
Crossing the Newton-Maxwell Gap: Convergences and
Contingencies

Author(s): Matti Tedre & Erkki Sutinen

Source: Spontaneous Generations: A Journal for the History and
Philosophy of Science, Vol. 3, No. 1 (2009) 195-212.

Published by: The University of Toronto
DOI: 10.4245/sponge.v3i1.3388

E D I T O R I A L O F F I C E S

Institute for the History and Philosophy of Science and Technology
Room 316 Victoria College, 91 Charles Street West
Toronto, Ontario, Canada M5S 1K7
hapsat.society@utoronto.ca

Published online at jps.library.utoronto.ca/index.php/SpontaneousGenerations
ISSN 1913 0465

Founded in 2006, Spontaneous Generations is an online academic journal
published by graduate students at the Institute for the History and Philosophy
of Science and Technology, University of Toronto. There is no subscription or
membership fee. Spontaneous Generations provides immediate open access to
its content on the principle that making research freely available to the public
supports a greater global exchange of knowledge.

http://dx.doi.org/10.4245/sponge.v3i1.3388
mailto:hapsat.society@utoronto.ca
http://jps.library.utoronto.ca/index.php/SpontaneousGenerations

PEER-REVIEWED

Crossing the Newton-Maxwell Gap
Convergences and Contingencies∗

Matti Tedre†

Erkki Sutinen‡

The shift from electromechanical computing to fully electronic,
digital, Turing-complete computing was one of the most influential
technological developments of the twentieth century. The social,
economic, political, interdisciplinary, and cultural aspects behind
that shift were significant, but are often ignored. When the
contingencies and controversies behind the birth of modern
computing are forgotten, the history of computing is often
misrepresented as one of uncomplicated linear progress. In this
article some of the sociocultural aspects of the birth of modern
computing are reviewed. The significance of interdisciplinary work
is discussed. The concept of the stored-program paradigm is
introduced, and some sociocultural factors behind its birth are
discussed. Finally, it is argued that some traits of research that are
often considered to be negative, such as opportunism, eclecticism,
and stubbornness, have played a positive role in the birth of
modern computing technology.

I. INTRODUCTION

The birth of modern (digital, electronic, Turing-complete) computers
in the 1940s was one of the most influential technological shifts of
the twentieth century. The core ideas of modern computers–ideas such
as the Church-Turing Thesis, the Universal Turing Machine, and the
von Neumann architecture–have since their inception remained largely
unchallenged. Perhaps because of the centrality and power of those core
ideas in modern computing, one often forgets the contingencies behind
their birth. These core ideas, which constitute what might be called the
∗Received April 2008. Revised paper accepted March 2009.
†Associate Professor Matti Tedre works as the Head of B.Sc. Program in IT at

Tumaini University - Iringa University College, Tanzania. His research interests are the
philosophy of computer science, social studies of computer science, and computer
science education.
‡Professor Erkki Sutinen works as the Head of Department at Department of

Computer Science and Statistics, University of Joensuu, Finland. He works primarily
in the field of educational technology, and his primary research interests are ICT for
development and computer-assisted education in challenging learning settings.

Spontaneous Generations 3:1 (2009) ISSN 1913-0465. University of Toronto.
Copyright 2009 by the HAPSAT Society. Some rights reserved. 195

http://creativecommons.org/licenses/by-nc-nd/3.0/

Tedre & Sutinen Crossing the Newton-Maxwell Gap

stored-program paradigm, arose in the 1940s because of a very special
economic, social, and political situation.

The stored-program paradigm is not a well-defined concept, but in
a somewhat technical sense one can use the term stored-program
paradigm to refer to the constellation of innovations that surround
the stored-program computer architecture. Those innovations include
a formalization of computable functions (the Church-Turing Thesis);
the idea that instructions can be encoded as strings (the Universal
Turing Machine); the idea that instructions and data reside in the same
memory storage; random-access memory; and the separation between
memory, the processing unit(s), control unit, and input/output unit(s) (von
Neumann architecture). Today the stored-program idea is taken as a
largely unquestioned basis for automatic computing. The constellation
of ideas around the stored-program concept guides forms of inference;
promotes one kind of logic of justification; supports some practices of
research; and offers some conventions for settling scientific disputes.
The stored-program view also limits proper objects of study and proper
scientific questions, and it offers a theoretical background for interpreting
results.

This article presents some of the contingencies and convergences
that gave birth to modern computing. The first part of this article is
historical by nature, and deals with the shift from electromechanical
and analog computing to electronic, digital, Turing-complete computing.
It begins with a portrayal of the open-minded interdisciplinarity and
techno-enthusiastic culture of the U.S. in and before the 1940s, continues
with an overview of the contingencies and controversies that underlaid
the birth of the stored-program paradigm, and ends with a discussion
of the unexpected freeing of the stored-program concept from military
classification. The second part of this article discusses the birth of
the stored-program paradigm in terms of social studies of computer
science. After that the article discusses the status of the stored-program
paradigm, some sociocultural aspects of work that led to the formation
of the stored-program paradigm, and the role of interdisciplinarity in
technological work in the field of computing. It is proposed that a number
of traits of research that are often characterized as negative in scientists’
work–such as opportunism, eclecticism, and stubbornness–sometimes
play a positive role in technological work.

