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Abstract 

Causation can be inferred by two distinct patterns of reasoning, each requiring a distinct experi-

mental design. Common, non-statistical causal inference is associated with controlled experiments 

in basic biomedical research. Statistical inference is associated with Randomized Controlled Trials 

in clinical research. The main difference between the two patterns of inference hinges on the sat-

isfaction of a comparability requirement, which is in turn dictated by the nature of the objects of 

study, namely homogeneous vs. heterogeneous populations of biological systems. This distinction 

entails that the objection according to which randomized experiments fail to provide better evi-

dence for causation because randomization cannot guarantee comparability is mistaken. As far as 

the validity of the statistical inference is concerned, randomization is not required in order to en-

sure comparability, but rather to prevent systematic bias which may compromise the accuracy of 

the intervention.  

 

1. A debate concerning the virtues of randomization 

 Clinical trials aim to determine whether a medical intervention is a causal difference maker 

in respect to a health-related outcome in a patient or, more often, a population of patients. Ran-

domized Controlled Trials (RCTs) are widely regarded as the gold standard in clinical research, 

providing the strongest evidence for causal efficacy (The Cochrane Collaboration 2011). It is not 

surprising, therefore, that one of the most debated questions is how exactly and to what extent the 
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main feature that differentiates RCTs from other types of controlled experiments, namely the ran-

dom allocation of subjects to the test and control arms of the experiment, contributes to the validity 

of causal inference. 

A common answer is that randomization ensures comparability, that is, an even distribution 

of potential confounders among patients in the test and control groups (Cartwright 2010; Papineau 

1994). Critics challenge this claim, pointing out that randomization can balance the effects of con-

founders only in the long run, by performing an infinite series of experiments in which patients 

are randomly allocated to test and control conditions (Howson and Urbach 2006; Lindley 1982; 

Urbach 1985; 1993; Worrall 2007b). It would seem therefore that critics too, assume that valid 

statistical inference in clinical research requires comparable groups balanced in respect to potential 

confounders and that the main purpose of random allocation is to achieve comparability. However, 

since randomization cannot guarantee comparability, they conclude that randomized studies are 

not epistemically superior to non-randomized ones. 

But why is comparability so crucially important to statistical inference? In this paper, I 

argue that if comparability can be assumed, then causation can be validly inferred without any 

further reliance on statistical testing. A controlled experiment contrasting a test and a control con-

dition suffices. Conversely, the purpose of statistical testing is to provide a basis for inferring cau-

sation when the possibility that incomparable groups are contrasted cannot be discarded. Thus, 

there are two distinct methods for inferring causation: a common, or non-statistical, causal infer-

ence associated with controlled experiments in basic biomedical research; and a statistical infer-

ence associated with RCTs in clinical research. The main difference between the two forms of 

causal inference hinges on the satisfaction of a comparability requirement, which–as I will argue 

in the paper–is ultimately dictated by the nature of the objects of study, namely homogeneous vs. 

heterogeneous populations of biological systems. Researchers opt for a method of inference or the 

other, implementing the corresponding experimental design, depending on whether they have rea-

sons to believe that a population is homogeneous or not. This distinction has an immediate conse-

quence for the debate concerning the virtues of randomization: the assumption that comparability 

is required for the validity of statistical inference is mistaken. According to the account defended 

in the paper, the role of randomization vis-à-vis the validity of causal inference is not to promote 

comparability, but rather to ensure the accuracy of the intervention by removing some forms of 

systematic error. 
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The paper is organized as follows: In Section 2, I explain what I take to be the two methods 

for inferring causation. In each case, I analyze the inferential logic and the associated experimental 

requirements, highlighting some key differences. In Section 3, I focus on the role random alloca-

tion plays in respect to comparability, the accuracy of the intervention, and the validity of statistical 

tests. I argue that random allocation has no bearing on the validity of statistical tests and, although 

there is a relationship between random allocation and comparability, this relationship is not essen-

tial to statistical inference. Then, I show how the ‘controlled experiment’ and ‘statistical testing’ 

elements fit together in the experimental design of an RCT, and argue that random allocation is 

primarily required in order to ensure the accuracy of the allocation intervention. Section 4 summa-

rizes the main claims made in the paper.   

 

2. Two methods for inferring causation  

2.1 Causal inference when comparability can be assumed 

The most common test for demonstrating causation in basic biomedical research is the 

controlled experiment. The test consists in contrasting outcomes in two conditions that differ in 

respect to a tested variable. In order to yield a verdict regarding the causal relevance of the tested 

variable vis-à-vis the outcome, the experiment must further satisfy the following desiderata:  

(i) An intervention on the variable (i.e., an experiment) must be conducted. Manipulation–as 

opposed to mere observation of differences in the outcome between two conditions–is 

standardly required in order to establish the directionality of causation (i.e., demonstrate 

that the variable is causally relevant to the outcome rather than the other way around) and 

rule out the possibility that the changes in the variable and the outcome are correlated due 

to a common cause. If changes in the variable and the outcome are divergent effects of a 

common cause or if the former is an effect of the latter, then the manipulation of the var-

iable is not expected to have an impact on the outcome. However, if there is a causal 

pathway linking the tested variable and the outcome as upstream cause to downstream 

effect, then interventions on the variable are expected to result in changes in the outcome. 

