distinguished unit space I into base space S. Space S can be thought of
as a topological space; but in fact for our purposes we need only a weaker notion
of homotopy space [218]. In applications the unit space I is usually identified with
the real interval [0,1], which can be thought of as a time interval; then path p can
be thought of as a continuous motion of a test point that begins at point A = p(0)

and ends at point B = p(1) (Fig.3).
Beware that the same curve with endpoints A,B may represent different

paths p, q: this happens when p, q have the same image. Such paths can be thought
of as being traced by a particle which moves between the same endpoints A,B
along the “same route” during the same time interval [0,1] and differ only in the
character of their motion. So what in homotopy theory is called a “path” is rather
a motion, which is equipped with some notion of “absolute time”, that allows one
to localise a given moving particle at any given moment of time t ∈ [0, 1] at a
certain point P of the base space S.

Let A,B be two different points of space S. Whether or not there is a
path between points A,B depends on a topological property of S called path-
connectedness. Space S is called connected when, informally, it consists of a
single “chunk”. Space S is called path-connected if any two points of the space
are connected by a path. Path-connectedness implies connectedness but not vice
versa. Thus by distinguishing between those pairs of points of a space that are
connected by a path and those pairs of points that are not connected one gets a
very rough picture of the topological properties of that space.
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Fig. 4: path homotopy

A homotopy is a continuous map that transforms a path into another
path with the same endpoints. Formally, a homotopy is a continuous map of
form h : I2 → S. If I = [0, 1] then [0, 1]2 is the real square and h(t, 0) = p(t),
h(t, 1) = q(t) where p, q are paths that share the endpoints: h(0, r) = p(0) = q(0),
h(1, r) = p(1) = q(1), for all values of parameters t, r from [0,1]. So a homotopy
can be thought of as a “path between paths” or as a “path of the second order”.
Correspondingly, a path can be described as a “zero-order homotopy”. A homotopy
can be pictured as a two-dimensional surface (cell) delimited by a pair of curves
(Fig.4):

If there exists a homotopy between paths p, q that leaves the shared
endpoints of these paths fixed then such paths are called path-homotopic or
simply homotopic (unless there is a risk of confusion of path homotopies with
more general homotopies that are not subject to the above condition). Like the
term “isomorphism”, the term “homotopy” is sometimes used in the sense of a
map and sometimes in the sense of the relation of being homotopic. Since for our
purposes it is essential to distinguish between different homotopies (as maps), we
use the term “homotopy” in the sense of a map.

Whether two given paths between fixed points are homotopic or not
depends on the topology of the base space. Fig.5 represents two non-homotopical
paths between points O, S (as an effect of gravitational lensing produced by an
imaginary hole in the spacetime). The homotopy between the paths does not exist
because the space has a hole that does not allow one path to be continuously
transformed into the other.

Thus the structure of homotopies between paths between points of a space
provides more information about the topology of this space.
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Fig. 5: non-homotopic paths

This ladder is continued by considering 2-homotopies and n-homotopies
for all natural n. An n-homotopy is a continuous map of the form hn : In+1 → S.
Intuitively, an n-homotopy can be thought of as a continuous transformation
of one n − 1-homotopy into another. The higher homotopic structure of a
space comprises more topological information about this space. For a standard
introduction to homotopy theory, see [91].

C) Fundamental Groupoids
Now we shall build some categories from paths and homotopies. Consider

a tentative category PS with objects A,B, ... points of space S and morphisms
paths p, q, . . . between these points. We assume that for every path p : [0, 1]→ S,
f(0) = A and f(1) = B, there exists the inverse path g : [0, 1] → S, g(0) = B

and g(1) = A. This assumption reflects the common idea that any motion or
its record can be “played backward”. (More general spaces that do not satisfy
this condition are known as directed spaces, see 3.2.5 D below). Thus so PS is a
groupoid.

The composition of paths may appear unproblematic: given path p from A

to B and another path q from B to C, one may easily imagine a composite path
qp from A to C, where B is a midpoint. However by composing p : [0, 1] → S

with q : [0, 1] → S we get a map of the form [0, 2] → T , which is not a path in
the sense of our definition. In order to get the composed path r = qp of the same
form h : [0, 1]→ T , we should move the test point faster (Fig.6).

This intuitive idea can be realised as follows. First, we introduce a real
variable t ∈ [0, 1] called in this context a parameter, so that for every value of
t p(t) represents a precise position (i.e. a point) on path p. Path q is treated
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Fig. 6: composition of two paths

similarly. In order to compose p and q one needs to choose a different speed. For
this purpose we introduce a new parameter t′ = t

2 (so the time is halved and
hence the speed gets doubled) and define the composition r = qp as:

r(t′) =

{
p(2t′), 0 ≤ t′ ≤ 1

2

q(2t′ − 1), 12 < t′ ≤ 1

so t′ now ranges from 0 to 1 as required. This trick is called a reparameterisation.
The problem is that there are many different reparameterisations, that can

be used for this purpose, and which produce different results. So no particular
reparameterisation gives us a general definition of path composition. The unit
interval in r : [0, 1] → S can be cut not only into two equal halves but also
in any other proportion. Moreover, the reparameterisation need not be linear:
the speed of motion along either of the two composed paths p, q needs not
to be constant. Generally, reparameterisation amounts to choosing a particular
continuous “scaling map” s : [0, 1] → [0, 2]. Each particular choice of s brings
about a new definition of path composition (Fig.7).

Suppose now that some particular map s : [0, 1]→ [0, 2] is chosen and the
composition of paths r = qp is defined as above. It remains to check whether points
and paths composed according this rule indeed form a category. The identity
morphism of a given point A is defined as the map sending each point of [0,1] to
A and it is straightforward to check that it behaves as expected. A simple check
reveals a further problem, however: the composition of paths so defined is not
associative. So P defined as above is not a category!
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Fig. 7: reparameterization

In order to fix the associativity of path composition, it is sufficient to
redefine our category P by taking its morphisms to be equivalence classes of
homotopic paths rather than the paths themselves. Indeed, however the scale
function s is chosen, r = qp up to homotopy. Thus we get a well-defined category
P1 with objects points of S and morphisms equivalence classes of homotopic paths
between these points. This category is called the fundamental groupoid of space
S.

Notice that P1 distinguishes between paths up to homotopy but does not
distinguish between different homotopies between a fixed pair of homotopic paths.
A higher-order construction that distinguishes between such homotopies (up to
2-homotopies) is called the fundamental 2-groupoid P2 of space S with objects
points, 1-morphisms paths, and 2-morphisms equivalence classes of 2-homotopic
1-homotopies. Since the composition of 1-morphisms in this case is not unique
and not strictly associative, this 2-category is called weak.

In this way one associates with the given space S a ladder of its
fundamental groupoids Pn that extends to the infinity groupoid Pω. This latter
groupoid was first described by Alexander Grothendieck in a private letter [94]
dated by 19.02.1983 and then used by other authors as a basic motivating example
of weak n-category [169], [172]. Since weak categories are central in Higher
Category theory, in this theory categories are often assumed to be weak by default
while the case of strict categories is specially distinguished.

D) Homotopy Type theory
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Let us return to MLTT. Let p, q be two judgmentally different proofs of
the proposition saying that two terms of a given type are equal:

p, q : P =T Q

It may be the case that p, q, in their turn, are propositionally equal, and that
there are two judgmentally different proofs p′, q′ of this fact:

p′, q′ : p =P=TQ q

This and similar multi-layer syntactic constructions in MLTT can be continued
unlimitedly. Before the rise of HoTT it was not clear that this syntactic feature of
the intensional MLTT can be significant from a semantic point of view. However
it became the key point of the homotopical interpretation of this syntax. Under
this interpretation

• types and their terms are interpreted, correspondingly, as spaces and their
points;

• identity proofs of form p, q : P =T Q are interpreted as paths between points
P,Q of space T ;

• identity proofs of the second level of form p′, q′ : p =P=TQ q are interpreted
as homotopies between paths p, q;

• all higher identity proofs are interpreted as higher homotopies;

(which is coherent since a path p : P =T Q counts as a point of the corresponding
path space P =T Q, homotopies of all levels are treated similarly).

Thus the homotopical interpretation makes the complex structure
of identity types in the intensional MLTT meaningful. The homotopical
interpretation extends to all of MLTT including the key concept of type
dependence that is interpreted as fibration in the sense of homotopy theory [95]. In
view of the homotopy interpretation of MLTT outlined above, spaces (understood
up to the homotopy equivalence 28 ) are also called “homotopy types”. A space that

28Topological spaces X,Y are called homotopy equivalent if there exists a pair of continuous maps A
f // B
g

oo

such that composition gf is homotopic to the identity map 1A and composition fg is homotopic to the identity

map 1B . The relation of being homotopy equivalent should not be confused with that of being homotopic.
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is homotopy equivalent to a point is called contractible. Space S is contractible
when it has a point p : S connected by a path with all other points x : S in such
a way that all these paths are homotopic. In what follows we refer to contractible
spaces “as if they were effectively contracted” and identify such spaces with points.

As we have already seen, the ladder of fundamental n-groupoids
provides more information about the corresponding base space, which, generally,
increments with the rise of dimension n. Now we slightly change this point of view
as follows: we identify spaces with their fundamental ω-groupoids and observe
that for certain classes of spaces the rise of dimension after some n does not bring
anything new. For example, when the topology of the base space is discrete, i.e.,
the given space is a set of disconnected points, then all its fundamental groupoids
Pk beginning with P1 are trivial. Similarly, one may think about a space with a
non-trivial fundamental 1-groupoid but such that all its k-groupoids with k > 1

are trivial. This motivates the following recursive definition:
Definition: S is a space of h-level n+1 if for all its points x, y path spaces x =S y

are of h-level n.
where h-level is read as as the homotopy level. By setting the h-level of point (=
contractible space) equal (-2) we obtain the following stratification of spaces aka
homotopy types :

• h-level (-2): single point pt;

• h-level (-1): the empty space ∅ and the point pt: truth-values aka (mere)
propositions

• h-level 0: sets (discrete point spaces)

• h-level 1: flat path groupoids : no non-contractibe surfaces

• h-level 2: 2-groupoids : paths and surfaces but no non-contractible volumes

•

•

• h-level n: n-groupoids

• . . .
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• h-level ω: ω-groupoids

Notice that h-levels are not equivalence classes of spaces. The homotopical
hierarchy is cumulative in the sense that all types of h-level n also qualify as types
of level m for all m > n. For example pt qualifies as truth-value, as singleton set,
as one-object groupoid, etc. Hereafter we qualify a space (type) as n-space (n-
type), when its h-level is n but is not n−1. Given a n-space Sn we associate with
it in a canonical way spaces Sk of all lower dimensions (k < n) by “forgetting the
higher-order structure”, i.e., by the identification of all higher-level homotopies of
order > k with trivial homotopies. This procedure is called (for geometric reasons)
k-truncation. In particular the (-1)-truncation of any given space S brings point
pt when S is not empty and brings the empty space ∅ otherwise. For more precise
explanations of HoTT basics, see [95].

We would like to stress that the cumulative h-hierarchy is a formal feature
of the intensional MLTT that can be described (even if not properly understood) in
purely syntactic terms without referring to homotopy theory. For example saying
that given type A is (-1)-type is tantamount to saying that all terms x, y : A of this
type are judgementally equal and that all terms of the corresponding propositional
equality x =A y are judgementally equal to reflx and so on for all higher identity
types. The presence of the h-hierarchy of types in MLTT is a robust mathematical
feature of this theory, not an epiphenomenon of its special interpretation.

HoTT has been motivated — and its idea has in a certain sense been
justified — by the model of MLTT in the category of simplicial sets found by
Voevodsky in mid-2000s [139] and, independently, by Steven Awodey and Michael
Warren, who studied links between Type theory and theory of Model categories
[12]29. HoTT does not qualify as model of MLTT in the standard ZFC-based
homotopy theory (albeit it can be used as a basis for the axiomatic Synthetic
Homotopy theory [263]) and, generally, it would be misleading to understand
HoTT as a model of MLTT even in some broadened and liberal sense of being a
model. HoTT in its original form presented in [95] is MLTT, possibly extended

29Simplicial set is a combinatorial model of topological space, which is a standard tool in modern homotopy

theory. [139] is a systematic presentation of Voevodsky’s results prepared by Kapulkin and Lumsdaine on the

basis of Voevodsky’s talks and unpublished manuscripts. A model category is a setting for axiomatic homotopy

theory due to Quillen [218].
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with the Univalence Axiom, and provided with a novel homotopical semantics
via a Martin-Löf-style informal meaning explanation briefly sketched above. In
what follows we discuss some epistemically significant features of this semantics
including its intuitive aspect. Models of MLTT/HoTT are discussed in 3.2.5 C.

E) Logical and Extra-Logical Semantics in HoTT (see [246])
The h-hierarchy of types in MLTT suggests an important modification

of the original preformal semantics of this theory due to Martin-Löf, which
was explained in the last Section. This modification is not a mere conservative
extension. Recall that Matin-Löf proposes multiple informal meaning explanations
for judgements, and suggests that they conceptually converge. HoTT in its turn
provides a geometrically motivated conception of a set as 0-type and a proposition
(called in [95, p. 103] a mere proposition) as (-1)-type. The latter is motivated
by the idea that the empty type is the false proposition and the one-point type is
the true proposition. This interpretation squares with Martin-Löf’s interpretation
of terms of propositional types as their proofs aka witnesses aka truth-makers.
0-type, aka a set M that has more than one element, can be interpreted as a
set of proofs of a proposition, aka (-1)-type ‖M‖ obtained from M via the (-
1)-truncation, i.e., by the identification of these proofs with a single truth-value.
Thus HoTT suggests the following revision of Martin-Löf’s original semantics
for MLTT: sets and propositions are not just two alternative ways of contentful
thinking about MLTT-types, but canonical interpretations of MLTT-types of
corresponding kinds: (-1)-types in the case of propositions and 0-types in the
case of sets. The corresponding canonical interpretations for n-types with n > 0

are given in terms of homotopy theory as explained above.
Martin-Löf’s theory of judgement, systematically exposed in his Siena 1983

lectures (published in a revised form in 1996 [188]), also needs revision in view of
HoTT. Martin-Löf proposes the following twofold definition of a judgement:

“[U]nderstood as an act of judging, a judgement is nothing but an act
of knowing, and, when understood as that which is judged, it is a piece
or, more solemnly, an object of knowledge.” [188, p.19]

Accordingly, a judgement of the form A is true, where A is a proposition, is
knowledge how to prove this proposition. Thus as Martin-Löf puts this, “the
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distinction between knowledge how and knowledge that [[254]] evaporates on the
intuitionistic analysis of the notion of truth” [188, p.36].

Taking the h-hierarchy of types into account suggests the following
modification of the above view on judgement. Let A be a higher-order type (h-
level > - 1) and ‖A‖ its propositional truncation. Judgement a : A along with its
derivation in MLTT represents knowledge of how to build term a of that type.
Term a proves or evidences proposition ‖M‖: the truncated version of judgement
a : A, i.e., the propositional judgement ‖a : A‖ comprises the term ‖a‖, which
is a “trace” of a that witnesses the existence of a proof of ‖A‖. The problematic
epistemological question of whether a proof that given proposition P has a proof
itself qualifies as a proof of P in this case needs to be answered positively (more
on this will be said in 3.2.5 A below). Anyway, in this setting, it makes perfect
sense to distinguish between the knowledge-that expressed with ‖a : A‖ and the
knowledge-how expressed with a : A. So the distinction between knowing that
and knowing how does not evaporate.