II. THE BIRTH OF MODERN COMPUTING

Automatic computing is an old idea, dating back more than two
thousand years (e.g., de Solla Price 1959). However, in the early 20th
century automatic computing took giant steps in terms of flexibility and

196 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

efficiency. The key words in the birth of modern computing were fully
electronic operation, Turing-completeness, and digital operation. Already
before the mid-1940s there had been computers that met some of those
criteria. For instance, the ABC computer and Colossus were digital
and fully electronic, but they were not Turing-complete (Williams 1985,
270–271, 294–296); Konrad Zuse’s Z3 was digital and Turing-complete,
but it was not fully electronic because it used relays (220–221); and
Harvard Mark I was digital but it was electromechanical, not fully
electronic (243–244). The Electronic Numerical Integrator and Computer
(ENIAC) was arguably the first computer that combined all those ideas.
But taking those three ideas together was not an uncomplicated or
well-planned process. This section presents some of the contingencies
and controversies concerning the birth of the ENIAC.

Pre-Modern Computing

In the field of applied mathematics, one of the common problems is that
of calculating the integral, i.e., the area under a given curve. If the curve
can be presented as a well-behaved function, it can often be integrated
analytically, but if the curve is either not known in an analytic form or is
not well-behaved, calculating the area precisely is almost impossible (e.g.
Williams 1985, 206–212; Bowles 1996; Polachek 1997). In the history of
computing technology, beginning from the early 1820s, there have been
numerous attempts to build devices–differential analyzers–for measuring
the integral (Campbell-Kelly and Aspray 2004, 45).

In the early 1900s accurate differential analyzers were increasingly
needed for the calculation of ballistic firing tables, used by the armed
services of the U.S. and Britain. The first working differential analyzers
were constructed by Vannevar Bush at Massachusetts Institute of
Technology (MIT) around the turn of the 1930s (Williams 1985; Polachek
1997), and replicated and redesigned in Britain in 1935 (Croarken 1992).
The final version of Bush’s machine, “Rockefeller Differential Analyzer # 2,”
was used extensively during the Second World War by the armed services
of both America and Britain (Williams 1985, 206–212).

The differential analyzers were results of interdisciplinary work, yet
the role of interdisciplinarity in the development of the computing
technology has been given too little attention (Puchta 1996). A number
of sectors needed Vannevar Bush’s computing machinery and contributed
to its development: for instance, electrical engineering, mathematics, the
sciences (especially physics), radio technology, and warfare (Puchta 1996;
Bowles 1996; Williams 1985, 209). Puchta (1996) argued that breaking the
disciplinary boundaries was necessary in order to achieve the goals that
the device was built for, and that the interdisciplinary development work

197 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

enabled more efficiency and creativeness within the traditional disciplinary
boundaries, too.

The fields that Vannevar Bush’s work with differential analyzers
brought together had not had much interplay before. For instance,
Bush’s work combined knowledge from logic, pure or formal mathematics,
mechanical engineering, and innovations from seafaring (Williams 1985,
209; Puchta 1996; Bowles 1996). Fields that had an impact on
Bush’s work and subsequent development of early computers include
physics, mathematics, logic, engineering, astronomy, navigation, and even
meteorology (Naur 1992, 596–597; Campbell-Kelly and Aspray 2004,
52–59). Also after the turn to digital computing, the pioneers of computing
came from various fields: Alan Turing was a logician and mathematician,
Leslie Comrie was from the field of astronomy, John Atanasoff was an
electrical engineer and mathematician, John von Neumann worked on
a number of mathematical fields, Wilkes and Mauchly were physicists,
Herman Goldstine was a mathematician, and John Presper Eckert was
an electrical engineer.

Vannevar Bush’s machinery was born in a time and place of
extraordinary public faith in the power of technology to benefit humankind.
Analyzing the context in which Vannevar Bush’s machinery was
developed provides information about the intellectual, interdisciplinary, and
social dimensions, as well as sources, of modern computing (Puchta
1996; Bowles 1996). Bowles (1996) argued that the techno-utopistic,
technologically enthusiastic, and practical atmosphere of the U.S. enabled
American scientists to obtain the funding needed for the development of
computing machinery. Campbell-Kelly and Aspray (2004,19) called the
American enthusiasm “America’s love affair with office machinery.” Flamm
(1988, 136) even claimed that tradition-bound culture was the crucial
factor that made British scientists unable to compete with their American
colleagues in building the differential analyzer. Culture has been argued to
affect the valuation of theory and practice in a field, the amount of funding
a field gets, the foci of research, public support of a field, and the popularity
of technological disciplines (Campbell-Kelly and Aspray 2004, 19; Flamm
1988, 136; Bowles 1996; Aspray 2000).