(ii) The test and the control conditions must be comparable in all relevant respects except for 

the variable manipulated in the experiment. Failure to ensure comparability raises the pos-

sibility that some other difference between the two conditions (a confounder) is responsible 
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for the observed differences in outcome. Comparability demands: (ii.1) that possible con-

founder-variables take the same values in the test and control conditions at the onset of the 

experiment; and (ii.2) that the experiment is shielded from unequal external interferences 

other than the intervention targeting the test condition. In other words, comparability is 

meant to ensure that the test and control systems start in the same state and evolve in the 

same way except for whatever changes are brought about by the intervention and its down-

stream effects. An allowance is made for the possibility that the values of causally relevant 

variables (including confounders) may change during the experiment, due to external in-

ferences or to the natural progression of the system, and that these changes may affect the 

measured outcome. However, whatever these changes are, their impact is expected to be 

essentially identical in the two arms of the experiment. 

(iii)The intervention should be accurate, in the sense that it should target only the variable 

under investigation. Accuracy is required to demonstrate the causal relevance of the tested 

(independent) variable to the differences in outcome. If the accuracy of the intervention 

cannot be demonstrated, it is still possible to demonstrate that the intervention itself is 

causally relevant. However, the causal efficacy of the intervention may be attributed to the 

fact that the intervention targets some other variable in addition to or instead of the tested 

variable. 

Causal inference follows the general pattern of reasoning outlined in Mill’s method of dif-

ference (1843, Chapter VIII, § 2), namely that of a contrastive inference whereby those aspects of 

a situation known to be constant (i.e., controlled) between two situations are ruled out as possible 

explanations of differences in outcome. (i) is meant to rule out the possibility of a non-causal 

correlation between the tested variable and the observed differences in outcome, as well as the 

possibility of a reverse causation scenario. (ii) is meant to rule out explanations of differences in 

outcome other than the intervention. (iii) is meant to further rule out explanations involving vari-

ables other than the designated independent variable which might have been affected by the inter-

vention. If conditions (i) (ii) and (iii) are satisfied, there is good evidence to conclude that the 

tested variable is the causal difference-maker responsible for the observed differences in outcome.  

Although causal inference is sometimes framed in terms of a probabilistic theory of causa-

tion [e.g. (Cartwright 2010)], this is not the form in which it is encountered in the experimental 

practice of basic biomedical research. Attributing probabilities to measured outcomes is by no 
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means a trivial task and there are no methodological guidelines specifying how such attributions 

should be made. Moreover, the probabilistic glossing should not overshadow the fact that the over-

all logic of causal inference is one of systematic elimination of alternative explanations, a point 

which is repeatedly emphasized in the methodological literature.1 Finally, it is perhaps worth point-

ing out that since the causal inference is contrastive in nature, the claim ‘X causes Y’ is shorthand 

for ‘a change in variable X is causally relevant to a difference in outcome Y between two situations 

given the context of a comparable background of other possible determinants.’ In particular, ‘X 

causes Y’ should not be taken to imply that an entity or event X produces or ‘brings about’ an 

entity/event Y, or that X or some change in a variable X is a sufficient cause of Y or a change in a 

variable Y. 

A detailed justification of the intervention requirement (condition i) can be found in the 

philosophical literature on interventionist accounts of causation (Pearl 2000; Spirtes et al. 1993; 

Woodward 2003). Since it is not essential to my argument, I will not reiterate it here.  

In the experimental practice of the life sciences, comparability (condition ii) has two com-

ponents, one referring to the living systems under investigation, the other to the replication of the 

experimental background in the test and control conditions. Experimental practices deployed to 

ensure the latter include the standardization and operationalization of the techniques of measure-

ment and intervention. A parallel experimental design in which test and control are simultaneously 

deployed side by side is commonly adopted to ensure that causal interferences external to the ex-

perimental setup have an equal impact on both conditions (condition ii.2).  

Ensuring the comparability of biological systems at the onset of the experiment (condition 

ii.1) is far more challenging. In basic science, the preferred strategy is to systematically remove 

differences between biological systems in order to generate genetically and phenotypically homo-

geneous organism strains and cell-line clones, which are then maintained in standardized living 

conditions (Ankeny and Leonelli 2011; Baetu 2016; Clarke and Fujimura 1992; Müller-Wille 

2007). Further precautions are taken in order to ensure that test and control biological systems are 

 
1 “Determining whether there is a causal relationship between variables, A and B, requires that the variables covary, 

the presence of one variable preceding the other (e.g., A → B), and ruling out the presence of a third variable, C, 

which might mitigate the influence of A on B” (Leighton 2010, 622). Confounders are conceptualized as rival (usually 

causal) explanations of the observed difference in outcome between test and control. Thus, if the test and control 

systems differ in terms of factors that can impact on the measured outcome, the causal inference is deemed inconclu-

sive since the possibility that something other than the manipulated factor may explain the difference in outcomes 

cannot be ruled out (Chow 2010).  



6           

 

‘synchronized’ (e.g., cells are at the same stage of the cell cycle). Thus, while most research in 

basic science relies on comparisons between populations of biological systems, such as cells and 

organisms, these populations are highly homogeneous and are often assumed to consist of quasi-

identical copies of the same biological system. In addition to contributing towards the satisfaction 

of the comparability requirement, homogeneity also allows researchers to extrapolate causal 

claims from populations to individuals and vice versa without incurring a substantial risk of error. 

