Reeh-Schlieder, space-time foam, and the
implications for neuroscience

Gordon McCabe
September 7, 2020

Abstract

The purpose of this paper is to explore the relationship between rela-
tivistic quantum field theory, the concept of space-time foam, cosmological
models which support the existence of Boltzmann brains, and the neuro-
scientific understanding of brain-states as critical-point phenomena.

1 Introduction

In the past 50 years, theoretical physicists have proposed an extravagant variety
of metaphysical worldviews: many believe that the world is continually branch-
ing into an uncountable infinity of parallel universes; others are convinced that
there are six ‘hidden’ spatial dimensions; whilst another sect contends that the
universe is a hologram, three-dimensional space recast as merely an illusion.

In stark contrast with this metaphysical radicalism, physicists have adopted
a conservative approach to the nature of the mind, and the relevance of physics
thereto: “A commonly held view is that consciousness is irrelevant to physics
and should therefore not be discussed in physics papers. One oft-stated reason
is a perceived lack of rigor in past attempts to link consciousness to physics,”
(Tegmark 2015).

The purpose of this paper is to take physicists at their word, and to use their
metaphysical radicalism to explore the relationship between relativistic quantum
field theory, space-time foam, cosmological models which support the existence
of Boltzmann brains, and the neuroscientific understanding of brain-states as
critical-point phenomena.

To this end, the second section of the paper provides a concise introduction to
algebraic quantum field theory, combined with an account of the Reeh-Schlieder
theorem and its interpretation. The third section begins with a discussion of
the Boltzmann brain hypothesis, and the cosmological conditions for the oc-
currence of replica brains. This leads to an analysis of space-time foam and
the holographic conjecture, and the implication of these concepts for the spatial
relationship between such replica brains. The fourth section considers critical-
point phenomena and their relevance to neuroscience. The fifth section details



the relationship between criticality and the brain’s different ‘vigilance’ states,
and expounds the resonant properties of neurons and neural networks.

2 Reeh-Schlieder

The Reeh-Schlieder theorem is part of Algebraic Quantum Field Theory
(AQFT). This is an axiomatic approach to the representation of relativistic
quantum field systems, which is more general than conventional Fock-space
quantum field theory.! Moreover, the Reeh-Schlieder theorem implies the ex-
istence of a type of entanglement which is far more generic and robust than
that considered in non-relativistic quantum mechanics or quantum information
theory.

In quantum field theory, the classical fields, such as the electric field or mag-
netic field, are replaced with field operators. Field systems possess an infinite
number of degrees of freedom, and for such systems the Canonical Commuta-
tion Relations, (which must be satisfied by the field operators), have an infinite
number of inequivalent Hilbert space representations. Conventional Fock space,
used to calculate the scattering amplitudes and cross-sections of particle physics,
is just one of these representations.

Whilst the classical fields, (which might be scalar fields, vector fields, tensor
fields or spinor fields), assign an object to each point of space-time, the quantum
field operators ®( f) are assigned to so-called ‘test-functions’ f, with support in
open subsets of space or space-time. In the case of a canonical quantization, one
starts with the symplectic space S of solutions to the classical field equations
(or equivalently, the space of Cauchy data to those equations), and the test-
functions are drawn from a complexified version of this space. Specifically, the
real symplectic vector space S is augmented into a complex Hilbert space ),
which becomes the 1-particle space of the quantum field theory.

Algebraic quantum field theory takes the unbounded field operators ®(f)
associated with each open subset & of space or space-time, and reduces these by
assigning instead a C*-algebra <7 (&) of bounded operators to each ¢.2 Taking
the closure of the union of the local algebras o/ (&) obtains a quasi-local algebra
o

Now, an abstract C*-algebra can be homomorphically mapped into a con-
crete set of bounded operators %B(°) acting on a Hilbert-space 5. Such a
mapping 7 : & — B(H) is dubbed a ‘representation’.

Given a representation 7 of the quasi-local algebra <7, the unbounded opera-
tors representing total energy-momentum, particle number, angular momentum
and electric charge, are affiliated to the von Neumann algebra # = 7 («)”,

IDavid Wallace pointed out in 2010 that “Despite forty years of work...the only known
physically realistic algebraic quantum field theories in four dimensions are free-field theories.”
Given that another decade has passed without progress in this respect, perhaps AQFT should
be thought of as physics’ answer to Gaudi’s Sagraga Familia.