The techno-utopistic atmosphere brought about a number of
phenomena that supported the success of the U.S. in the field of automatic
computing. Bowles (1996) named four contextual factors that were the
main sources of success for the development of computing machinery in
the U.S. (see also Croarken 1992; Croarken 1993). First, Bowles (1996)
argued that the American popular and professional culture reinforced
the practical, professional values of the American society. Second, the
American universities supported computing fields, and many of them

198 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

had their technical schools, such as the University of Pennsylvania’s
Moore School of Electrical Engineering and MIT’s laboratories (Bowles
1996; Aspray 2000). Third, the engineers in the U.S. held a high public
status–the American engineer was the hero of the new century–and
this affected the financial support from government and industry
(Bowles 1996; Aspray 2000). Fourth, the American press reinforced
an anthropomorphic, laudatory image of computational instruments. For
instance, the American press used terms such as “the super-brain,”
“man-made mental giant” (Martin 1993), and “the robot Einstein” (Bowles
1996). This anthropomorphic terminology perhaps derived from the
language of the pioneers of early computing (Grier 1996).

Shift to Digital, Electronic, Turing-Complete Computing

The differential analyzers of the early 1900s were slow, inaccurate,
and expensive. Although differential analyzers could produce results
three times as quickly as a human computer (Comrie 1944), they could
not satisfy the growing calculation needs of the U.S. Army. There was
also a trade off between accuracy and cost of the analyzer: Comrie
(1944) stated that the accuracy of differential analyzers was roughly
1/x, where x is the amount of money one was prepared to spend. In
May of 1943, the desperate need for high-speed calculation led the
Ballistic Research Laboratory of the U.S. Army to agree to fund a new
high-speed computer. This agreement in part led to the beginning of the
construction of the ENIAC at the Moore School of Electrical Engineering
at the University of Pennsylvania (Polachek 1997; Winegrad 1996). The
change that the birth of fully electronic computers entailed is sometimes
called crossing the Newton-Maxwell gap because it marks a shift from
mechanical and electromechanical computing machinery (governed by
Newton’s laws of motion) to electronic devices (governed by Maxwell’s
laws of electromagnetism) (Ceruzzi 1997).

The U.S. Army’s need for calculating speed was the main force
driving the development of computing in the early 1940s. The existing
computing technology could not keep up with the U.S. Army’s need for
computing power for developing new weapons and calculating trajectory
tables (Flamm 1988, 48; Campbell-Kelly and Aspray 2004, 73; Williams
1985, 272–273). Historians of computing usually agree that the best
people in the field of computing became associated with the University of
Pennsylvania’s Moore School only because of the U.S. Army’s increased
need for automatic computing during the Second World War (Marcus
and Akera 1996; Flamm 1988; Campbell-Kelly and Aspray 2004; Williams
1985). The U.S. Army took a gamble on untested computing technology,
bypassed the scientific establishment (Flamm 1988, 252), and decided

199 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

to fund a new computing technology project proposed by John Presper
Eckert and John Mauchly at the Moore School of Electrical Engineering.
This gave Mauchly and Eckert the chance to realize their ideas for a fully
electronic computing machine.

Even though the Army gave a green light to Eckert and Mauchly,
there was strong resistance towards the ENIAC project. Headed
by the highly recognized computing pioneer Vannevar Bush, the
established scientific community fiercely opposed the ENIAC project
as well as Eckert and Mauchly’s choice of electronic circuit elements
instead of electromechanical ones (Flamm 1988, 48). Compared to
electromechanical elements, electronic circuits were new and untested
technology. Also, many of the pioneers of computing had built their careers
on electromechanical technology. Despite that opposition, the Army was
willing to gamble on Eckert and Mauchly’s radically new approach. That
gamble, together with Eckert and Mauchly’s stubborn defiance of the
scientific establishment, led to the birth of the fully electronic, digital,
Turing-complete computer. Interestingly, economic aspects did not play a
decisive role in the development of modern computing–it was cheap to hire
staff to do calculations manually, so electronic computers were developed
despite the costs, rather than as cost-saving devices (Campbell-Kelly
and Aspray 2004, 141). The traditional cost-sensitive customers, such as
private companies and civilian government institutions, would not have
funded such experimental projects, but for national security purposes cost
was not an important factor (Flamm 1988, 2).

A crucial part of the success of the ENIAC project was moving the
right people to the right place. In the wake of the Second World War,
the U.S. Army moved a number of top scientists to the Moore School of
Electrical Engineering at the University of Pennsylvania, and the university
accelerated academic programs by eliminating vacations (Campbell-Kelly
and Aspray 2004, 71). A lot of credit for the ENIAC project has been given
to John Mauchly, who was in the midst of a very strong research and
training center for electrical engineering at the Moore School. Mauchly had
mentors above him and students beneath him, and he could enlist both into
the ENIAC project (Marcus and Akera 1996). But Mauchly did not initiate
everything–Marcus and Akera (1996) argued that Herman Goldstine’s
initiative was crucial to launching the ENIAC project. In addition, Marcus
and Akera (1996) argued that the birth of electronic computing owed as
much to various trends in the historical context as to the ability of Mauchly
to draw together various pieces of the puzzle himself.

The ENIAC team had a grand vision for the new computing machine:
Grier (1996) wrote that the designers and constructors of the ENIAC
believed that the ENIAC would revolutionize science by establishing a new

200 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

scientific method based on electronic computing. To make this change
clear, the researchers attempted to delineate a clear boundary between
the new world of electronic computers and the older world of human
computers by using words that could not be connected with human
computing (e.g., they talked about “programs” instead of “calculation”).
Another reason for the new terminology was the incommensurability of
concepts concerning electronic computers with previous knowledge (Tedre
2006, 208).