Assuming that any formal theory of judgement falls wholly under the scope
of logic one can qualify HoTT as a logical calculus. Probably this is a reason
why Michael Shoulman calls HoTT the “logic of space” [263]. However, such a
conception of logic is much broader than usual, and includes homotopy theory in
some form. One who wants to stick to a more narrow and more familiar conception
of logic that assumes that logic deals only with judgements of the form A is true
(where A is a proposition) may qualify the HoTT semantics as logical at the
h-level (-1) and as extra-logical (namely, homotopical) at all higher h-levels. We
leave aside for now the question of how to qualify the “pre-logical” h-level (-2).
Apparently Michael Rathjen has this more familiar conception of logic in mind
when he remarks that in MLTT

“The interrelationship between logical inferences and mathematical
constructions connects together logic and mathematics. Logic gets
intertwined with mathematical objects and operations, and it
appears that its role therein cannot be separated from mathematical
constructions. [..] [L]ogical operators can be construed as special cases
of more general mathematical operations.” ( [220, p. 95])
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The h-hierarchy of types revealed with HoTT allows one to specify the
structure of the interrelationship between logical inferences and mathematical
(to wit homotopical) constructions more precisely: the same formal MLTT rules
are interpreted as rules of logical inferences at the propositional (-1) h-level
and as rules for building extra-logical mathematical constructions, similar to
Euclids geometrical Postulates, at all higher h-levels. Extra-logical constructions
generated with these rules are not isolated from logical operations but have a clear
logical impact: each such construction, i.e., a term of higher-level type, functions
as a proof of a proposition obtained via the (-1) truncation of that type. Consider
for example MLTT rule according to which the judgemental identity of terms
entails their propositional identity:

a ≡A a′

refla : a =A a′

When A is a 0-type, i.e., a set, then a =A a′ is a (-1)-type, i.e., a
proposition. In this case the above rule reads: When elements a, a′ of set A are
judgementally (definitionally) equal then the proposition a = a′ is true. When A
is a 1-type, i.e., a (flat) groupoid where different loops of the form la : a =A a′ are
distinguished and form a set (i.e., a 0-type), then the term refla is interpreted
not as a mere truth-value but as a trivial loop (distinguished from other loops
of the same type) that witnesses proposition ‖A‖ obtained from type A via the
(-1)-truncation.

The (proof/evidence of) non-judgemental identity of the Morning Star
(MS) and the Evening Star (ES) from Frege’s Venus example (see 3.2.3 above)
is represented in HoTT by a continuous path between the two objects that in this
case can be thought of as an observed trajectory of motion of Venus [241] (Fig.8).

While at the propositional level the (propositional) identity of given terms
is a relation — it either holds or does not hold — the higher identity types have
a more complex structure that may involve multiple paths, multiple homotopies
between the paths, etc. all the way upward. The case of the identity type of h-
level = 1 (flat groupoid) can be illustrated by the picture of multiple paths used in
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Fig. 8: the Morning Star is the Evening Star

Fig. 9: quantum paths

Feynman’s Path Integral formulation of Quantum Mechanics assuming that the
pictured paths are not homotopic (Fig.9).

Terms of higher identity types can always be thought of as witnesses of
the underlying propositional identity type (obtained with truncation). However
they can be also understood as elements of the structure of the identified object
in question. Suppose that the identity of MS and ES is now taken for granted, so
that we are given judgemental (definitional) identity MS ≡ ES ≡ V enus.
In that case path p : MS = ES shown at Fig.9 is a non-trivial loop to be
distinguished from the trivial loop reflV enus, the existence of which is entailed by
the assumption [230], [234]. In this context it makes sense to think of p and other
non-trivial loops of the same type (and terms of associated higher identity types
if any) as features of the same object Venus, rather than as auxiliary external
constructions that can help one to know that the Morning Star is the Evening
Star. This provides an interesting new solution of the much discussed controversy
concerning the choice between the 3D and the 4D ontology for spatio-temporal
objects like Venus [241, Section 8].

In light of the above analysis/explanation, HoTT appears as a modern



172

version of the traditional Euclidean pattern of mathematical reasoning, where
theorems are proven with geometric constructions; see 1.1.4 above. Under this
analysis HoTT also squares perfectly with Lawvere’s view according to which
“logic is a special case of geometry” [162, p. 329] that this author develops in the
context of Topos theory (3.1.4 above): the HoTT semantics is geometric (in the
broad sense of being space-related) all the way through, but a fragment of this
semantics also qualifies as logical. The “merely logical”, to wit propositional, (-1)-
truncated fragment of HoTT is internal with respect to the full HoTT and its
models in the sense of being a proper and integral part of this larger framework
that also comprises non-propositional objects such as sets and homotopy spaces.

3.2.5 Univalent Foundations

The Univalent Foundations (UF) is a novel foundation of mathematics
proposed by Vladimir Voevodsky in the 2000s, which uses HoTT and its internal
logic for the formal axiomatic (in the sense of being “axiomatic” fully explained in
4.2.2 below) representation of mathematical theories. UF involves an additional
principle, viz. the Univalence Axiom (UA), which is absent from MLTT/HoTT as
presented above. Before we discus UA we highlight some other important aspects
of UF.

A) Computer-Assisted Proofs and Automated Proof-Checking One of
Voevodsky’s major motivations for developing UF was pragmatic. As we have
already stressed and explained in 2.4, the standard set-theoretic foundations
of mathematics and, even more generally, the Hilbert-style axiomatic approach
in mathematics, does not help one to formally check and verify mathematical
proofs beyond some trivial cases. However, the practical need for such a
reliable verification becomes more and more pressing. The “neglect of epistemic
considerations in logic” stressed by Sundholm as a general philosophical problem
[272] in fact has a clear practical dimension. Here is just one example that belongs
to Vladimir Voevodsky’s personal intellectual biography.

In 1990 Mikhail Kapranov and Vladimir Voevodsky published a paper in
Russian in which the authors announced a proof of an important theorem that
says, roughly, that the homotopy category of homotopy spaces is equivalent to the
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homotopy category of weak ω-groupoids of a certain form [137, Th.2]. One year
later the same result and a more detailed proof was published by the same authors
in English as [138]. In 1998, Carlos Simpson published a preprint [264] in which
he gave a counter-example to Kapranov&Voevodsky’s alleged theorem, though he
did not point to a mistake in their proof. Kapranov and Voevodsky considered
this critique, but were unable to see a mistake in their arguments and suspected
a mistake in Simpson’s paper. The reaction of the mathematical community was
described by Voevodsky in 2014 as follows:

“By the time Simpson’s paper appeared, both Kapranov and I had
strong reputations. Simpson’s paper created doubts in our result, which
led to it being unused by other researchers, but no one came forward
and challenged us on it.” [300, slide 10].

This situation persisted until Fall of 2013, when Voevodsky finally discovered
a mistake in his and Kapronov’s 1991 proof. The mistake turned out to be
incorrigible, so the community today believes that Simpson is right and the main
theorem of [138] is in fact a non-theorem.

The above case, which Voevodsky describes as “outrageous”, is not isolated.
In his 2014 lecture Voevodsky describes another persisted and later discovered
mistake in his own argument; for more examples of persisting mistakes in past
and recent mathematics see [293]. Nikolai Vavilov [ib.] argues that today’s
mathematical practice is not unlike the mathematical practice of past centuries in
this respect: consensus on the truth of mathematical theorems and on the validity
of their proofs is eventually reached within a tiny group of reputed experts; a wider
recognition is based on their authority. Mistakes in this process are unavoidable
and regularly occur throughout the history of mathematics. However it may be
argued that while mathematics develops and becomes increasingly more technical
and more specialised, the problem becomes more acute, and the traditional
academic procedures of verification and justification of new announced results
become even less reliable. This was how Vladimir Voeovodsky conceived of this
problem in the mid-2000s.

Voevodsky believed that the only viable solution to this problem would
be using computer-assisted formal proof checking as a standard procedure in
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mainstream mathematical practice:

“Ideally, a paper submitted to a journal should contain text for human
readers integrated with references to formalised proofs of all the results.
Before being sent to a referee the publisher runs all these proofs through
a proof checker which verifies their validity. What remains for a referee
is to check that the paper is interesting and that the formalisations of
the statements correspond to their intended meaning.” [299, slide 3]

Stated in this general form the idea was not new. Recall Leibniz’s proposal
to resolve philosophical disputes with a computation (“calculemus!”). When
Hilbert aimed at making his formal symbolic axiomatic method into the “basic
instrument of all theoretical research” ([108, p. 467]) he, apparently, had a
similar motivating idea in mind. The first proof assistant designed for automated
“mechanical” verification of formalised mathematical proofs with an electronic
computer was Peter De Bruijn’s Automath, presented in 1967 and further
developed during the following years. It is worth noticing that the Automath
does not implement Hilbert-style axiomatic reasoning, but uses a Gentzen-
style type-theoretic approach in formal reasoning based on the Curry-Howard
correspondence. The emergence of MLTT in the 1980s motivated the development
of new proof-assistants that implemented fragments of this theory or otherwise
used its ideas. This includes NuPrl (1986), ALF (1994), Agda, LF, Lego and
Coq; see [82] and further references therein. An updated comprehensive list of
presently existing proof-assistants and similar software tools is found in [70]. Agda
and Coq are commonly used today for the computational implementation of UF-
based mathematical proofs. A growing corpus of UF-based formal mathematics
implemented in Coq (the UniMath project) is found in [298]. A recent overview
of existing proof-assistants and presentation of the state of the art in interactive
computer-assisted theorem proving — which however does not cover UniMath and
other UF-motivated projects — is found in [10] and references therein.

In spite of the continuing efforts and achievements of enthusiasts, the
use of computer-assisted proofs remains today quite uncommon in mainstream
mathematical research. Nevertheless there is a growing corpus of mathematical
results proved with computer; in many such cases non-assisted “purely human”
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proofs are not known and there are indications that such proofs may not exist.
This is the case of the Four Colour Map theorem (4CT) proved by Kenneth
Appel, Wolfgang Haken and John Koch in 1977 [6]. Appel and his co-authors
used a low-level computer code written specifically for this purpose in order to
check 1482 different cases (configurations) one by one, which was not feasible by
hand. More recently a fully formalised version of Appel&Haken&Koch’s proof
was implemented with Coq [88]. Appel&Haken&Koch’s proof raised a vivid
philosophical discussion that we shall briefly review here. For another recent
overview of this discussion that focuses on issues relates to Wittgenstein’s views
on mathematical proof see also [258]

The discussion was started with Thomas Tymoczko’s paper [285] in
which he argues that the computer-assisted proof of 4CT does not qualify as
a mathematical proof in anything like the usual sense of the word because the
computer part of this proof cannot be surveyed and verified in detail by a
human mathematician, or even a group of human mathematicians. On this basis,
Tymoczko suggests that 4CT and its existing proof represents a wholly new kind
of experimental mathematics akin to experimental natural sciences, where the
computer plays the role of experimental equipment.

Paul Teller in his response to Tymoczko [282] argues that Tymoczko
misconceives of the concept of mathematical proof by confusing the epistemic
notion of verification that something is a proof of a given statement with this
proof itself, which under Teller’s general conception of mathematical proof has
no intrinsic epistemic content in it. Assuming that Appel&Haken&Koch’s alleged
proof of 4CT is indeed a proof, Teller argues that this proof is unusual only in
how one gets epistemic access (if any) to it but that, contra Tymoczko, there is
nothing unusual in the involved concept of mathematical proof itself.

Commenting on Teller’s analysis in 2008, Dag Prawitz [214] approves
of Teller’s distinction between a proof and its verification. However, since
Prawitz’s conception of proof is essentially epistemic (see 3.2.2), his analysis
of Appel&Haken&Koch’s proof of 4CT is very different. Contra Teller and in
accordance with Tymoczko, Prawitz argues that if Appel&Haken&Koch’s alleged
proof is indeed a proof, then it comprises a crucial piece of empirical evidence
provided by computer and is thus not deductive.
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In their response to Tymoczko, Mic Detlefsen and Mark Luker [56] quite
convincingly show that the difference between the computer-assisted proof of 4CT
by Appel&Haken&Koch and traditional mathematical proofs is less dramatic than
Tymoczko thinks. For traditional mathematical proofs quite often, and perhaps
even typically, comprise some “blind” symbolic calculations, like one that is needed
in order to compute the product 50 × 101 = 5050. The extent to which a
given symbolic calculation is epistemically transparent or blind, is, according to
Detlefsen&Luker, a matter of degree rather than a matter of principle. Using an
electronic or mechanical computing device instead of or along with pen and paper
does not change the nature of mathematical reasoning and mathematical proof.
That the reliance on pen and paper or, alternatively, on mechanical or electronic
devices is indeed a matter of social habit and social convention can be illustrated
by Kenneth Appel’s observation, made in 1977, soon after the release of his and
his co-author’s proof of 4CT, during a public presentation of this result. According
to Appel

“ [The public] clearly divided into two groups: people with more than
40 years that ’could not be convinced that a proof by computer could
be correct’ and ’people under forty [who] could not be convinced that
a proof that took 700 pages of hand calculations could be correct’ ”
(quoted after [258, p. 291]).

O. Bradley Bassler [17] suggests distinguishing in this context between the local
and the global surveyability of mathematical proofs. By the local surveyability
of proof p, Bassler understands the property of p that makes it possible for a
human to follow each elementary step of p. Bassler argues that local serveyability
of p does not, by itself, make p epistemically transparent or surveyable in the
usual intended sense because on the top of local surveyability at least a minimal
global surveyability is required, which allows one to see that all steps of p taken
together provide p with a sufficient epistemic force that warrants its conclusion
on the basis of its premises. In the historical part of his paper, Bassler shows
that there is an unfortunate tendency to neglect global surveability in proofs by
assuming that it reduces to the local case. We can provide an additional supporting
piece of evidence to this Bassler’s claim by referring to Hilbert’s analysis of formal
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mathematics. Recall from 1.2.3 that Hilbert stresses the foundational importance
of “concrete signs themselves, whose shape, according to the conception we have
adopted, is immediately clear and recognizable”. ([108, p. 465]); the capacity
to identify and distinguish symbols clearly we called above symbolic intuition.
Obviously, symbolic intuition provides only for local surveyability of formal
symbolic proofs and has no bearing on their global surveyability. Hilbert is silent
on the possible foundational impact of global surveyability, and apparently treats
this holistic aspect of mathematical proofs as a psychological or heuristic rather
than a logical and foundational issue.

When one applies the distinction between local and global surveyability in
the analysis of Appel&Haken&Koch’s proof of 4CT (as Bassler does in his paper
[17]) the resulting picture is more complex than the one suggested by Tymoczko
[285]. The computer part of the proof is fully locally surveyable in the sense that
each piece of the computer code can be checked and interpreted by a human
(since it was written by a human). Arguments explaining why the computation
so encoded, if performed correctly, completes the proof of the theorem, which
Appel&Haken&Koch present in the form of traditional mathematical prose,
provide a global survey of this proof and of this computation in particular.
What this proof still lacks is rather an expected surveyability and traceability
at the intermediate scale between the general understanding of what the given
computation computes and the low-level computational steps expressed with the
program code. We shall shortly see how this specific problem is successfully treated
in UF-based approach to the computer-assisted theorem proving.

Without going further into the epistemology of computer-assisted
mathematical proofs, let us briefly formulate our take on this problem. We share
Prawitz’s epistemically-laden conception of proof, including mathematical proof.
For this reason we consider the issue of the surveyability and transparency of
proofs to be a logical and foundational issue, not merely a pragmatic or practical
one. We shall use Bassler’s distinction between local and global surveyability,
which is very helpful in our analysis of UF. We also share Voevodsky’s conviction
that the computer, conceived of and properly used as an epistemic tool (rather
than as an autonomous epistemic agent), can help one to obtain more confidence
in certain mathematical results, to find errors in other alleged results, and thus
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to improve on current problematic situation in the cutting edge mathematical
research indicated above. Below we provide more details on how the interaction
between human and computer can be organised in the case of UF-based computer
proofs. A detailed comparative analysis of other approaches in automated proof-
checking is beyond the scope of the present work. However, to the best of our
knowledge, the features of the UF-based approach, that are highlighted below
and which, according to our analysis, are of crucial epistemological importance,
are wholly absent from all other approaches.

