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F D I P

On the Intrinsically Ambiguous Nature of
Space-Time Diagrams*

Elie During�

When theGermanmathematicianHermannMinkowski first introduced
the space-time diagrams that came to be associated with his name,
the idea of picturing motion by geometric means, holding time as a
fourth dimension of space, was hardly new. But the pictorial device
invented by Minkowski was tailor-made for a peculiar variety of
space-time: the one imposed by the kinematics of Einstein’s special
theory of relativity, with its unified, non-Euclidean underlying geometric
structure. By ploing two or more reference frames in relative motion
on the same picture, Minkowski managed to exhibit the geometric basis
of such relativistic phenomena as time dilation, length contraction or
the dislocation of simultaneity. These disconcerting effects were shown
to result from arbitrary projections within four-dimensional space-time.
In that respect, Minkowski diagrams are fundamentally different from
ordinary space-time graphs. The best way to understand their specificity
is to realize how productively ambiguous they are.

I. R  

The primary motivation behind Albert Einstein’s first theory of
relativity—known as the “special theory of relativity”—was to work out a
kinematical framework common to mechanics and electromagnetism. The trick
was to make sense of the troublesome fact that the speed of light was constant
in empty space without giving up the principle of relativity inherited from
Galilean physics, i.e. the equivalence of all kinematical perspectives aached to
reference frames in uniformmotion relative to each other (“inertial frames”). It is
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E. During Space-Time Diagrams

now well-established that Henri Poincaré had hit upon the geometric structure
underlying such a framework some time before Einstein’s revolutionary 1905
paper, although, for reasons that need not concern us here, he did not bother
to figure out all its physical implications. The coordinate transformations
(“Lorentz transformations”) induced in space and time measurements by the
mere fact of moving from one inertial frame (or group of inertially co-moving
observers) to another could be shown to result directly from postulating an
invariant, finite and therefore maximum velocity in every frame. One only had
to examine the form of the equations to realize that the algebraic structure
exhibited by the coordinate transformations admied a straightforward
geometric interpretation in four-dimensional space. Hermann Minkowski, a
German mathematician of the Göingen school, popularized this idea in his
famous 1908 Köln lecture by showing that space-time transformations could be
assimilated to rotations in a four-dimensional pseudo-Euclidean space with a
special metric signature (Galison 1979; Walter 1999a). The essence of relativity
theory, he claimed, revealed itself to geometric intuition in four-dimensional
space, with time playing the role of a fourth, imaginary dimension. “Space
by itself and time by itself are doomed to fade away into mere shadows,”
Minkowski wrote rather pompously, “and only a kind of union of the two will
preserve an independent reality” (1952, 75).

II. “S”

“Space-time” (Raumzeit) was the name of the resulting geometrical structure.
Minkowski presented this four-dimensional manifold as a new absolute, able to
yield direct insight about the underlying substance of the physical universe (“the
absolute world”). However, for all the buzz surrounding its birth, this glorious
but inscrutable entity could only be properly introduced by the means of more
modest pictorial representations involving points, lines, and basic geometrical
figures. These representations soon came to be known as “Minkowski diagrams,”
although Minkowski himself—who died shortly aer, in 1909—never used the
word “diagram.” For reasons which will soon become apparent, these diagrams
may well be his most lasting contribution to the philosophical understanding
of relativity, more important in this regard than his controversial appeal to
substantival space-time.