Convergences and Contingencies

When the ENIAC was completed it was the first large-scale electronic,
digital, Turing-complete computer. The success of the ENIAC convinced
many institutions and people from science, military, and industry to
commit to the development of electronic high-speed computing (Marcus
and Akera 1996). The ENIAC was also the only electronic computer
in the world for three years (Mauchly 1979). Marcus and Akera (1996)
argued that there were multiple origins of high-speed electronic computing,
all of which fundamentally came together because of Word War II.
Firstly, there was significant development in the components needed for
electronic computing (although those components had been developed
for measurement equipment, not for computers). Secondly, there were
advances in theoretical and experimental physics (such as increased
understanding of the behavior of electrons). Thirdly, the situation of the
Moore School of Electrical Engineering in the midst of firms (such as
Philco, RCA, and Atwater Kent) as well as major research facilities (such
as Bell Laboratories) provided a fertile soil for the ideas of Mauchly and
others.

Although World War II had, in addition to the positive effects, also some
negative effects on the development of computing in the U.S.–such as
ending a wide variety of computing research projects (Aspray 2000)–the
war also shifted emphasis from demand for cost-effectiveness to demand
for function, performance, and availability at any cost (Pugh and Aspray
1996). Due to World War II both government and academic circles
were able to recognize the importance of automating and centralizing
computation (Croarken 1992). It has been argued that the theoretical
and practical developments at the University of Pennsylvania would at
any other time, in all likelihood, have been dismissed as interesting, but
impractical and expensive (Winegrad 1996).

Grier (1996) noted that, unfortunately, the ENIAC became a burden
before it was even completed. The ENIAC became operational just as
the development team at the Moore School began to understand and
appreciate the power of stored programs and serial arithmetic. The

201 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

concept of the stored-program computer was conceived around January
1944 (Mauchly 1979), and the developers of the ENIAC considered that
step so important and so powerful that they wanted to abandon their
previous work with the ENIAC, and to focus on the new technology.
However, the development team quickly discovered that it was not possible
for them to abandon their previous work because the sponsors wanted to
get their money’s worth, and because of the large intellectual investments
in the machine (cf. Grier 1996). Nevertheless, John von Neumann (1945)
published Eckert and Mauchly’s ideas in June 1945 in his landmark
text First Draft of a Report on the EDVAC. Thus, in a twist of fate, the
architecture conceived largely by Eckert and Mauchly–although clarified by
von Neumann (Ceruzzi 2003, 21–22)– came to be known as von Neumann
architecture.

Usually technological breakthroughs funded by the Army, especially
those as powerful as the new stored-program concept, are strictly withheld
from the public. For instance, the British Colossus computers were
classified for an extended period of time (Williams 1985, 287–296). The
development of the ENIAC was indeed done secretly. Publication of
papers was strictly forbidden, and discussion was limited (Winegrad 1996).
However, due to a quirk of history, the ideas generated by the ENIAC team
were, after the unveiling of the machine, freed from their military security
classifications.

There were several reasons for that lapse of security. First, although
von Neumann was criticized for using anthropomorphic language with
computers (Grier 1996; Stibitz 1985), using neurological terms instead of
engineering terms enabled von Neumann to circumvent military security
(Pugh and Aspray 1996). Second, the ENIAC was completed too late in
order to demonstrate its military value during the war (Pugh and Aspray
1996). Third, the Army officials conceived the ENIAC as a general-purpose
calculator instead of a specialized military machine. Fourth, the Army
as well as the University of Pennsylvania were eager to publicize their
accomplishments in electronics (Pugh and Aspray 1996).

The publication of the stored-program plans created considerable
interest both nationally and internationally. The Moore School even
offered a famous series of lectures about everything that was needed
for constructing a stored-program computer (Campbell-Kelly and Williams
1985[1946]). In May 1946, Leslie John Comrie returned to England from
the U.S. with a copy of von Neumann’s draft, and after Maurice Wilkes
from Cambridge had read the document, Wilkes’ Mathematical Laboratory
decided to build their own stored-program computer (Croarken 1992).
The stored-program concept and principles spread quickly to academics
around the world.

202 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

After World War II, those American universities that had entered the
computing field in the 1940s were able to significantly influence how
computing developed in the following decades. In effect, the early entrants
to the nascent field of computing were able to define the models and
exemplars for modern automatic computing (Aspray 2000). In addition,
those universities were able to also set research agendas in the emerging
field of computing in ways that were to those universities’ own advantage
(Aspray 2000). Early entrants to computing were also able to set the
research problems so that the starting points were most favorable for
them, the outcomes were anticipated, and only the tools and methodology
necessary to achieve the results were unknown. Merely being first is
enough to shape the discipline.

In 1949, the world’s first stored-program computer became operational.
However, two computers have been argued to have been the first: EDSAC
in the Cambridge Mathematical Laboratory performed its first automatic
calculation on May 6, 1949 (Worsley 1975); and the first of the two
computers that became the BINAC had run nonstop for 44 hours in April
1949 (Mauchly 1979). Some sources claim that the BINAC ran its first
program in the late summer of 1949 (Williams 1985, 361–362). The topic
of ‘firsts’ in electronic computing is controversial, but nevertheless, before
the 1950s, the first fully electronic, digital, stored-program computer was
operational: the Newton-Maxwell gap had been crossed and the stored
program paradigm had been born.