The accuracy of the intervention (condition iii) is ensured by subjecting a technique of 

intervention to a process of validation meant to demonstrate that the technique targets only the 

variable under investigation and no other variables that may have similar features or contribute to 

similar differences in outcome. Validity is in part demonstrated by including additional positive 

and negative controls in experiments. For example, it is common practice to perform placebo in-

terventions (pipetting, mixing, centrifuging, incubating) in the control arm of the experiment. Such 

interventions are meant to ensure that the relevant difference maker is not some generic lab proce-

dure, such as gently shaking the cells, but rather the investigated variable, say, a virus, which is 

added by gently shaking the cell suspension. 

 

2.2 Statistical inference in the context of RCTs 

Homogeneous populations of biological systems are, by and large, generated in the labor-

atory. Natural populations, on the other hand, are notoriously heterogeneous. For instance, the 

progression and severity of medical conditions vary among patients. Moreover, even when a pop-

ulation of patients displays identical symptoms, the underlying physiopathology may still vary 

from one patient to the next. As a result, a treatment may be successful in some patients, but have 

no effect or even adverse effects in other patients. This makes it extremely difficult to satisfy the 

comparability requirement demanded by the method of inference described in Section 2.1.2  

The variability of biological outcomes in a population is standardly modelled and explained 

as the effect of a multitude of causal factors, genetic and environmental, unevenly distributed 

 
2 The validity of extrapolations is also compromised. Heterogeneous populations and individuals drawn from these 

populations are no longer interchangeable experimental surrogates. If the individuals in a population differ in respect 

to confounding causal factors, causal claims established by studying individuals may not be representative of causal 

relationships prevalent in the general population, while causal relationships shown to be predominant in a population 

may not apply to a particular individual drawn from that population. In practical terms, this means that a treatment 

working well for a group of tested patients may turn out to have little impact in the general population, while a treat-

ment generally successful in a population may not be effective for a particular patient.  
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among individuals in a population (Fisher 1947). A measure of the variability of an outcome could 

be a proportion, such as the fatality ratio associated with an untreated medical condition docu-

mented over a long period of time in a large population of diagnosed patients. If the fatality ratio 

(say, within two years following diagnosis) is 100%, it can be inferred that none of the patients 

with the condition ever recover on their own. In this case, the causal ‘background noise’ of con-

founders–i.e., causes other than the tested treatment that may contribute to recovery–is negligible. 

A sample of any size taken from this population is expected to be characterized by the same 100% 

fatality outcome. Conversely, the seemingly miraculous recovery of a single patient cannot be 

dismissed as random variation, since, in this idealized scenario, there is no variation in the out-

come. Thus, if an intervention is conducted, then any instance of recovery can reasonably be at-

tributed to the intervention and not to some other cause.  

In contrast, if the fatality ratio is 20%, then the ‘background noise’ of confounders is quite 

substantial, with 80% of the patients recovering in the absence of any treatment. The fatality ratios 

observed in samples taken from this population are bound to vary depending on which individuals 

happen to be picked in each sample. In turn, variability makes it impossible to draw a valid con-

clusion about the efficacy of a treatment intervention by simply comparing the fatality ratio in a 

sample of treated patients with the fatality ratio in the general population.  

Statistical testing provides a means to calculate the probability that differences in outcome 

between a sample and the general population are due to sampling alone.3 If the sampling method 

is not biased–for instance if a random sampling technique is successfully implemented–it is pos-

sible to calculate the frequency with which sample fatality values occur by repeatedly picking 

samples of the same size. This can be easily illustrated for samples of two.4 If a patient is picked 

at random from the population, there is a 20% chance of picking a patient who dies and an 80% 

chance of picking a patient who recovers. In the long run, 64% of the samples would display a 

fatality ratio of 0% (the probability that both patients recover is 0.80.8), 32% a ratio of 50% (one 

patient dies and the other survives or vice versa, 20.20.8), and 4% a100% ratio (the probability 

that both patients die, 0.20.2). Thus, we can reason that even if a completely inefficacious treat-

ment is administered to a sample–an explanation known as the ‘null hypothesis’–, there is a 64% 

probability of observing a 0% fatality ratio because the sample happens to consist of patients who 

 
3 The distinction between statistical (or chance) and causal explanations is discussed in (Witteveen forthcoming). 
4 The example is adapted from (Hill 1955, Ch. VIII).  
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would have recovered anyway. It is still possible that the treatment is in fact efficacious and cured 

two patients who would have not recovered on their own (the probability of picking such a sample 

being 4%). Unfortunately, we don’t know which kind of sample was tested. The only thing we 

know is that it is highly likely that we picked a sample in which the patients recover in the absence 

of any treatment (64%). Since we have no grounds to dismiss the null hypothesis, we should ab-

stain from drawing any conclusions about the efficacy of the treatment.  

As sample size increases, the probability of observing a 0% fatality ratio in virtue of ran-

dom sampling alone decreases radically, although it is always possible that a sample, even a very 

large one, happens to consist predominantly of patients that would have recovered on their own. 

For a sample of 20, the probability of picking at random only patients that would have recovered 

anyway drops to 1.15% (0.820). Assuming that a treatment was administered and that all 20 patients 

recovered, we are entitled to conclude that it is rather unlikely that we picked a highly unrepre-

sentative sample consisting only of patients who would have recovered on their own. It is more 

likely that something else, perhaps the treatment, is responsible for the recovery of the patients.  

It is important to emphasize that statistical inference does not guarantee the truth of the 

conclusion even if all the assumptions underlying the inference (e.g., random sampling) are satis-

fied. Statistical testing only provides a means of quantifying the risk of drawing an erroneous 

conclusion. In order to infer causation, we must first decide whether the risk is acceptable or not. 