B) Univalent Foundations and Mathematical Intuition[247]
The homotopical semantics of MLTT briefly described in 3.2.4 allows

one to think of formal derivations in this calculus as a geometrical or, more
precisely, homotopical spatial constructions. When this base calculus or its
fragment is implemented in the form of programming code, the same homotopical
interpretation along with the associated spatial intuition applies to the code.
This spatial (homotopical) intuition makes formal symbolic derivations and the
corresponding programming code humanly surveyable in a new way: on top of
the local surveyability that allows one to control elementary steps of the process,
and in addition to the high-scale global surveyability that provides one with a
general grasp of the resulting construction, homotopical intuition provides an
epistemic access to the intermediate scale (mesoscopic) level of construction,
which allows one to follow and control all significant steps of the construction
(reasoning), ignoring its minute details. Such an intuitive reading of the formalism
bridges the usual gap between the rigorous formal representation of mathematical
reasoning using logical calculi, on the one hand, and conventional representations
of mathematical reasoning, which typically rely heavily on various symbolic means
of expression without strict syntactic rules, on the other hand. Thus HoTT
supports a representation of mathematical reasoning in general and mathematical
proof in particular which is:

• fully formal in the sense that it uses a symbolic calculus with an explicit
rigorous syntax;

• computer-checkable;
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• supported by a spatial (homotopical) intuition that balances local and global
aspects of mathematical intuition in the usual way [228].

A simple (but not trivial) example of a mathematical proof represented in
this way is found in [170]. It is a proof of a basic theorem in Algebraic Topology
according to which the fundamental group π1(S1) of a (topological) circle is S1

(isomorphic to) the infinite cyclic group Z, which is canonically represented as the
additive group of integers, see [99, p. 29 ff] for the standard presentation of this
material30. The theorem and its proof have a clear intuitive meaning. Choose an
arbitrary point of a given circle as the base point and attach a thread to it. Then
wind the thread around the circle (in all possible ways) and try to classify the
forming loops. First, distinguish between clockwise and counterclockwise loops.
Second, in each of these two classes distinguish between loops of different orders
where the order of a given loop is its winding number with respect to a point
inside the circle, that is, the number of times one winds the thread when one
obtains the given loop. By convention the counterclockwise loops have positive
winding numbers and the clockwise loops have negative ones. Introduce the trivial
loop with winding number 0. The loops are composable in the obvious way, so
that the winding number of the resulting loop is the sum of the winding numbers
of the composed loops. The set of loops with composition form a group, which is
isomorphic to the additive group of integers, i.e., the infinite cyclic group.

The standard proof of the theorem involves the construction of a “winding
map” w : R→ S1 that can be visualised in the form of a helix, and a projection
that sends each point of the helix to the point of a circle below it (Fig.10).
This map is a fibration called the universal cover of the circle; each fiber in it is
isomorphic to the integers. Leaving aside other details of the argument (which are
found in [170]), let us only stress the fact that the above construction is formally
reproduced with HoTT and then encoded with the programming code (Licata and
Shulman encode this proof in AGDA) without losing its intuitive appeal.

Let base be a point of a given circle S1 (the base point). This judgement
is formally reproduced with MLTT syntax as the formula

30The fundamental group is a fundamental groupoid where all paths are loops that start and end at the same

point of the given space, which is called the base point. The fundamental group of a given topological space

does not depend on the choice of the base point.
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Fig. 10: winding map

b : S1

Then loops associated with this base point are terms of the form:

loop : b =S1 b

The resulting formal proof and its implementation in a programming code are
interpretable in terms of such intuitive spatial (homotopical) constructions all the
way through. When the program is run on a computer, the user, as usual, is in
a position to grasp the general idea of the proof (see the informal explanation
above) and to survey fragments of the executed computation at the microscopic
level of elementary computational steps by looking into the programming code all
the way down to the machine code. What is specific for the UF-based approach is
that in the given case the user can also follow the mathematical argument at the
crucial mesoscopic level of the proof structure. In this case a computer-assisted
proof is no longer a “black box proof” where a part of the argument is hidden and
replaced by non-deductive empirical evidence. In this case the computer is used
only as a tool that helps one to ensure that the microscopic structure of the given
proof is correct. (Arguably computers do this better than humans.) This makes
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a UF-based formal computer-assisted proof quite like traditional mathematical
proofs (along the lines of Detlefsen&Luker’s argument [56]).

The idea of Univalent Foundations is to reconstruct in the same way the
whole of mathematics. Since the above theorem belongs to Algebraic Topology
and even more specifically to Homotopy theory, the relevance of HoTT in this
case is not surprising. It is not so clear, thus far, whether the homotopical
intuition is relevant to all mathematical subjects and disciplines and can play
the same role in their foundations. The UniMath library [298] is growing, but at
this point in history we don’t have elementary mathematics textbooks based on
this approach, which could be compared to the early 20th century progressive
elementary geometry textbooks written in the Hilbert style and adopted for
school education (like [97]), or with the Bourbaki-style textbooks that appeared
later in the same century. Even if the idea to use the Univalent Foundations
in mathematics education, including elementary mathematics education, appears
weird, we believe that some general lessons for MathEd can be learned from UF.
One such lesson is that there is no sufficient reason for considering the Hilbert-style
axiomatic architecture as the default theoretical ideal that school and university
mathematical textbooks need to approximate.

C) Models of HoTT and the Initiality Conjecture [248]
The model theory of MLTT/HoTT is so far less developed than HoTT

itself, and we do not intend to describe here the present state of the art in this
area of research. In what follows we provide a brief overview of the subject and
highlight certain conceptual issues, which, in our view, are of general importance.

Alfred Tarski designed his model theory back in the early 1950s [277],
having in mind Hilbert-style axiomatic theories. Let us recall its basics concepts.
A model of (uninterpreted) axiom A is an interpretation m of non-logical terms
in A that makes it into a true sentence Am; if such m exists A is called satisfiable
and said to be satisfied by m. Model M of uninterpreted axiomatic theory T is
an interpretation that makes all its axioms and theorems true. Since the rules
of inference used in T preserve truth, it is sufficient to check that M satisfies
all axioms of T to establish that it also satisfies all its theorems (soundness).
The model-theoretic logical semantics proposed by Tarski and the Tarski-style
model theory together form a coherent semantic framework for first-order Hilbert-
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style axiomatic theories. Models built in this framework are set-theoretic models
by default. Bourbaki-style set-theoretic foundations of mathematics and the
“semantic” approach in the formal representation of scientific theories (see 2.2

and 2.3.3) are based, theoretically, on Tarski’s pioneering works in model theory.
During the decades following its birth, the model theory of the 1950s

significantly developed and changed its shape. As Angus Macintyre remarked
back in 2003

“I see model theory as becoming increasingly detached from set theory,
and the Tarskian notion of set-theoretic model being no longer central
to model theory. In much of modern mathematics, the set-theoretic
component is of minor interest, and basic notions are geometric or
category-theoretic. [. . . ] The resulting relativization and ’transfer of
structure’ is incomparably more flexible and powerful than anything
yet known in ’set-theoretic model theory’.” [174, p. 197]

Even if Macintyre focuses in this paper mostly on technical developments
it is clear that these developments call for revision of the philosophically-laden
conceptual foundations of Tarskian model theory. This latter task remains mostly
unsolved in today’s philosophical logic. For a valuable attempt to introduce the
up-to-date model theory into the current philosophical discussion see the recent
monograph by John Baldwin [13]. In this Section, we describe some specific
features of the model theory of MLTT/HoTT and consider Voevodsky’s Initiality
Conjecture.

When we deal with modelling a theory presented in the Gentzen style
rather than in the Hilbert style, which has a default proof-theoretic semantics that
is supposed to be preserved in all further interpretations, the familiar Tarskian
semantic framework does not apply or at least cannot be applied straightforwardly.
First of all, we need a notion of modelling a rule (rather than modelling an axiom).
Although such a notion is not immediately found in standard textbooks on model
theory (such as [121]), it can be easily construed on this standard basis as follows.
We shall say that interpretation m is a model of rule R, in symbols
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Am
1 , . . . , A

m
n

Bm
(12)

if whenever Am
1 , . . . , A

m
n are true sentences Bm is also true sentence. This

scheme is used by Dimitris Tsementzis in what he calls a preformal meaning
explanation of HoTT [283]. However, since not every judgement in MLTT/HoTT
is of the form P is true, the above notion of modelling a rule does not accurately
preserve the default semantics of this theory in all cases of interest. In particular,
(12) under this standard interpretation is not compatible with the extra-logical
proof-theoretic semantics of HoTT described above in 3.2.4 because formula Am

cannot stand simultaneously for a true sentence and for a non-propositional object.
In order to fix this difficulty, we shall understand the satisfaction relation in a
more general way than is usual by interpreting formulas Am

i in (12) as correct
judgements without specifying their form. The soundness of interpretation m

in this new setting is the requirement according to which m does not destroy
the inferential force of R understood in epistemic terms: the inference from
assumptions Am

1 , . . . , A
m
n to conclusion Bm needs to be justified via a joint

application of the default HoTT semantics and the additional semantics provided
by interpretation m itself (as in the case in which a path between points MS,ES

is interpreted as a trajectory of a celestial body).
In the standard Tarskian setting, by interpretation of formula one

understands an interpretation of non-logical symbols in this formula; the
distinction between logical and non-logical symbols is supposed to be set
beforehand. In interpreting HoTT one deals with a very different situation, in
which the distinction between logical and extra-logical elements does not apply at
the syntactic level. This is why in this case one needs to check how the intended
meanings of logical constants are modified with the given interpretation, and make
sure that they still work as expected.

Models of MLTT include (see [58, Section 6]):

• realisability models;

• set-theoretic models (in ZFC and in constructive set theories);

• category-theoretic models of three sorts:
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– locally cartesian closed categories (LCCC);

– contextual categories (and their versions known as categories with
families and categories with attributes);

– hypodoctrines

Realisability models of MLTT first appear as formalised versions of Martin-
Löf’s informal meaning explanation of MLTT; for further details see [221], [124].
However, Martin-Löf insists that meaning explanation is a sui generis semantic
procedure [188] which should be distinguished from modelling. Recall that when
we talk about models of MLTT and HoTT, we don’t consider these theories to be
purely syntactic constructs devoid of meaning, but assume that they have default
meanings provided by their meaning explanations, as was sketched above. Unlike
meaning explanations realisability models are external mathematical structures.

Set-theoretic model(s) of MLTT, including ZFC-based models, are hardly
helpful as a means of representation, but their existence is important from a
foundational point of view; notice that in order to model the “big” universe of
types in ZFC, one needs to assume on top of ZFC the existence of at least one
inaccessible cardinal.

We have already discussed above the close relationships between Lawvere’s
hypodoctrines, LCCC’s and MLTT: any LCCC qualifies as (an example of) a
hypodictirine, and MLTT qualifies as the internal language of LCCC. When
hypodoctrines and LCCC’s are described as models of MLTT, the viewpoint is
different but the mathematical content that justifies the name is the same.

All the above models of MLTT verify the Reflexion Principle (RP) (see
3.2.3) and thus cannot serve as models of HoTT even though MLTT and HoTT
(without the Univalence Axiom) coincide syntactically. As we already mentioned
in 3.2.3, the first model of MLTT that violates RP and thus opens the room
for a homotopical interpretation of intensional MLTT, including its higher-order
identity types, was first published in 1993 by Thomas Streicher [269]; see also
[123].

Let us finally point to an open problem in the model theory of HoTT, which
involves an interesting attempt to rethink the received concept of a model. This
problem was central in Vladimir Voevodsky’s research at least since 2010 until
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the end of his life and career. Voevodsky proposed a refinement of the received
concept of model related to what he called the Initiality Conjecture. In order to
explain this proposal of Voevodsky’s we need some preliminaries. Voevodsky uses
a version of model theory today called Functorial Model theory, the idea of which
goes back to Lawvere’s 1963 thesis [155]; for a modern exposition see [132, vol. 2,
D1-4] and [203].

The idea of functorial model theory can be briefly described in the form
of the following construction:

• a given theory T is presented as a syntactic category called the canonical
syntactic model of T;

• models ofT are construed as functorsm : T→ S fromT into an appropriate
background category (such as the category of sets), which preserve the
relevant structure;

• models of T form a functor category CT = ST;

• in the above context theory T is construed, in Lawere words, as a generic
model , i.e., as an object (or a subcategory as in [155]) of CT.

Voevodsky and his co-authors proceed according to a similar (albeit not
quite identical) pattern:

• Construct a general model of a given type theory T (MLTT or its variant)
as a category C with additional structures which model T-rules. For that
purpose the authors use the aforementioned notion of contextual category
due to Cartmell [40]; in later works Voevodsky uses a modified version of
this concept named by the author a C-system.

• Construct a particular contextual category (variant: a C-system) C(T) of
a syntactic character, which is called a term model. Objects of C(T) are
MLTT-contexts, i.e., expressions of the form

[x1 : A1, . . . , xn : An]

taken up to definitional equality and the renaming of free variables and
its morphisms are substitutions (of the contexts into T-rule schemata) also



186

identified up to the definitional equality and the renaming of variables). More
precisely, morphisms of C(T ) are of the form

f : [x1 : A1, . . . , xn : An]→ [y1 : B1, . . . , ym : Bm]

where f is represented by a sequent of terms f1, . . . , fm such that

x1 : A1, . . . , xn : An ` f1 : B1
...
x1 : A1, . . . , xn : An ` fm : Bm(f1, . . . , fm)

Thus morphisms of C(T ) represent derivations in T.

• Define an appropriate notion of morphism between contextual categories (C-
systems) and form category CTXT of such categories.

• Show that C(T) is initial in CTXT , that is, that for any object C of CTXT
there is precisely one morphism (functor) of the form C(T)→ C.

The latter proposition is stated in [139] as Theorem 1.2.9 without proof;
the authors refer to [269] where a special case of this theorem is proved and then
mention that “the fact that it holds for other selections from among the standard
rules is well-known in folklore”.

Unlike some other colleagues Voevodsky considered the above Initiality
Conjecture (IC) to be a genuine open problem. In its general form this conjecture
is not a mathematical statement which waits to be proved or disproved, but a
problem of building a general formal semantic framework for type theories in
the form of a CTXT -like category that has a syntactic object with the initiality
property explained above. This conjecture still stands open to the date of writing.

According to Veovodsky, a functor m of the form C(T) → C does not
qualify as a model of T unless the functor of this form is unique; otherwise it
should be called a representation of T. The initiality of C(T) guarantees that
each representation in the given category of contexts is a model of T.

The initiality requirement has the following epistemological meaning 31.
Think of the generic term model C(T) as a symbolically presented system of
instructions (formal rules). This system of instructions is schematic in the sense

31The following epistemological argument is ours, not Voevodsky’s.
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that it is applicable in more than just one single context (recall that the available
contexts are objects of CTXT ). Then the initiality property of C(T) in CTXT
guarantees that in each particular context C̄ the general instruction C(T) is
interpreted and applied unambiguously as a unique m̄. Indeed, a useful instruction
can and arguably should be schematic but it definitely should not be ambiguous.

.
D) Univalence
Univalence is a property of Voevodsky’s simplicial model of MLTT [139],

which was stipulated by Voevodsky as an axiom (UA). UA, along with the
syntactic rules of MLTT and their homotopical interpretation (HoTT), constitutes
Voevodsky’s original version of Univalent Foundations and gives it its name. The
term “univalence” used in this context is due to Voevodsky and its origin is
somewhat arbitrary: it comes from the expression “faithful functor” translated
into Russian on some occasion as “univalent functor” [92, footnote 4].

Let A,B be types, in symbols A,B TY PE. Consider the identity type
A =TY PE B and the type of equivalences A 'TY PE B where by equivalence
one understands a function f : A → B, which is in an appropriate sense
invertible; under the homotopical interpretation such equivalences are homotopy
equivalences. The rules of MLTT/HoTT allow one to construct a canonical map
of the form

e (A = B)→ (A ' B)

which, to put it informally, witnesses the fact that identity is a special case of
equivalence. The Univalence Axiom states that this map e has an inverse and
thus is itself an equivalence. In other words, UA says that the type

(A = B) ' (A ' B)

is inhabited.
In order to make sense of UA it is instructive to consider first the case

in which A,B are (-1)-types, i.e., propositions. In this case UA is, to first
approximation, the familiar Church’s propositional extensionality principle (PE),
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which says that two propositions are equal just in case they are equivalent 32 , or
in standard symbols

(A = B)↔ (A↔ B)

PE implies that in all relevant contexts equivalent propositions count as
the same and are interchangeable salva veritate; by analogy with the
Isomorphism Equivalence Principle (IEP) and Category Equivalence Principle
(CEP) considered in 2.2.2 and 3.1.2 B) above, we shall call this latter statement
the Propositional Equivalence Principle (PEP).

