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Abstract

According to orthodoxy, there are two basic moods of supposition: indicative and subjunctive. The most

popular formalisations of the corresponding norms of suppositional judgement are given by Bayesian condi-

tionalisation and Lewisian imaging, respectively. It is well known that Bayesian conditionalisation can be

generalised (via Jeffrey conditionalisation) to provide a model for the norms of partial indicative supposition.

This raises the question of whether imaging can likewise be generalised to model the norms of ‘partial sub-

junctive supposition’. The present article casts doubt on whether the most natural generalisations of imaging

are able to provide a plausible account of the norms of partial subjunctive supposition.

1 Introduction

According to orthodoxy, there are two basic moods of supposition: indicative and subjunctive. They are

typically characterised roughly as follows.

Indicative Supposition: When a rational agent A supposes the truth of a proposition p in the indicative

mood, they revise their epistemic state in exactly the way they would if they were to learn the truth of

p.

Subjunctive Supposition: When a rational agent A supposes the truth of a proposition p in the subjunctive

mood, they revise their epistemic state in exactly the way they would if they were to learn that p had

been made true by some ‘local miracle’ or ‘ideal intervention’.

When Alice supposes that the barometer reading is low in the indicative mood, she revises her epistemic

state just as she would if she were to learn that the barometer reading is in fact low. Since seeing a low

barometer reading would lead Alice to believe that a storm is imminent, Alice comes to believe that there will

be a storm after indicatively supposing that the barometer reading is low. In contrast, when Alice supposes

that the barometer reading is low in the subjunctive mood, she revises her epistemic state just as she would if

she were to learn that the barometer reading had been made to be low by some local miracle.1 Clearly, this will

not lead Alice to believe that a storm is imminent, since the barometer has been tampered with and is therefore

no longer indicative of future weather. However, if Alice were to subjunctively suppose that the atmospheric

1For example, that God had reached down to set the barometer reading by hand.
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pressure is low, that would lead her to believe that there will be a storm, since atmospheric pressure causally

influences the weather, regardless of how the atmospheric pressure has reached its actual value.

In Bayesian epistemology, the norms of indicative and subjunctive supposition are typically modelled by

means of Bayesian conditionalisation and (variations of) Lewis’s (1976) imaging rule, respectively.2 In the

indicative case, the motivation for positing conditionalisation as the primary norm of suppositional judgement

is straightforward. Since the rationality norms for indicative supposition are phrased in terms of learning

dynamics, and Bayesianism posits conditionalisation as the unique rational learning rule, Bayesians are com-

pelled to posit conditionalisation as the fundamental norm of indicative supposition. The subjunctive case is

less straightforward, and there has been substantial debate regarding the correct Bayesian formalisation of the

norms of subjunctive supposition (see e.g. Lewis (1981) and Joyce (2008)). But most authors endorse some

variation of Lewis’s (1976) probabilistic imaging rule.

One challenge for advocates of specific normative models of suppositional judgement is to show how those

models can be generalised to give an account of the norms of partial supposition. To illustrate, note that the

process of standard suppositional reasoning is intuitively characterised by the following three step procedure.

1: The agent temporarily treats the supposed proposition p as certain knowledge.

2: The agent makes some suitable adjustments to their epistemic state, in order to coherently integrate the

new supposition.

3: The agent deliberates/infers/plans/decides/evaluates on the basis of their newly adjusted post-

supposition epistemic state.

The difference between indicative and subjunctive supposition can be characterised as a difference in the

second step of the process – where the agent needs to adjust their epistemic state in order to coherently in-

tegrate the new supposition. When Alice indicatively supposes that the barometer reading is low she adjusts

her epistemic judgements differently to when she makes the same supposition in the subjunctive mood. The

difference between partial supposition and standard (full) supposition is a difference in the first step. Whereas

instances of full supposition involve the agent temporarily treating the supposed proposition as certain knowl-

edge (as in 1), instances of partial supposition involve the agent temporarily treating the supposed proposition

as having an increased degree of plausibility. So when Alice partially supposes that the barometer reading is

low, she does not temporarily treat the low reading as certainly true, but only as being more probable than she

actually judges it to be. She then makes some suitable adjustments to ensure that this change to her epistemic

judgements is integrated in a coherent state, and then goes on to use the newly adjusted state in her future

deliberations.