III. DISCUSSION

The birth of the first fully electronic, digital, Turing-complete computer
happened during the Second World War under very special social,
political, and economic circumstances. Those developments were brought
to a head with a number of computing pioneers taking a route
opposed by the scientific establishment. The development of modern
electronic computing owes much to a number of non-technological
factors. The factors that steered the development of computing include
organizations, such as universities, profit-making companies, institutions,
and government branches; personalities with different characters,
backgrounds, contacts, reputations, and motivations; contingencies,
such as security lapses, convergences of common interests, quarrels,
visionaries, opinion leaders, and misunderstandings; interdisciplinarity
between fields such as weapons research, theoretical and experimental
physics, electrical engineering, mathematics, and logic; and cultural
influences, such as techno-enthusiasm, emphasis on practicality,
techno-utopianism, risk-taking, regulations, policies, and élitist attitudes
(cf. Tedre 2006, 204–207).

203 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

The history of the birth of modern computing supports the contingency
thesis, which holds that the current state of affairs in a specific science
could have developed through a different route (Hacking 1999). The
contingency thesis stands in opposition to the inevitabilist thinking, which
holds that there is a natural path of development, and no matter what
historical contingencies may affect local steps of development, laws of
nature and logic eventually direct development to the best, inevitable,
direction. But even though the contingency thesis is supported by the
sheer number of lucky coincidences and planned convergences in the
history of modern computing, one inevitabilist aspect is certain. Although
a great number of non-technological factors can be attributed to the
development of modern computing, technological and theoretical aspects
of computing are at the core of most texts on the history of computing. That
is, the laws of nature and logic dictate some limits of automatic computing.

Incommensurable Concepts

As noted earlier, much of the credit for the rapid spread of the
stored-program concept to universities worldwide can be attributed
to von Neumann’s choice of neurobiological terminology instead of
engineering terminology. Generally speaking, one of the main motives
for anthropomorphizing computing terms is the incommensurability
of new technological knowledge with earlier knowledge. To make
the new computing knowledge easier to understand, von Neumann
attempted a metaphor transfer from neuropsychology to computing
technology. By explicitly referring to an article published in the Bulletin of
Mathematical Biophysics in 1943, von Neumann (1945) made parallels
from neuropsychology (neurons, synapses, axons) to the designs of the
stored-program computer. Furthermore, von Neumann (1945) called input
and output devices of the machine organs: “The device must have organs
to transfer [numerical information] from R into its specific parts C and M.”
In contrast to von Neumann, Mauchly and Eckert wanted to disassociate
from earlier science by introducing new terminology, such as a program.
Grier (1996) argued that “the researchers attempted to delineate a clear
boundary between the new world of electronic computers and the older
world of human computers.”

Although the use of anthropomorphic terminology when dealing
with computer systems has been labeled a “symptom of professional
immaturity” (Dijkstra 1982, 129–131), anthropomorphic language is
not shunned today. Everyday computing terminology today includes
anthropomorphic terms such as neural networks, master and slave,
sleeping, killing, dying and being alive (processes), artificial intelligence
and memory, agents, viruses, parents, siblings and relatives (trees), and

204 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

so forth (Tedre 2006, 213). Usually anthropomorphic terms in computing
are attempts to create a parallel between a radically new concept and
previous common knowledge.

The stored-program paradigm truly epitomized a radical intellectual
and technological change. The stored-program paradigm introduced a
number of concepts without an analogy to the computing standards of
the time. For instance, the concepts of program counter and instruction
register did not have counterparts in science before the stored-program
paradigm (program counter keeps track of the instruction sequence and
instruction register stores the instruction that is being executed). As the
terminology in post-stored-program computing was incommensurable with
the terminology in pre-stored-program computing, one could not demand
a continuation between old and new concepts (cf. Feyerabend 1970;
Kuhn 1970). Such a demand for continuation, explanation, or reduction
of concepts simply could not have been realized.

Resistances and Accommodations

Investigating the social aspects of the birth of the stored program
paradigm provides information about the mechanisms of the growth of
knowledge and technological shifts in computing. But for that discussion,
one must take an epistemological stand: there are both brute facts and
institutional facts in computing (see Searle 1996). The physical and
chemical properties of the substances that computers are made of do
not depend on people, but almost everything else in the computing
domain is socially constructed. The arrangement of logic gates, the radix
of numeral systems, the design choices of execution units, abstraction
layers, and all hierarchies in computing are determined by choices that
computer designers make. Designers in computing fields make their
choices based on a diversity of issues such as economics, functionality,
architectural choices, power consumption, heat dissipation, standards,
usability, abstraction choices, personal design preferences, and so
forth. However, although hardware and software designs are completely
human-made, one cannot tell for certain if the hierarchical structures of
computer systems reflect an inherent hierarchy of the world, or if they are a
tool for understanding an inherently unorganized world (Tedre 2006, 437).