The idea of ploing time against space in order to represent motion was
hardly a revelation when Minkowski first introduced the diagrams that came to
be associated with his name. As early as 1698, Pierre Varignon recommended
that spatial and temporal intervals be combined into a single picture, provided
that space and time be treated as “homogeneousmagnitudes” (quoted in Stachel
2006, 19). This proviso, as one suspects, encapsulates the main philosophical
difficulty behind the very idea of space-time. But the habit of treating time as
the fourth dimension of space is by no means peculiar to relativistic space-time.
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E. During Space-Time Diagrams

In an article of the Encyclopédie (“Dimension,” published in 1754), d’Alembert
alludes to this extra dimension. Lagrange’s Mécanique analytique (1788) also
relies heavily on the possibility of viewing motion in terms of static geometric
figures in n-dimensional space. Kant, in the First Principles of Natural Science
(1786), devotes a lengthy footnote to what appears as a schematismus of
spatio-temporal becoming, involving a layering of snapshots of space—maximal
extensions of simultaneous events—along the time dimension. As for the vocable
of “space-time,” it pre-dates the introduction of Minkowski diagrams within
the context of relativity physics. The German expression “Raumzeit” was
coined by Novalis in his Allgemeine Brouillon (1798-1799); Maurice Boucher’s
1903 popular essay on “hyperspace” and ndimensional geometry refers to
“Espace-Temps.” This being said, the radical novelty of relativistic space-time
may be reason enough to credit Minkowski with the invention of space-time
as we know it—that is, the truly interesting concept of space-time. For what
sets Minowski’s space-time apart from earlier spatio-temporal constructions
is that space and time coordinates appear to be genuinely fused together
rather than being merely juxtaposed or combined in the form of the Cartesian
product of three dimensions of space and a fourth, temporal dimension.
The very possibility of identifying Lorentz transformations—the coordinate
transformations required when switching reference frames—with rotations in
four-dimensional space aests to the unifying power of the deep geometrical
structure of space-time. Coordinate transformations in space-time have a group
structure—the Poincaré-Lorentz group. The associated notion of orthogonality
and pseudo-Euclidean metric open the way for a genuine chronogeometry : not a
geometry of space-plus-time but an integrated geometry of space-time. Therein
lies the mathematical rationale behind the puzzling idea of a “union” or “fusion”
of space and time.

As a result of this new entanglement between spatial and temporal
concepts, there is no unique way to slice space-time into instantaneous
spaces of simultaneous events: each inertial frame of reference has its own
way of describing the unfolding of things across time. In other words, any
space-plus-time rendition of becoming turns out to be a particular projection
of four-dimensional configurations into their spatial and temporal components.
As Minkowski (1909, 7) wrote: “projection in space and in time may still
be undertaken with a certain degree of freedom.” But it is no more than
that: an arbitrary projection of invariant space-time configurations according
to a particular perspective. This new situation seems to have eluded Henri
Bergson, who viewed relativistic space-time as just another instance of the
age-old tendency to “spatialize” time by treating becoming as something
extended at once through time as well as space. In Duration and Simultaneity,
his essay on Einstein’s theory, he misleadingly claims that Minkowski’s
geometric representation of relativistic transformations only generalizes the
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“cinematographical” analysis of motion as a juxtaposition of instantaneous
slices along a temporal dimension (Bergson 2009, chap. 6), when in fact such
a representation suggests the opposite, namely that any rendering of this
kind could, at best, have relative value. Upon reflection, the image of a
hyper-cinematograph embedding an indefinite number of possible projections
(as many as there are reference frames) amounts to an extenuation of the
cinematographical method, rather than its generalization. As for the suggestion
that becoming would be “frozen” by the mere fact of being represented by
graphical means, it is rather misguided. On closer inspection, it seems to draw
much of its appeal from an interpretation of diagrammatic representation that
tends to overemphasize its referential or iconic features. But, as ine and
others have argued, the space-time view, while captured in a static picture,
does not subtract anything from change: “Change is still there, with all its fresh
surprises. It ismerely incorporated” (ine 1987, 197). Amore pragmatic account
of space-time should remove further doubts. If we believe that space-time is
strictly unobservable when considered apart from spatio-temporal happenings
(Harré 1991, 55) and that its apparent ontological weight is in fact inseparable
from the variety of representational models and diagrams which abide by its
rule, then the possibility of picturing dynamic evolutions as geometric paerns
laid out in four-dimensional space appears as no more than a built-in feature
or formal condition of our mode of representation. This acknowledgement need
not raise any metaphysical worry regarding the disappearance of time or the
negation of becoming.