The agreed upon methodological convention is that a null hypothesis with a probability higher 

than 5% constitutes an unacceptable risk. This kind of risk and the associated methodological con-

vention are not present in the common causal inference described in Section 2.1: if conditions (i)-

(iii) are met, we are entitled to infer without any further ado that the manipulated variable is the 

cause of the observed differences in outcome. Of course, it may, and probably does happen that 

despite our best efforts the test and control systems are incomparable or that the intervention is 

inaccurate, but this concerns the satisfaction of the assumptions underpinning valid inference, not 

the inference itself.  

In clinical practice, population statistics are usually unavailable. It is also difficult to ran-

domly sample a population spread over a large geographical area. A different, more practical ap-

proach must be thought out. One strategy is to start with a non-random sample gathered by a tech-

nique in which the probability of getting any particular sample from a population cannot be calcu-

lated–this is known as a convenience sample–, describe it in as much detail as possible and then 
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extrapolate findings to a conceptually defined population consisting of all patients, present and 

future, similar to the study participants.  

A version of this strategy is adopted in RCTs. First, the treatment and its method of deliv-

ery, as well as the outcome of interest and the method of assessment are defined. On the same 

occasion, the desired characteristics of potential study participants are specified by a set of eligi-

bility criteria. Inclusion criteria include the diagnosis of the medical condition targeted by the 

tested treatment. Exclusion criteria are necessary for ethical and legal reasons, and to eliminate 

known confounders such as advanced age and comorbidities, which may mask improvements of 

the targeted medical condition. Then, a convenience sample of patients satisfying these criteria is 

gathered. Steps are taken to avoid known mechanisms of sampling bias, such as volunteerism, and 

the characteristics of the participants and the circumstances of their enrollment are recorded in 

detail; this information is subsequently used to evaluate extrapolations to other populations and 

individuals. Enrolled patients are then randomly allocated to either a test group, which receives 

the treatment under investigation, or a control group, which receives no treatment, a placebo or the 

standard treatment. Finally, outcomes are measured according to the agreed method of assessment.   

Since not all patients diagnosed with the condition of interest satisfy the eligibility criteria, 

a legitimate concern often voiced by critics is that the reference population is not identical to the 

general population of patients (Howson and Urbach 2006, 190). Thus, even if a treatment is shown 

to be efficacious in the test group, the external validity of the trial, that is, the effectiveness of the 

treatment in the general population under routine healthcare conditions, remains uncertain. Despite 

this shortcoming, it is important to point out that both basic science and clinical research work on 

the thus far fruitful methodological assumption that biological systems are modular, such that it is 

possible to treat dysfunctions independently of one another. Among other things, eligibility criteria 

are applied in order to demonstrate the efficacy of the treatment in respect to a particular dysfunc-

tion. Thus, explanatory trials–that is, trials on patients satisfying eligibility criteria conducted un-

der carefully monitored conditions–provide crucial information necessary to sustain basic and clin-

ical research (La Caze 2013). This said, it is also possible to conduct pragmatic trials–that is, trials 

on patients drawn from the general population under routine healthcare conditions (Godwin et al. 

2003)–, which can both directly test effectiveness in the general population and indirectly assess 

the modularity assumption. 
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A second concern is that the extrapolation from samples to population is not based on sta-

tistical inference, but relies on an informal notion of similarity (Howson and Urbach 2006, 190-

91; Worrall 2007a, 994-95). This is true, but it doesn’t follow that similarity-based extrapolations 

are invalid. They are extremely common in science and in many cases successful (Baetu 2016; 

Steel 2007).  

Moreover, statistical testing is still used to infer causation in a way that does not depend 

on the notion of similarity used to generalize causal claims. To see how this is done, it is useful to 

consider once again a simple example. Let us suppose that an RCT is conducted to test the efficacy 

of a treatment, with 10 patients allocated to a placebo (control) group and 10 patients to a treatment 

(test) group. The outcomes (death or recovery) for each patient are listed in Figure 1, panel A. 

Overall, a 10% (1 out of 10) fatality ratio is observed in the treatment group, as opposed to 20% 

(2 out of 10) in the placebo group (panel C). The fact that the fatality ratio is relatively low in the 

control condition means that most patients recover whether or not they receive a treatment. Could 

it be then that the observed differences in outcome between the test and control groups (i.e., a 10% 

reduction in fatality) is due to the fact that more patients who recover on their own happened to be 

allocated to the test group? To evaluate the risk of making an incorrect causal inference, one needs 

to establish how often a difference in fatality ratios of this magnitude could arise solely by ran-

domly assigning the patients to the test and control conditions. A randomization test, such as 

Fisher’s exact test of independence, assumes the null hypothesis that there is no association be-

tween allocation and outcome. In other words, any given individual would incur the same outcome 

no matter the group to which is allocated. If this hypothesis is correct, then the ‘treatment’ and 

‘placebo’ labels are interchangeable. The test therefore consists in erasing the labels and repeatedly 

reallocating at random (rerandomizing) the 20 patients to two groups of 10, taking note of the 

difference in fatality between the groups and the frequency with which each difference-value oc-

curs. For instance, in one round of rerandomization we obtain the outcomes listed in panel B and 

summarized in panel D. After 1000 rerandomizations, we observe that a difference in fatality of 

10% between treatment and placebo groups can easily occur in virtue of random allocation alone, 

with a probability of 49.7% (panel E). Since the null hypothesis cannot be ruled out, this particular 

experiment is inconclusive. The incertitude can be reduced by increasing group size. For groups 

of 100, the probability of observing a difference in fatality of 10% or larger in virtue of random 

allocation alone drops to 3% (panel F); for groups of 1000, the probability is close to zero (panel 
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G). Thus, if a 10% difference in fatality is observed for large groups, we would be entitled to reject 

the chance explanation and conclude that the allocation to the treatment group makes a difference 

in respect to recovery.  