As it turns out, the Bayesian model of indicative supposition already has a well known and widely em-

ployed generalisation that can be used to model the norms of partial indicative supposition, namely Jeffrey

conditionalisation.

2We focus here on quantitive, credence based normative theories of supposition. For an overview of the relationship between
these quantitative models and extant qualitative models articulated in terms of categorical belief change, see Eva, Shear and Fitelson
(forthcoming).
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Full Indicative (Conditionalisation) Partial Indicative (Jeffrey Conditionalisation)

Full Subjunctive (Imaging) Partial Subjunctive (?)

Figure 1: Theories of full and partial supposition.

Jeffrey Conditionalisation (JC): When an agent partially indicatively supposes a proposition p in the

sense of temporarily increasing their credence in p to some new value x, they should adjust their epistemic

state by Jeffrey conditionalising to set p’s post supposition credence to x, i.e they should adopt the post

supposition credence function c∗ defined below, where c denotes the agent’s prior credence function

c∗(−) = c(−|p) · x+ c(−|¬p) · (1− x).

JC provides a natural generalisation of the standard Bayesian model of indicative supposition, and is widely

accepted as the most plausible existing model of the norms of partial indicative supposition. But what of partial

subjunctive supposition? Surprisingly, the literature appears to lack any prospective normative model of partial

subjunctive supposition whatsoever.3 However, there is a natural way that one might try to fill in the empty

cell of the table in Figure 1 corresponding to the normative theory of partial subjunctive supposition, namely

Jeffrey Imaging (JI): When an agent partially subjunctively supposes a proposition p in the sense of

temporarily increasing their credence in p to some new value x, they should adjust their epistemic state by

Jeffrey imaging to set p’s post supposition credence to x, i.e they should adopt the post supposition credence

function c∗ defined below, where c denotes the agent’s prior credence function and cp denotes the result of

imaging c on p.

c∗(−) = cp(−) · x+ c¬p(−) · (1− x)

Before evaluating the extent to which JI provides a satisfactory explication of the norms of partial sub-

junctive supposition, it is worth pausing to consider what role the notion of partial subjunctive supposition is

supposed to play in our understanding of rational inference and decision making. In chapter 11 of The Logic

of Decision, Richard Jeffrey considers the problem of generalising his theory of rational decision making to

deal with cases in which intending (or deciding) to do some action x does not guarantee that x is actually per-

formed.4 Standard theories of rational decision making (including Jeffrey’s) evaluate the rationality of deciding

to x by calculating expected utility under the full supposition that x is successfully performed with certainty.

In evidential decision theories (like Jeffrey’s), this supposition is indicative. In causal decision theories, it is

3The Jeffrey imaging rule described below has appeared in the literature (see e.g. Crestani (1998) and Günther (2018)), but not
in the context of discussions surrounding the norms of suppositional reasoning.

4By way of illustration, I might decide to play football on Sunday, whilst readily acknowledging that any number of factors (bad
weather, illness etc) could prevent this decision from being actualised. For more discussion of cases like these and their significance
for theories of rational decision making, see e.g. Bratman (1987, 2009) and Stern (forthcoming).
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subjunctive. Jeffrey proposes that we can generalise standard decision theory to deal with cases where intend-

ing/deciding to x does not guarantee the successful performance of x by calculating expected utility under the

partial supposition that x is successfully performed with some non maximal probability. Since his decision

theory is evidential and the relevant species of supposition is therefore indicative, he uses JC to model this

formally. But causal decision theorists will find this unsatisfactory for the same reasons that they disapprove

of standard versions of evidential decision theory: namely that it renders non-causal correlations between acts

(or intentions to act) and outcomes relevant to an agent’s deliberations. Just as causal decision theorists think

that we should evaluate the decision to x by calculating expected utility under the full subjunctive supposition

that x is performed in the standard setting where deciding to x guarantees the performance of x, they will pre-

sumably also think that we should evaluate the decision to x by calculating expected utility under the partial

subjunctive supposition that x is performed in the generalised setting where deciding to x does not guarantee

the performance of x. So if causal decision theorists want to generalise their decision theories to allow for the

evaluation of intentions whose fulfilment isn’t guaranteed in something like the way proposed by Jeffrey, then

it seems that they will first need to properly explicate the notion of partial subjunctive supposition. The most

obvious way to do this is via JI.