III. H  

So much for space-time. What about diagrams? Einstein humorously said
that since mathematicians had taken up relativity, he could not understand
it anymore. But there is no doubt that visual representations of the kind
provided byMinkowski are of invaluable help in reaching a proper mathematical
understanding of the fundamental physical situation at the core of relativity
theory. My contention is that, besides the obvious iconic efficiency of the
graphical depiction of motion, the main function of these toy-models is to
organize symbolic cues leading to a visual grasp of the inner consistency, not
of the theory as a whole, but of its kinematical framework, the implications of
which can only appear as counter-intuitive and even baffling to the untrained
mind. The fact that introductory textbooks still commonly resort to such
pictorial devices is a proof of their ongoing pedagogical relevance. As early as
1914, Ludwik Silberstein recommended Minkowski’s “graphic representations”
as “very advantageous, especially for the trained geometer of our days” (130-31).
Granted, some authors still do not wish to consider them as anything more
than visual aids. As Synge (1965, 63) puts it: “We are not embarking on a
programme of ‘graphical relativity.’ Our space-time diagrams are to be used as
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a mathematician or physicist uses rough sketches, rather than as an architect
or engineer uses blueprints. The diagrams are to serve as guides for the mind.”
But even then, “anyone who studies relativity without understanding how to
use simple space-time diagrams is as much inhibited as a student of functions
of complex variable who does not understand the Argand diagram” (Synge 1965,
63).

The point, however, is that space-time diagrams are not mere space-time
graphs. While representing physical events as points and particle tracks as lines
or curves traced across space-time, these diagrams offer more than a graphical
shorthand for the analysis of motion. What is basically expected from them is
not so much a visual rendition of motion through space, but rather a consistent
depiction of relativistic phenomena from the perspective of at least two reference
frames in relative motion (each with their own coordinate system). In other
words, a space-time diagrammust provide a geometric equivalent of the Lorentz
transformations involved in the substitution of one reference frame to another.
In this respect, space-time representations function as “conceptual maps,” as
David Bohm (1965, 140) suggests: “with the aid of a good map having a proper
structure, one can relate what is seen from one perspective to what is seen
from another, in this way abstracting out what is invariant under change of
perspective.”

Space-time coordinates naturally play a fundamental part in the story,
and this is what we should examine now. A simplified model of the Lorentz
transformations is obtained by retaining only one dimension of space in addition
to the time dimension. But what is peculiar about Minkowski diagrams is that
one can, in principle, superimpose as many coordinate systems as one wishes
upon the same representation space, as simplified as it is. Applying the familiar
trigonometric identities to the ensuing geometrical configurations, one can
extract the relevant information needed to make sense of the spatio-temporal
distortions associated with shiing kinematical perspectives. Hence, Minkowski
diagrams provide a rather straightforward illustration of various relativistic
effects such as the shortening of lengths in the direction of motion (known
as “Lorentz contraction”), the “dilation” of time in moving clocks, and the
dislocation of simultaneity relations induced by the adoption of a new reference
frame. The images printed below (see Figure 1 and Figure 2) illustrate the basic
relativistic situation by focusing on the contraction affecting a moving electron.
The coordinate axes (Ox, Ot) and (Ox ′, Ot ′) appear tilted according to their
relative speed. As a result, the picture may seem to be centered on (Ox, Ot),
but this visual privilege is really irrelevant for each frame provides an equally
legitimate description of the situation from its own perspective. Accordingly,
the diagram could be constructed around any of them. This sketch was initially
drawn in three colors on a transparent slide by Minkowski himself for his 1908
lecture; it was reproduced in the publications that followed (Minkowski 1909).
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Figure 1. Reprinted from Hermann Minkowski. “Raum und Zeit,” Jahresberichte der Deutschen
Mathematiker-Vereinigung, (Leipzig: B.G. Teubner, 1909: 3). In this diagram, OA and OA′ are
world line segments of equal space-time length, although their spatial and temporal components
take different values in the (Ox, Ot) frame and in the (Ox ′, Ot ′) frame. The hyperbola intercepting
A and A′ is a curve of equal proper time for all events propagating from O at uniform speed. Its
role is analogous to that of a circle in the Euclidean plane: as the locus of points that are at a
fixed spatio-temporal distance from O, it can be used to calibrate both sets of axes.

