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Abstract. Mathematics is often taken to play one of two roles in the empirical sciences:

either it represents empirical phenomena, or it explains these phenomena by imposing

constraints on them. This paper identifies a third and distinct role which has not been fully

appreciated in the literature, and may be pervasive in scientific practice. I call this the

“bridging” role of mathematics, according to which mathematics acts as a connecting scheme

in our explanatory reasoning about why and how two different descriptions of an empirical

phenomenon relate to each other. I discuss two bridging roles appearing in biological and

physical explanations.
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1 Introduction

Some philosophers maintain that either mathematics is merely representational of the empirical

phenomena in scientific explanations, or it has a non-representational, constraining-explanatory

role. The former is uncontroversial. As an integral part of scientific explanations, mathematics

plays a significant role in idealized representations of the empirical world. In contemporary

literature this role is often analyzed in two ways: either by appealing to the so-called mapping

account of Pincock (2004, 2007), which suggests that there is some kind of structural

morphism between mathematics and the empirical world, or by the inferential account of

Bueno and Colyvan (2011) and Bueno and French (2018), which along with structural

morphism emphasizes pragmatic and context-dependent features in applying mathematics to

the empirical world.1

In contrast, some philosophers have promoted a genuinely explanatory role for mathematics

in the empirical sciences. In one of its promising versions, Lange (2012, 2017) argues that

mathematics can factor into explanations by constraining the empirical world. For instance, in

explaining why a mother cannot divide 23 whole strawberries evenly among her three children,

the mathematical fact that 23 cannot be divided evenly by 3 constrains her action and explains

her inability. There are certainly additional accounts of how mathematics might explain

physical phenomena, e.g., Batterman (2009), but I will primarily restrict myself to the

representational and Lange’s constraining accounts in order to keep this paper to a manageable

length. In section 3, however, some alternative accounts will be briefly mentioned.

1Earlier versions of Pincock’s (2004, 2007) view can be found in standard mathematics text-

books such as Stewart (2008, 24), and also in the classic work on measurement by Krantz et al.

(1971).
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Both of these views about the roles of mathematics, representing and constraining, have

much to recommend then, but as I will show, they are not exhaustive. In this paper, I identify a

third and distinct role which I will call the “bridging” role for mathematics in explanations.

According to this role, mathematics acts as a connecting scheme in our explanatory reasoning

about why and how two different descriptions of an empirical phenomenon relate to each other.

In section 2, I describe the representational and the constraining-explanatory roles of

mathematics. In section 3, I propose that the bridging role of mathematics is distinct from both

the representational and the constraining-explanatory roles. In support of my proposal, I

present a case study analyzing a scientific explanation of color pattern formation by

mathematical biologists. Subsequently, I show why Bueno and Colyvan’s (2011) and Bueno

and French’s (2018) framework for the applicability of mathematics cannot fully accommodate

the bridging role of mathematics in this explanation. Hence, I revise their framework to fulfill

this task. In section 4, I argue that the bridging role is general enough, and it is found in other

cases of explanation, one of which is a familiar historical example. In particular, I will discuss

how this role appeared in an explanation of why and how two variant descriptions of quantum

phenomena were found to have empirically-significant, mathematical equivalence. Section 5

concludes the paper.

2 The Representational and Constraining-explanatory Roles

Advocates of the representational role of mathematics in explanations, such as Pincock (2004,

2007), Bueno and Colyvan (2011), and Bueno and French (2018) believe that mathematics

plays a role in empirical sciences in virtue of some structural morphism between an abstract,

formal structure and its appropriate empirical counterpart. The role of Euler’s theorem in
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explaining why no one can cross all the bridges of Königsberg only once before returning to

their starting point is a classic example. The explanation bears on the specific configuration of

the bridges and paths that exhibit the structure of a non-Eulerian graph. The idea is that given

the topological structure of the actual bridges and our abstract mathematical knowledge about

the properties of Eulerian and non-Eulerian paths, we find a mapping relation between the

mathematical structure and the empirical phenomenon. It is exactly in virtue of this structural

mapping that mathematics becomes explanatory.

Pincock (2004, 2007) develops his mapping account according to the widespread view that

the applicability of mathematics to the empirical world is due to sharing some structural

similarity between mathematics and the empirical phenomenon of interest. The existence of

such structural similarity sufficiently accommodates the applicability of a given mathematical

structure to the empirical phenomenon.

Bueno and Colyvan (2011) and Bueno and French (2018, Chapter 2) introduce the

inferential account for the applicability of mathematics by expanding upon Pincock’s

structural-mapping account. Along with structural morphism, they incorporate some pragmatic

elements that are relevant to mathematical explanation and idealization, and are necessary for

the applicability of mathematics to the empirical world. The main claim of Bueno and Colyvan

(2011) and Bueno and French (2018) is that when certain features of the empirical world are

embedded into a mathematical structure, we can obtain inferences which might otherwise be

impossible (or at least, extremely difficult) to draw. This account proceeds in three steps: (i)

immersion: establishing a mapping between a mathematical structure M1 and a

characterization of an empirical phenomenon L1; (ii) derivation: drawing mathematical

consequences M2 from M1; (iii) interpretation: interpreting M2 back to a descriptive level of

the empirical phenomenon L2 by establishing some sort of mapping relation. Step (ii) is empty
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of pragmatic considerations; as Bueno and Colyvan (2011, 353) and Bueno and French (2018,

52–3) put it: “The second step consists in drawing consequences from the mathematical

formalism, using the mathematical structure obtained in the immersion step.” Hence, according

to the inferential framework, M2 is always a purely mathematical consequence of M1. On the

other hand, the steps (i) and (iii) encode some pragmatic and context-sensitive features, such as

what to map and interpret, in applying mathematics to the empirical world.2 This account is

illustrated in figure 1.