2A C*-algebra is a normed algebra, equipped with an involution operation, which is closed
in the norm topology, and a complete metric space with respect to the metric induced by the
norm.



obtained from 7 (&) by taking the bicommutant. i.e., the commutant 7 ()’ is
the set of all operators in Z(.#°) which commute with all the elements of 7 (<),
and the bicommutant is the commutant of this.

A von Neumann algebra # is a useful structure to work with because, unlike
a mere C*-algebra, its projection operators are guaranteed to form an ortho-
complete lattice. In other words, for every countable family {P;} of mutually
orthogonal projection operators, the sum ), P; exists in #'.

The unbounded operators representing global physical quantities such as
energy-momentum, are affiliated to # = w(«7)” in the sense that their spectral
projection operators belong to #'. # is dubbed a global algebra.

A representation m of the quasi-local algebra ./ duly induces sub-
representations 7, of all the sub-algebras .7 (&). Hence, von Neumann sub-
algebras m5(27/(0))" can be associated with each bounded open subset.

In short, AQFT associates algebras with every bounded region, and aggre-
gates them into an algebra associated with the entire space-time; representations
of this algebra induce representations of all the sub-algebras. Moreover, there is
a special representation of the global algebra induced by the vacuum state 2 for
inertial observers in Minkowski space-time. This pure state on the global alge-
bra, when restricted to each sub-algebra, reduces to a mixed-state. Specifically,
it induces a thermal equilibrium (‘KMS’) state, with respect to a one-parameter
family of automorphisms of the local algebra.

Of particular interest is the fact that spacelike-separated subalgebras com-
mute. Thus, for any pair of open subsets in space (or space-time), &; and Os,
let o) and % denote the local algebras. If &) and &5 are spacelike separated.
(i-e., so that no causal signal can connect them), then the elements of 27 all
commute with the elements of 7.

Now for the Reeh-Schlieder theorem. There are effectively two versions of
the theorem: an ‘Active’ version, and a ‘Passive’ version. Let’s begin with the
active version.

Assume we’re operating with a fixed representation of the space-time algebra
on a Hilbert space ¢, determined by the privileged vacuum state €2, so that
&/ (0) now denotes a concrete algebra of bounded operators. For any vector-
state U € 2 of bounded energy® on the global algebra, (including the vacuum
state), no matter how small the region of space (or space-time) &, the set of
states &7 (0)¥ generated by the action of the algebra is dense in the entire
Hilbert state-space 2. VU is said to be a ‘cyclic’ vector.

Some of the elements of &/ (&) are so-called Kraus operators, representing
empirical operations which can be performed in the region &. Moreover, for
any other region &” spacelike separated from ¢, there are Hilbert-space states
in # which are localized in ¢’. (This means that the expectation values they
generate only differ from those generated by the vacuum state in the region ¢”).
Hence, the cyclicity of ¥ seems to imply that actions performed in & can change

3This is a more stringent requirement than stipulating that the expectation value of the
energy is finite. Rather, this requirement forbids a probability distribution over energy values
with an infinitely long tail; there must instead be a finite upper-limit on the range of energy
values assigned a non-zero probability.



the state in other regions of space which haven’t interacted with &, and which
have no overlapping causal past with ¢. This, then, is the ‘Active’ version of
the Reeh-Schlieder theorem.

The ‘Passive’ version is as follows: For any pair of spacelike separated
bounded regions, &7 and 05, and for any global state ¥ of bounded energy,
(including the vacuum state), there is at least one Ay € 4 and at least one
As € a5, such that:

(0|4, A W) # (U] A T) (T[4, )

This failure of factorisation in the expectation value (¥|A; Ao W) of the prod-
uct A; As entails that there are non-classical correlations between separated re-
gions of space, even if those regions haven’t interacted, and even if they don’t
share overlapping causal pasts.

The failure of factorisation is exemplified by the ‘Weyl operators’, W (f) =
eli®(f)) | the exponentiated versions of the field operators. Suppose @ and &
are space-like separated subsets in space, suppose that f € §) has support in &,
and suppose that g € $) has support in . The inner product on the 1-particle
space of a massive scalar field contains an ‘anti-local’ operator, associated with
the complex structure J used to turn the real symplectic space S into the
complex 1-particle Hilbert space §, (Halvorson 2001). As a consequence, f
and ¢ are not orthogonal, i.e. (f,g) # 0, and the vacuum state £ is not a
product state across & and %:

QW ()W (9)Q) = (QW (£)Q) (Q|W (g)Q)el"Relf9)/2)

There is a more general version of this, often dubbed ‘cluster decomposition’.
It begins with the translation covariance of the local algebras: for space-time
translations a, there are unitary operators U(a) such that:

U(a)e/(6)U(a)~ = /(6 +a) .