A necessary disclaimer is that PE is not derived in MLTT from UA via
a simple restriction of the general case to the case of propositional types; the
corresponding internal construction, which involves a construal of a proposition
as a pair P ≡< A, p >, where A is a type and p is a proof that A is a proposition, is
given in [2, p.144-145]. The construction shows that propositions P,Q construed as
above are equal just in case their underlying types A,B are (logically) equivalent,
which is a constructive form of PE. So UA implies that the “right” notion of
equivalence for propositions, which agrees with the corresponding equivalence
principle, to wit with PEP, is, not surprisingly, their logical equivalence.

In case A,B are sets (0-types), UA says, roughly, that the type of equalities
of sets is equivalent to the type of isomorphisms of sets, which implies IEP. The
required internal construction in this case is more involved and its sketch is also
found in [2, p.145]. Recall that in the Bourbaki-style semantic set-theoretic setting
IEP is nothing but an heuristic principle. It is not a theorem of set theory, and
it cannot be effectively used an additional foundational axiom for two reasons:
(i) If IEP is applied to all properties of mathematical objects indiscriminately
then it contradicts the axioms of set theory since not all such properties are
invariant under isomorphisms; (ii) if IEP is applied only to the special class of
structural properties, i.e., properties invariant under (structural) isomorphisms,
then the contradiction is avoided but it remains unclear which ZFC-properties are
structural and which are not.

32This principle that was first considered (but not adopted) by Alonso Church in his 1940 version of Simple

Type theory and in 1950 used by Leon Henkin; see [21].
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One might think that IEP used as an axiom on top of the set-theoretic
axioms would provide an “implicit definition” of the concept of structural property
in a similar way to that in which the ZFC axioms “define” the concept of a set.
This proposal does not go through, however, because IEP, unlike the axioms of
ZFC, is a second-order statement. Any class of ZFC-based structures, say, the
class of groups, consists of objects that have both structural (group-theoretic in
our example) properties, which are invariant under structural isomorphisms, and
non-structural properties, which are not isomorphisms-invariant. So IEP used as
an axiom on top of the ZFC axioms does not allow one to distinguish a class
of structures such that all expressible properties of these structures would be
structural by design. IEP helps one at best only to distinguish between structural
(and thus relevant) and non-structural properties for a given type of structure
(such as groups).

This is a serious argument supporting the claim that the Bourbaki-style
set-theoretic foundations of mathematics are internally conceptually incoherent
(even if formally consistent): mathematical structures construed on these
foundations do not have an expected key epistemic feature, which is the invariance
of all expressible properties under structural isomorphisms. Although Bourbaki
never stated this argument in this form, Bourbaki’s misgivings about set-theoretic
foundations quoted in 2.2.2 can be anachronistically understood and justified in
this way. UF solves this problem via UA: all properties of mathematical structures
(whether Bourbaki-style or not) reconstructed on this foundation are structural in
the intended sense (namely that of IEP); the wobble of identity and equivalence of
mathematical objects, which is abundant in Bourbaki-style mathematics, is fixed
and treated rigorously in UF. 33.

On this ground, some authors regard UF as a “structuralist foundation”
[284]; see also [11] and [4]. We recognise that UF, unlike ZFC, supports IEP, which
is a pillar of Mathematical Structuralism (MS) in any of its existing multiple
versions. However, we have some reservations about the idea that UF indeed fully
squares with the core of MS as it is usually presented. It is common to trace
the history of MS at least back to Hilbert’s 1899 Foundations of Geometry [115];

33Solving this problem was an important part of Voevodsky’s motivation for developing UF [2, p.141].
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Bourbaki’s version of MS inherits Hilbert’s concept of axiomatic method via the
semantic version of this method. UF in its turn derives from MLTT and the
intuitionistic/constructive trend in 20th century mathematics, which has Kantian
origins (in particular, this concerns Brouwer). Unlike ZFC, MLTT is a Gentzen-
styel but not a Hilbert-style formal calculus, and its intended logical semantics
is proof-theoretic but not model-theoretic (see 3.2.3) According to Martin-Löf,
MLTT “resolves the Hilbert-Brouwer controversy” [190]; according to our analysis
UF goes further in the same direction by revindicating the epistemic role of
spatial intuition in mathematical proofs. Thus UF combines many ideas from logic,
mathematics and philosophy; only a part of these ideas issue from Bourbaki-style
structural mathematics and Mathematical Structuralism.

This remark concerns not only UF in general but also UA more specifically.
An important consequence of UA is function extensionality (FE), i.e., the property
that any two functions that share their domains and are equally evaluated at all
arguments are the same; for a precise formulation and proof, see [95, pp. 140-
142]; recall also that FE fails in toposes, save the topos of sets. FE is a strong
extensionality principle that is important from the computational point of view
because it allows for effective (to wit decidable) type-checking. This consequence
of UA, unlike IEP, supports a constructive view of mathematics. Many authors
who attempt to analyze UA from a logical point of view, and use in this analysis
a historical context, regard UA as a modern form of Leibniz’ principle of the
identity of indiscernibles [150], [2]. Leibniz’ Law can be interpreted in structural
(MS) terms, but it can be also interpreted in constructive terms. The same is true
of UA.

Of course, if one understands the notion of being a “structuralist
foundation” liberally enough, the qualification of UF as “structuralist foundations”
can be justified. This title can be also misleading, however, because it highlights
just one aspect of UF and shadows other aspects. In this work we avoid
characteriseing UF as integrally structuralist or constructivist; instead we try
to analyse the mixture of mathematical, logical and epistemological ideas behind
UF, in some cases to bring in some other ideas, and draw on this basis some
epistemological conclusions.

IEP does not upgrade in UF to the Category Equivalence Principle (CEP)
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fully and straightforwardly. The reason is that while the concept of a set in HoTT
is simple (recall that it is a type of h-level 0), the concept of a category is
not. Moving one step up along the homotopical ladder takes one to groupoids
(categories with all morphisms isomorphisms), not to general categories. General
categories need to be reconstructed in UF internally. It then turns out that only a
special class of categories called univalent categories, which includes all categories
of Bourbaki-style structures and more, supports CEP [2, p.147-149]. So even if UF
can be rightly seen as the structuralist dream coming true, this result shows that
UF also has room for developing different kinds of mathematics. The possibility
of interesting contentful mathematics developed beyond the univalence principle
cannot be ruled out either — even if today such a possibility appears as sheer
speculation.

Let us finally point to two important works in progress related to UA.
First is Cubical Type theory (CTT). This theory is based on an alternative model
of MLTT/HoTT in the category of cubical sets, which like Voevodsky’s simplicial
model has the univalence property [173]. The cubical model motivates an extension
of MLTT, where the univalence property is proved but not postulated in the form
of an axiom [38]. Recall that UA is the only axiom of the standard UF while MLTT
is presented in the Gentzen-style rule-based form. This gives to the standard UF
its mixed Gentzen/Hilbert-style form and makes it not fully computable because
the inverse map

(A = B)← (A ' B)

in this case is simply stipulated (i.e., introduced by fiat via UA), not
effectively constructed. CTT, like MLTT, is wholly rule-based, which solves the
computability issue. In addition, CTT admits meaning explanations of higher
inductive types (HITs) (such as the type of loops b =S1 b considered above in
this Section), which are more detailed and precise than those available in the
standard HoTT [5]. Because of these features of CTT it can be argued that this
theory better serves as a formal carrier for UF/HoTT than MLTT. But since CTT
is still in its nascent state, we do not use it more systematically in the present
work.
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The other development is Directed Type theory (DTT) [202]. The idea here
is to design a type theory along with its (directed) homotopy interpretation, in
which groupoids of the standard HoTT are replaced by general categories; for
the geometrical background of this approach see [89], [90]. From the computation
point of view DTT is interesting because it goes beyond the functional paradigm
of programming (where MLTT/HoTT-based programming languages belong)
and allows for modelling concurrent computations. From the foundation of
mathematics perspective, DTT is interesting because it allows one to represent
general categories in a simpler way than in the standard UF . Finally, this approach
appears to be interesting and important philosophically because it overtly goes
beyond the structuralist viewpoint in mathematics, by treating invertible and
non-invertible maps on equal epistemological grounds [229].

4 Conclusion and Further Research

4.1 Summary

In chapter 1 it was shown that the popular view according to which
Hilbert’s version of a formal axiomatic method, as presented first in his
Foundations of Geometry of 1899, is a modern improved version of Euclid’s
method as presented in his Elements, needs significant qualifications and
reservations. It was also shown that Hilbert was well aware of the specific character
of his axiomatic approach and at least at a late stage of his career he did not regard
Euclid’s method as merely an imperfect version of his own method (Section 1.3.2).
The difference between Euclid’s and Hilbert’s axiomatic conceptions could remain
an important but still purely historical issue, which was already discussed in earlier
literature. However as we have further argued in the following chapters the specific
character and limitations of Hilbert’s axiomatic method also have important
implications for today’s mathematics. Some essential features of the traditional
Euclid-style mathematical reasoning —such as its rule-based constructive aka
“genetic” character —survive in today’s mathematics and, as we argue, cannot
be ignored as mere anachronisms (2.2.4). Our analysis of attempts to implement
the Hilbert-style axiomatic method in broad mathematical and scientific practice
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(Ch. 2) as well as an analysis of some successful axiomatic approaches, which
deviate from Hilbert’s line (Ch. 3) lead us to a conclusion according to which the
very concept of axiomatic theory once again, today, needs a serious revision. Our
version of such a revision is presented in this chapter below (Sections 4.2 and
4.3).

A disclaimer is here in order. As we have already stressed, Hilbert designed
his axiomatic method as a part of his foundational project, in which meta-
mathematical tasks such as (meta-mathematical) proofs of consistency and of
the epistemic completeness of theories played a central role. Such a focus on
meta-mathematics within the foundations is a specific feature of Hilbert’s vision
of FOM, which is wholly absent from more traditional FOMs including Euclid’s
34. Mainstream FOM-related mathematical research in the 20th century followed
in Hilbert’s steps and brought about a number of important meta-mathematical
results, such as Gödel’s Incompleteness Theorems and the independence of the
Continuum Hypothesis. In the present study we have not discussed such results
and their philosophical implications, but focused instead on more traditional
functions of FOM, which (with a pinch of salt) can be called “practical”: the
capacity to represent mathematical and scientific contents, to provide a common
language for various areas of mathematics and science, and to serve as a guide
for mathematics education. Our critique of Hilbert’s axiomatic method primarily
concerns its efficiency and adequacy as a representational and justificatory tool
for mathematical and scientific theories, not its specific role in meta-mathematical
studies. This critique may have certain implications for the interpretation of
meta-mathematical results as well (since the relevance of these results to broad

34We call a theory epistemically complete when it allows one to solve any well-posed problem within this

very theory. In order to understand the historical origins of today’s received FOM it is essential to take into

account the fact that Hilbert held a strong epistemological view in favour of the epistemic completeness of

mathematical theories, which remained quite stable throughout his carrier. Hilbert expressed this view publicly

on many occasions, most famously in his 1900 address delivered in the Sorbonne at the International Congress

of Mathematicians where he pronounced his “no ignoramibus” (in mathematics), and also in his last major

public lecture delivered in 1930 in Königsberg, which Hilbert concluded with the words “We must know. We will

know”. Hilbert formed this epistemological view in the context of the continuing Ignoramibusstreit (ignoramibus

debate) started back in 1872 by Emil du Bois-Reymond who defended the opposite view according to which

certain scientific questions and problems are unsolvable in principle [192].
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mathematical practice obviously depends on whether or not this practice is
modelled adequately in meta-mathematical studies) but in the present work we
do not extend our study in this direction.

In Section 2.2 we overviewed the most significant and most systematic
attempt to implement the modern Hilbert-style axiomatic approach in
mathematical practice, namely the continuing project aiming at the axiomatic
representation of the core mathematical knowledge available to date, which is
generally known after the (pseudo-) name of Nicolas Bourbaki. It is important to
realise that Bourbaki’s method of theory-building differs from the one conceived
by Hilbert. This difference is not just a matter of practical compromise between
formal rigour and the demands of working mathematicians and mathematics
educators, who usually systematically bypass various tedious routines in their
reasoning. Unlike Hilbert’s original version, Bourbaki’s version of the axiomatic
method is semantic, which means that Bourbaki-style axiomatic theories are
equipped with default set-theoretic models, which are, generally, not isomorphic.
Without further ado, Bourbaki treat these different models on equal footing and
consider them as theoretical objects that belong to the same mathematical theory.
Each particular algebraic group construed by Bourbaki as a set with a group-
theoretic structure (no matter whether one prefers to identify this structure up
to isomorphism or up to strict set-theoretic identity) qualifies as a model of
group-theoretic axioms. However, group theory in Bourbaki treats such specific
groups and various relationships between different groups so construed, not just
properties shared by all groups that can be formally deduced from the group-
theoretic axioms taken in isolation from the set-theoretic axioms. If one thinks
about these models in terms of Tarski-style model theory (as do Suppes and his
followers) then Bourbaki’s semantic framework appears to be closely related to
the Hilbert-style axiomatic architecture and can be justly seen as its extension or
improvement.

The Bourbaki-style semantic version of the axiomatic method allows one
to abstract away from syntactic details, which working mathematician usually
consider to be irrelevant to their object of study, and thus more effectively use
this method for representational purposes. A drawback of this approach is that
mathematical proofs presented in Bourbaki-style are not formally checkable in
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practice (beyond trivial cases). Given a valid proof so presented one is always in
a position to show that the conclusion of this proof can in principle be logically
deduced from the axioms of set theory. In practice, however, one is typically
not in a position to perform such a formal deduction syntactically and check its
correctness.

Mathematicians have very divided opinions about Bourbaki’s edifice,
some of which have been quoted above. Outside a narrow group of enthusiasts
who continue today to push Bourbaki’s project further forward, there are very
few research mathematicians and mathematics educators who are ready to use
Bourbaki’s volumes in their teaching and research. Nevertheless it seems to us clear
that Bourbaki’s Elements indeed “make explicit the essential general features,
ingredients, and operations” (to use Lawvere&Rosebrugh’s words) of a certain
style and pattern of mathematical thinking that has played a major role in 20th
century mathematics, and led to its many successes and further developments.

In Section 2.3 we overviewed some past attempts to implement the
Hilbert-style axiomatic architecture in physical and biological theories. In the
same Section we discussed some applications of the modern axiomatic method
in CS and engineering. Recall that the application of an axiomatic approach in
science beyond pure mathematics was Hilbert’s original intention. In the beginning
of the 20th century a significant number of scientists were enthusiastic about
the prospects of the then-new Hilbert-style axiomatic approach in science, and
attempted to introduce the axiomatic style of theory-building in contemporary
scientific practice. Such attempts were never wholly abandoned but so far
they failed to make axiomatic theory-building into a standard and commonly
recognised scientific practice.

In chapter 3 we described two more recent axiomatic approaches that
we called “novel”: one related to category-theoretic foundations of mathematics
first proposed in by William Lawvere in the 1960s (Section 3.1) and the other
related to Univalent Foundations, first proposed by Vladimir Voevodsky in the
mid-2000s (but essentially based on earlier works by Per Martin-Löf that date
back to the 1970s and 1980s),(Section 3.2). Both these approaches deviate
from Hilbert’s conception of the axiomatic method and develop novel axiomatic
architectures. In case of category-theoretic FOM, this deviation is implicit rather
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than explicit. Lawvere’s early proposals made in his 1963 Ph.D. thesis [155] did
not challenge Hilbert’s notion of axiomatic method in its original form, but showed
an alternative to Bourbaki’s semantic version of this method. What we qualify
as a deviation from Hilbert’s axiomatic approach in Lawvere’s work concerns
primarily the concept of internal logic (of a category) that appears first (at
this point without the name) in Lawvere’s seminal 1970 paper [162] in which he
formulates his axioms for topos theory (nowadays standard) and claims that “logic
is a special case of geometry” (p. 329). This view on the relationships between
logic and geometry is strikingly different from the one developed by Hilbert in his
1899 Foundations of Geometry [115] and in later works. While Hilbert (and after
him Tarski in [276]) conceive of logic as a fixed external framework where various
mathematical and non-mathematical theories are built via appropriate choices of
axioms and their interpretations, the concept of internal logic makes logic into an
element of a larger theoretical construction that determines special features of the
given logic “from above”. In our view this insight marks a significant departure
from Hilbert’s way of thinking about logic and axiomatic method.

