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Focused Discussion Invited Paper

Machine Learning and the Future of Realism*

Giles Hooker† and Cliff Hooker‡

I. Machine learning, its rise and nature

The preceding three decades have seen the emergence, rise, and
proliferation of machine learning (ML). From half-recognised beginnings
in perceptrons, neural nets, and decision trees, algorithms that extract
correlations (that is, patterns) from a set of data points have broken free
from their origin in computational cognition to embrace all forms of problem
solving, from voice recognition to medical diagnosis to automated scientific
research and driverless cars, and it is now widely opined that the real
industrial revolution lies less in mobile phone and similar devices than in
the maturation and universal application of ML. Among the consequences
just might be the triumph of anti-realism over realism.

A venerable and widely familiar example of an ML tool is a so-called
neural net. The neural net learning algorithm in simple form involves
procedures for representing inputs (data points) as loads on net-input layer
nodes. These loads are then redistributed across nodes of the next layer
according to a weighting formula on node connections. This redistributing
operation is repeated on successive internal layers until the last (output)
layer is reached. Various node connection weightings are trialled on a training
data set until the net yields the appropriate outputs (until it has learned its
task) and then it can be applied predictively to further, related data sets. In
this fashion nets have learned many tasks easily that continue to be difficult
and sometimes impossible for humans. However, only the initial (input or
setup) and last (output) layers are cognitively interpretable; in general, the
remainder cannot be assigned any cognitively meaningful state. Just this is
the secret of their success. The net learning algorithm specifies the states of
internal nodes and the functions that change them numerically, not logically,
so that net processing is sub-categorical with respect to the input and output
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psychological categories. The output content is not arrived at from the input
by any process of concept-preserving logical analysis. Rather, just this shift
greatly increases accessible net states and state change functions. Using nets
involves rejecting the long and widely-held assumption of adhering to agency
categories when constructing psychological theory.1

Neural nets are not the only ML algorithms—the overview Wikipedia
entry lists 50+ forms (see n. 1). Other ML algorithms are based on quite
different methods that do not have the same (mostly false) biological
motivation. But they do highlight one challenging feature widely (but not
universally) shared among such algorithms: the absence of interpretability
for their internal states. This absence can also extend to their outputs as
well, if, for example, the output, and the internal states, are expressed as
an infinite dimensional vector. Nonetheless, when the data sets concern the
behaviour of entities under study, the algorithms deliver, via their estimated
correlation relationships, predictions of entity behaviour as accurate as the
data set permits and, as the data set increases, accuracy as high as any model
could achieve. Note again that a learning algorithm will produce “naked
predictions,” that is, numbers stripped of any ontological interpretation: it is
not that they present a different ontological interpretation, or that one will
appear once the data are “cleaned up”; they offer none at all. Their predictive
success combined with their a-ontolological status stands at the heart of the
challenge they pose to realism.

II. Machine Learning supports the centrality of a-model
naked prediction

The usual context in which prediction is discussed in philosophy of
science is one where predictions are derived by deduction from initial data
conjoined to some theoretical model that is interpreted (realized) in terms
of that theory’s ontology, whether that be atomic or field, dynamical or
functional, etc. When such a model is not available, neither is prediction.
But there are myriad cases where this requirement is not satisfied, where
we can determine that the system has changed but there is no satisfactory
interpreted model of how that happens. Examples include processes too
complex to follow, as occurs in complex systems where dynamical form may
transform, and critical and chaotic regimes arise, and/or data too vast for
humans to comprehend, as occurs with increasing frequency (in big business,
in bio-molecular science, etc.). ML offers naked prediction in every case,
whether or not those predictions also follow from an interpreted model, and

1 For an introduction to machine learning see, e.g., Wikipedia, 2016. Cf. Ray 2015. For
the sub-categorical nature of the neural net algorithm see Smolensky, 1988. For more on
neural nets see Churchland 1989, Hooker 1993.
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is often our only way to advance research and understanding.
Given this, naked prediction seems more central to science than modelling

does. Why not then accept that science is based solely on naked prediction,
ignore the call to understand the theoretical world beyond this as a siren
call, and argue that the diverse goals of science (prediction, explanation,
unification, etc.) can all be parsed in terms of naked predictive performance
alone? Note that this is not a proposal to remove this or that class of models,
but rather the claim that it is not necessary to use theoretical models at all,
indeed not necessary to use theory at all (Breiman 2001). And with that goes
any claim that science guides choice of ontology. The centrality of a-model
naked prediction is by default an anti-realist position.