L1 M1

M2L2

immersion

drawing of consequences

interpretation

Figure 1: The inferential account.

In this paper, I am concerned with cases in which a given empirical phenomenon of interest

is characterized at two distinct descriptive levels L1 and L2. Understanding how and why the

two levels connect then would be a legitimate explanatory question. For each of the L1 and L2,

the mathematical representations M1 and M2 are distinctly obtained. Each representation

illustrates a mapping between a mathematical structure and the empirical phenomenon. To

explain why the two descriptive levels L1 and L2 connect, the characteristics of the relation
2In the rest of the paper, I only focus on Bueno and Colyvan’s (2011) and Bueno and French’s

(2018) representational account, as their account extends Pincock’s mapping account by incor-

porating pragmatic considerations.
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between the two mathematical representations M1 and M2 should be examined. The

exploration of why and how the two descriptive levels connect is especially interesting, because

the mathematical representations are limited to a particular scientific discourse,

mathematical/computational biology (section 3), and physics (section 4). In other words, the

investigation of the relationship between the two representations pertains to a specific group of

scientists. The second step of the inferential account, as illustrated in figure 1, provides

resources to capture the derivation of mathematical consequences M2 from the mathematical

representation M1. Although in some cases the link between the representations M1 and M2 is

explained in terms of consequence derivation, I will shortly discuss the shortcomings of step

(ii). I then propose how these shortcomings can be overcome by recognizing the bridging role

of mathematics.

Before I discuss my point further, I would briefly clarify why the bridging role of

mathematics is also distinct from the constraining-explanatory role. Defenders of the genuinely

constraining role such as Lange (2009, 2012, 2017) attribute a constraining strength to

mathematics. On this view, Euler’s theorem becomes explanatorily relevant, because it imposes

mathematical constraints on how things can be in the empirical world. Lange’s account, of

course, requires commitment to a particular relation among different constraining strengths;

mathematics being more constraining than the empirical laws of nature. Hence, Lange’s view

about the explanatory role of mathematics may be appealing to those who share his theory of

constraining strengths, but controversial to those who reject that theory. The bridging role of

mathematics, as I will discuss shortly, is compatible with this constraining-explanatory role, but

it does not need to be. The two examples presented in sections 3 and 4 primarily examine some

problems for the mapping and the inferential approaches. The reason that I have very briefly

mentioned Lange’s proposal, as a prominent exemplar for the explanatory role of mathematics,
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is to show that in addition to the bridging role proposed in this paper, there are other

philosophical views challenging the idea that mathematics merely plays a representational role

in scientific explanations. In other words, I aim to highlight that my proposal is not the only

one challenging the representational view.

In the rest of the paper, I provide two case studies to illustrate how the bridging role works

in scientific practice. In section 3, I discuss how mathematical biologists appeal to the bridging

role to explain the relation between a macro-level and a micro-level characterization of an

empirical phenomenon, namely the pattern formation on animal skins. I show how using new

parts of mathematics, independent from the mathematics employed for capturing the

similarities with the empirical phenomenon of interest, helps obtaining the micro-level

representation from the macro-level mathematical representation. In section 4, I illustrate the

bridging role of mathematics in explaining the empirical adequacy of two mathematical

representations of quantum phenomena. The two case studies reveal how obtaining

approximate representations, using bridging mathematical facts, is a very different activity

when compared to drawing of consequences as suggested in step (ii) of Bueno and Colyvan’s

(2011) and Bueno and French’s (2018) inferential framework. The examples discussed in

sections 3 and 4 show that the relation between the two mathematical representations is not

necessarily a consequence derivation. The relation in question can be an approximation relation

(section 3) or an equivalence relation (section 4). In both examples, without a mathematical

bridge, linking the two mathematical representations of the case studies seemed impossible.
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3 The Bridging Role of Mathematics at Work

In this section, I provide an example of a bridging role of mathematics in biology. Biological

phenomena such as the pattern formation of skin colors are often explained either functionally

or mechanistically. Mechanistic explanations work by identifying the mechanisms responsible

for the occurrence of the empirical phenomena (see Machamer et al. 2000). Biologists may

also appeal to some functional features such as sexual selection or camouflage to explain the

biological phenomena, but these functional explanations are beyond the scope of this paper.3

Mathematical biologists often explain the formation of the skin patterns of vertebrates by

appealing to Turing equation models to capture reaction-diffusion (RD) mechanisms between

biological cells. In his landmark paper, “The chemical basis of morphogenesis”, Turing (1952)

proposed a mechanistic explanation for the phenomenon of morphogenesis: the shapes in

living organisms are generated through the RD system.4 An RD system uses a set of nonlinear

3I am not dismissing the extremely important functional explanations of evolutionary biology.

Since in this paper I am interested in examining the roles of mathematics in explanations, I

focus here on the mechanistic explanations as a grounding for the higher-level explanation

of the phenomenon of interest: namely, why (from a mechanistic point of view) is there a

particular pattern formation on the skin color?
4In his paper, Turing was chiefly motivated to discuss a mechanism by which the genes of a

zygote may determine the anatomical structure of the resulting organism. His proposal was

later developed and mathematically elaborated upon, to explain the mechanism of the formation

of different skin patterns on animal skins by using the partial differential equations of the RD

mechanisms. These became later known as Turing equations. For a philosophical discussion of

this topic, see Kitcher (1999).
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continuous dynamical equations to represent the interactions between microscopic biological

cells. Hence, Turing models play a representational role in explaining why does this particular

skin color pattern occur? The models trace the activities and interactions between microscopic

biological cells involved in formation of the patterns in any self-regulated system with an

underpinning RD mechanism.