This result enables us to map the elements W (f) of one bounded local algebra
into the elements U(a)W (f)U(a)~! of other algebras.

Specialising to the case where a is a spacelike vector, cluster decomposi-
tion entails that the strength of the Reeh-Schlieder correlation diminishes with
increasing space-like separation |a|:

Tim (W (U @W (U (2)™0) = (@IW (1)) @U@W(£)U(@)'2) =0.

Cluster decomposition concisely explains why localised subsystems can be
defined and identified in physical science, even though the Reeh-Schlieder the-
orem entails that everything is correlated.

Another way of quantifying the degree of entanglement between regions of
space or spacetime, is by using the Bell correlations. Bell operators B can be
defined in the tensor product algebra & ® @:

1
B:i[X1®(Y1+Y2)+X2®(Y1—Y2)]7



where X; € @, Y; € o, and the norm of X; and Y; are less than or equal to
1. The Bell correlation between the space-like separated subsets ¢; and 05 in
the state w is defined to be:

Blw, Oy, 05) = sgp |w(B)] .

The Bell inequalities require that S(w, 01, 05) < 1, so the Bell inequalities are
violated when B(w, &y, 05) > 1. The maximal violation occurs for the case
where f(w, 01, 05) = /2. Maximal violation is realised in the case of two
spacelike-separated ‘double cones’, (i.e., spacetime regions formed by the inter-
section of a future-directed light-cone with a past-directed light-cone), which are
mutually tangent. If there is a non-zero spacelike separation between ¢; and
O, then the violation of the Bell inequalities is less than maximal (Summers
2011).

Expressing the distance d(07, 03) between the two regions in terms of the
maximum timelike distance & can be translated before it is no longer spacelike
separated from O, the Bell correlations of a mass m field decline as follows:

B, 61, Oy) < 14 2e7 ™ U0102)

for the vacuum state Q.* Summers concludes from this that:

“If d(01, O5) is much larger than a few Compton wavelengths of the lightest
particle in the theory, then any violation of Bell’s inequality in the vacuum
would be too small to be observed,” (ibid.).

In terms of applying these results in a cosmological setting, Wald acknowl-
edges that “the Reeh-Schlieder theorem has been proven only in the context of
flat spacetime quantum field theory, although some generalizations to curved
spacetime have been given,...so, at the very least, in linear field theory cor-
relations over spacelike separations similar to those occurring in flat spacetime
case always must be present. Indeed, the strength and generality of the Reeh-
Schlieder theorem in flat spacetime is such that it seems inconceivable that
similar correlations could fail to be present for essentially all states and over es-
sentially all regions in any curved spacetime, including cosmological spacetimes
with horizons,” (Wald 1992, p220).5

To conclude this brief exposition of the Reeh-Schlieder theorem, it might
be helpful to recall some of the distinctions between entanglement in non-
relativistic quantum mechanics/quantum-information theory, and the more rad-
ical type of entanglement defined here.®

The simplest type of system used to introduce entanglement in non-
relativistic quantum mechanics and quantum-information theory consists of a
pair of systems, each of which has a two-dimensional complex Hilbert state space
C2. In quantum information theory, this is referred to as a pair of ‘qubits’. In

4In the case of a massless field, the decay is less rapid, being proportional to d(&1, 02) 2.

5There have been some recent attempts to prove the existence of Reeh-Schlieder states on
curved spacetimes. See, for example, Sanders (2009).

6See Clifton and Halvorson (2001) for further details.



typical textbook presentations, the 2-dimensional state spaces are the spin-states
of an electron, or the polarization states of a photon.

In this simple system, the joint Hilbert-space is s# = C? ® C?, the global
algebra is the set of all bounded operators on the Hilbert space, Z = %(C? ®
C?), and the sub-algebras associated with the sub-systems are %, = %(C?) ®
I = 2(C?) and %y = I @ B(C?) = B(C?). These sub-algebras are mutually
commuting, (just like the algebras associated with spacelike separated bounded
regions of space in algebraic quantum field theory).