The only commitments to human-scale empirical elements (input and
outcome data, measuring instruments, etc.), are those required by a recurring
phenomenological empiricism. ML still requires a human to identify a
prediction task, choose a competent ML algorithm, specify relevant inputs
and outputs, and procure adequate training and an experimental data set.
These are not at present interpretation-free activities, which raises the
prospect that ML illegitimately smuggles in interpretive models.2 Some
entertain finessing the problem by use of all possible data of all possible
kinds to produce a universal correlation web. We will return to this issue in
§5 below. Meanwhile, the point remains that ML does allow us to avoid an
interpretable characterization of the relationship between these inputs and
outputs once they are defined.

III. History of this cleavage

Science has been constantly faced with this issue. It is, for example,
the motivating division behind those who, a century and more ago, pushed
for a science of psychology founded on revealing the inner structure and
contents of minds (e.g., Wundt) and those who urged confinement to just
extracting patterns within stimuli and responses (e.g., Skinner). But back
then it was a matter of high philosophical differences that carried the
debate. Now the development of ML forces this issue in an immediate,
unavoidable way. The wheel has also turned full circle: Skinnerian empiricism
was replaced by computational cognitivism’s quasi-internalist modelling, only
to be challenged in turn by ML’s externalist agnosticism. More broadly, this

2 An important (to humans) aspect of this is the issue of how to deal with ethical and
social biases that are exhibited in the data sets we give it, e.g., prejudicial attitudes
toward, and institutional barriers to, opportunities for coloured people in the US. Do we
allow ML to perpetuate these biases? See the recent workshop on Machine Learning for
Social Good (Faghmous et al. 2016). It is possible to design ML to avoid these biases,
but only when there is an independent human decision to do so.
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methodological difference is the deepest expression of the realist/anti-realist
cleavage that runs through the philosophy of science.3

IV. The central question and its answer

Is science satisfactorily characterizable in terms of prediction alone
(“naked prediction”) or is there something more that is essential to science?
A second question follows: By what criteria ought the preceding question be
decided? A popular but reasonable response to this latter question is that
any additional end proposed for science ought to “pay its way,” i.e., to add
something that is valuable independently of the value that naked prediction
brings. Naked prediction serves the inherent epistemic value of naked pattern
knowledge, and with that naked explanation, and also the pragmatic value of
control, we can manipulate the world (including ourselves) to achieve various
pragmatically valuable ends from engaging in research to building bridges and
curing maladies.

What then of any ends of science beyond what prediction supports?
The most compelling answer, we suggest, is the provision of an intelligible
conception of deep or underlying being (ontology). What sort of being or
beings is the cosmos? How does it work? How are living beings constituted
as living? What are their ends (if any) inherent in their being? These and
related questions are all central to our personal and collective drive for
enlightenment. If anything beyond manipulative or naked pattern knowledge
has inherent value, it is ontological enlightenment. This notion is tied
to theoretically interpretable ontology, and hence to realist interpretable
modelling.

V. Supports, persuasive and not, for interpretable modeling

Simplicity. Might simplicity considerations support interpretable
modelling? ML is vulnerable to an Occam’s razor-type argument in that its
models are more complex than needed if an interpretable model will do the
job. But the prediction-alone approach equally avoids commitment to any
ontological categories beyond the empirical phenomena of experimentation,
etc. noted above and in any case these categories are shared with
interpretable modelling. And with that, the prediction-alone approach also
avoids evaluating theory coherency, historical sequences of theories that
might support realism, and much more (cf. n. 3). Moreover, as input-output
data increases, the ML output converges on the predictions of a true model,
any differences of predictive accuracy go away and any differences in output

3 See, e.g., van Fraassen versus realists in Churchland and Hooker 1985, and Hooker’s
recent review in Hooker 2011, §6.2.5.
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simplicity go with them. That is, arguments about simplicity (or, for instance,
Popperian falsifiability criteria) are tacitly predicated on the presumption
that the only scientific method is one based on interpretable models, which
begs the question. ML as a scientific process adjusts for the complexity of
data; it is not so much unfalsifiable as self-correcting. Our conclusion is that
simplicity is too complex, so it does not produce a useful test.

Risk. ML similarly cannot convincingly claim that it takes on less risk
than does interpretable modelling (or vice versa). While ML’s prediction-only
approach avoids the ontological risks of error noted above, it still risks using
an inadequate method to resolve small differences between predictions by
not including relevant input sets and/or by not having sufficient internal
discrimination (e.g., a neural net with too few nodes per layer) or by having
insufficient or noisy data. (This is the problem faced in §2.) However, lacking
any guidance from what is there (being ontologically non-commital), the only
option available is to include all possible input data to an infinitely internally
diverse algorithm and to trust it will remove the risks. These requirements are
certainly in principle beyond practical realization, especially for finite beings
that commence in ignorance and remain fallible, but is such an algorithm
nonetheless in principle able to do the job if realized? We suppose not, but
leave the question open.4 Either way, our conclusion is that risk is also too
complex, so it does not produce a useful test.