In the case of squamates (lizards and snakes), the interactions between different elements of

chromatophore cells result in the dynamic formation of skin color patterns.5 RD models then

calculate the concentration of the pigmentary and structural elements at a given time, based on

the substances’ diffusion, feed rate, removal rate, and reactions between them. More details

about the mathematics of the Turing patterns are provided in section 3.2.

In contrast to the Turing explanation, which appeals to the interactions among microscopic

biological skin cells, Manukyan et al. (2017) study a case according to which the full

explanation of the formation of the labyrinth color pattern on the skin of a species of lizard

requires more than the proposed Turing mechanism. Their study is the first in biological

research on the formation of animals’ skin color patterns proposing a different mathematical

model, that of a discrete cellular automaton, to that of Turing’s equations. They show that for a

species of lizard, known as the ocellated lizard, the macro-dynamics of the skin color pattern is

represented by the dynamics between the mesoscopic skin scales, rather than microscopic

biological cells.6 Mesoscopic skin scales are quasi-hexagons whose long diagonal is about

150–200 microns in a newborn individual, and about 1mm in an adult. Microscopic biological

5Chromatophore cells are prominent in animals including amphibians, fish, and reptiles. These

cells either contain pigments or reflect structures.
6Ocellated lizards (Timon lepidus) are primarily found in Southern Europe. The study is based

on the analysis of time series of ocellated lizards over four years.
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Figure 2: Change in the skin color patterns of ocellated lizards from Manukyan et al. (2017).

skin cells are typically 20 microns in size, and not visible to the naked eye.7 Figure 2 illustrates

the changes in skin color patterns of the ocellated lizards at multiple time points over about

three years, from juvenile (figure 2a) to adult (figure 2b).

Manukyan et al. (2017) claim that the units of the mesoscopic skin scale, rather than

microscopic biological cells, establish the pattern formation of skin color in ocellated lizards.

They show how the mesoscopic scale units can be modeled by a discrete cellular automaton

that generates color patterns at the macroscopic scale of the skin of ocellated lizards. This

seems to be fairly different to the Turing explanation according to which the microscopic skin

scales, rather than mesoscopic biological cells, establish the color pattern. In this context, a

natural puzzle for mathematical biologists arises: how can two distinct representations, the

Turing model and the cellular automaton model, capture the dynamics of a single empirical

phenomenon, the formation of color patterns on ocellated lizards? Take the explanandum as:

7I obtained the exact size of the different cell scales from Michel C. Milinkovitch, the leading

author of the paper.
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there are two distinct descriptions for the formation of patterns on the skin of ocellated lizards.

Before answering why this is the case, it is necessary to say a few words about the mathematics

of cellular automata.

3.1 Cellular Automaton Models as Higher-level Representations

Cellular automaton models, originally developed by Von Neumann (1951), offer a

mathematical characterization of the dynamics of various kinds of complex empirical and

natural phenomena (see Wolfram 1984; Toffoli 1984; Langton 1986; Ermentrout and

Edelstein-Keshet 1993 for an overview and examples). Roughly speaking, cellular automata

are composed of a set of units (grids of elements) spanned over an (n-dimensional) spatial

structure. At time t1, for a given cellular automaton, each unit is in a state σi from a set Σ of

finitely many possible states. Each unit can only interact with units in its neighborhood,

according to a set R, composed of deterministic or probabilistic rules. These rules specify how

the state of a unit should change based on the structure of the states of its local neighbors.

Time-steps in cellular automata are discretely incremented. At each incremental time-step

t2, t3, · · · , tn, unit states are organized according to the instructions of R relative to their local

neighbors. The organization of the unit states continues by iterating on the set R. From these

local interactions, a cellular automaton evolves into different kinds of macro-patterns over the

whole spatial structure. The diachronic aggregation of the cellular automaton instructions for

the state change of units of a grid gives rise to the emergence of various complex patterns at a

macro-level.

Take the units of the cellular automaton to be the mesoscopic hexagon skin scales. The

pattern formation of the skin color of ocellated lizards is generated by changes in influence
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dynamics of the quasi-hexagonal units of a probabilistic cellular automaton model. Consider

the ocellated lizard skin as a spatially expanded grid of units, each element being a mesoscopic

scale unit of skin. The set of states for the units of this cellular automaton are two colors, green

and black. At birth, ocellated lizards have brown skin with white polka dots spread over it (as

shown in figure 2). Within a few months, the skin pattern turns into arrays of black and green

units; and the color pattern grows over their skin according to the dynamic computation of the

color states of individual mesoscopic skin scales until the lizards reach the age of sexual

maturity. During transition from juvenile to adult patterns, the skin color units flip between

green and black according to some probabilistic rules over the quasi-hexagonal lattice of skin

scales.

The color of the mesoscopic skin scales switches depending on the colors of the

neighboring units. The general rules are as follows: with a very high probability, green units

tend to exhibit four black and two adjacent green units; with a very high probability, black units

tend to exhibit three green and three neighboring black units.8 Hence, formation of the skin

color pattern on ocellated lizards invokes an appeal to cellular automaton models and

mesoscopic skin units. This seems to be fairly different from the micro-level Turing

explanation of the pattern formation in which microscopic biological cells, rather than the

mesoscopic skin units, establish the pattern formation of skin color in ocellated lizards. The

following question with respect to the formation of skin patterns arises: how does this cellular

automaton pattern relate to the theoretical Turing explanation in mathematical biology? To

answer, first let us briefly look at Turing models.