 

Figure 1. VIT (https://www.stat.auckland.ac.nz/~wild/VIT/) simulation of 1000 rerandomizations. One-tailed p-val-

ues for differences in fatality of 10% or more are indicated in panels E-G.  

Just like the common, non-statistical causal inference discussed in Section 2.1, the overall 

logic of statistical inference is one of systematic ruling out of rival explanations (Fisher 1947; Hill 

1952; 1955). In both cases, non-causal correlations are ruled out by conducting an experimental 

intervention (condition i) and spurious attributions of causal efficacy are ruled out by taking steps 

in order to ensure the accuracy of the intervention (condition iii; more on this in Section 3.4). The 

main difference concerns the comparability requirement (condition ii), which cannot be satisfied 

in studies involving individuals drawn from natural populations. In order to overcome this diffi-

culty, one strategy for eliminating alternative explanations–namely, relying on comparability in 

order to rule out explanations involving differences other than interventions on the tested variable–

is replaced by an inference based on the results of a statistical test assessing the probability that 

differences between groups are generated in virtue of random allocation alone. In turn, this has 

important consequences for experimental design and data analysis: statistical analysis is required, 

sufficiently large samples or groups are needed in order to reduce the risk of error to acceptable 

levels, and, as I will show in Section 3.4, randomization too is required in order to avoid spurious 

causal attribution.  
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3. The roles of comparability and randomization in statistical inference 

3.1 The debate    

Randomization, understood as the experimental practice of random allocation, is often de-

scribed as an effective method for ensuring a high degree of comparability. For instance, we are 

told that:  

“Random assignment of subjects to the treatment or control wings […] is in aid of ensuring 

that other possible reasons for dependencies and independencies between cause and effect 

under test will be distributed identically in the treatment and control wings.” (Cartwright 

2010, 63) 

Similar recommendations abound in the clinical literature. Take, for instance, this quote from a 

comprehensive series of review articles on the evaluation of trial results:  

“To ensure ‘fair’ comparison between the treatments, the different study groups must be 

truly comparable. This can be achieved by standardization of, for example, the time(s) of 

intake of the study medication and the methods used to measure clinical parameters, but 

most important for comparability is randomization of the participants.” (Kabisch et al. 

2011, 664) 

Ultimately, such claims can be traced to Fisher’s (1947, 19) treatment of the “procedure of ran-

domisation” which he describes as the method “by which the validity of the test of significance 

may be guaranteed against corruption by the causes of disturbance which have not been elimi-

nated.” 

Critics, on the other hand, claim that randomization is useless (and, moreover, should be 

banned for ethical reasons which I will not discuss here). One of their key arguments is that ran-

domization can balance the effects of confounding factors only in the long run, by performing 

many experiments in which the patients are randomly allocated to test and control conditions 

(Howson and Urbach 2006; Lindley 1982; Urbach 1985; 1993). Thus,  

“the best that might be argued is that if we were to take the study population and divide it 

again and again by some randomizing device into control and experimental groups and 

keep a cumulative total of the relative outcomes in the two groups, then we would expect 

that in the indefinite long run, the innumerable other possible causal factors would balance 

out and the limiting cumulative relative outcome would reflect the true efficacy of the 

treatment.” (Worrall 2007b, 472) 
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Note that both arguments for and against randomization presuppose, first, that there is a 

logical link between randomization and comparability; and, second, that comparability plays a 

crucial role in statistical inference. In respect to the first presupposition, there is indeed a relation-

ship between randomization and comparability. I discuss this relationship in Section 3.2. Regard-

ing the second presupposition, the view I defend is that, although comparability is desirable for 

practical reasons, it is not a requirement for valid statistical inference. I present my arguments in 

Section 3.3. 

 

3.2 The link between randomization and comparability  

While RCT advocates often give the impression that randomization offers a quasi-certain 

guarantee of comparability, when pressed on the issue, they ultimately concede that randomization 

is ineffective for small groups and that even in the case of large groups the epistemic ‘guarantee’ 

of comparability is more along the lines of ‘likely, but not infallible.’ Critics take issue with these 

qualifications yet, they too, if pressed, cannot but acknowledge that one round of randomization 

can enhance comparability. The reason for these partial concessions is that randomization ensures 

that test and control groups are not incomparable in virtue of a biased method preferentially allo-

cating patients having certain characteristics to one group rather than the other, but cannot guar-

antee that the two groups will not happen to be incomparable by chance. Since random error de-

creases as sample size increases, it further follows that larger groups are more likely to be compa-

rable. This is illustrated in panels F and G of Figure 1. The relative scatter of the rerandomization 

distribution plots indicates that outcome variability decreases as group size increases from 100 to 

1000. Lesser variability translates into a higher probability of generating comparable groups, thus 

providing a legitimate rationale for relying on randomization as a method for enhancing outcome 

comparability even when an experiment involves a single round of random allocation. At the same 

time, it would be unwise to ignore the fact that, for small groups, the probability that randomization 

generates incomparable groups is extremely high (panel E).  