Efficiency. Interpretable models provide important categories of
information that ML cannot in principle provide, and interpretable models
provide it in immediately intelligible and usable forms. In general,
interpretable models tell us about the states and processes that studied
systems exhibit, while ML can only characterize input-output relationships.
I can transfer the force that holds our solar system together, found out
from its correlational data, to any other solar system without alteration,
and so start working out its physics immediately. However, it will be replied,
whenever practical use is to be made of this information, whether for astro- or
astrodome physics, it always suffices directly to use the relevant input-output
relationships. If so, the intermediary details are merely one way to arrive at
the outputs but are no more essential to doing so than are the particular
internal details of a competent ML algorithm. Thus far our preference for
interpretable details is just that: an affectation or cultural habit that does
no independent work.

There is this further consideration. An interpretable model comes
with a framework of dynamical modalities: possibility, actuality, necessity,
including super-possibilities and super-necessities for how they may change

4 Cherniak 1986 is a standing rebuke to anyone tempted to think that discriminating what
is “in principle” possible (impossible, necessary, etc.) is straightforward.
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their specific versions of these, for example under bifurcations. What a
fundamental theory of physics primarily tells us is what the dynamical
possibilities and necessities are in some domain, and the rest is input-output
relations (called flows or vector fields). ML algorithms, being confined to
naked data and their relationships, cannot in principle provide the modal
information.5 But again comes the response that, while modality may
make it easier for us to make predictions, it is also unnecessary for that.
Like our interest in states and processes, our interest in modality is just
that: a pragmatic preference deriving from ease of human use when that
was an important consideration, perhaps, but not a distinction that does
any independent work. But before acquiescing, note one potential sticking
point: some complex dynamical systems show bifurcation, a sharp change
in dynamical form itself that amounts to change in what is dynamically
possible and necessary, and that raises the question of whether ML can
adequately characterize these changes (with whatever internal discriminators
it uses). There may be reason to think not, and if so we have one ineliminable
functional argument for retaining interpretable models in addition to their
inherent value for us.6

Unification. The value of ontological understanding is supported, we
contend, by the partial but deep successes of a closely related scientific
end: theoretical unification. A unification requires provision of a single
unifying ontology, thus driving ontological understanding deeper through
transformation of the possibility-necessity framework. The unification of
electromagnetic and mechanical dynamics to form relativity theory provides
a deep revelation of our spatiotemporal being in the world. Again the
currently developing unification of biological chemistry and quantum
macromolecular theory will provide a deep understanding of living beings.
And so on. However, following the preceding indecisiveness, we must ask
whether machine learning can again provide all the relevant input-output
relationships. If machine learning is presumed to have no limitations
to its capacity to form these relationships, it will develop input-output
representations of systems that are pre-unification and systems that are
post-unification, but of course as naked inputs and outputs, not characterized
in interpretable ontological terms. Again, there is nothing further needed

5 This is essentially Sellars’s critique of anti-realist empiricism (see, e.g., Sellars 1965).
6 One argument is this: machine learning by definition uses computational algorithms,

but all computer programs are finite and so must generate rounding-off errors. Thus
dynamical processes that can generate large changes from differences, no matter how
small, as bifurcation can, cannot be accurately characterised computationally, whether
by ML or not, because computational processes must ultimately use finite rounding off.
We do not consider this argument final, but this is not the place to pursue the issue and
it is anyway likely premature to do so at this juncture.
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for the use of the predictions. (There remains their inherent value for us.)
However, most or all of these inter-theory relations are specified in terms of
asymptotic relations (1/c -> 0, h -> 0, etc.) and these also involve indefinitely
fine discriminations, so the preceding doubt (n. 6) remains.

VI. Realism in a partially accessible world.

We live in a world that quickly becomes epistemically inaccessible to
us beyond the simplest systems. We may know bare Newton’s equations,
but when joined with specific interactions and constraints for actual use,
the equations quickly become insoluble in algebraic functions beyond their
simpler forms. This bars our way to interpretable knowledge of them. But
since we know the equations we can in principle acquire a lesser but still
interpretable knowledge of them by numerically approximating their states
in sequence beginning from initial inputs. Since we are not in general able
to infer parametric models from these data, or even much (though not no)
knowledge of possibility and necessity, this is not very different from pure
input-output knowledge. (The exception is that the basic components [this
lever, those atoms, etc.] will be interpretively known throughout, so long as
they are not dissipated by the dynamics.) But this is not the only part-way
house of knowledge that can arise. Suppose, for example, that Newton could
not deduce the gravitational principle that held the solar system together, but
had access to ML to apply to astronomical data. Suppose that he could isolate
the samenesses and differences in the internal ML states corresponding to a
variety of planets and moons. What could he learn? The inverse square law?
No. This is not because the states are naked (we want the spatial pattern, not
its ontology), but because what could easily, and would likely, appear is a very
complex set of numerical interrelationships taking perhaps hundreds of pages
to print out, and making for a wholly uninterpretable, hence inaccessible,
representation of gravity. But while we cannot make use of it, the ML device
can.