Some of the states of this simple bi-partite system are entangled, while others
are not. In the latter category, there are numerous pure states w of Z(C? @ C?)
which are product states; i.e., pure states which factorise: w(AB) = w(A)w(B),
for A € %1, B € %5. These product states are not entangled. But there are also
pure states which don’t factorise; these induce mixed states on the sub-algebras
P, and Z5. For example, the well-known ‘singlet’ state, which yields maximal
violation of the Bell inequalities, is a pure state which doesn’t factorise. Such
states are considered to be entangled states.”

In contrast with non-relativistic quantum theory, where some pure states are
entangled and some are not, in relativistic quantum field theory all pure states
of bounded energy on the global algebra fail to be product states on pairs, <%
and o7, of mutually commuting space-like separated sub-algebras, and the Bell
inequalities are necessarily violated. Hence, there is generic rather than selective
entanglement in relativistic quantum field theory.®

Relativistic quantum field theory is the most fundamental, empirically-
verified theory currently known to us, and the only such theory which unifies
quantum theory and relativity. Hence, our most fundamental theory is telling
us that all parts of space, no matter how distant, are correlated to some degree.

These correlations support a hypothesis entertained in the final section of
the paper, but in the next section we turn to consider some patterns in the

macroscopic world which can emerge from such a system of relativistic quantum
fields.

3 Boltzmann brains, space-time foam, and the
holographic conjecture
Boltzmann brains are disembodied brains which form spontaneously, by chance,

in random spatial locations, rather than forming as a consequence of biological
development within a species which has evolved by natural selection on the

7Or, at least, to be entangled relative to the choice of subsystem decomposition. See
Earman (2014) for the ambiguity of entanglement in non-relativistic quantum mechanics.

8From a mathematical perspective, there is a fundamental difference between the alge-
bras of non-relativistic quantum mechanics, and the local algebras of algebraic quantum field
theory: the algebras of the former are Type I factors, (which means that they possess 1-
dimensional projectors), whilst the local algebras /(&) of relativistic quantum field theory
are Type III factors, (which means that all their projectors are onto infinite-dimensional sub-
spaces).



surface of a planet. They are a consequence of statistical mechanics. They
form with the anatomy and neurophysiology of a familiar biological brain, and
possess initial memory states resembling our own, but their stream of experience
is randomly generated in the sensory regions of the cortex, rather than being
stimulated by an external environment.

In the modern cosmology literature, Boltzmann brains are typically pos-
tulated to exist in a universe which exists forever. In a past-finite, but ever-
expanding universe, such as that which we currently believe our universe to be,
Boltzmann brains are postulated to form in the cold, dark, empty expanses of
the remote future. A fairly typical justification for believing in the existence of
Boltzmann brains is provided by Christian Loew (2017):

“A plausible cosmological assumption is that our universe is temporally infi-
nite. Statistical Mechanics predicts that the entropy of our universe is extremely
likely to keep increasing until it reaches a state of thermodynamic equilibrium,
which has maximal entropy. But once it has reached equilibrium, there still
is a non-zero chance that fluctuations from thermodynamic equilibrium into
states of lower entropy will happen. In fact Poincare’s recurrence theorem says
that if our universe is appropriately bounded, then it is extremely likely to
come arbitrarily close to every possible macrostate. So it is extremely likely
that over an infinite amount of time every possible fluctuation into states of
lower entropy will happen, including fluctuations that lead to pianos, solitary
brains (‘Boltzmann brains’), fully-formed persons, and entire galaxies. It might
take billions of years until any particular such fluctuation will occur, but it will
almost certainly occur eventually.”

However, it is seldom acknowledged that Boltzmann brains should also exist
in a spatially infinite universe. One often finds extremely large numbers quoted
for the length of time required for a Boltzmann brain to appear, but this is not
the minimum time, it is the expected time; i.e., the mean time. There will be
a probability distribution over time, with tails on either side of the mean. In a
spatially infinite universe, random processes will sample from this distribution
an infinite number of times throughout space, and Boltzmann brains will form
after arbitrarily short lapses of time. In a spatially infinite universe, an infinite
number of Boltzmann brains exist at all times. In particular, an infinite number
of Boltzmann brains exist right now, in regions spacelike separated from us.