The numerous contingent elements in the ENIAC project make
it difficult to situate it in an inevitabilist framework, which explains
technological development as following an inevitable route defined by
natural laws (e.g., Hacking 1999, 78–79). Rather, the development of
modern computing was greatly influenced by the ideas and strategies of a
number of people who came together due to sociopolitical circumstances.
As the scientific community, headed by Vannevar Bush, opposed the

205 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

ENIAC project and Eckert and Mauchly’s choice of electronic circuit
elements (e.g., Flamm 1988, 48, 252), the history of the ENIAC project
is also an example of the fallibility and occasional dogmatism of the
scientific community. Individual academics also had a great influence
on the success of early computing–for instance, Vannevar Bush’s role
as a mediator between the subcultures of science, mathematics, and
engineering had an influence on the MIT science policy (Puchta 1996).

The standard explanatory frameworks of scientists’ work (e.g. Hempel
1965, 331–496; Popper 1959[1935]; Kuhn 1996[1962]) fail to account for
scientists’ and engineers’ work with the ENIAC project. Instead, Pickering’s
(1995) “mangle” framework offers a fruitful perspective from which to
view the ENIAC project. In the mangle framework there are abstract
scientific theories about phenomena, there are down-to-earth models of
how scientific instruments work and what can be done with them, and there
are the instruments themselves. The development of new science or a new
instrument is often a long-lasting struggle between problems (resistance)
and solutions to them (accommodation). The accommodation processes
can include, for instance, revising a scientific theory, re-thinking beliefs
about how an apparatus works, or modifying the apparatus itself (Pickering
1995; Hacking 1999, 71). The aim of the scientist is to find a robust fit
between science, model, and apparatus. To create that fit scientists employ
different material, conceptual, and social accommodation strategies that,
naturally, face different kinds of new resistances.

In the mangle of early computing, the Turing Machine (Turing 1936) was
the abstract theoretical construction, the blueprints for the fully electronic
programmable computer were the (high-level) model of an instrument,
and the ENIAC and its peripherals were the instruments. In their work
the ENIAC team frequently encountered clashes between (1) the theory
of computation, (2) their theory about how computers should work, and
(3) the ENIAC computer itself. Eckert and Mauchly had a clear idea of
how computers should be designed, but the world resisted. When the
ENIAC team encountered clashes between their expectations and the
resistance of the world, they accommodated those clashes by either
revising their theory about how computers should work or by revamping
parts of the ENIAC. For instance, the original plan of the ENIAC escalated
from 5,000 to 18,000 vacuum tubes, the costs grew from $150,000 to
$400,000, the operating voltages were dropped significantly in order to
reduce stress on the vacuum tubes, and quite early in the construction
project, Eckert and Mauchly understood that the ENIAC designs were
insufficient for generic computation (Campbell-Kelly and Aspray 2004,
76–83). The stored-program paradigm grew out of the accommodations
to the problems in building the ENIAC, and possibly from the theoretical

206 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

insights of Alan Turing (1936)–yet it is not known if Eckert and Mauchly
were aware of Turing’s ideas (although von Neumann might have been).

After the crossing of the Newton-Maxwell Gap, in the early days of
modern computing, there was great uncertainty about research directions.
Most computing machines of the time differed from each other in their
architecture, design, constraints, and working principles (Ceruzzi 2003,
passim). Over the course of time knowledge about the directions of
computing accumulated, and researchers increasingly followed paths
that others had already tread. This is traditionally called the growth of
knowledge, yet it is also characteristic of the growth of technological
momentum (cf. Hughes 1994). The term technological momentum refers
to the phenomenon whereby younger, developing systems tend to be more
open to extra-technological influences, while older, more mature systems
prove to be less susceptible to outside influences and therefore more
deterministic by nature (Smith and Marx 1994, 101; Hughes 1994).

Previous design choices and compatibility issues did not hinder early
computer designers, so they were able to begin with a tabula rasa.
But, over time, computing systems became more complex and more
interdependent. As the number of computer installations grew, the design
decisions of computing had to be increasingly based on compatibility. But
only the first united architecture, the IBM System/360, marked a definite
turning point from somewhat unconstricted pioneer work to a certain kind
of technologically determined rigidity in the development of computing
machinery.

Interdisciplinary Situations

Today, work in computing fields also follows the “mangle of practice”
between problems (resistance) and solutions to them (accommodation),
as described by Pickering (1995). Through a continuous cycle
of corrections to theories, honing of techniques, improvements
of mechanisms, negotiations between stakeholders, debates, power
struggles, and constant criticism, some theories and techniques gradually
become a part of the relatively stable core of knowledge about automatic
computing. For instance, Eckert and Mauchly’s work on revamping their
computer and their theories at the same time is a prime example of
the mangle of practice. Similarly, the knowledge that researchers gain
when they construct and revamp instruments is gradually crystallized
into theories about instruments, which, in part, gradually become a part
of the relatively stable core of computing knowledge. That is, theories,
techniques, and theories about instruments gradually increase their
epistemological objectivity; knowledge becomes more firmly entrenched
and believed more strongly. Practical work in computing is a mixture

207 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

of receptivity and tenacity; computing professionals can at the same
time draw on a number of disciplines and be stubborn in the face of
multidisciplinary opposition.