The intuitive motivation for JI is that it stands in the same relation to standard imaging that JC does to

standard conditionalisation. So assuming that the relationship between the norms of partial and full supposition

is the same on both the indicative and subjunctive side, and that we are happy to accept JC as a normative

model of partial indicative supposition, we can conclude that JI provides a compelling normative model of

partial subjunctive supposition. The basic aim of this paper, though, will be to cast doubt on whether JI is

capable of providing a plausible account of the norms of partial subjunctive supposition. Our starting point

will be the following criterion for theories of (indicative or subjunctive) partial supposition:

Monotonicity Condition (MC): If p ` q then partially supposing the truth of p (in the indicative or

subjunctive moods) should never lead one to decrease one’s credence in q.

The basic intuition behind MC is simple. If q is a logical consequence of p, then p constitutes a perfect

guarantee of q’s truth. So whenever I temporarily treat p as certain knowledge (as in full supposition) or

increase my credence in p (as in partial supposition), this should not lead me to decrease my credence in

q. Otherwise, I would have increased my credence in a perfect guarantee of q’s truth whilst decreasing my

credence in q itself. In slogan form: it’s impossible to truly suppose p (either fully or partially) without also

supposing (either fully or partially) p’s logical consequences. It seems to us that this criterion is intuitively

compelling for both subjunctive and indicative supposition. For example, in the generalised decision theoretic

setting described above, agents evaluate potential decisions by calculating expected utility under the partial

supposition that they perform the act to which the relevant decision corresponds. This makes sense because

while deciding to act may not render the action certain, it certainly does not decrease the probability of its

performance, and typically raises it. Likewise, deciding to act surely does not render the logical consequences

of the relevant action less probable than they previously were. If I decide to play football, that both makes it
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more likely that I play football, and more likely that I either play football or basketball. This is exactly what

is guaranteed by MC, in the case where we (following Jeffrey) use partial supposition to evaluate decisions

in settings where deciding to act does not guarantee that the act if performed. If MC were violated, then in

the course of evaluating a potential decision, we would use a probability distribution that treated the logical

consequences of the relevant action as being less likely than we currently judge them to be, which seems

implausible.

It is well known that that MC is satisfied by JC in full generality (see e.g. Eva and Hartmann (2018)),5

and hence that MC makes no problems for partial indicative supposition. In the next section, we’ll show that

MC is systematically violated by JI, under all extant variations of the imaging rule, and hence that JI does not

seem to adequately encode the norms of partial subjunctive supposition. One immediate corollary is that the

relationship between the norms of full and partial subjunctive supposition seems to be fundamentally different

to the relationship between the norms of full and partial indicative supposition.

2 JI and MC

We begin by recalling Lewis’s definition of the standard imaging rule, which is widely employed as a

normative Bayesian model of full subjunctive supposition (see e.g. Lewis (1981) and Joyce (2008)). W will

denote the set of possible worlds, and Wp will denote the subset of W that satisfies p (for any sentence p).

For any sentence p and any world w, σ(p, w) denotes the ‘closest’ possible world to w at which p holds. For

now, we assume that (i) σ(p, w) picks out a single closest p-world, for each w, and (ii) σ(p, w) = w whenever

w |= p.6 Lewis defines the result of ‘imaging’ a prior credence function c on p as follows,

cp(w) =


c(w) +

∑
w′∈W¬p|w=σ(p,w′)

c(w′), if w ∈Wp

0, if w ∈W¬p.

The idea is that, when we subjunctively suppose p, we should adjust our credences by transferring the

probability of each ¬p -world to the closest p -world. We can now combine the above definition of the standard

imaging rule with JI to check whether the resulting model of partial subjunctive supposition satisfies the MC

criterion forwarded in the previous section.

Proposition 1 JI does not generally satisfy MC.

The proof of Proposition 1 demonstrates that Jeffrey imaging to increase the probability of a conjunction

5Important technical clarification: Jeffrey conditionalizing to increase the probability of p relative to the partition {p,¬p} always
leads to an increase in the probability of p’s logical consequences. This corresponds to the case in which the content of the partial
supposition is only to regard p as more likely than previously, which is the case we’re focusing on here. Jeffrey conditionalizing to
increase the probability of p can lead to a decrease in the probability of p’s logical consequences if one also updates the distribution
of probability over subregions of the ¬p cell of the partition, in which case the content of the partial supposition is not exhausted by
p.