The moral of relativity, however, is that what is physically objective is
not what varies, but rather what remains invariant under such relativistic
transformations. And it is of course essential that the diagram should enable us
to grasp this aspect of things dynamically, through the changes of perspective
suggested by the diagram when it is actually put to work or performed. In
Minkowski’s parlance, the “world line” representing the motion of a particular
object can be referred to various coordinate systems, just as a geometrical
figure in space can be described according to various systems of spatial
coordinates (the analogy is spelled out in detail in Taylor and Wheeler 1992,
1-11). Intervals of time and space are measured differently in each frame
according to different perpendicular projections on the axes. Yet, as in the
case of the Euclidean plane, there exists a metric invariant whose expression
is given by a combination of squares of the projected magnitudes (analogous
to Pythagoras’s formula). A measure of that invariant space-time interval (or
space-time length) is given by the “proper time” calculated along the space-time
path of an object or process unfolding through time. As opposed to the
“coordinate” (or projected) times aached to different systems of reference,
proper time is not subject to distortions: it remains invariant and can be retrieved
under any particular kinematical perspective. This notion of local time—distinct
from global, coordinate time—lies behind the space-time distortions entailed by
the introduction of non inertial (accelerated) frames, as in the famous “twin
paradox.”

IV. A   

The analogy with instances of geometric invariance in Euclidean space
should not obscure the fact that the relations reference frames bear to one
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Figure 2. Hermann Minkowski. Hand-colored transparent slide (10x15 cm) used for the address
delivered in Köln on the occasion of the 80th Assembly of German Natural Scientists and
Physicians (September 21, 1908).

another are not static: contrary to coordinate systems in space, inertial frames
differentiate themselves by their relative speed ; shiing from one frame to
another involves a space-time “boost.” In this respect, a Minkowski diagram
can best be described as the representation of the kinematical space of
relativistic physics. The time axes and the segments of proper time, inclined
at various angles, make up a “velocity space” (Penrose 2004, 426) characterized
by its horizon structure (the unaainable speed of light) and its fundamental
metric invariants (space-time intervals). These intrinsic features of the diagram
are directly inherited from the geometry of space-time: invariant under any
coordinate transformation, they are unaffected by speed, in the same way that
Euclidean three-dimensional invariants (angles and lengths) are preserved under
rotation or translation. The only reason why we are tempted to think that “each
space-time map represents data from a particular reference frame” (Taylor and
Wheeler 1992, 138) is that the graphical status of diagrams implies that they are,
in fact, embedded in plain Euclidean two-dimensional space (the space of the
page), thus admiing a natural—if partial—interpretation within the geometry
of the Euclidean plane. As J. L. Synge (1965, 65) puts it: “The geometry of
space-time isMinkowskian geometry, or brieflyM-geometry. On the other hand,
when we have constructed a space-time diagram on a sheet of paper, we begin
very naturally to think in terms of the ordinary geometry of the sheet of paper,
that is, Euclidean geometry, or E-geometry.” This ambiguity may seem to us a
sheer artefact of the diagrammatical method which we may want to overlook in
favour of geometrical invariants, yet it turns out to be one of its most interesting
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features, because it forces us to convert the immediate geometric reading of the
diagram into a dynamic intuition of the superposition of perspectives: it forces
us to move back and forth from one projection to another, while mobilizing two
different varieties of geometrical intuition.