8The probabilistic distributions of the color transition rules for this cellular automaton model are

derived from discrete RD numerical simulations.
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3.2 Turing Models as Lower-level Representations

In “The chemical basis of morphogenesis”, Turing (1952) proposed a mechanistic explanation

of morphogenesis in terms of RD systems. His main idea was that the formation of spatial

patterns in living organisms can happen by interaction between two substances with different

spreading rates. Turing showed that in certain systems, a homogeneous steady state is indeed

unstable, and any small local deviation from this steady state (i.e., diffusion) is sufficient to

trigger the beginning of pattern formation. Assume we only have two substances in a finite

domain: activators, which produce more of themselves; and inhibitors, which slow down the

production of activators. Diffusion as a stabilizing mechanism balances the amount of each.

The dynamic formation of skin color patterns in vertebrates such as zebrafish is known to

be the result of microscopic non-linear interactions among pigment cells that obey the Turing

equations.9 It is shown that a set of nonlinear partial differential equations gives a mechanistic

explanation for the color pattern formation of zebrafish (Nakamasu et al. 2009). These

equations reveal that only two types of choromatophore cells (melanophores and xanthophores)

dominate the biological process of pattern formation. Manukyan et al. (2017) adapt this set of

equations to formulate the color pattern formation on the skin of ocellated lizards. Consider the

two variables u and v representing the densities of two kinds of pigment cells, melanophore and

xanthophore, respectively; w representing a long-range factor of diffusion; F ,G,H representing

interactions among the chromatophore cells; cu, cv, and cw representing the coefficients for the

decay processes; Du∇2u, Dv∇2v, and Dw∇2w representing diffusion processes (Du is the

9The micro-scale Turing explanation for such pattern formation is an approximation of the sus-

tained micro-scale non-equilibrium dissipation, involving short- and long-range interactions

among biological cells.
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diffusion coeffiecient and∇2u is the Laplacian).10 The following system of partial differential

equations gives the two-dimensional representation of the skin color patterns of zebrafish:11

∂u

∂t
= F (u, v, w)− cuu+Du∇2u ,

∂v

∂t
= G(u, v, w)− cvv +Dv∇2v

∂w

∂t
= H(u, v, w)− cww +Dw∇2w

Call the micro-level description of the color pattern formation L1 and these Turing models

representing this descriptive level M1. M2 (as discussed in section 3.1.), is a discrete cellular

automaton model representing the macroscopic pattern formation of the skin colors by

referring to the mesoscopic skin scale units. Hence, there are two different kinds of models M1

and M2, at two different representational levels. But how can we get from the micro-level, the

Turing model, to the macro-level, the cellular automaton representation? Why are there two

very different representations for the same empirical phenomenon, the color pattern formation?

How do these two representations relate?

To explain why the cellular automaton pattern is a plausible mathematical representation of

the skin color pattern, we need to understand how the microscopic interactions among the

biological cells translate into a cellular automaton pattern.

3.3 From Turing Models to Cellular Automaton Patterns

The case study presents the following explanatory gap: Given that pattern formation at the

micro-level of biological cells can be represented by a set of differential equations, how can we
10The decay terms model cell behaviors such as division, differentiation, and death. The values

of cu, cv, cw parameters are based on Nakamasu’s model.
11The authors also consider boundary conditions on the functions F,G,H to avoid any unreal-

istic production rate of the substances.
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explain the formation of cellular automaton patterns on the macro-level of the skin? Scientific

intuition says there should be a way to fill this gap. To confirm this intuition in a stable and

reliable way, Manukyan et al. (2017) appeal to a set of mathematical facts. To obtain the

discrete RD models from the continuous ones requires considering the dual correspondence

between Voronoi diagrams and Delaunay triangulation.12 Only after adding this duality fact to

mathematical knowledge about continuous RD models, obtaining discrete RD models became

possible. This duality is the bridge principle at work.

First, to obtain the discrete RD equations, Manukyan et al. (2017) approximate the

continuous RD equations by discretization to edges of a square lattice (with edge length equal

to S and a sufficiently small edge width ε). Discretization is such that the RD equations are

essentially unchanged, with the same coefficients. The only difference with the continuous RD

equations is the replacement of the Laplacian∇2u(x) by its discrete counterpart:∑
x′ [u(x′)− u(x)], where x′ is the neighbor of x. The diffusion coefficient Du is replaced by a

factor of ε−2Du. Continuous RD equations on a Voronoi diagram approximate the lizard skin

scales. Discrete RD equations on Delaunay triangulation are then obtained from the continuous

RD equations. Consider z denoting the center of a hexagon, and z′ denoting the centers of the

adjacent hexagons. The discrete Laplacian on the Delaunay triangulation becomes: ∇2U(z) =∑
z′ [U(z′)− U(z)].13 Then, they show that functions U, V,W approximately satisfy the

12For a given set of discrete points P in a plane, a Delaunay triangulation is a triangulation such

that no point of the given set is inside the circumcircle of any triangle obtained. A Voronoi

diagram is a partitioning of a plane into regions based on distance to points P in a specific

subset of the plane.
13U, V,W at the center z of a hexagon are defined as the averages corresponding to u, v, w on

the vertices of the square lattice inside a hexagon.
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discrete RD equations on the Delaunay triangulation. The bridge principle, the mathematical

fact concerning the transformation of the continuous RD equations on a Voronoi diagram to the

discrete RD equations on the corresponding Delaunay triangulation, provides a sufficiency

condition for obtaining the discrete RD equations from the continuous ones. Figure 3 illustrates

this dual correspondence.

This example shows that the drawing of consequence step of the inferential framework is

too simplistic to straightforwardly capture how some scientists such as Manukyan et al. (2017)

use some pieces of mathematics, independent from any mathematical representations M1 and

M2, to explain the link between the two different descriptions of an empirical phenomenon.