The convergence of a number of different ideas from several disciplines
was crucial for the development of early computing. When several experts
from different fields work together to achieve a common goal, they need to
communicate the necessary aspects of their art or science to the others,
which leads to the experts explaining their art or science in the clearest and
simplest way possible. The experts need to be able to present their art or
science without theoretical or metatheoretical issues, counterarguments,
alternatives, or disciplinary controversies.

In interdisciplinary situations, simple and straightforward knowledge
about powerful ideas enables the participants to use concepts or
innovations without getting mired in field-specific debates. If the
collaborators are ignorant about the traditional boundaries of specific arts
or sciences, they may unexpectedly cross those boundaries, especially
boundaries of applicability of ideas. However, it seems that superficial
knowledge about ideas can also be counter-productive. Using a powerful
idea without knowledge about its pitfalls, (meta-)theoretical issues,
counterarguments, disciplinary controversies, or alternatives, may cause
the researcher problems that experts of the discipline would avoid.

It seems that when different cultures, domains, disciplines, experts,
and concepts clash and interact, the situation is inherently eclectic and
opportunistic. That is, when there are many cultures, domains, experts,
disciplines, and concepts together, demands for reducibility and instant
clarity must be dropped. In an eclectic combination of expertise, every
person cannot become knowledgeable about everyone else’s art or
science. An eclectic combination of incommensurable arts and sciences
creates an ontological, epistemological, and methodological anarchy in
the sense that no ontology, epistemology, or methodology can be claimed
superior over others. In many aspects, that anarchy has been the driving
force of the rapid development of computing beginning from the early
1900s.

IV. CONCLUSIONS

In the light of the history of computing, the birth of modern computing
was a contingent outcome of a convergence of a large number of ideas
in a turbulent time. In the early 20th century, the sciences progressed on
a broad front, yielding useful tools, ideas, and techniques that designers
of computing machinery were able to use. The computing researchers of
the early 20th century were opportunists: they took ideas from an eclectic
selection of fields, and used those ideas to the appropriate extent. Also,

208 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

the people who brought the ENIAC to life stubbornly defied the academic
establishment, which at the time was not convinced of the advantages of
fully electronic computing. All in all, the birth of modern computing was not
the straightforward outcome of planned, successive development steps,
but a convergence of organizational issues, personalities, contingencies,
interdisciplinarity, and cultural, political, and economic influences.

The U.S. Army had a strong influence over the directions of automatic
computing in the 1940s. The military gave clear objectives for research,
they provided continuous research funding, and they offered markets for
the new machinery. The U.S. Army also brought together the people
needed for the ENIAC project. But although the ENIAC was built for the
Army, after its completion the ENIAC and subsequent EDSAC designs
were unexpectedly freed from military classifications. The famous Moore
School lectures made the stored-program concept public, and several
universities all over the world were able to build their own stored-program
computers around the turn of the 1950s.

The development of computing machinery from the early 1900s on has
been a triumph of anarchism and opportunism: the pioneers of computing
used whatever means were necessary to achieve their goals, and used
knowledge from several disciplines in order to advance theoretical,
technological, and practical knowledge of automatic computing. The mode
of working of computing professionals at Moore School in the 1940s is well
suited with the “mangle of practice” framework. The researchers working
with the ENIAC project had their fundamental theories compatible with
Turing’s work; they had their theory of how automatic computing machinery
should be designed; and they had the ENIAC and its peripherals. In
their work they struggled between problems (resistances) and solutions
to them (accommodations). They employed a variety of different material,
conceptual, and social accommodation strategies that gave rise to different
kinds of new resistances. The aim of the researchers was to find a robust
fit between science, model, and apparatus–which was finally embodied in
the blueprints of EDVAC, in the computers BINAC and EDSAC, and in the
birth of the stored-program paradigm.

MATTI TEDRE
Tumaini University
Tanzania
matti.tedre@acm.org
(corresponding)

209 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

ERKKI SUTINEN
University of Joensuu
Finland
sutinen@cs.joensuu.fi

REFERENCES

Aspray, William. 2000. Was Early Entry a Competitive Advantage? US
Universities That Entered Computing in the 1940s. IEEE Annals of the
History of Computing 22(3): 42–87.

Bowles, Mark D. 1996. U.S. Technological Enthusiasm and the British
Technological Skepticism in the Age of the Analog Brain. IEEE Annals
of the History of Computing 18(4): 5–15.

Campbell-Kelly, Martin and William Aspray. 2004. Computer: A History of the
Information Machine. 2nd ed. Oxford: Westview Press.

Campbell-Kelly, Martin and Michael R. Williams, eds. 1985[1946]. The Moore
School Lectures. Cambridge, MA: MIT Press.

Ceruzzi, Paul E. 1997. Crossing the Divide: Architectural Issues and the
Emergence of the Stored Program Computer, 1935-1955. IEEE Annals
of the History of Computing 19(1): 5–12.

Ceruzzi, Paul E. 2003. A History of Modern Computing. 2nd ed. Cambridge, MA:
MIT Press.

Comrie, Leslie J. 1944. Recent Progress in Scientific Computing. Journal of
Scientific Instruments 21(8): 129–135.