By definition, the time axis and the spatial axis of a particular reference
frame intersect orthogonally, although this may not seem obvious in the
Euclidean plane when the two axes (such as Ox ′ and Ot ′) seem to be
symmetrically tilted towards the bisecting diagonal which depicts space-time
paths of a light ray conventionally set at 45°. Since the speed of light is invariant,
it is only natural that all systems of axes should share the same bisecting
diagonal. Hence, (OB) and (OB′) refer to the same line. But it is still somewhat
disturbing to have to reorganize our intuition of orthogonality around that
invariant light-path in space-time. Let us remember therefore that the diagram
is supposed to express a geometric situation proper to pseudo-Euclidean space.
The geometrical underpinnings of this mode of representation are more subtle
than onemay imagine: they involve elements of hyperbolic geometry.1 Whenwe
look at the page on which the diagram is printed, it is difficult to refrain from
interpreting certain shapes as distorted, when in fact they should strike us as
invariant. An interval that looks obviously shorter than another may turn out
to be longer. The method chosen for calibrating the axes partly compensates for
these very natural visual “illusions”: instead of a circle of unit radius, we must
use a hyperbola (hence the designation “hyperbolic geometry”) and spheres
are similarly replaced by “pseudospheres.” From a Euclidean point of view, this
means that Minkowski diagrams require scaling factors when going between
scales. In order to dispense with this burdensome procedure, mathematicians
and physicists have come up with alternative diagrammatic methods whose
interest lies in the fact that they only exhibit quantities that are real and in
proper proportion, involving no distortion, and requiring no scale conversion.
Thus, besides Minkowski diagrams, one should mention Loedel, Brehme and
Gudermann diagrams.2 Epstein diagrams are also rather appealing because,
in addition to unit lengths being the same on all axes, all systems of axes
are orthogonal in the Euclidean plane; on the other hand, an event does not
correspond to a single point in space-time and the whole depiction revolves
around the unfamiliar intuition that we all move through time at the speed of
light, albeit in different directions in space-time (Epstein 1983). More recently,
David Mermin (2005, 103-42) gave his own version of space-time diagrams,
relying on properties of triangles in elementary plane geometry.

1 See I.M. Yaglom, A Simple Non-Euclidean Geometry and its Physical Basis (New York: Springer
Verlag, 1979); and E.A. Robinson, Einstein’s Relativity inMetaphor andMathematics (Englewood
Cliffs, N.J.: Prentice Hall, 1990).

2 For Loedel and Brehme diagrams, see A. Shadowitz, Special Relativity, (Philadelphia: Saunders
Co.: chap. 1); and for Gudermann diagrams, see Robinson (1990).
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Ingenious as they are, these aempts have not really shaken the popularity
of Minkowski diagrams. But the laer must be handled with care in order
to distinguish between the merely apparent distortions due to the method of
depiction, the real but perspectival distortions due to the use of particular
reference, and the real and objective distortions due to the intrinsic properties of
space-time (such as those illustrated by the famous twin paradox). Comparisons
between the measurements made by different observers are somewhat indirect.
One must train one’s eyes to see what is distorted as undistorted. But once we
realize that Minkowski diagrams are really governed by a geometry which is
not Euclidean, that they draw on one type of geometrical object to represent
another, the impression that they are necessarily centered on a particular
reference frame (the one whose axes seem to be crossing orthogonally in the
ordinary plane geometry of the page) dissipates. The illusion of a privileged
point of view appears, in retrospect, as an expression of the indexical ambiguity
inherent in this form of visual representation. A good deal of philosophical
misunderstanding could have been avoided if one had focused on the capacity of
diagrams to exhibit the transformations themselves, rather than any particular
kinematical perspective. Granted, it is impossible to hold two perspectives at
the same time, as Bergson and Merleau-Ponty repeatedly argued in a way that
echoes Wigenstein’s dictum that one may not speak two languages or play
two games at the same time. But diagrams call for a duplicitous intuition that
may achieve such a feat on a more abstract level, by inventing a new game
in which one does not need to be “in” a reference frame in order to know
how things would look from there. In fact, each diagram virtually encapsulates
an indefinite number of equivalent space-time projections from every possible
perspective. In that sense space-time itself may be described as the abstract
space of all the possible mappings from one space-time projection (or one
particular instantiation of a space-time diagram) to another (Sartori 1996, 144).