6Assumption (ii) is often referred to as ‘strong centering’. It encodes the idea that each world is uniquely closest to itself.

5



p∧ q can lead to a decrease in the probability of one of the conjuncts. To illustrate the reason for this, suppose

that the set of worlds W is given by w1 |= p, q, w2 |= p,¬q, w3 |= ¬p, q, w4 |= ¬p,¬q. Then any of the

three possible choices of σ(¬(p ∧ q), w1) can lead to MC violations when we use JI to increase the probability

of p ∧ q. One might hope to escape the problem by relaxing our initial requirement that there is always a

unique closest world for every proposition/world pair, i.e. to allow σ(¬(p ∧ q), w1) to be a set of equally

closest worlds. Gärdenfors (1982) generalised Lewis’s original imaging rule in exactly this way. Specifically,

the technique of ‘general imaging’ is defined as follows (where it is assumed that σ(w, p) = {w} whenever

w |= p). For every w, p, define a corresponding ‘transfer function’ Tw,p : σ(w, p)→ [0, 1] with the property that∑
w′∈σ(w,p) Tw,p(w

′) = 1. Intuitively, the transfer function describes how much of w’s prior probability will be

shifted to each of the (possibly many) closest p worlds when one images on p. Then, we can set

cp(w) =


c(w) +

∑
w′∈W¬p|w∈σ(p,w′)

c(w′)Tp,w′(w), if w |= p

0, if w |= ¬p.

This definition avoids the problem of having to choose a single world to represent σ(¬(p∧ q), w1), and it is

natural to conjecture that setting σ(¬(p∧ q), w1) = {w2, w3} (for instance) may allow us to ensure that MC is

satisfied when we plug the above definition of ‘general imaging’ into JI. This hope is misplaced.

Theorem 1 There is no general imaging rule that allows for the satisfaction of MC by JI – i.e. however we

specify the transfer function in general imaging, it is possible for JI to violate MC.

There is one last possible escape route for the advocate of JI. Namely, to make the transfer function itself

a function of the prior distribution, so that how one distributes post-imaging probability amongst the closest

worlds depends on the prior probability of those worlds. This will block the route to the counterexamples used

in the proof of Theorem 1. As it happens, Joyce (2010) proposes a variant of imaging, called ‘proportional

imaging’, which makes the transfer function dependent on the prior distribution. Specifically, proportional

imaging is the general imaging rule that one obtains by setting

Tp,w =
c(w′)∑

w′′∈σ(p,w)

c(w′′)
,

i.e. proportional imaging sets the share of probability that gets transferred from w to w′ (after imaging on

p) to be equal with the proportion of the prior probability mass distributed over the worlds in σ(p, w) that is

stored at w′.

Theorem 2 Assuming proportional imaging, JI doest not satisfy MC.

So whichever of the extant variations of imaging one adopts as a normative model of full subjunctive

supposition, the corresponding model of partial subjunctive supposition induced by JI will end up violating

MC in some circumstances. So we are forced to choose between JI and MC as norms for partial subjunctive
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supposition. They can’t both be right. Given that many authors accept imaging as a normative model of

full subjunctive supposition, and that JI is the most natural partial generalisation of imaging, some may be

tempted to reevaluate the intuitive normative status of MC. But whichever horn of the dilemma one embraces,

it is now clear that the norms of partial subjunctive supposition must differ from their indicative counterparts

in unexpected ways. Taxonomising and understanding these differences strikes us as a pressing philosophical

project that remains largely untouched.
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A Appendix: Proofs

A.1 Proposition 1

We show that Jeffrey imaging to increase the probability of a conjunction can lead the probability of the

conjuncts to decrease. Let W = {w1, w2, w3, w4} where w1 |= p, q, w2 |= p,¬q, w3 |= ¬p, q, w4 |= ¬p,¬q.