This much acknowledged, critics of randomization further point out that randomization 

does nothing for ensuring causal comparability. Howson and Urbach (2006, 196) are keen to re-

mark that “the probability of a substantial imbalance on some prognostic factor might, for all we 

know, be quite large,” implying that this is a serious problem for statistical inference. In the same 
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vein, Worrall repeatedly suggests that valid statistical inference requires comparable groups bal-

anced in respect to each confounder, and not only for their overall effect on the outcome, some-

thing which is better achieved by experimental practices aiming to homogenize groups, such as 

matching and stratification: 

“Once it is accepted that for any real randomized allocation known factors might be unbal-

anced […] then it seems difficult to deny that a properly matched experimental and control 

group is better, so far as preventing known confounders from producing a misleading out-

come, than leaving it to the happenstance of the tosses” (2007b, 481). 

The tacit assumption here is that valid statistical inference requires the same kind of com-

parability needed for non-statistical causal inference, namely a one-by-one matching of each pos-

sible confounder. However, as illustrated in Figure 1, randomization can only reduce the variabil-

ity–or, if we prefer, enhance the comparability–of the outcome. It says nothing about comparability 

in respect to causes. Assuming a deterministic relationship between causes and outcomes, differ-

ences in outcome indicate that groups differ in terms of causal factors relevant to those outcomes. 

However, since more than one combination of causes can lead to the same outcome, the fact that 

large samples are likely to be comparable in terms of outcomes does not entail that they are also 

comparable in terms of causal factors determining those outcomes. Quantitative analysis reveals 

that the probability that two groups are balanced in respect to every confounder depends on the 

number of confounders, their probability distributions and the nature of their interactions (Lindley 

1982; Saint-Mont 2015). Relying on randomization to achieve causal comparability consistently 

requires large groups, in some cases larger than those required for achieving adequate statistical 

power and significance. Yet, only the latter concerns figure in the planning stages of an RCT, 

which never include a quantitative assessment of causal comparability.  

 

3.3 Comparability is not required for valid statistical inference 

The above considerations raise reasonable doubts about the role of randomization as a 

method for achieving the kind of comparability required by non-statistical causal inference. But is 

this really a problem for statistical inference? I think both advocates and critics of randomization 

are mistaken in assuming that comparability, either in terms of outcomes or causes, is required for 

valid inference of causation by statistical methods.   
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For one thing, physically implementing a random allocation procedure is not required for 

conducting a statistical test (Feinstein 1983). In the example discussed in Section 2.2, a list of 

outcomes for each patient is available (Figure 1, panel A), meaning that it is possible to repeatedly 

divide this list at random into two groups and calculate the probability of obtaining differences in 

outcome by chance alone. There is no need to physically allocate subjects to test and control 

groups.   

A second argument is that, in frequentist statistics, inference of any kind hinges on the 

rejection of a chance explanation (the null hypothesis) according to which data scatters in the way 

it does because of physical processes such as those underlying measurement uncertainty, or be-

cause experimental procedures such as sampling or allocation generate an unequal distribution of 

confounders from one data collection context to another. A statistical model then specifies how 

these processes determine the scattering of the data. Finally, a statistical test assesses the probabil-

ity of obtaining certain variations in data given a particular statistical model (Burnham and Ander-

son 2002).  

In the case of a traditional RCT, the scattering of the data refers to the observed differences 

in outcome between test and control groups, while the null hypothesis attributes these differences 

to the way in which the groups were generated, namely the allocation procedure whereby a con-

venience sample is divided into a test and a control group. As exemplified in the case of Fisher’s 

test of independence, the null hypothesis is ruled out when the probability of obtaining variations 

in data of the same magnitude as those observed in the experiment is relatively low. Conversely, 

if the chance explanation cannot be ruled out, the experiment cannot conclusively demonstrate the 

causal relevance of the treatment since the mere fact of dividing a sample in two might have suf-

ficed to generate the observed differences in outcome.  

The fact that a chance explanation involving an unequal distribution of confounders is con-

sidered and needs to be ruled out shows beyond any doubt that the causal inference deployed in 

the context of an RCT works explicitly on the expectation that there is a non-zero probability of 

generating incomparable groups. This conclusion is reinforced by the fact that the satisfaction of 

the comparability requirement entails that a chance explanation is impossible. If patients are com-

parable in respect to all confounders relevant to an outcome, then exchanging a patient from the 

test group with one from the control group will not make any difference to the outcome. Under 

these circumstances, statistical inference collapses into a version of Mill’s method of difference: 
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given a zero probability of generating incomparable groups, if differences in outcome are ob-

served, these differences must have been caused by something other than the process by which the 

groups were generated, and that irrespective of the magnitude of the differences in outcome and 

the size of the groups. This shows that there is no method of inference requiring both comparability 

and a statistical test to rule out a chance explanation, but two distinct methods requiring either one 

or the other. 

I can foresee two objections to the above conclusion. One may be to point out that compa-

rability concerns are omnipresent in clinical research, including RCT experimental design. Some 

degree of homogenization is achieved by imposing patient eligibility criteria aiming, among other 

things, to control for potent confounders such as comorbidities and age. Other homogenization 

practises include stratification, which can be used to demonstrate treatment efficacy for subclasses 

of patients and, if certain assumptions about the mechanism and progression of disease are met 

(e.g., chronic conditions), crossover designs in which the same patients are involved in both test 

and control conditions. It may therefore be argued that even though none of these strategies are 

known or expected to ensure the same level of homogenization achieved in basic science, their 

goal is nevertheless to ensure the highest degree of comparability possible under unfavourable 

circumstances.  