Obtaining the discrete RD model from the continuous one is not just drawing consequences, in

the sense of Bueno and Colyvan (2011, 353) and Bueno and French (2018, 52–53):

The second step consists in drawing consequences from the mathematical

formalism, using the mathematical structure obtained in the immersion step. We

call this step derivation. This is, of course, the key point of the application process,

where consequences from the mathematical formalism are generated.

In the case study presented, it is epistemically impossible to obtain the discrete RD model

without adding a new mathematical fact, the duality between Voronoi diagram and Delaunay

triangulation, to the toolbox of scientists. The approximated RD models, therefore, are not

simply the result of drawing mathematical consequences from the mathematical representation

obtained in the immersion step (i.e., the continuous Turing equations). Here, an approximation

procedure is at work. Why this approximation, rather than another? Because the scientists have

the discrete cellular automaton model and want to link that discrete model to the continuous

Turing equations in order to improve their understanding of the biological phenomena.
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One main reason is that manipulating formulas and directly drawing mathematical

consequences does not always show what the scientists aim to explain. To connect these

representations, something else, a previously unrelated piece of mathematics, is required. I call

this piece a mathematical bridge. A mathematical bridge provides sufficient conditions that

make obtaining a different mathematical representation of the same empirical phenomenon

possible.14 The derivation step of Bueno and Colyvan (2011) and Bueno and French (2018)

merely shows that a mathematical structure is a mathematical consequence of another. The

case study illustrates that we cannot merely derive M2 from M1; rather, we need an additional

fact, the mathematical bridge, that makes obtaining the M2 possible. Therefore, the bridge is

explanatory because it answers why and how the two descriptive levels of an empirical

phenomenon connect.

In contrast to the drawing of consequences step of the inferential account, sometimes the

scientific aim is not merely drawing mathematical consequences, and then to interpret these

consequences back to a micro-level description of the phenomenon L2. In some situations, we

have two mathematical representations from two distinct kinds of scientific study, and then the

main goal is to explain how one given mathematical representation links to another, and

accordingly how the two descriptions of the empirical phenomenon under study relate. The

second mathematical representation gives some hints as to what kinds of approximations we

need in order to justify the link. These hints incorporate some pragmatic and occasionally

messy and context-dependent considerations that motivate scientists’ search for mathematical

bridges.

14I do not claim that this mathematical piece is unique. In principle, there might be other ways

to explain the link between the two descriptions of the empirical phenomenon. Nothing I say

here rules out such alternatives.
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Figure 3: Voronoi tiling diagrams and Delaunay triangulation from Manukyan et al. (2017).

Obtaining the discrete RD model from the continuous one mathematically confirms

biological intuitions of scientists about the presence of some new geometrical parameters at

work responsible for the appearance of macroscopic cellular automaton patterns. Scientists

then interpret the new parameters in the following way: the generation of the discrete RD

mechanism is due to the dramatic difference of thickness between scale and inter-scale skin of

the ocellated lizards.

Having the discrete RD models, Manukyan et al. (2017) then show that the cellular

automaton behavior can be obtained when the diffusion coefficients in the system of discrete

partial differential equations are reduced by a factor greater than 80% in the inter-scale regions.

This approximation is validated with the help of computer simulations: that the discrete RD

model and the cellular automaton have the same statistical properties.15 I have now enough

15Understanding how computer simulations factor into scientific explanations is beyond the

scope of this paper. Interested readers are referred to Durán (2017) and Parker (2017) for

some initial insights. The use of computer simulations in obtaining M2 from M1 additionally
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pieces at hand to revise the schema of the inferential account. This revised account is illustrated

in figure 4.

L1 M1

M2

B

L2

immersion

approximation

interpretation

Figure 4: Bridging role of mathematics in inter-level explanation of color pattern formation.

In figure 4, the continuous RD model M1 represents the mechanisms of the biological skin

cells at the micro-level L1. The macro-level skin pattern L2 is represented by a cellular

automaton model M2. Scientists require some bridge principles to make sense of the relation

between M2 and M1. In particular, M2 cannot be derived from M1 alone. To obtain M2

requires a mathematical principle whose relation to M1 and M2 was previously unknown and

which is not entailed by M1. This bridging principle is the mathematical fact that Voronoi

diagrams and Delaunay triangulations are dual (B). B is used in scientists’ attempt to close the

explanatory gap between the two descriptive levels of the empirical phenomenon of interest. B

provides mathematical possibility for obtaining M2 from M1. The crucial point to stress here is

that what I am calling the bridge principle, is independent from either of the two models M1 or

M2. Bueno and Colyvan (2011) and Bueno and French (2018), for instance, might want to say

that M2 is merely an extension of M1 and is easily understood in terms of their partial models.

challenges the claim that the derivation step (ii) of figure 1 is sufficient to explain the role of

mathematics in the present case study.
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However, this is not the case because the bridge principle B here, which is independent from

either of the two models M1 or M2, is essential to relate them. Finding a relevant mathematical

bridge can sometime be a significant achievement. Hence, the step (ii) of the inferential

account, drawing of consequences, should be replaced by an approximation step which allows

to choose a bridge principle and an approximation procedure.

The schema illustrated in figure 4 has the maximum amount of apparatus to capture the

roles of mathematics in some explanations. Needless to say, not all steps illustrated here might

manifest themselves in different instances of the applicability of mathematics to empirical

phenomena. The revised schema captures the use of mathematical bridges in obtaining new

mathematical representations. Moreover, it illustrates that in some cases, due to extreme levels

of difficulty or the epistemic impossibility of drawing consequences from a mathematical

formalism, approximation procedures substitute the strict mathematical derivation. In some

simple cases, the approximation might be sharpened and become purely mathematical in terms

of drawing of consequences; though it need not be the case. Hence, the schema presented in

figure 4 is broader than the inferential account of Bueno and Colyvan (2011) and Bueno and

French (2018).