Croarken, Mary G. 1992. The Emergence of Computing Science Research
and Teaching at Cambridge, 1936–1949. IEEE Annals of the History of
Computing, 14(4): 10–15.

Croarken, Mary G. 1993. The Beginnings of the Manchester Computer
Phenomenon: People and Influences. IEEE Annals of the History of
Computing, 15(3): 9–16.

Dijkstra, Edsger W. 1982. How do we tell truths that might hurt? In Selected
Writings on Computing: A Personal Perspective, ed. Edsger W. Dijkstra,
129–131. Germany: Springer-Verlag.

Feyerabend, Paul. 1970. Consolations for the Specialist. In Criticism and the
Growth of Knowledge, eds. Imre Lakatos and Alan Musgrave, 197–230.
London: Cambridge University Press.

Flamm, Kenneth. 1988. Creating the Computer: Government, Industry, and High
Technology. Washington, DC: Brookings Institution.

Glass, Robert L., V. Ramesh and Iris Vessey. 2004. An Analysis of Research in
Computing Disciplines. Communications of the ACM 47(6): 89–94.

Grier, David A. 1996. The ENIAC, the Verb ”to program” and the Emergence of
Digital Computers. IEEE Annals of the History of Computing 18(1): 51–55.

Hacking, Ian. 1999. The Social Construction of What? Cambridge, MA: Harvard
University Press.

210 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

Hempel, Carl G. 1965. Aspects of Scientific Explanation And Other Essays in the
Philosophy of Science. New York: The Free Press.

Hughes, Thomas P. 1994. Technological Momentum. In Does Technology Drive
History? The Dilemma of Technological Determinism, eds. Merrit Roe
Smith and Leo Marx, 101–114. Cambridge, MA: MIT Press.

Kuhn, Thomas. 1970. Reflections on My Critics. In Criticism and the Growth of
Knowledge, eds. Imre Lakatos and Alan Musgrave, 231–278. London:
Cambridge University Press.

Kuhn, Thomas. 1996 [1962]. The Structure of Scientific Revolutions. 3rd ed.
Chicago: University of Chicago Press.

Marcus, Mitchell and Atsushi Akera. 1996. Exploring the Architecture of an Early
Machine: The Historical Relevance of the ENIAC Machine Architecture.
IEEE Annals of the History of Computing 18(1): 17–24.

Martin, C. Dianne. 1993. The Myth of the Awesome Thinking Machine.
Communications of the ACM 36(4): 120–133.

Mauchly, John W. 1979. Amending the ENIAC Story. Datamation (October):
217–220.

Naur, Peter. 1992. Computing: A Human Activity. New York: ACM Press.
Pickering, Andrew. 1995. The Mangle of Practice: Time, Agency, and Science.

Chicago: University of Chicago Press.
Polachek, Harry. 1997. Before the ENIAC. IEEE Annals of the History of

Computing 19(2): 25–30.
Popper, Karl. 1959[1935]. The Logic of Scientific Discovery. London: Routledge.
Puchta, Susann. 1996. On the Role of Mathematics and Mathematical Knowledge

in the Invention of Vannevar Bush’s Early Analog Computers. IEEE Annals
in the History of Computing 18(4): 49–59.

Pugh, Emerson W. and William Aspray. 1996. Creating the Computer Industry.
IEEE Annals of the History of Computing 18(2): 7–17.

Searle, John R. 1996. The Construction of Social Reality. England: Penguin
Press.

Smith, Merritt Roe and Leo Marx, eds. 1994. Does Technology Drive History? The
Dilemma of Technological Determinism. Cambridge, MA: MIT Press.

Solla Price, Derek J. de. 1959. An Ancient Greek Computer. Scientific American
(June): 60–67.

Stibitz, George. 1985. Introduction to the Course on Electronic Digital Computers.
In The Moore School Lectures, eds. Martin Campbell-Kelly and Michael R.
Williams, 5–16. Cambridge, MA: MIT Press.

Tedre, Matti. 2006. The Development of Computer Science: A Sociocultural
Perspective. University of Joensuu, Computer Science, Dissertations XIV.
Joensuu, Finland: Yliopistopaino.

Turing, Alan M. 1936. On Computable Numbers, With an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
Series 2, 42: 230–265.

211 Spontaneous Generations 3:1(2009)

Tedre & Sutinen Crossing the Newton-Maxwell Gap

von Neumann, John. 1945. First Draft of a report on the EDVAC. In The Origins of
Digital Computers: Texts and Monographs in Computer Science, ed. Brian
Randell, 355–364. New York, NY: Springer.

Williams, Michael R. 1985. A History of Computing Technology. New Jersey:
Prentice-Hall.

Winegrad, Dilys. 1996. Celebrating The Birth Of Modern Computing: The Fiftieth
Anniversary of a Discovery At The Moore School of Engineering of the
University of Pennsylvania. IEEE Annals of the History of Computing
18(1): 5–9.

Worsley, Beatrice H. 1975. The E.D.S.A.C. Demonstration. In The Origins of
Digital Computers: Texts and Monographs in Computer Science, ed. Brian
Randell, 395–401. New York, NY: Springer.

212 Spontaneous Generations 3:1(2009)