I think this justification is incorrect. Eligibility criteria are not required for valid statistical 

inference. As discussed in Section 2.2, a researcher has the choice to conduct an explanatory or a 

pragmatic RCT, yet the statistical testing and the causal inference remain the same. The only thing 

that changes is the reference population: an explanatory trial assesses efficacy in respect to a spe-

cific dysfunction for patients aged 18-60, while a pragmatic trial assesses efficacy irrespective of 

age and comorbidities. If there is a concern for homogenization in clinical research, this is not in 

order to approximate the more stringent causal comparability required by non-statistical causal 

inference, but rather to reduce outcome variability among trial participants. From a practical point 

of view, this means that smaller differences in outcome can be shown to be significant or, alterna-

tively, statistical significance can be achieved with smaller groups.  

A second reply may be that statistical inference is routinely employed in conjunction with 

a probabilistic version of Mill’s method of difference. Let us assume that comparable test and 

control groups can be systematically generated, yet the differences in outcome between the two 
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groups vary from one iteration of the experiment to the next (i.e., results are not exactly repro-

duced). The fact that there are differences in outcome between comparable groups suggests cau-

sation. However, a statistical test is ultimately needed in order to establish whether these differ-

ences reflect a genuine causal difference between the groups and not some chance variation linked 

to some source of experimental error.  

My response is that the objection plays on an ambiguity about what counts as ‘chance 

variation.’ In the case of an RCT, the null hypothesis targeted by the statistical test refers to the 

possibility that, irrespective of whether a treatment is administered, differences in outcome are 

generated in virtue of the fact that a heterogenous sample of patients is divided in two groups. If 

the groups are comparable, then we already know that the observed variations have nothing to do 

with imbalances between the groups. If a statistical test is intended to assess this kind of experi-

mental error, then this is a misuse of the test. We must look elsewhere for an explanation of the 

variation in outcome. Perhaps the intervention is not accurate, or variations occur in virtue of 

measurement uncertainty, or we are dealing with something more exotic, such as causal factors 

that determine the outcome in virtue of physical processes governed by probabilistic laws. Wher-

ever the truth may lie, statistical inference will not get us any closer to it unless we first model data 

variation according to some hypothesis about the physical processes in virtue of which data is 

generated.  

 

3.4 Why randomize? 

If randomization neither ensures comparability, as required by non-statistical causal infer-

ence, nor is necessary for valid statistical inference, then why randomize? The answer lies in the 

fact that a statistical test only assesses the probability of a chance explanation. If the latter is 

deemed improbable, we are entitled to conclude that, in addition to random variation, something 

else is also contributing to the observed differences in outcome. By itself, this tells us nothing 

about the identity of this additional cause. RCTs, on the other hand, are meant to test the causal 

efficacy of a treatment. This raises the legitimate concern that the mere falsification of the null 

hypothesis does not demonstrate the causal efficacy of the treatment (Worrall 2007a, 998).  

The gap between the statistical verdict and the desired conclusion is bridged by implement-

ing statistical inference in the context of a controlled experiment. If an additional causal contribu-

tion is suggested by statistical testing, this cause can be identified as the treatment administered to 
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the test group in as much as the experiment did not introduce any additional causes of variation 

beyond those already present in the convenience sample, with the sole exception of the treatment 

intervention in the test group. This does not require comparable test and control groups. Instead, 

what is required is an experimental design ensuring that test patients are not inadvertently exposed 

to additional interventions or to an intervention inadvertently targeting multiple variables.  

Just like in basic research, standardization and operationalization of the treatment and out-

come assessment procedures, along with a close monitoring of the subjects play an important role 

in ensuring the accuracy of the intervention. Various forms of blinding further limit the possibility 

that patients and researchers willingly or unwillingly influence the outcomes of the trial. Finally, 

since the experimental intervention in an RCT involves the allocation of patients to test and control 

groups, there is an additional and very important worry to be addressed: the allocation procedure 

may be biased due to a common cause mechanism whereby the allocator preferentially associates 

treatment or control conditions with other features of the patients, such as age, lifestyle or socio-

economic status. The clinical literature repeatedly emphasizes that allocation bias should be dealt 

with by randomization, understood as the experimental practice of random allocation. Matching 

and other methods associated with quasi-experimental designs, as well as passive allocation de-

signs (natural experiments, leaving allocation to patients or their physicians), should be avoided 

as they may be biased by unsuspected confounders and inefficient blinding (Chalmers et al. 1983). 

This is why clinicians reject Worrall’s recommendation [(2007b, 481); quoted in Section 3.1] that 

matching should be preferred to rerandomization.  