Suppose we partially subjunctively suppose the truth of p ∧ q and model our post supposition credences via

JI. It is clear that σ(p ∧ q, w2) = σ(p ∧ q, w3) = σ(p ∧ q, w4) = w1 (since Wp∧q = {w1}). However, there are

two possibilities for σ(¬(p ∧ q), w1), since both w2 and w3 satisfy ¬(p ∧ q), and they both differ from w1 by

one truth value (with respect to the atomic propositions p and q). Now, suppose we choose the case where

σ(¬(p ∧ q), w1) = w2. In this case (setting α = c∗(p ∧ q)− c(p ∧ q)), we have that

c∗(q) = c∗(w1) + c∗(w3)

= cp∧q(w1) c∗(p ∧ q) + c¬(p∧q)(w3) c∗(¬(p ∧ q))

= c∗(p ∧ q) + c¬(p∧q)(w3) c∗(¬(p ∧ q))

= c∗(p ∧ q) + c(w3) c∗(¬(p ∧ q)) (since σ(¬Γ, w1) = w2)

= c(w1) + α+ c(w3) (1− c(w1)− α)

= c(w1) + α+ c(w3)− c(w1) c(w3)− α c(w3).

So, since c(q) = c(w1) + c(w3), we know that

c∗(q)− c(q) = α− c(w1) c(w3)− α c(w3),

which is clearly negative for large values of c(w3) and small values of α.
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A.2 Theorem 1

Again, we use the same set W as before and let σ(¬(p ∧ q), w1) = {w2, w3} . First off, we let c1 := c(w1),

c3 := c(w3), α := c∗(p ∧ q) − c(p ∧ q) = c∗(p ∧ q) − c1 (we know this is positive, by the assumption that

c∗(p∧q) ≥ c(p∧q)), β := c¬(p∧q)(w3)−c3 (again, we know this is positive, by the definition of imaging). Then,

c∗(q)− c(q) = c∗(w1) + c∗(w3)− c1 − c3

= c(p∧q)(w1) c∗(p ∧ q) + c¬(p∧q)(w3) c∗(¬(p ∧ q))− c1 − c3

= c∗(p ∧ q) + c¬(p∧q)(w3) c∗(¬(p ∧ q))− c1 − c3

= c1 + α+ (c3 + β) (1− c1 − α)− c1 − c3

= α+ c3 − c1 c3 − αc3 + β − β c1 − αβ − c3

= α (1− c3) + β (1− c1)− αβ − c1 c3.

Let’s define the function

f(α, β, c1, c3) := α (1− c3) + β (1− c1)− αβ − c1 c3 .

Now, clearly, this function is decreasing in c1 and c3, so to minimise f , let’s set c1 + c3 = 1. Then, we have

f(α, β, c1, c3) = f(α, β, c1, 1− c1)

= α (1− (1− c1)) + β (1− c1)− αβ − c1 (1− c1)

= α c1 + β − β c1 − αβ − c1 + c21

= (β − c1) · (1− α− c1).

The term on the right is always non-negative, since α + c1 ≤ 1 (by definition of α). But the term on the left

will always be negative except for the case in which c1 = β (we know that β ≤ c1 always holds by definition of

β). So the only case in which the probability of q doesn’t decrease here is where c1 = β, i.e. where we transfer

all of w1’s probability to w3. For any other alternative choice of transfer function, we can find values for c1,

c3, α that violate MC.

A.3 Theorem 2

Let W = {w1, w2, w3, w4} and let σ(¬({w1}), w1) = {w2, w4}, and let c(w1) = 0.3, c(w2) = 0.08,

c(w3) = 0.22 and c(w4) = 0.4. Suppose that c∗(w1) = 0.35 (c∗ comes from c by Jeffrey imaging to in-

crease the probability of w1 from 0.3 to 0.35). The result of proportional imaging c on ¬({w1}) is as

follows: c¬({w1})(w1) = 0, c¬({w1})(w2) = 0.13, c¬({w1})(w3) = 0.22, and c¬({w1})(w4) = 0.65. Hence

c∗(w2) = 0.65 · 0.13 = 0.0845, c∗(w3) = 0.65 · 0.22 = 0.143, and c∗(w4) = 0.65 · 0.65 = 0.4225. So
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c∗(¬{w4}) = c∗(w1) + c∗(w2) + c∗(w3) = 0.5775 < c(¬{w4}). Since w1 ` ¬{w4}, this constitutes a viola-

tion of MC.
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