In a different and more explicit form the same idea is realised in the
Univalent Foundations. Unlike category-theoretic FOM, Univalent Foundations
(UF) involve a Non-Hilbertian formal architecture in an explicit form. The
mathematical basis of UF is Homotopy Type theory (HoTT): an interpretation
of Intuitionistic Type theory due to Per Martin-Löf (MLTT) [186] in terms of
homotopy theory [95]. MLTT is a Gentzen-style but not a Hilbert-style formal
system, which is a conventional way of saying that it is rule-based rather than
axiom-based (see 3.2.1). Nevertheless we take the liberty of calling MLTT
axiomatic in a broader sense than usual having in mind that Euclid’s “axioms” in
thier original form are also rules rather than axioms in Hilbert’s or Frege’s sense
of the term. Making this terminological choice we also take into account Hilbert’s
remarks about the narrow and the broad senses of being axiomatic (see 1.3.2).

UF in its original version presented in [95] on top of MLTT rules uses the
crucial Univalent Axiom (UA), which among other consequences provides for a
rigorous justification of the Equivalence Principle that has usually been informally
accepted, but could not be rigorously proved in the Bourbaki-style set-theoretic
setting. So in this standard form, UF is presented in the mixed Gentzen-Hilbert-
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style. However, more recent work on Cubical Type theory (CTT) as an alternative
carrier for UF demonstrates that UF admits a pure Gentzen-style (rule-based)
formal carrier that proves UA as a theorem.

The difference between the two formal “styles” is not only technical, but
implies different logical semantics and supports different philosophical conceptions
of logic. When Martin-Löf designed MLTT back in the 1970s, there were two
major motivations behind his project, which were mutually related. Theoretically,
he was motivated by mathematical intuitionism and constructivism, broadly
conceived, which see logic, primarily, as an epistemic (rather than an ontological
or metaphysical) tool, and focus on its justificatory capacities. More practically,
Martin-Löf was motivated by the rising computer science and the opening
possibilities of computational implementations of his designed formal system.
Since then, a significant progress has been made on both accounts. Fragments
of MLTT have been successfully implemented in a number of proof-assistants and
program languages. The epistemic conception of logic, which until the late 1990s
appeared rather marginal vis-à-vis the ontologically grounded and technically
equipped semantic conception developed in Tarski’s steps, has been more recently
revived and technically advanced by Dag Prawitz, Peter Schröder-Heister, and
other people who called their area of study proof-theoretic semantics (see 3.2.2).

The unexpected discovery of a homotopical interpretation of MLTT in
the mid-2000s brought about HoTT/UF and boosted MLTT-related research. We
have shown that in order to combine the intended proof-theoretic semantics of
MLTT with the new homotopical semantics the former needs to be appropriately
adjusted. In the standard 1984 version of MLTT Martin-Lof:1984 all types
admit alternative informal interpretations either as propositions or as sets (along
with some other interpretations). The concepts of homotopical level of type and
the cumulative h-hierarchy of types, which are construed with the homotopical
interpretation (but also allow for a purely syntactic description), allows one to
identify (-1)-types as propositions and 0-types as sets. Along with these familiar
types, the h-hierarchy comprises higher types such as groupoids, 2-groupoids and
so on up the homotopical ladder. Thus the homotopical interpretation reveals in
MLTT a structure that was earlier left unnoticed, and provides it with an intuitive
spatial (to wit homotopical) semantics.
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The resulting semantics for MLTT (the key features of which are preserved
in the CTT intended semantics) is not purely logical but comprises an extra-logical
part. In order to justify the above claim it is sufficient to assume after Hilbert
that geometrical concepts (in the broad sense of being geometrical that extends
to homotopy-theoretic concepts) are not logical.

However, this claim can be made more precise by using a criterion of
logicality based on the same homotopical semantics: we interpret as logical
inferences only those formal derivations in HoTT, which restrict to judgements
of the forms p P and P ≡ Q where P,Q are (-1)-types aka propositions.
This criterion of logicality squares with the Fregean concept of judgement as
asserted proposition and the idea that truth is characteristically a logical concept.
According to this criterion, to put it in Voevodsky’s words, “logic lives at the h-
level (-1)”. Formal derivations involving higher-order types (i.e., types of higher h-
levels) are interpreted here as geometrical constructions. In this setting, Lawvere’s
view of logic as a “special case of geometry” admits of a formal explanation,
which is more rigorous and precise than the one given by Lawvere himself in the
context of topos theory. Indeed, propositional and higher-order types in HoTT
are not isolated from each other, and are operated with according to the same
formal rules. The canonical procedure of propositional truncation associates a
propositional type ‖A‖ with any given higher-order type A. In line with the
original proof-theoretic semantics for MLTT, terms (points) of A are interpreted
here as particular proofs or truth-makers of the proposition ‖A‖.

The way in which logic and geometry interact in HoTT/UF appears very
unusual when it is judged against the standard picture presented in Hilbert’s
1899 Foundations of Geometry [115] and Tarski’s 1941 textbook on the Logic
and Methodology of Deductive Sciences [276]. But at the same time it squares
nicely with the more traditional Euclidean pattern of mathematical reasoning, in
which one proves theorems by means of geometrical constructions. In our view,
this is not just a historical curiosity, but a serious reason to rethink the concept
of axiomatic method as well as the role and place of logic in mathematics and
science.
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4.2 Constructive Axiomatic Method35

In this Section we provide a concise informal specification of axiomatic
method, which we suggest as an improvement on and enlargement of the received
conception of axiomatic method stemming from Hilbert.

4.2.1 Motivations

The proposed conception is motivated by our analysis of past and recent
mathematical axiomatic practices presented above. These motivations can be
classified into two groups. Motivations of the first group are evidence that the
performance of the received Hilbert-style axiomatic method in 20th century
mathematical and scientific practice has been by far less successful than Hilbert
and other early proponents of this method hoped for. The same line of evidence
show that the axiomatic approach in 20th century mathematics was more
successful when it deviated from Hilbert’s standard. Here is our short list of such
evidence:

• The controversial impact of Bourbaki’s long-lasting attempt to introduce a
semantic version of a Hilbert-style axiomatic method into wide mathematical
practice, and the commonly recognised failure of this approach in
mathematics education (2.2.3).

• Deviations of Bourbaki’s axiomatic style from Hilbert’s. We qualify
Bourbaki’s axiomatic method as a version of Hilbert’s method but believe
that Bourbaki’s method could not become viable in practice without
significant upgrades to Hilbert’s original method (2.2.1).

• A similar remark concerns successful axiomatic theories in 20th century
mathematics, which have been construed category-theoretically: the
axiomatic theory of Homological Algebra due to Eilenberg and Steenrod [61],
the axiomatic homotopy theory due to Quillen [218] and the axiomatic topos
theory due to Lawvere [162] . Since these axiomatic theories are formulated
informally (by a logician’s standards) it is difficult to judge whether they
are built in the Hilbert style or not. However, we have shown that at least

35See our [243] and [236].
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Lawvere’s axiomatic style differs significantly from Hilbert’s in some essential
aspects (3.1).

• The lack of significant success in continuing attempts to use the Hilbert-
style axiomatic approach to build physical and biological theories. Here
it is essential to distinguish between scientific theories and their logical
reconstructions prepared for philosophical purposes (2.3). This lack of
success can be contrasted with successful applications of the traditional
Euclid-style axiomatic method in science of the past, e.g., in Newton’s
Principia.

Motivations of the second group provides us with more specific indications
about the wanted upgrades and revisions of the received axiomatic method, which
aim at making this method more adequate to current mathematical and scientific
practices. We distinguish here two major motivations of this sort:

• Hilbert and Bernays’s 1934 remarks, in which the authors point to limits of
their standard “existential” axiomatic method and discuss the possibility of
a more general axiomatic approach, which combines this standard method
with the more traditional Euclid-style “genetic” method (1.3.2). Hilbert and
Bernays call this hypothetical general method constructive. We borrow this
name from Hilbert and Bernays (understanding the risks of terminological
confusion) along with the idea.

• Cassirer’s emphasis of the epistemic role of objecthood in the foundations of
mathematics [41]; see 1.2.2.

• The formal Calculus of Problems proposed in 1932 by Andrey Nikolayevitch
Kolmogorov, which involves an extra-logical semantics (assuming the
standard conception of the bounds of logic, which implies that every
judgement is analysed into a proposition and its truth-value) [143] (see
3.1.3 and 3.2.2). The notion of BHK-semantics, which is widely used in
the current literature in philosophical logic, does not account for this extra-
logical character of Kolmogorov’s semantics.
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• Ideas of Vladimir Alexandrovitch Smirnov concerning the possibility of
using the “genetic method” for building scientific theories, which this author
developed beginning in the early 1960s [266] (see 1.3).

• Univalent Foundations of mathematics, which involve a non-standard
Gentzen-style formal architecture, that effectively combines logical inferences
with geometrical (to wit homotopical) constructions (3.2.5).

4.2.2 Axiomatic Theories

Here we describe a general concept of axiomatic theory relevant to the
constructive axiomatic method. We deliberately leave this general description
informal assuming that it can be formally specified and implemented in many
different ways. We also show here how this general notion of axiomatic theory
applies to examples discussed in other parts of this work.

By a theory we shall understand a fragment of theoretical knowledge
construed and represented as a system of theoretical objects supplied with rules
for (human) manipulations with these objects. By an axiomatic theory we shall
understand a theory represented with a small number of distinguished elementary
objects and elementary rules, which allow one to generate new objects from given
objects and formulate new rules on the basis of given rules. We shall call this
generation procedure derivation without assuming that it is purely syntactic, but
also without providing it with any special, in particular, logical semantics in this
general description. In special semantic contexts, such derivations can be called
deductions, productions (1.1.4), constructions, and by other names. We use the
term “object” here in the most neutral and general sense, which covers not only
things like points, spaces, physical particles and living organisms, but also things
like symbols, formulas, propositions and judgements36. We assume that the objects
of a given theory are reusable and stable in the sense that they do not change or
disappear when used to generate new objects, and rules are schematic in the sense
that they are applicable repeatedly to different sets of objects 37 . The reference to

36Compare the quote from [188, p.19] given in 3.2.4 E above.
37We make these assumptions here only in order to avoid a further unnecessary generalisation of our concept

of axiomatic theory and don’t use them in the following arguments. Weakening of these assumptions can be of

theoretical interest. For example, in formal systems based on Girard’s Linear logic theoretical objects, generally,
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knowledge is essential in this description because many artificial systems (e.g. the
game of chess) share with axiomatic theories the same basic formal structure. The
reference to human manipulations is also essential and it should be understood
broadly: it covers manipulations with symbols and concepts but can also extend
to manipulations with physical objects (for example, in physical experiments, see
below). The epistemic function of such manipulations will be discussed shortly in
4.2.3 and 4.3.

Now observe that Euclid’s theory of geometry, given in his Elements (as
reconstructed above in 1.1), the axiomatic theory of Euclidean geometry due to
Hilbert (in the two versions of 1899 and of 1934), MLTT, HoTT/UF, and CTT all
fall under the above broad notion of axiomatic theory. This notion may appear too
general to be useful, but in fact it provides an interesting and unusual perspective
on the aforementioned theories and their axiomatic architectures. The table below
specifies elementary objects and rules in each case:

theory elementary objects elementary rules

Euclid points and equalities Postulates and Common Notions

Hilbert 1899 geometrical axioms logical rules

Hilbert 1934 geometrical and logical axioms modus ponens and substitution

MLTT atomic and base types MLTT rules

HoTT/UF point, nat. numbers, UA MLTT rules

CTT/UF point, nat. numbers CTT rules

Let us comment on this table line by line. We do not list straight lines
and circles among the elementary objects of Euclid’s geometry because in the
Elements straight lines and circles are produced from points with Postulates 1-
3. Beware that in order to produce a line with Post. 1, one needs two different
points. Equalities (such as equalities of radii in a circle) are elementary objects of
propositional type. Objects of this type are operated on with Common Notions aka
Axioms (recall that Euclid’s Axioms are rules). A rigorous formal reconstruction

are not stable in the specified sense [85]; formal systems with learning capacities may require using rules of a

more dynamic character than the standard fixed schematic rules. We leave such cases out of the scope of the

present work.
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of Euclid’s geometry made in line of the Elements would require considering
additional elementary objects and rules, which are not fully specified in the
Elements, such as congruences and rules for constructing intersection points of
lines and circles. So the specification of objects and rules given in the table is not
meant to be complete. How these two sets of objects and rules (geometrical and
propositional) form a single theory in this case was discussed above in 1.1.4.

Hilbert’s axiomatic theory of Euclidean geometry is present in the table
in its two different versions: in the semi-formal version presented in Hilbert’s
Foundations of 1899 [115], [107] and in the further formalised 1934 version
sketched by Hilbert and Bernays in [113], [114]. In both cases Euclidean geometry
is construed as a system of sentences (that express certain propositions) some of
which are fixed as axioms while others are deduced from these axioms according
to logical rules, and called theorems. In the 1899 version of the theory the axioms
are formulated informally and the logical rules are not specified explicitly. By
contrast, the 1934 version of this theory involves a symbolic language with precise
syntax, which is used to spell out the geometrical axioms and for the formal
specification of the logical rules. Another specific feature of the 1934 version is
the presence of logical axioms, i.e., tautologies, which help Hilbert to reduce the
number of (logical) rules used in this theory to a minimum. In this latter case the
list of rules is definite and complete.

Hilbert’s axioms and theorems are objects —correspondingly elementary
and derived —in the sense explained above. These propositional objects should not
be confused with primitive and defined theoretical objects in Hilbert’s sense, which
under the intended interpretation of Hilbert-style axiomatic Euclidean geometry
are points, straight lines, planes and other geometrical objects defined in their
terms. How do these familiar geometrical objects enter into the picture? The
formalised 1934 version of Hilbert’s theory is more helpful for answering this
question. It makes it explicit that formulas that express Hilbert’s axioms and
theorems are built from symbols taken from a fixed alphabet. The construction
of well-formed formulas from the symbols is controlled by a special set of rules.
(We did not show these details in the above table.) This is a part of the logical
machinery used in this geometrical theory, which is not specific to this theory.
Certain elements of symbolic constructions (formulas) built in this way are used
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to refer to geometrical points (this is the only type of primitives in this version of
the theory). Thus the geometrical points and other geometrical objects, which are
construed in terms of points and relations between points, enter into the theory
by being referred to with special elements of theoretical sentences.

As we have explained already in 1.2.1, by “points” one can understand in
Hilbert’s axiomatic geometry different things, not necessarily the usual Euclidean
dots. But however this theory is interpreted, it manipulates sentences “about”
points (and other geometrical objects defined in terms of points) but does
not directly manipulate points and other geometrical objects. This is a key
difference between Euclid’s theory of geometry and Hilbert’s theories of Euclidean
geometry. This is also the reason why Hilbert and Bernays call their version of the
axiomatic method “existential”: their approach involves the assumption according
to which points and other geometrical objects defined in terms of points exist in
a ready-made form, in some ideal sense. Recall that in Hilbert’s view, the formal
consistency of a given axiomatic theory is a sufficient condition for claiming such
an ideal existence of its objects.

MLTT is a constructive derivation system, which is essentially determined
by its rules rather than by its generators, which in the above table we call
elementary objects. MLTT allows one to declare any number of atomic types
Ai, which are called atomic in the sense that they remain unspecified but can be
used for constructing (deriving) other types, which in our proposed terms we call
complex objects. Such a declaration has the form A : TY PE, where TY PE is
the “big” type of all types (which for simplicity we assume here to be unique 38 )
and qualifies as a judgement (see 3.2.3) . Given atomic type A, one can declare
for it a number of its terms via judgements of form a : A. Judgemental identities
(equalities) of two levels of the forms A ≡ B and a ≡A b are also available in
MLTT as elementary objects for further derivations.