Unfortunately, there is some confusion about how randomization is meant to address the 

threat of biased allocation. There can be an opportunity for allocation bias only if the biological 

systems allocated to test and control conditions don’t satisfy the comparability requirement in the 

first place. Thus, two strategies may be adopted, one geared towards generating comparable bio-

logical systems, the other towards alleviating the effects of bias given a lack of comparability. The 

first strategy may be implemented by generating homogeneous populations of biological systems, 

the second by breaking the common cause mechanisms responsible for biased allocation. The two 

strategies are conflated if randomization is viewed as an effective method for implementing both 

strategies. If randomization generates comparable groups, this blocks the potential for allocation 

bias in the first place. However, the weakness of this approach is that an allowance must be made 
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for the possibility that comparability is not achieved. According to a second, more robust argu-

ment, randomization disrupts biasing mechanisms by randomly setting the value of the variable 

targeted by the intervention, effectively breaking any systematic associations with other variables 

(Altman and Bland 1999; Papineau 1994; Pearl 2000, 262-63, 348; Woodward 2003, 98-99, 339-

42). Unlike comparability, this benefit of randomization does not depend on sample size. In this 

second role, randomization only ensures that there are no systematic associations between treat-

ment and confounders. Confounders can still be associated with the test condition by chance and 

this may result in differences in outcome. In other words, randomization only ensures that the 

allocation intervention does not introduce additional confounding, in this case as systematic error 

due to biased allocation, over and above the unavoidable random error expected in virtue of the 

inherent heterogeneity of the objects of study.  

According to the above argument, blinding and unbiased allocation are two different vir-

tues, although in practice random allocation is commonly used as a device for ensuring both. Un-

biased intervention is achieved by randomly setting the value of the independent variable, thus 

‘breaking’ any potential associations with other variables. This refers to the state of the system 

(the experimental setup) under investigation, not the epistemic status of patients, researchers and 

their ability to influence the outcome of the experiment. Blinding patients and researchers at vari-

ous stages of the trial, from allocation to data analysis, further removes other sources of bias. 

If the accuracy of the intervention is not demonstrated, it cannot be concluded that differ-

ences in outcome are due to the treatment and its intended biological targets. This does not affect 

the validity of the statistical test, which only tells us how likely it is that differences in outcome 

could have occurred in virtue of sampling or allocation alone. Nor does it invalidate the inference 

that the allocation intervention is causally efficacious. It is still possible to demonstrate that doing 

something promotes a certain outcome even if it is not clear what exactly the intervention targets 

and why it works. From an epistemic point of view, the problem is not that causality cannot be 

inferred, but rather that causal relevance may be erroneously attributed to variables which are 

causally irrelevant, leading to spurious explanations and counterproductive medical practices. For 

example, a clinical study may show that the allocation of patients to a test group is efficacious, but 

erroneously attribute efficacy to the treatment and the changes in the biological targets of the treat-

ment, when in fact the differences in outcome are due to the fact that younger patients were pref-

erentially allocated to the test group or to the mere fact that study participants interact with health 
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professionals (a placebo effect). For as long as this caveat is properly understood, a non-random-

ized study can still provide useful information. For instance, failure to achieve a statistically sig-

nificant result is a good indication that there is no genuine correlation between two variables, hence 

further research is not worth pursuing. A statistically significant result, on the other hand, indicates 

that something potentially interesting is going on, but better controlled experiments are needed in 

order to rule out systematic error and correctly identify the causal variables responsible for the 

differences in outcome (Winch and Campbell 1969).   

 

4. Conclusion  

The thesis defended in this paper is that there are two distinct methods for inferring causa-

tion in biomedical research, each requiring its own, equally distinct experimental design. These 

are the common, or non-statistical, inference associated with controlled experiments in basic sci-

ence; and the statistical inference associated with RCTs in clinical research. I argued that when 

comparability of the test and control arms of an experiment can be assumed, causation can be 

validly inferred without any further reliance on statistical testing. Conversely, the purpose of sta-

tistical testing is to provide a method for inferring causation when one expects that incomparable 

groups are generated. Thus, the main difference between the two methods hinges on the satisfac-

tion of the comparability requirement, which is in turn dictated by the nature of the objects of 

study, namely homogeneous vs. heterogeneous populations of biological systems. Researchers opt 

for a method or the other, implementing the corresponding experimental design, depending on 

whether there is evidence indicating that a population is homogeneous or not.  

This conclusion goes against views implying that the comparability requirement must be 

satisfied irrespective of whether researchers work with homogeneous or heterogeneous popula-

tions, employ the common or the statistical version of causal inference, and conduct controlled 

experiments or RCTs. Appealing to the methodological requirements associated with one method 

of causal inference to evaluate experimental designs meant to support a different method of infer-

ence can only result in erroneous methodological recommendations and an improper assessment 

of experimental results. In particular, the claim that RCTs fail to provide better evidence for cau-

sation than non-randomized studies stems from a misunderstanding of the role of randomization 

in experimental design. Critics assume that causal inference in clinical research requires compara-
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ble groups and that the main purpose of random allocation is to achieve comparability. Since ran-

domization cannot guarantee comparability, the natural conclusion is that randomized studies are 

not superior to non-randomized ones. Yet the argument rests on false assumptions. The extent to 

which randomization ensures or fails to ensure comparability has no bearing on the validity of 

statistical inference. After all, the explicit goal of clinical research is precisely to assess causal 

relevance in heterogeneous populations–that is, populations known to consist of incomparable in-

dividuals. Randomization is a key requirement not because its limited capacity to enhance compa-

rability, but because it ensures that the allocation intervention does not introduce systematic error 

over and above the unavoidable random error expected in virtue of the inherent heterogeneity of 

the population under investigation. Only if this requirement is satisfied can it be concluded that 

differences in outcome between test and control groups unlikely to arise by chance alone are due 

to the treatment administered to the test group and not to some other source of systematic error.  
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