Realists need interpretable access to dynamics. They can simply choose to
live within the limits, often quite severe limits, on this access, pragmatically
constructing interpretable models whenever possible. But while this may be a
valid policy for the setting,7 the preceding considerations raise again the issue
of what the criteria are for interpretable models. Are they simply the entities
and relations that we humans find sufficiently convenient to use, say because
of the way our perception and action has evolved? Or is there something
more species-transcending (and so objective) behind their characterization?
Suppose a Martian were to claim, as someday an ML robot might, that

7 This is where one of us (CAH) left the discussion in a first essay into the domain (Hooker
2011) despite the informal efforts of the other (GJH).
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it was comfortable employing the hundreds-of-pages conception of gravity.
Does it have an interpretable model? Where does it leave our notion of
an interpretable model? It is not enough to say that it is what a theory
quantifies over. This only shifts the question back to what constitutes an
intelligible theory. Is it one that quantifies over entities intelligible to us?8

These questions loom larger than this issue, reaching out to considerations
of how diversity in cognitive capacities ought to bear upon accounts of
objectivity, adequate translation, and so on. Yet they are also relevant here,
since ML bids fair to being a domain of distinctive cognitive capacities that
is destined to expand and deepen, and to intertwine itself with us in myriad
ways.

VII. Conclusion

The inherent value of an ontological description remains, for us, a
compelling defence of realism. However, access to it is limited, and successful
naked prediction challenges traditional conceptions of the scientific method
and philosophy of science, whether realist or not. We expect these challenges
to grow as machine learning presents an alternative to an ever-wider variety
of tasks, resulting in a mode of scientific advance that is alien to our present
philosophical conceptions. This will change the terms of the realist debate
and many others.

Giles Hooker
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Cornell University
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Cliff Hooker
Department of Philosophy
Newcastle University
Callaghan, NSW 2308
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8 Compare the variety of conceptions of model interpretability as some form of intuitability
that Lipton (2016) reveals.

Spontaneous Generations 9:1(2018) 181



G. Hooker and C. Hooker Machine Learning and the Future of Realism

References

Breiman, Leo. 2001. Statistical Modelling: The Two Cultures. Statistical Science
16(3): 199-215.

Cherniak, Christopher. 1986. Minimal Rationality. Cambridge, MA:
Bradford/MIT Press.

Churchland, Paul. 1989. A Neurocomputational Perspective. Cambridge, MA:
Bradford/MIT Press.

Churchland, Paul, and Cliff Hooker, eds. 1985. Images of Science. Chicago:
University of Chicago Press.

Faghmous, James et al. 2016. “#Data4Good: Machine Learning in Social Good
Applications”, https://arxiv.org/html/1607.02450. Accessed March 31,
2017.

Hooker, Clifford A. 1985. Surface Dazzle, Ghostly Depths. In Churchland and
Hooker 1985, 153-196.

Hooker, C. A. 1996. Toward a Naturalized Cognitive Science: A Framework for
Cooperation between Philosophy and the Natural Sciences of Intelligent
Systems. In Psychology and Philosophy: The Philosophy of Psychology, eds.
William O’Donohue and Richard F. Kitchener, 184-206. London: Sage.

Hooker, Cliff. 2011. Introduction to Philosophy of Complex Systems. Part B: An
Initial Scientific Paradigm + Philosophy of Science for Complex Systems.
In Philosophy of Complex Systems, ed. Cliff Hooker, 843-912. Amsterdam:
North Holland/Elsevier.

Lipton, Zachary C. 2016. The Mythos of Model Interpretability.
arXiv:1606.03490v1.

Ray, Sunil. 2015. “Essentials of Machine Learning Algorithms (with Python
and R Codes)”, https://www.analyticsvidhya.com/blog/2015/08/
common-machine -learning-algorithms. March 31, 2017.

Sellars, Wilfred. 1965. Scientific Realism or Irenic Instrumentalism: A Critique of
Nagel and Feyerabend on Theoretical Explanation. In Boston Studies in the
Philosophy of Science, vol. 2, eds. Cohen, R. and M. Wartofsky, 171-204.
Humanities Press: New York.

Smolensky, Paul. 1988. On the Proper Treatment of Connectionism. Behavioural
and Brain Sciences 11(1): 1-23.

Wikipedia: The Free Encyclopedia. s.v. Outline of Machine Learning.
https://en.wikipedia.org/wiki/List_of_machine_learning_concepts.
March 31, 2017.

Spontaneous Generations 9:1(2018) 182