Base types like atomic types are declared without using earlier declared
types, but unlike atomic types they are provided with special information, which
allows one to think of such types and their terms as concrete theoretical entities.
This information is given via specific rules that regulate derivations with these

38MLTT allows one to declare a hierarchy of such “big” types called in such contexts universes.
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types. Standard examples include the empty type ∅, the unit type 1 and the
natural numbers type N. However, this list is not rigidly fixed and can be modified
and extended without changing the core of MLTT.

HoTT preserves all the features of MLTT mentioned above, and allows one
to think of MLTT types and their terms as (homotopy) spaces and their points.
HoTT supports an additional structure, namely the cumulative homotopical
hierarchy of types. In order to emphasise the importance of this structure in
HoTT, we have singled out among other base types the unit type called in HoTT
Point P, and the natural numbers type N; P allows for an inductive definition of
the homotopical hierarchy, hence the presence of N in the same cell of the table.
With respect to regular points (of any space), P can be thought of as the single
“generic” point.

As soon as HoTT is used as the basis for Univalent Foundations (UF)
it comprises, on top of the MLTT rules, the Univalence Axiom (UA), which is
a proposition, i.e., a (-1)-type, evidenced by a truth-maker (truth-value “true”)
stipulated by fiat. So in this case we should count UA as an extra elementary
object of the theory. From a formal point of view such an introduction of a Hilbert-
style axiom into the rule-based Gentzen-style formal architecture of MLTT/HoTT
may appear strange; the reason why this axiom has been introduced is explained
in 3.2.5. In Cubical Type Theory, where UA is proved as a theorem (so in this
case it is a derived and no longer an elementary object), the rule-based character
of the formal architecture is restored —at the price of modification of the MLTT-
rules and some of their meaning explanations. As we have already explained, this
was done primarily for a computational aka “constructive” reason rather than for
an aesthetic reason: in CTT-based UF, the equivalences that verify the universal
univalence property are effectively constructed rather than simply stipulated, as
is done in the MLTT-based UF presented in [95].

Following Hilbert and Bernays, we call an axiomatic theory constructive
when the rules of this theory apply both to propositional objects (propositions)
and to non-propositional objects such as geometrical points and straight lines in
Euclid’s Elements or judgements of the form a : A in HoTT, where A is a non-
propositional type. Since we assume that theories represent knowledge and, in
addition, assume that in each case at least a fragment of the represented knowledge



206

is propositional, we hold that every theory comprises propositional objects in some
form. Thus our concept of constructive axiomatic theory broadens and generalises
the standard concept of Hilbert-style axiomatic theory. Hence standard axiomatic
theories also fall under our concept of constructive theory even if they don’t
comprise a properly constructive fragment in the relevant sense of the word. This
may lead to some terminological confusion but at the same time such a situation
is common in mathematics and logic. For example, in everyday life the expression
“set of points” refers to a group of at least two different points, but in mathematics
we consider sets with one element and with no elements. Therefore we shall not
further discuss this terminological point. It is more essential to keep in mind that
the term “constructive” in mathematics and logic is heavily overloaded, and refers
to many different properties. The concept of being constructive that we study in
this work following Hilbert and Bernays’s hints is in many ways related to other
concepts bearing the same name. We leave a study of such connections out of the
scope of the present work.

4.2.3 The Method

In order to describe the method of theory-building which corresponds
to the notion of axiomatic theory sketched above, we shall point to relevant
extensions of the received axiomatic method and explain their epistemic functions
and advantages [243]. As we have already remarked, non-propositional theoretical
objects like geometrical points are involved in Hilbert-style axiomatic theories
in a roundabout way via propositional objects, namely, as referents of certain
terms in formulas that express sentences “about” these non-propositional objects.
According to Jaakko Hintikka’s understanding of Hilbert-style axiomatic method
39

“What is crucial in the axiomatic method [. . . ] is that an overview on
the axiomatized theory is to capture all and only the relevant structures
as so many models of the axioms.” [118, p. 72]

39We take Hintikka’s view on axiomatic method to be an accurate interpretation of Hilbert’s view. However

this historical point plays no role either in Hintikka’s argument or in our following argument.



207

Where do these relevant structures (and hence models) come from? Hintikka gives
the following answer:

“The class of structures that the axioms are calculated to capture can be
either given by intuition, freely chosen or else introduced by experience”
(ib., p. 83)

As Hintikka emphasises in the same paper, by mathematical intuition he means
not an intellectual analogue of sense-perception but an “active thought-experiment
by envisaging different kinds of structures and by seeing how they can be
manipulated in imagination” (ib., p. 78).

We agree with Hintikka that the “active thought-experiment” plays a key
role in mathematics just as real experimentation plays a key role in physics and
other natural sciences. However, we disagree with Hintikka’s view according to
which thought-experimentation with mathematical structures can proceed only
informally outside axiomatic theories, motivating one’s choice of axioms. As far as
Hilbert-style axiomatic theories are concerned, Hintikka is right. In the Euclidean
geometry presented axiomatically in Hilbert-style, there is no room for the
thought-experiments referred to by Hintikka. But the case of Euclid’s geometrical
theory presented in his Elements is different. The “Euclidean geometrical
intuition” is not just an uncontrolled activity of our imagination related to our
experiences in physical space and time but a constructive activity controlled by
formal rules that are (at least partly) explicitly formulated in Euclid’s Elements
as geometrical Postulates. This control should not be understood only in negative
terms as a formal restriction on what can be eligibly imagined within the given
theory. The complexity and richness of geometrical constructions by ruler and
compass, which remain surveyable by humans, far exceeds the complexity of
spatial constructions produced in bare imagination (whatever this might mean).
At least when we talk about mathematically relevant spatial constructions and
leave aside artistic practices, this claim is obvious.

Thus in Euclid’s Elements thought-experimentation with mathematical
objects is not only a preparatory step that helps one to design a theory but
a proper part of Euclid’s theory itself. It can be argued that this example is
outdated and irrelevant to today’s mathematical practice because the“Euclidean
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paradise” was irreversibly lost after the rise of non-Euclidean geometries and
modern abstract mathematics. It is plausible that Hilbert himself assessed the
situation in this way in the late 1890s when he designed his version of the
axiomatic method. Some proponents of this method did this later very explicitly
[76], [199]. However, the new historical perspective from the early 21st century
imposes some essential corrections of this view on mathematics and its history. The
Euclidean pattern of constructive mathematical reasoning remains quite robust in
the mathematics of the 20th century and in today’s mathematics (see (см. 2.2.4)).
One does not need to refer to Euclid to notice that the Univalent Foundations
also supports a form of active thought-experimentation with spatial imaginary
objects, which is similarly controlled by exact formal rules. The claim that this
pattern of mathematical thinking is outdated is definitely not justified.

Hintikka describes the axiomatic method as a way to control and stabilise
intuitive constructions obtained by thought-experimentation or real physical
experimentation. Up to this point we are wholly with Hintikka 40. However unlike
Hintikka, we don’t think that the received Hilbert-style axiomatic method does
this job properly. Insofar as one thinks of theories as systems of sentences, the
received axiomatic method appears adequate: it shows how to organise such
a system in a convenient way by taking some of these sentences as axioms
and deriving other sentences as theorems via truth-preserving logical inferences.
However when one assumes, after Hintikka and the proponents of the semantic
view, that models of mathematical and scientific theories are epistemically
significant, the received axiomatic method no longer appears to be adequate and
sufficient. We don’t deny that there is a sense in which a deductively organized
system of sentences can control and stabilise semantic structures that make these
sentences true. But we claim that such propositional control is insufficient both
practically and theoretically.

On the practical side, the continuing long-term experience of building
mathematical theories à la Bourbaki makes it evident that the idea of organising
mathematical theories into Hilbert-style axiomatic theories plays only a general
normative role in this approach. As we have stressed above, the “real” Bourbaki-

40The case of physical experimentation is discussed below in 4.3.
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style proofs are not formal logical deductions from Bourbaki’s axiomatic set
theory, even if all these proofs are theoretically representable in this form (see
2.2.1). The formal representability “in principle” of Bourbaki’s semi-formal
proofs allows one to think of these proofs as somewhat imperfect realisations
of the corresponding ideal Hilbert-style formal proofs obtainable via the full
formalisation. We call this target fully formalised proof ideal because apart
from some specially chosen toy cases, such full formalisation is a theoretical
possibility (justified by informal mathematical reasoning), but the possibility of
building a“real” syntactic object, which can be effectively surveyed by a human, is
not a practical one 41. Recall that Hilbert called such syntactic objects “real”
mathematical objects and qualified as “ideal” all other mathematical objects
(1.2.3). The experience of using the Hilbert-style axiomatic method in 20th
century mathematics turns this picture of Hilbert’s upside down.

In this situation the only epistemic role of such formal proofs is to provide
an insurance that proofs and theories presented in Bourbaki semantic style can
be judged by the same logical criteria as their corresponding formal counterparts.
Since these formal counterparts are unfeasible, the available criteria are very
unspecific. One can apply to a given semi-formal proofs all known general meta-
theorems obtained for formal proofs. But one cannot in such a situation effectively
formally check a semi-formal proof. One can argue (counterpositively) that if
a given semi-formal proof is not translatable into a formal proof in the given
foundational setting then it is not valid. So formal translatability may count
as a necessary but not sufficient criterion of validity. In practice, however, even
this weak criterion is usually understood flexibly: an interesting mathematical
proof that is not formalisable, say, in ZFC, can be validated by showing that
it is formalisable in ZFC strengthened with a number of inaccessible cardinals.
Notice also that judgements to the effect that certain classes of informal proofs are
formalisable are always made on the basis of informal logical and mathematical
arguments. To repeat, we don’t deny that such arguments can provide relevant

41Whether electronic computers can help in this situation remains a research topic but the existing experience

with computer-assisted mathematical proofs suggests rather a negative answer because formal theories built in

Hilbert’s style are less apt for computational implementations than Gentzen-style formal theories like HoTT/UF;

see 3.2.5 A-B.
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and interesting information about informal and semi-formal theories and proofs,
but want to stress that these arguments cannot give answers to many important
specific questions such as whether or not a given mathematical proof is valid.

Thus the Hilbert-style formal axiomatic architecture grounds in a
certain sense, rather than controls and stabilises, model-based Bourbaki-style
mathematical reasoning. This reasoning is controlled by and stabilised into
patterns, which are practically learned with examples and used in mathematical
practice without being formally described and explained in the textbooks. As we
have shown above such practical patterns of set-theoretic reasoning preserve a
visible trace of the traditional pattern of geometrical reasoning that dates back
to Euclid.

As far as category theory (CT) is seen as a Hilbert-style axiomatic theory
in the vein of Lawvere’s early proposals (see 3.1.2) the situation in category-
theoretical mathematics is similar. The fact that CT can be grounded in this way,
bypassing set theory, which was discovered by Lawvere in 1960s, is an important
achievement 42 that allows those mathematicians who use CT as a base language in
their teaching and research to feel more secure, without being concerned about the
standard set-theoretic foundations. However CT-based mathematical reasoning
used in practice, like Bourbaki-style set-theoretic reasoning, is not formal but
model-based, and proceeds in a constructive mode: one builds and studies various
category-theoretic constructions, e.g. “constructs” functor category [A,B] from
given categories A,B, etc. Such practical patterns of category-theoretic reasoning,
which include proofs by diagram chasing, are at least as remote from Hilbert-style
formal axiomatic reasoning as patterns of Bourbaki-style set-theoretic reasoning,
or are perhaps even more remote. It is important to stress here that this concerns
not only heuristic methods that allow one to make useful conjectures, but also
proof methods that are used in textbooks and research papers. So the idea that
the Hilbert-style formal axiomatic representation of mathematical reasoning is
fully responsible for the justification of ready-made results, while model-based

42Recall, however, that this way of grounding CT has been objected to by Feferman, who argues that the

foundations of CT involve a primitive concept of class or collection, which in Feferman’s view is not properly

formalised in Lawvere’s setting [67]. The issue is not technical but conceptual and comes down to different

interpretations of the Hilbert-style axiomatic method (1.3.1).
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reasoning wholly belongs to the “context of discovery” of these results, simply
does not stand against current mathematical practice —no matter whether we are
talking about category-theoretic mathematics or about the more old-fashioned
set-theoretic mathematics.

The fact that model-based mathematical reasoning proceeds without
explicit formal rules makes formal proof verification impossible and makes learning
modern mathematics more difficult. Nevertheless, some mathematicians may prize
this informal style of reasoning and proof as an expression of intellectual freedom
in mathematics. In our view, one does not face here a difficult choice between
security and freedom. Some researchers rightly describe Hilbert’s axiomatic
approach as “axiomatic freedom”, pointing to Hilbert’s approval of choosing
axioms for mathematical theories freely unless they lead to a logical contradiction.
Noticeably, Hilbert did not allow for a similar liberal treatment of logical rules,
which, recall, in his view were the only type of formal rules appropriate in
axiomatic theories. When we insist that formal rules for model-based reasoning
are appropriate and even necessary, we don’t mean to restrict Hilbert’s axiomatic
freedom. On the contrary, we aim at extending this axiomatic freedom into a
new dimension which has to do with rules rather than axioms (in Hilbert’s
sense). Existing experience of studying Gentzen-style formal system shows that
“playing with rules” can be just as productive and fruitful as Hilbert-style “playing
with axioms”. A possible research strategy here is to explore the possibilities of
building mathematical theories on the basis of various alternative logical calculi
[292]. However, we do not restrict our proposed approach to rules that admit
of a logical semantics. As the examples of HoTT/UF and CTT make it clear,
relevant Gentzen-style formal systems can also admit an extra-logical semantics.
As we have already stressed, the case of Gentzen-style systems with extra-logical
semantics is the main motivation behind our proposed concept of a constructive
axiomatic method.

On the theoretical side, we submit that the popular view according to
which formal derivations in Hilbert-style axiomatic theories provide the best
possible justification of mathematical results (notwithstanding the fact that such
formal proofs are not available in a palpable material form) is not justified.
Following Prawitz, we hold that the concept of proof is essentially epistemic,
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so a conception of proof which is not epistemically accessible for some reason is,
in our view, inconsistent (see 3.2.2). When partial epistemic access to a formal
proof is provided via some additional means —as happens when the claim of
the existence of formal proof is supported with the usual informal mathematical
arguments —then the quality of this access is a factor that determines and limits
the epistemic force of the formal proof. In other words, a formal proof and the
means of epistemic access to this formal proof should be regarded as elements
of the same mathematical proof. When epistemic access to formal proofs is weak
(as it really is in current mathematical practice), there is no reason to see the
formal proofs as epistemically optimal, ignoring the question of how these proofs
are accessed or can be accessed by epistemic agents, i.e., by humans.

Independently of the above, we reject the epistemological view according to
which all valuable knowledge provided by mathematical and scientific theories is
propositional, aka knowledge-that, while procedural knowledge-how can be at best
auxiliary and for that reason should not be seen as a proper fragment of ready-
made theories. Euclid’s geometrical problems have an independent epistemic value
that does not reduce to the possible use of previously solved problems in proofs
of his theorems. Indeed, the knowledge how to perform some desired construction
C can be used as evidence for or a truth maker of the statement of certain
theorems. But one’s knowledge of how to perform C can also be of independent
epistemic value in applications, as in the case of one’s knowledge of how to
divide a straight line into two equal parts by ruler and compass. As we have
stressed in Euclid’s Elements problem-solving involves using previously proven
theorems just as much as theorem-proving involves using some previously solved
problems (1.1.4). Our analysis shows that today’s mathematics is similar in this
respect. Knowledge how to build models and how to prove theorems is at least as
epistemically valuable as the proved theoretical statements. This is why such bits
of procedural knowledge should count as full-fledged (albeit not independent)
fragments of ready-made theories, rather than as auxiliary elements that fully
belong to the context of discoveryґof these theories. Procedural knowledge plays
a key role, namely, in the context of justification of mathematical theories, because
any theoretical justification has a procedural character. An important point that
marks a difference between our proposed constructive approach and the received
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Hilbert-style axiomatic approach is that such theoretical procedures do not reduce
to logical procedures (even when such procedures have some logical impact).
In constructive axiomatic theories the procedural knowledge is represented as
systems of formal rules, which as usual are presented syntactically, provided with
a default semantics (in HoTT this is the homotopical semantics), and only then
interpreted in models. As we have already explained, such a formal architecture
allows for (re)constructing the models from their simple elements.