Let me clarify a potential objection as to whether the revised schema in figure 4 is

something that Bueno and Colyvan’s (2011) and Bueno and French’s (2018) framework cannot

account for. Bueno and French (2018, Chapter 9) discuss how their account can accommodate

highly idealized models such as renormalization group techniques that are claimed to play a

genuine non-representational role in the explanation of phase transitions. Why do they play a

non-representational role? In one of the most promising responses, Batterman (2009) claims

that there is no correspondence between physical structures and divergent limits; hence, no

structural similarity can relate the physical world to the mathematical model. To handle this
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non-representational role of mathematics, Bueno and French’s (2018) solution is to keep the

step (ii) drawing of consequences fixed. Instead, they extend the step (i) and (iii) of their

account, the immersion and the interpretation steps, to iterated immersion and iterated

interpretation steps (figure 5). This means that, as they claim, sometimes in order to make sense

of the applicability of mathematics, first, there is a mapping between the physical structure and

the mathematical structure; then, there is a second immersion step from the mathematical

structure to another mathematical structure. In a similar vein, iterated interpretations happen in

order to map the mathematical representation back to the empirical world. In this way, Bueno

and French (2018) claim that their account can accommodate the non-representational role of

infinite limits when they apply to the empirical phenomenon of phase transition. Could it be

that this iterated inferential account also can capture the applicability of mathematics in the

case of the skin color pattern example? Not so for two reasons.

L1 M ′
1 M1

M2M ′
2L2

immersion 1 immersion 2

drawing of consequences

interpretation 2interpretation 1

Figure 5: The iterated inferential account.

First, by their own definition, the immersion and the interpretation steps should capture the

similarities between the physical and the mathematical phenomena. It is in virtue of this

physical-mathematical similarity that the inferential conception of applied mathematics gets off

the ground. However, establishing a relation between the two mathematical structures M ′
1 and

21



M1 is not really an immersion step, in the same way that the relation between L1 and M ′
1 is.

The structural similarity between M ′
1 and M1 is purely mathematical, not

physical-mathematical. As a result, the relation between M ′
1 and M1 is not really immersion. In

a similar vein, the relation between the two mathematical structures M ′
2 and M2 is not really an

interpretation step. The structural similarity between M ′
2 and M2 is purely mathematical, not

physical-mathematical. This is an objection as to whether the iterated inferential account really

gets off the ground. Second, the iterated account does not open space for considerations of

bringing new parts of mathematics to the mathematical toolbox of scientist for the explanations

in question. In particular, it does not show the role of independent parts of mathematics when

they make relating the two mathematical representations M1 and M2 possible.

The bridging role of mathematics as an explanatory role is compatible with a variety of

ontological stances about mathematics. Here, I explore two major ontological views. Both

views are committed to assigning a high status to the contribution of mathematics to scientific

reasoning. First, at least partially, mathematics is embedded in and therefore constitutive of the

empirical world (e.g., Bigelow 1988; Franklin 2014). If this is the case, scientific intuitions

about the existence of a mathematical relation between the mechanistic explanations of the two

levels is confirmed by mathematical bridges that are constitutive of the empirical world.

Second, the mathematical bridges act as a piece of puzzle-filling in our incomplete schema of

scientific reasoning. This view assigns a more instrumental, functional stance to mathematics.

Relatedly, we might also expect that we will find a natural correspondence with the

mathematical bridge in the future, as current scientific knowledge is evolving and by no means

complete.

To summarize, first, in the study of the color pattern formation of vertebrates, mathematical

biologists use continuous differential equations as a mathematical model for the representation
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of the interactions and activities among microscopic biological cells. In the formation of color

patterns, a Turing model provides a mechanistic explanation for “why is there a specific kind of

skin color pattern with reference to microscopic biological cells?” Second, a cellular

automaton model is used to represent the formation of the color pattern at the macroscopic

level, by making reference to the mesoscopic hexagonal cells. Third, the mathematical fact that

Voronoi diagrams and Delaunay triangulations are dual acts as a bridge to obtain discrete RD

models in explaining “why is there a cellular automaton model at the macro-level of the target

phenomenon, given that the micro-dynamics between the biological skin cells correspond to a

Turing model?” Without digging into some facts of mathematical geometry, the scientists could

not unequivocally characterize the system, could not justify the presence of “an additional

spatial parameter”, and could not fully explain why we obtain the cellular automaton patterns

from the continuous Turing models. Therefore, the bridging role of mathematics is an

important role for mathematics in scientific explanations.

In the next section, I briefly discuss another interesting case from the history of science in

which a mathematical bridge has made explaining the empirical adequacy of two mathematical

representations possible. I will discuss the explanation of the empirically-significant,

mathematical equivalence of matrix and wave mechanics as established by Von Neumann

(1955). I have two reasons to discuss this case. First, Bueno and French (2018, Chapter 6)

explore the exact same scientific case. Their discussion illustrates how mathematics unifies

some apparently unrelated domains, such as quantum states, probability assignments, and

logical inference. As I will argue, however, their discussion lacks sufficient resources to

accommodate the essential role of the mathematical bridge, the Riesz-Fischer theorem in

functional analysis, in establishing the empirically-significant, mathematical equivalence of

matrix mechanics and wave mechanics. Second, this example will be known, at least in outline,
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to many readers. The details will nicely illustrate the mathematical bridge to relate the two

mathematical models of quantum mechanics.