V. P 

To sum things up, the real value of space-time diagrams, what sets them
apart from the ordinary space-time graphs used to represent motion in space, is
the kind of ambiguity which arises from the superposition, within one space, of
different perspectives on the same state of affairs. This is reminiscent of similar
aempts made in the domain of visual arts: one thinks of the use of embedded
perspectives in cubist paintings, in certain works by Escher, or in van Doesburg’s
and El Lissintzky’s axonometric architectural drawings. A more familiar analogy
would be the Necker cube and its systematically ambiguous spatial orientation.
However, in our case, the ambiguity runs deeper than the mere fact of allowing
for different perspectival readings, for as we have seen, what ultimately counts
is the invariant features revealed in the play of perspectives. In fact, we
may say that this interplay of perspectivity and objectivity—or if one prefers,
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of covariance and invariance—exhibited by the actual working of space-time
diagrams is the clearest expression of their constitutive ambiguity. Perspective
itself, and the distortions observed as a result of projecting a given situation from
a particular point of view in a particular frame, is to a large extent governed by
the grammar of iconic representation and so is the graphical method in general
when it sets out to depict an evolution in time as an extension in space. The
coordination of perspectives, however, is another maer. Here what counts is
the procedure that manages to establish an isomorphic relation between the
seemingly diverging representations yielded by two different framings of the
same situation. If a diagram is a space-time map, it is so in a very special
way, involving as it does a coordination or coordinatization procedure. In this
capacity, it is symbolic. Or if one prefers, it calls for a relational or structural
concept of objectivity (Daston and Galison 2007). As Emily Grosholz (2007,
202) puts it, “geometrical diagrams may be used in a way that is mostly
symbolic and only barely iconic. Icons, especially icons that must be read in
two or three different ways, do not wear their meaning on their faces; the
interpretation of icons is not direct or ‘intuitive.’ And a geometrical figure
can be used not as an icon but as a symbol.” Clearly, a pragmatic approach
to space-time diagrams as pedagogical and maybe heuristic tools should not
focus too narrowly on one single mode of representation or on a particular
dimension of that mode of representation. If ambiguity is indeed constitutive
of diagrammatic representation as such, it must be present at every level. Thus,
it is important to remember that a space-time diagram is also a graph and more
oen than not works simultaneously as a book-keeping or tracking device—aer
all, that is what coordinate systems were originally made for—and as a more
abstract space displaying the coexistence (compatibility, equivalence) of several
kinematical perspectives.

Thus, in addition to deploying a two-fold regime of geometric intuition
adjusted to a 2-flat Euclidean model of pseudo-Euclidean geometry,
Minkowski’s constructions combine the iconic logic of graphs (still apparent
in the study of space-time curves by the means differential geometry)
with the more symbolic logic of so-called “representation spaces.” This
abstract orientation is already present in the very idea of visualizing the
correspondences between equivalent coordinate systems in order to grasp
their underlying symmetries. It is even more obvious when one focuses on
the topological structure upon which the whole edifice of relativity physics is
built: once the universe has been reduced to point-like events and their local
connections through space and time, the whole space-time structure—including
its metrical properties—can be derived from the order defined by relations of
causal connectibility alone. It so happens that the invariant topology of the
“light-cone” can be directly read off from space-time diagrams. For example, in
the 2-flat model, events lying beyond the threshold of the bisecting diagonal
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cannot interact in any way with the point-event (O) where the axes meet,
for that would involve supra-luminal velocities. But this situation holds for
any point in space-time. The fact has universal scope; it expresses a structural
feature of all diagrams, of all space-time maps, regardless of their particular
referential content.
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