Thus we can see that the “propositional control” on model-building
provided by the Hilbert-style axiomatic method is insufficient and needs to
be complemented with a more direct constructive control with formal rules
applied to theoretical objects themselves rather than to sentences that tell us
something about these objects. This is exactly what the constructive axiomatic
method provides. Trying to describe this method in a few words in the vein
of Hintikka [118], we can summarise the above as follows. Having in view an
informally described theoretical structure one needs to distinguish not only its
essential properties in the form of propositional axioms but also its simple non-
propositional elements (such as points) from which the target structure can
be reconstructed genetically, i.e., built according to appropriate formal rules
(which must also be established). The question of how the propositional layer
of the theory will relate to its non-propositional “objectual” layers hardly has a
universal answer. HoTT/UF provides us with a powerful scheme and technique
for such an arrangement, but since we are talking now about the constructive
axiomatic method in its full generality, we should not assume that this particular
arrangement is unique.

4.3 The Constructive View of Theories43

In the above discussion on the constructive axiomatic method, we referred
only to mathematical theories. Such a focus on pure mathematics has been
unavoidable in this discussion because known applications of the axiomatic
method beyond mathematics are sparse. Hilbert’s proposal to apply the axiomatic
method in physics and other natural sciences led to many interesting attempts

43See [245] and [248].
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to realise this project, but so far such attempts have had no significant impact
on today’s mainstream science and current scientific practices. We believe that
this state of affairs is caused by the fact that the standard Hilbert-style axiomatic
architecture is inadequate to scientific theories, and argue in what follows that
the constructive axiomatic architecture described in the present work is more
adequate.

The following arguments are preliminary and serve us as a motivation
for further research, rather than as a justification of ready-made results. These
arguments and considerations belong, primarily, to the philosophy of science, but
we believe that in the longer term they may also have practical significance.
Today’s science massively and systematically applies computer technologies for the
representation, storage and analysis of scientific data. The storage, dissemination
and revision of scientific knowledge is presently less affected by the digital
information technologies, so traditional forms of knowledge representation and
communication such as conference talks, research papers and science textbooks
so far largely remain in use even though the implementation of these forms already
involves modern information technologies (as in online conferences, electronic
publishing, etc.) However, one may expect that in a foreseeable future computer-
based knowledge representation technologies (KR) will be more widely used in
scientific practice, including science educational practices. In order to design a
KR system capable of representing scientific knowledge one must rely on some
reasonable assumptions about the logical structure of this type of knowledge. This
is where the old philosophical question about the logical structure of scientific
knowledge and scientific theories becomes important practically. As we argue
elsewhere the existing KR technologies are not quite apt to perform this task,
but can be improved by using the logical approach outlined above in the present
work [146], [145].

In (2.3.3) above we briefly described the “revolution in Stanford” that
gave rise to the semantic view of scientific theories. Following Halvorson [98] we
consider the debate between the semantic view and the syntactic view on scientific
theories to be mostly a historical issue. Since Patrick Suppes and other pioneers of
the new semantic approach used Tarski’s formal set-theoretic semantics, which was
not available to researchers of the older generation who pursued the “syntactic”
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approach, it is fair to say that the semantic approach was more advanced at this
point in history. However, we also noticed that the semantic turn left behind
some interesting ideas associated with the “syntactic” approach. This concerns,
in particular, the conception of logic as a tool for determining the best available
evidence for a given scientific assertion, which was developed by Morris Cohen and
Ernest Nagel in the 1930s. [46] (3.2.2). This conception of logic, which emphasised
its justificatory role, was in fact at odds with the Hilbert-style formal axiomatic
approach that the authors attempted to apply for their purposes. In fact, no
formal logical technique supporting the justificatory conception of logic existed
at that time. Since the emergence of MLTT/HoTT, this situation has changed.
The constructive axiomatic architecture of theories described in this work in its
logical part is also motivated by the justificatory conception of logic.

Recall that the semantic view of theories is also known under the name of
the non-statement view. Our proposed constructive view of theories also qualifies
as a non-statement view. Along with the proponents of the standard semantic
view, we reject the notion according to which a scientific theory is a deductively
organised system of sentences (that express certain statements). However we
provide a different answer to the question ‘What are the fundamental constituents
of a theory (besides its sentences)?”. Proponents of the standard semantic view
answer “models”, having in mind Tarski-style model theory, on the one hand, and
various informal concepts of being a model (e.g., model of a physical phenomenon
or a chemical process) that are used in many scientific disciplines [275, p. 17-
20], [253], on the other hand. We share the view that models are fundamental
constituents of scientific theories. But in order to stress our divergence from the
standard semantic view we give to the same question a different answer: methods.

The view according to which methods belong to the core of theories rather
than serving as external auxiliary tools is not new, and dates back at least to René
Descartes. However, until recently this view of theories had not been developed in
and supported by a formal logical technique. In fact, much remains to be done in
order to implement such a technique in practice. Nevertheless we are already at
this point in a position to sketch a formal structure of theories, in which methods
are essential rather than auxiliary elements.

We accept what proponents of the standard semantic view say about the
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epistemic functions of models in scientific theories. But then we ask the more
technical question of how these models are determined and controlled. Since we
are talking now about formal representational frameworks applied across different
theories and different scientific disciplines we expect to receive a general answer to
this question. We are pointed to Tarski-style model theory. We now notice that in
Tarski’s setting, models are essentially determined by the formal sentences that
they model, or more precisely, by their role as truth-makers of these sentences. So
a closer examination reveals that under the non-statement (aka semantic) view of
theories proposed by Suppes and others, models, which form the bulk of scientific
theories, are still determined and controlled by theoretical statements (axioms
and theories) and nothing else. The fact that the same theory (identified with a
class of models) can be so determined by more than one axiom system, which was
stressed by Suppes, is important, but it does not solve all relevant problems of
this formal representational framework.

In order to show this, we may reiterate our above argument according to
which purely propositional (sentential) control over models is not sufficient and
needs to be reinforced by a more direct control via application of constructive rules
and operations that apply to non-propositional objects. Earlier we formulated
these arguments having in mind mathematical theories (4.2.3). We now put
forward similar arguments relevant to scientific theories, in which case material
experiments (along with thought-experiments) and empirical measurements and
observations play a major epistemic role. A scientific experiment is an artificially
designed and produced model situation M , in which one checks whether or
not everything occurs as tested theory T predicts 44. More precisely, we have
here a theoretical model MT that implies the prediction, and its experimental
implementation ME. The two models are compared via measurements. In case
the experimental results (i.e., the measurement outcomes) satisfy the prediction
the experiment becomes supporting evidence for T ; otherwise it serves as falsifying
evidence.

The logic of evidence-based reasoning relevant to existing scientific
practices is presently a vivid area of inter-disciplinary study [281] that we cannot

44It goes without saying that this is a very simplified picture of scientific experiment, which however is

sufficient for our present purpose.
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cover systematically here. So we shall point only to one specific aspect of the above
setting, which concerns the formal architecture of theory T and the structure of
MT andME. Since we are talking now about designing, setting-up and performing
scientific experiments, it is clear that models MT , ME need to be constructed,
i.e., built according to certain rule-based procedures, and not only described
propositionally in terms of their desired properties and relations — even if such
propositional descriptions may play a role in both cases, particularly at the design
stage. This remark concerns theoretical model MT as well as the experimental
model ME, since the former is supposed to serve as a theoretical prototype of
the latter. Both these constructions need to be reproducible: this is where the
schematic rule-based character of these constructive procedures is essential. Such
well-determined constructive procedures (both theoretical and experimental) or,
more precisely, recipes of procedures applicable repeatedly in various contexts to
various data, are known in science under the name of methods. Methods can be
specified linguistically and in some cases symbolically in a syntactic schematic
form as algorithms. This allows one to apply a given method repeatedly and
to think of it as an abstract entity. Such specifications are commonly called
descriptions (of methods), but their logical form is in fact different: they prescribe
what to do (to perform certain actions) rather than describe what is the case.
Prescriptions, unlike descriptions, do not express propositions and bear no truth-
values. It is a trivial remark that any prescription can be linguistically rendered
as a propositional description (of a method stipulated as an abstract entity).
This simple linguistic and logical trick is universal and unspecific; it doesn’t tell
us anything new about the modal nature of methods and algorithms. However,
in certain contexts it can blur the modal difference between descriptions and
prescriptions, and thus conceal this modal nature.

The case of thought-experiments, which has been also touched upon above,
has special relevance to the present discussion because it intermediates in a sense
between theoretical and experimental models. Without making stronger claims
that would require more accurate verification against the history of science and
current scientific practice, we say only that a thought-experimental model MTE

based on theoretical modelMT can give one a good idea of how to design, produce
and interpret a physical experiment that tests theory T , i.e., obtain what we call
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here the experimental modelME. Examples of thought-experiments first conceived
of theoretically and later realised as real laboratory experiments are abundant
in the past and in today’s physics. For a recent example see [204], where the
authors report on a successful experiment that realises the famous Schrödinger’s
Cat thought-experiment first proposed back in 1935.

The above argument is also applicable to theoretically-laden empirical
observations, which have the same formal structure as experiments. Think about
the first successful observation of gravitational waves made in September 2015 at
the LIGO detector [1]. It involved an underlying theory, viz. General Relativity,
and tested its theoretical prediction made by Albert Einstein back in 1916 [130].
This observation equally involved a lot of specific theoretical and technical design
that had the same character as the experimental design in any area of science.
Characteristically and understandably, the observation of gravitational waves
made with the LIGO detector is commonly called the “LIGO experiment”. Unlike
the case of a typical experiment, one could not schedule in advance any particular
date and time when the LIGO equipment will bring the desired empirical evidence
(either in support or against the tested theory), because it depended on events
that were out of human control. Among the events that allowed for the successful
observation of gravitational waves with LIGO in September 2015 was the merger
of two black holes of about 30 solar masses each, which occurred more than one
billion years earlier (by the cosmological time) in a remote part of the Universe,
and produced the observed wave packet. The lack of control over observed objects
and events is a distinctive feature of observations that distinguishes them from
experiments. This feature of observations does not, however, affect the general
formal structure that observations share with experiments. We focus now only on
this formal structure.

Returning now to the issue of the formal representation of scientific
theories, we remark that the only kind of methods that the Hilbert-style axiomatic
architecture can represent are logical, and even more specifically, deductive
methods. By the formal representation of a (logical) deductive method we mean
here a syntactic scheme that represents a derivation or a class of derivations in
a Hilbert-style axiomatic theory. Given the fact that formal logical methods play
no significant role in science, as it has been practiced at least since Galileo’s times
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(albeit in some earlier historical patterns of doing science, which are colloquially
called scholastic, such methods were applied systematically), it is not surprising
that this axiomatic architecture is not apt for representing current scientific theory
adequately. As we have already stressed, by making such claims we do not mean
to dismiss all normative epistemological arguments in favour of a logical approach
in science simply by pointing to the fact that today’s science does not fit into the
relevant epistemic norms. Our project, instead, is to reconsider the role and the
very conception of logic in the context of today’s mathematics and science, and
describe new available logical techniques that could be more successfully used in
science as we know it.

The Bourbaki-Suppes semantic version of the axiomatic method allows one
to disregard syntactic details —and along with syntactic details also disregard most
logical details —and focus on models and structures. As in the case of Bourbaki
mathematics, in science this move allows one to use the epistemic norms enforced
by the Hilbert-style formal axiomatic method not directly, but in a somewhat
transcendental manner: one works with a semi-formal theory that does not
fulfil these norms explicitly, and provides this theory with additional arguments
showing that the given theory has a fully formalised version (or many such
formalised versions), which does fulfil the norms. It should be noted that however
controversial Bourbaki’s project may be, it obviously had a significant impact
on 20th century mathematical practice; in particular, it helped to formulate
alternative approaches in the “practical” FOM, including the category-theoretic
foundations and the Univalent Foundations. The axiomatic representation of
scientific theories in Suppes-style, in its turn, to date plays no role in scientific
practice beyond the logically-oriented philosophy of science. If the “transcendental”
application of epistemic norms just explained can be described as a practical
compromise then it is fair to say that this particular compromise has been so far
(partly) successful in pure mathematics, but not in science.

The problem as we see it is that the Suppes-style semantic method
of building axiomatic theories in fact offers very little on top of its so-called
“syntactic” predecessor. This method justifies the neglect of inessential logical
details, which is a part of common scientific practice anyway, and (quite rightly in
our view) focuses on models rather than theoretical statements. But it does not



220

propose any new formal technique for working with these models and applies in
its stead the semi-formal Bourbaki-style syntax. The idea of using set theory in
the role of a default source of models, which works out in pure mathematics to
a certain degree, apparently wholly fails in existent science, notwithstanding the
aforementioned Suppes’ argument according to which a model of every scientific
theory can be always rebuilt in a set-theoretic form [275, p. 17-20]. At least the
continuing efforts of using the Suppes-style representational framework in science
don’t provide us so far with any compelling evidence to the contrary.

In this contextь our proposed notion of constructive axiomatic theory
appears as a more adequate candidate framework for the formal representation
of scientific theories. Recall that the difference between the received Hilbert-
style axiomatic theories and constructive theories in our sense is that the latter,
generally, involve sets of rules applicable to non-propositional objects. Whether
or not such rules qualify as logical is an interesting and deep question, which we
can however leave aside for now. For present purposes It suffies to remark that
one who wants to call these rules logical needs to broaden her conception of logic
beyond its usual scope [266]. As a matter of terminological convention we stick
here to a narrower and more standard conception of being logical that qualifies
operations with non-propositional objects (such as geometrical operations made
with ruler and compass) as extra-logical (save when such operations are purely
syntactic, as in the case of building words and formulas from a given alphabet of
symbols).

The key idea here is that formal derivations in a rule-based (aka Gentzen-
style) constructive axiomatic theory can be used for the formal representation
of extra-logical operations, and hence of scientific (extra-logical) methods. This
concerns primarily theoretical methods associated with what we have called above
theoretical models of a given theory such as MT . An appropriate concept of
model, which extends Tarski’s notion of a model of a formal theory, was discussed
in 3.2.5 C in the context of Homotopy Type theory (HoTT). Recall that is
such contexts one needs to distinguish between models of a given theory, on the
one hand, and its default semantics, on the other hand. In HoTT, the default
semantics is homotopical. (A similar distinction is made in the standard Tarskian
setting, where the default semantics is logical.) We assume that every constructive
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axiomatic theory has a default semantics. When elementary rules and elementary
objects of constructive theory T are interpreted in model MT , formal derivations
in T based on these formal rules and these formal objects are interpreted as
constructions in MT . This allows for building such contentful constructions
genetically from simple elements (which interpret formal elementary objects of the
corresponding theory) according to fixed formal rules. Insofar as theoretical model
MT is construed in this way, it can support a thought-experiment MTE designed
on the same formal basis (i.e., with the same constructive rules and generators,
but described in a way that makes them appear less abstract ), which in its
turn can serve as an instrument for real experimental design that is eventually
implemented in experiment ME, as shown in the diagram below:

T m //MT
t //MTE

e //ME

where the first arrow represents modelling, the second represents the design of
a thought-experiment, and the third represents the experimental design. As the
above diagram suggests, the language of T remains in this case interpretable in
experiments designed for testing this theory. It goes without saying that the order
of steps shown in the above diagram does not, generally, reflect the chronological
order in which a theoretical and experimental scientific research proceeds. As
usual, we assume here that the formal representation becomes relevant only when
a given theory is already sufficiently mature and that it serves, primarily, to give
this theory a stable, reproducible and well-grounded form.