4 Bridging Wave Mechanics and Matrix Mechanics

Matrix mechanics is an algebraic approach, employing the techniques of matrix manipulation,

for the representation of observable properties of quantum systems, such as position and

momentum. Developed by Heisenberg (1925) and Born et al. (1926), matrix mechanics aims at

providing a mathematical representation for quantum systems, that is as closely as possible to

the mathematical formulations of classical mechanics; we must learn as much as possible about

the behavior of quantum systems from the behavior of the Hamiltonian function. Matrix

mechanics is articulated in a discrete space, and roughly assumes the following mathematical

postulates for the representation of quantum phenomena. (1) The observable behavior of a

quantum system, its position and its momentum, corresponds to time-dependent, Hermitian

matrices Q and P, known as canonical matrices. (2) The canonical matrices satisfy the

following quantum condition: PQ−QP = h
2πi
I . (3) Equations of motions are Q̇ = ∂H

∂P
and

Ṗ = −∂H
∂Q

. (4) The Hamiltonian matrix W = H(Q1, . . . , Qk, P1, . . . , Pk,) that represents

energy is diagonal; otherwise, a canonical transformation matrix S should be found such that

S−1HS is diagonal. Finding solutions of quantum mechanical systems to the above

representation has turned out to be complicated.

From an entirely different standing point, Schrödinger (1926a) used the mathematical

machinery of differential equations, and developed wave mechanics to represent quantum

systems. Wave mechanics has an underlying continuous space, and treats material particles as

waves. A wave function ψ(x) is associated with each particle, and describes the shape of the
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wave in three-dimensional Euclidean space. Wave mechanics, broadly, assumes the following

mathematical postulates for the representation of quantum phenomena. (1) The position and

momentum of a quantum phenomenon are represented by a wave operator, acting on the

corresponding wave function. (2) Schrödinger’s equation H̃ψ = Eψ replaces the classical

equation of motion. H̃ is obtained by substitution of q and p in the classical Hamiltonian by the

following two operators: Q̃ = x and P̃ = −ih̄ ∂
∂x

. The main wave-mechanical problem is then

solving the partial differential equations.

As briefly shown above, these two representations of the quantum phenomena use very

different mathematical apparatuses to illustrate quantum reality: matrix mechanics describes

the quantum phenomena by discrete matrices and sums, whereas wave mechanics applies

continuous functions and integration over those functions for this representation. Take the

explanandum to be matrix and wave mechanics give empirically-significant,

mathematically-equivalent representations of the quantum phenomena. The explanans is the

mathematical proof that shows the empirically-significant, mathematical equivalence of these

two representations. Schrödinger (1926b) aimed to show that the two mathematical

representations of quantum phenomena, the wave and the matrix mechanics, were empirically

equivalent.16 He wanted to show that the empirical equivalence can be explained in terms of a

mathematical proof for the equivalence between the two mathematical representations.

Schrödinger himself was not fully successful in achieving this goal, due to several conceptual

and technical difficulties.17

16Around the same time, Eckart and Pauli also attempted to give similar equivalence proofs. I

will not discuss this point in further details here, as Schrödinger’s proof is the most elaborate

one, with the highest historical influence.
17For a detailed characterization of this debate, see Muller (1997a) and Muller (1997b).
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On the other hand, using his Hilbert space formalism, Von Neumann (1955) characterized

matrix mechanics with the totality of functions Fm, satisfying certain conditions. Fm constructs

the discrete space of matrix mechanics. In a similar vein, he identified the totality of functions

Fw, satisfying certain conditions. Fw constructs the continuous space of Schrödinger’s wave

mechanics. Then, he appealed to the Riesz-Fischer theorem in functional analysis to give the

proof for the isometric isomorphism of Fm and Fw. Fm and Fw are not arbitrary sets of

functions. Indeed, Von Neumann (1955, pp. 30–31) emphasizes the empirical significance of

Fm and Fw as follows: (i) these functions “... are the entities which enter most essentially into

the problems of quantum mechanics”, and (ii) they “... are the real analytical substrata of the

matrix and wave theories.” (i) and (ii) gives sufficient reasons to von Neumann to claim that “...

this isomorphism must always yield the same numerical results.” Therefore, the mathematical

proof relates to making claims about the quantum phenomena. To put it differently, von

Neumann gave a mathematical proof for the equivalence of wave and matrix mechanics which

has empirical significance; that is, the mathematical equivalence of matrix and wave

representations of quantum phenomena is understood in terms of the same numerical results

that they provide. This empirical significance can be captured as follows: von Neumann’s

mathematical formulation of quantum mechanics describes the states of the physical system by

Hilbert space vectors and the measurable quantities by Hermitian operators.

As Bueno and French (2018, Chapter 6) point out, von Neumann’s mathematical proof of

the theoretical equivalence of matrix and wave mechanics reveals how appropriate analogies

and structural similarities between the two mathematical representations of quantum

phenomena gave rise to the development of a more general framework, von Neumann’s Hilbert

space formalism. Bueno and French successfully show that their three-step representational

framework captures the significance of structural similarities between the two mathematical
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Figure 6: Bridging role of mathematics in explaining the equivalence of matrix and wave me-
chanics.

representations, and how such similarities motivated mathematicians to find a more general

framework that unifies seemingly separate pieces of mathematics and logic. However, this

framework does not have sufficient resources to reveal how a new piece of mathematics made

the equivalence proof possible. Recall that their representational framework is composed of

three steps: immersion, drawing of consequences, and interpretation. I maintain that the

drawing of consequences cannot completely capture the role of mathematics in this quantum

endeavour. Indeed, von Neumann did not claim that Fm is obtained by a mathematical

derivation from Fw, nor that Fw is obtained by a consequence derivation from Fm. He used a

new piece of mathematics from functional analysis, the Riesz-Fischer theorem, to give the

proof of an empirically-significant, mathematical equivalence relation. I take the Riesz-Fischer

theorem to be a mathematical bridge. The drawing of consequence step of Bueno and