Let us now discuss from a more general viewpoint the question of whether
or not theoretical methods qualify as proper elements of the corresponding
theories. In our view, this question should be answered positively. Classical
Mechanics as presented in Newton’s Principia allows one to build a mathematical
model of the trajectory of a moving canon ball and of the Moon’s orbit. Einstein’s
General Relativity allows one to model a black hole and model the effect of
merging of black holes, which was experimentally observed with the LIGO detector
in 2015. Even if, in scientific practice, such models are not built using formal
logical methods, the constructive character of these models is reflected in the fact
that they are built with special mathematical procedures rather than somehow
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obtained in a ready-made form, so that it remains only to check that they satisfy
all relevant axioms and theorems. The history of science and current scientific
practice provide no justification for the idea according to which general methods
of building such models are auxiliary theoretical means of a sort, which are
developed on the basis of corresponding theories without belonging to the core
contents of these theories. In our view, such a way of distinguishing between
theoretical contents and theoretical methods is an artefact of inadequate logical
reconstructions of scientific theories, which are in need of revision. Within our
proposed approach we don’t make this distinction in the same way. We count
the procedural knowledge expressed in the form of theoretical methods as an
essential element of scientific theories along with the propositional knowledge
that is expressed in the form of theoretical statements. This procedural knowledge
includes, but is not exhausted by, knowledge of logical rules and procedures. Both
logical and extra-logical theoretical methods belong to the core content of any
scientific theory.

The view according to which any scientific method has a heuristic character
and thus belongs to the context of discovery of a corresponding theory, rather
than to this theory itself, is moreover not justified, in our view. The theoretical
and experimental methods discussed above serve for the testing and justification
of ready-made scientific theories. The issue of the heuristic value of methods is
important and deserves discussion, which however is wholly out of the scope of
the present work.

Our concluding remark concerns the issue of the relationships between
logical and extra-logical methods in scientific theories. Recall Rudolf Carnap’s
much discussed idea according to which any scientific theory is analysable into a
set of protocol sentences that express propositions about sense-data obtained in
observations made by the naked eye, on the one hand, and a deductively organized
system of universal theoretical sentences, on the other hand [286]. Today, such a
logical reconstruction of scientific theories is commonly viewed as erroneous. A
crucial argument against this approach amounts to pointing to the fact that
all scientific observations and experiments are theory-laden, so that Carnap’s
idea of a theory-neutral observation by the naked eye is adequate neither to
historical nor to current scientific practice [22]. Our proposed approach to the
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formal reconstruction of scientific theories allows us to describe the concept of
theory-ladenness of scientific observations and experiments in a rigorous form and
analyse its formal structure; such a formal analysis has been sketched above. This
analysis makes it clear that in scientific theories, logical methods are relevant only
when they constitute an integral part of a wider class of extra-logical constructive
methods.
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1683.



224

[8] V.I. Arnold. On mathematical teaching (in russian). Russian Math. Surveys,
53(1):229–236, 1998.

[9] S. Artemov and M. Fitting. Justification Logic: Reasoning with Reasons.
Cambridge University Press, 2019.

[10] J. Avigad and al. Introduction to milestones in interactive theorem proving.
Journal of Automated Reasoning, 61(1):1–8, 2018.

[11] S. Awodey. Structuralism, invariance and univalence. Philosophia
Mathematica, 22(1):1–11, 2014.

[12] S. Awodey and M. Warren. Homotopy theoretic models of identity types.
Mathematical Proceedings of the Cambridge Philosophical Society, 74:45–55,
2009. arXiv:0709.0248v1 [math.LO].

[13] J.T. Baldwin. Model Theory and the Philosophy of Mathematical Practice.
Cambridge University Press, 2018.

[14] W. Balzer and al. An Architectonic for Science: the Structuralist Approach.
Reidel, Dordrecht, 1987.

[15] W. Balzer and al. (eds.). Structuralist Knowledge Representation:
Paradigmatic Examples (Poznan Studies in the Philosophy of the Sciences
and the Humanities vol. 75). Amsterdam:Rodopi, 2000.

[16] W. Balzer and U. Moulines (eds.). Structuralist Theory of Science: Focal
Issues, New Results (Perspectives in Analytical Philosophy, vol. 6). Berlin:
de Gruyter, 1996.

[17] O. Bradley Bassler. The surveyability of mathematical proof: A historical
perspective. Synthese, 148(1):99–133, 2006.

[18] L. Baulieu. Dispelling a myth : questions and answers about Bourbaki’s
early work, 1934-1944. S. Chikara, S. Mitsuo, J.W. Dauben (Eds.) The
intersection of history and mathematics, Birkhäuser, Basel, pages 241–252,
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Heidelberg, 1928.

[112] D. Hilbert and W. Ackermann. Principles of Mathematical Logic. New
York: Chelsea Publishing Company, 1950.

[113] D. Hilbert and P. Bernays. Grundlagen der Mathematik. Springer, 1934-
1939.

[114] D. Hilbert and P. Bernays. Foundations of Mathematics 1. International
Federation of Computational Logic (IFCoLog), 2010.

[115] David Hilbert. Grundlagen der Geometrie. Leipzig, 1899.

[116] J. Hintikka. Hilbert vindicated? Synthese, 110(1):15–36, 1997.

[117] J. Hintikka. Lingua Universalis vs. Calculus Ratiocinator. An ultimate
presupposition of Twentieth-century philosophy (Collected Papers, vol. 2).
Kluwer, 1997.

[118] J. Hintikka. What is axiomatic method? Synthese, 183(1):69–85, 2011.

[119] J. Hintikka and U. Remes. The Method of Analysis. Its Geometrical Origin
and Its General Significance. Dordrecht- Boston, D. Reidel, 1974.

[120] J. Hintikka and U. Remes. Ancient geometrical analysis and modern
logic. R.S. Cohen, P.K. Feyerabend, Marx W. Wartofsky (eds.), Essays
in Memory of Imre Lakatos (Boston Studies in the Philosophy of Science,
vol. 39), 1976.

[121] W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[122] M. Hofmann and Th. Streicher. A groupoid model refutes uniqueness of
identity proofs. Proceedings of the 9th Symposium on Logic in Computer
Science (LICS), Paris, 1994.



233

[123] M. Hofmann and Th. Streicher. The groupoid interpretation of type theory.
G. Sambin and J. Smith (eds.), Twenty-Five Years of Constructive Type
Theory, Oxford University Press, pages 83–111, 1998.

[124] P. Hofstra and M.Warren. Combinatorial realizability models of type theory.
Annals of Pure and Applied Logic, 164(10):957–988, 2013.

[125] W. Horward. The formulae-as-types notion of construction. J.P. Seldin,
J.R. Hindley (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 479–490, 1980.

[126] P. Hylton. Russell, Idealism, and the Emergence of Analytic Philosophy.
Oxford University Press, 1990.

[127] E. Dean, J. Avigad and J. Mumma. A formal system for euclid’s elements.
Review of Symbolic Logic, 2(4):700–768, 2009.

[128] B. Jacobs. Categorical Logic and Type Theory (Studies in Logic and the
Foundations of Mathematics, vol. 141. Elsevier, 1999.

[129] A.C. Sugar, J.C.C. McKinsey and P.C. Suppes. Axiomatic foundations of
classical particle mechanics. Journal of Rational Mechanics and Analysis,
2:253–272, 1953.

[130] S. Galindo-Uribarri, J.L. Cervantes-Cota and G.F. Smoot. A Brief History
of Gravitational Waves. https://arxiv.org/abs/1609.09400, 2016.

[131] P. Johnstone. The point of pointless topology. Bull. Amer. Math. Soc.
(N.S.), 8(1):41– 53, 1983.

[132] P. Johnstone. Sketches of an Elephant: a Topos Theory Compendium, vols
1-2. Cambridge University Press, 2002.

[133] V.F. Kagan. Foundations of geometry, vol. 1 (Russian). Economics
Publishing, Odessa, 1905.

[134] V.F. Kagan. Foundations of geometry, vol. 2 (Russian). Economics
Publishing, Odessa, 1907.

[135] Im. Kant. Kritik der reinen Vernunft. Meiner Verlag, Hamburg, 1998.



234

[136] Im. Kant. Critique of Pure Reason, translated into English by P. Guyer.
Cambridge University Press, 1999.

[137] M.M. Kapranov and V.A. Voevodsky ∞-groupoids and homotopy types.
Russian Math. Surveys, 45(5):239–240, 1990.

[138] M.M. Kapranov and V.A. Voevodsky. ∞-groupoids and homotopy types.
Cahiers de Topologie et Géometrie Différentielle Catégoriques, 32(1):29–46,
1991.

[139] Ch. Kapulkin and P.L. Lumsdaine. The Simplicial Model of Univalent
Foundations (after Voevodsky). https://arxiv.org/abs/1211.2851, 2018.

[140] S.C. Kleene. Mathematical Logic. Dever Publications, 2002.

[141] F. Klein. Vergleichende Betrachtungen über neuere geometrische
Forschungen. Erlangen: A. Deichert, 1872.

[142] M. Kline. Why Johnny Can’t Add: the Failure of New Maths. St James
Press (New York, London), 1973.

[143] A.N. Kolmogorov. On the interpretation of intuitionistic logic. V.M.
Tikhomirov (ed.) Selected Works of A.N. Kolmogorov, Springer (original
publication in German: Zur Deutung der Intuitionistischen Logik. Math.
Ztschr., 35, S. 58-65 (1932)), 1:151–158, 1991.

[144] A.N. Kolmogorov and S.V. Fomin. Elements of theory of functions and
functional analysis (in Russian). Nauka, 1976.

[145] S. Kovalyov and A. Rodin. Knowledge and its representation in the computer
age (russian). Ҹеловек, 30(4):94–112, 2019.

[146] S. Kovalyov and A. Rodin. Truth and justification in knowledge
representation. S.O. Kuznetsov, A. Napoli and S. Rudolph (eds.)
Proceedings of the 7th Workshop What can Formal Concept Analysis do
for Artificial Intelligence? (August 10-17, 2019, Macao, China), CEUR
Workshops Proceedings, 2529:45–56, 2020.



235

[147] R. Kromer. Tool and Object: A History and Philosophy of Category Theory.
Birkhauser, 2007.

[148] V. Krupski. Primal implication as encryption. Hirsch E.A., Kuznetsov
S.O., Pin J.-E., Vereshchagin N.K. (eds) Computer Science - Theory and
Applications. CSR 2014. Lecture Notes in Computer Science, vol 8476.
Springer, Cham, pages 232–244, 2014.

[149] K. Kunen. Set Theory: An Introduction to Independence Proofs. Elsevier,
1980.

[150] J. Ladyman and S. Presnell. Identity in homotopy type theory: Part ii,
the conceptual and philosophical status of identity in hott. Philosophia
Mathematica,, 25(2):210–245, 2017.

[151] J. Lambek. Deductive systems and categories. (i) syntactic calculus and
residuated categories. Mathematical Systems Theory, 2:287 – 318, 1968.

[152] J. Lambek. Deductive systems and categories. (ii) standard constructions
and closed categories. P. J. Hilton, editor, Category Theory, Homology
Theory, and their Applications, (volume 86 of Lecture Notes in
Mathematics), Springer, 1:76 – 122, 1969.

[153] J. Lambek. Deductive systems and categories. (iii) cartesian closed
categories, intuitionistic propositional calculus, and combinatory logic. F.
W. Lawvere (ed.), Toposes, Algebraic Geometry and Logic, (volume 274 of
Lecture Notes in Mathematics), Springer, pages 57 – 82, 1972.

[154] E. Landry. The genetic versus the axiomatic method: Responding to
feferman 1977К. The Review of Symbolic Logic, 6(1):24–51, 2013.

[155] F.W. Lawvere. Functorial Semantics of Algebraic Theories. Ph.D. Columbia
University, 1963.

[156] F.W. Lawvere. An elementary theory of the category of sets. Proc. Nat.
Acad. Sci. U.S.A., 52:1506 – 1511, 1964.



236

[157] F.W. Lawvere. The category of categories as a foundation for mathematics.
In Proceedings of the La Jolla Conference on Categorical Algebra, pages
1–21, 1966.

[158] F.W. Lawvere. Theories as categories and the completeness theorem.
Journal of Symbolic Logic, 32:562, 1967.

[159] F.W. Lawvere. Adjointness in foundations. Dialectica, 23:281 – 296, 1969.

[160] F.W. Lawvere. Diagonal arguments and cartesian closed categories. P. J.
Hilton, editor, Category Theory, Homology Theory and their Applications
II, (volume 92 of Lecture Notes in Mathematics), Springer, 2:134 – 145,
1969.

[161] F.W. Lawvere. Equality in hyperdoctrines and comprehension schema as an
adjoint functor. Applications of Categorical Algebra (Proc. Sympos. Pure
Math., Vol. XVII, New York, 1968), pages 1 – 14, 1970.

[162] F.W. Lawvere. Quantifiers and sheaves. M. Berger, J. Dieudonne and al.
(eds.), Actes du congres international des mathematiciens, Nice, pages 329
– 334, 1970.

[163] F.W. Lawvere. Tools for the advancement of objective logic: closed
categories and toposes. J. Macnamara and G.E. Reyes (Eds.), The Logical
Foundations of Cognition, Oxford University Press 1993 (Proceedings of
the Febr. 1991 Vancouver Conference “Logic and Cognition”), pages 43 –
56, 1994.

[164] F.W. Lawvere. An elementary theory of the category of sets (long version)
with the author’s commentary. Reprints in Theory and Applications of
Categories, 11:1 – 35, 2005.

[165] F.W. Lawvere. Diagonal arguments and cartesian closed categories. Reprints
in Theory and Applications of Categories, 15:1 – 13, 2005a.

[166] F.W. Lawvere and R. Rosebrugh. Sets for Mathematics. Cambridge
University Press, 2003.



237

[167] D.G. Lee and N.P. Suh. Axiomatic Design and Fabrication of Composite
Structures. Applications in Robots, Machine Tools, and Automobiles.
Oxford University Press, 2006.

[168] T. Leinster. A survey of definitions of n-category. Theory and Applications
of Categories, 10:1–70, 2002.

[169] T. Leinster. Higher Operads, Higher Categories (London Mathematical
Society Lecture Note Series 298). Cambridge University Press, 2004.
arXiv:math/0305049.

[170] D.R. Licata and M. Shulman. Calculating the Fundamental Group of the
Circle in Homotopy Type Theory. https://https://arxiv.org/abs/1301.3443,
2013.

[171] J. Lmbek and P.J. Scott. Higher Order Categorical Logic. Cambridge
University Press, 1986.

[172] J. Lurie. Higher Topos Theory (Annals of Mathematics Studies, 170).
Princeton University Press, 2009.

[173] Th. Coquand M. Bezem and J. Huber. The univalence axiom in cubical
sets. J. of Automated Reasoning, 63(2):159–171, 2019. arXiv:1710.10941.

[174] A. Macintyre. Model theory: Geometrical and set-theoretic aspects and
prospects. Bulletin of Symbolic Logic, 9(2):197–212, 2003.

[175] G.W. Mackey. The Mathematical Foundations of Quantum Mechanics.
W.A. Benjamin, Inc. (NY, Amsterdam), 1963.

[176] S. MacLane. Categories for the Working Mathematician, 2nd edition.
Springer, 1998.

[177] S. MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First
Introduction to Topos Theory. Springer, 1992.

[178] K. Mainzer. Die Berechnung der Welt: Von der Weltformel zu Big Data.
C.H. Beck, 2014.



238

[179] M. Makkai. Towards a categorical foundation of mathematics. Lecture Notes
in Logic, 11:153–190, 1998.

[180] J. Malinowski. The deduction theorem for quantum logic: Some negative
results. The Journal of Symbolic Logic, 55(2):615–625, 1990.

[181] P. (ed.) Mancosu. Philosophy of Mathematical Practice. Oxford University
Press, 2008.

[182] Yu. Manin. Georg Cantor and his heritage (talk at the meeting of the
German mathematical society and the Cantor medal award ceremony), 2002.
arXiv:math.AG/02009244 v1/.

[183] J.-P. Marquis. From a Geometrical Point of View: A Study of the History
and Philosophy of Category Theory. Springer, 2009.

[184] J.-P. Marquis and G.E. Reyes. The history of categorical logic: 1963 - 1977.
A. Kanamori (ed.) Handbook of the History of Logic: Sets and Extensions
in the Twentieth Century, 6:689–800, 2012.
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pages 243–256, 2008.

[191] J. McCarthy. Programs with common sense. Symposium on Mechanization
of Thought Processes. National Physical Laboratory, Teddington, England,
1958.

[192] D.C. McCarty. Problems and riddles: Hilbert and the du bois-reymonds.
Synthese, 147:63–79, 2005.

[193] J.C.C. McKinsey and P. Suppes. Review of “la structure des théories
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