Colyvan’s (2011) and Bueno and French’s (2018) representational framework does not have

sufficient resources to show how this mathematical bridge, independent from the two

representations, makes the equivalence proof possible, since it requires bringing in outside
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considerations such as the Riesz-Fischer theorem from functional analysis. The importance of

adding the bridge is that sometimes it changes the nature of the activity of drawing

consequences. Figure 6 illustrates how the bridging role of mathematics (B) influences the

explanation of the empirically-significant, mathematical equivalence of wave mechanics (WM)

and matrix mechanics (MM) for a quantum system (QS). I want to stress once again a central

point. The representational account does a fine job of modeling matrix mechanics and wave

mechanics. But this account does not have sufficient resources to link the two, at least not

directly. The mathematical bridge was provided by a further mathematical domain that had

been perhaps known to some mathematicians but not to the physicists who eventually embraced

it as a bridge. It might even have been a new mathematical approach whose development was

in itself a mathematical achievement. In either case, it was not a mere corollary of the

mathematical formalism used for the representation of the empirical phenomenon.

In summary, some mathematical bridges will be evident to the scientists working on the

problem. Others might not be known to the scientists in question. They might have to consult

their friendly neighborhood mathematician for suggestions. The mathematical contribution of

Stanislav Smirnov, a Field medalist and a co-author of Manukyan et al. (2017), to the group of

biologists is a clear example. He put insights about the dual relation between Voronoi diagrams

and Delaunay triangulations on the table and so made possible the explanation of how and why

the two representations (one in terms of differential equations and the other in terms of cellular

automata) link. There is also the possibility that there is no bridge known to anyone. The

bridge has yet to be discovered or invented. This was von Neumann’s case. He had to come up

with a new piece of mathematics to explain why and how two very different mathematical

representations of quantum phenomena show empirically-significant, mathematical

equivalence.
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5 Conclusion

In this paper, I have identified a distinct role for mathematics in scientific explanations, the

bridging role, which has not been fully appreciated in the literature. This role illustrates how

mathematics acts as a reliable connecting scheme in our explanatory reasoning about different

representations of an empirical phenomenon. Different kinds of mathematical bridges are

possible. A bridge might connect different levels of empirical phenomena (as in the biological

case) or it might establish the equivalence of phenomena (as in the quantum mechanics case).

Still others might be possible.

Moreover, I have discussed that this bridging role differs from both the genuinely

constraining-explanatory role and the representational role. By providing two relevant case

studies from mathematical biology and physics, I have argued how this role is not a trivial

extension of Bueno and Colyvan’s (2011) and Bueno and French’s (2018) framework for the

applicability of mathematics to empirical phenomena. I have shown that adding a bridge

principle as an explanans provides sufficient conditions for making some approximations

possible. Accordingly, I have proposed revised schema that captures some instances of

scientific practice more accurately, and helps us to better understand the full spectrum of

activities that constitute applied mathematics.

Once alerted to examples of mathematical bridges and to examples where they might fail,

we will likely find lots more. For instance, the equivalence of Lagrangian and Hamiltonian

mechanics comes to mind. Interesting questions will arise such as: How are they related? Are

they really equivalent? If so, what kind of roles mathematics play in establishing this

equivalence? If not, as North (2009) and Curiel (2013) argue, what weaker relation is at work

between the two mathematical representations? Perhaps, equivalence is a strong kind of
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relation and other kinds of relations worth analyzing. And some of these questions might only

be answered following considerable historical investigation. It could be that the idea of

mathematical bridges will open up a large and important new field for philosophical

investigation.

Acknowledgements. I am very grateful to James Robert Brown, Laura Franklin-Hall, Franz

Huber, Nicolas Fillion, Neil Dewar, Mario Günther, and three anonymous reviewers for very

helpful feedback on earlier drafts of this paper. I also thank audiences at Canadian Society for

the History and Philosophy of Science in Vancouver and the British Society for the Philosophy

of Science in Durham for valuable discussions and suggestions.

References

Batterman, R. W. (2009). “On the Explanatory Role of Mathematics in Empirical Science”.

The British Journal for the Philosophy of Science 61(1), 1–25.

Bigelow, J. (1988). The Reality of Numbers: A Physicalist’s Philosophy of Mathematics.

Oxford: Clarendon Press.

Born, M., W. Heisenberg, and P. Jordan (1926). “Zur Quantenmechanik II”. Zeitschrift für

Physik 35(8-9), 557–615.

Bueno, O. and M. Colyvan (2011). “An Inferential Conception of the Application of

Mathematics”. Noûs 45(2), 345–74.
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Quantenmechanik zu der Meinem”. Annalen der Physik 384(8), 734–756.

Stewart, J. (2008). Calculus: Early Transcendentals (6 ed.). Belmont: Thomson Learning.

Toffoli, T. (1984). “Cellular Automata as an Alternative to (Rrather than an Approximation of)

Differential Equations in Modeling Physics”. Physica D: Nonlinear Phenomena 10(1-2),

117–27.

Turing, A. M. (1952). “The Chemical Basis of Morphogenesis”. Bulletin of mathematical

biology 52(1-2), 153–197.

Von Neumann, J. (1951). The General and Logical Theory of Automata. In Cerebral

Mechanisms in Behavior: The Hixon Symposium, pp. 1–41. New York: John Wiley & Sons.

Von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics: New Edition.

Princeton, NJ: Princeton University Press.

Wolfram, S. (1984). “Cellular Automata as Models of Complexity”. Nature 311(5985),

419–424.

33