Moreover, in a spatially infinite universe, there will also be an infinite number
of replicas of you, existing as stable biological systems, belonging to species
which have evolved by natural selection on the surface of a planet:

“If space is infinite and the distribution of matter is sufficiently uniform on
large scales, then. .. there are infinitely many other inhabited planets, including
not just one but infinitely many with people with the same appearance, name,
and memories as you,” (Tegmark 2004, p461). As Barrow puts it, “in a universe
of infinite size and material extent, anything that has a non-zero probability of
occurring somewhere must occur infinitely often,” (2011, p245).

Tegmark points out that, “for every copy of you that has evolved and lived a
real life, there are infinitely many delusional disembodied Boltzmann brains who
think that they’ve lived that same real life. . . for every set of false memories that



could pass as having been real, very similar sets of memories with a few random
crazy bits tossed in...are vastly more likely...because there are vastly more
ways of getting things almost right than getting them exactly right,” (2014,
p307). In fact, these ways of getting things almost right, with crazy bits tossed
in, sound not dissimilar to most dream-experiences.

“A crude estimate suggests that the closest identical copy of you is about
~ 101 m away. About ~ 10107 m away, there should be a sphere of radius
100 light years identical to the one centred here, so all perceptions that we have
during the next century will be identical to those of our counterparts over there.
About ~ 1010 m away, there should be an entire Hubble volume identical to
ours,” (ibid., p464).

Tegmark obtains these estimates by counting the number of protons which
are permitted, by the Pauli exclusion principle to occupy a volume of space,
at a temperature less than 10%K. In the case of the last figure, for example,
he estimates that 10''® protons can be packed into a Hubble volume. Each of
these ‘slots’ can be occupied or unoccupied (there are only 10%° protons in our
own Hubble volume), so he infers from this that there are N = 210" ~ 1010""
possible quantum states of a Hubble volume. He then assumes that the expected
distance to the nearest identical Hubble volume will be given by the cube-root,
N1/3 « 1010"*°.

However, the last step in the reasoning here tacitly assumes that the phys-
ical universe possesses the simply-connected topology of three-dimensional Eu-
clidean space R3. If, on the contrary, space is multiply-connected, this assump-
tion cannot be made. The distance between a pair of points in a Riemannian
manifold is defined to be the infimum of the length of all smooth paths be-
tween that pair of points. Hence, if space is permeated by a dense network of
wormbholes, macroscopic or microscopic, then regions which otherwise would be
extremely distant, will actually be extremely close.

There is, in fact, a long-standing conjecture within quantum gravity that,
when inspected on a sufficiently short length-scale, space-time is a fluctuating
multiply connected network of wormholes. This is the notion of a ‘space-time
foam’,? first devised by J.A. Wheeler:

“Because it is the essence of quantum mechanics that all field histories con-
tribute to the probability amplitude, the sum...not only may contain doubly
or multiply connected metrics; it must do so...General relativity, quantized,
leaves no escape from topological complexities,” (1955, p535).

Wheeler’s concept seems to have been inspired by an analogy with the Feyn-
man diagram approach to calculating scattering amplitudes in quantum field
theory. In this approach, one sums over Feynman diagrams with many different
one-dimensional topologies, each interpolating between an initial and final state.

Visser claims that “Wheeler wormholes, deriving their existence from the
assumed vacuum fluctuations taking place in the spacetime foam, are definitely

9Sabine Hossenfelder (2015) complains that “The most abused word in science writing is
‘space-time foam’.” However, apart from being a phrase rather than a word, it seems prema-
ture to award victory to ‘space-time foam’, if only because the entry-list to this particular

competition is more than a little over-subscribed.



Figure 1: Space-time foam. Three topologies are illustrated here, each assigned
a different probability (amplitude). From Thorne (1994).

microscopic in nature. They are typically transient, though by sheer luck might
arise with the topology suitable to be considered quasipermanent,”® (1996,
p92).

Whilst the throat-radius of these microscopic wormholes might be very small,
they are not constrained to join points which are microscopically close to each
other in the classical space-time. In fact, there is no limit to the macroscopic dis-
tance which might be bridged by a quasi-permanent wormhole of much shorter
length.

Kip Thorne considers space-time foam to represent ‘gravitational vacuum
fluctuations’, by analogy with the fluctuations of the electromagnetic vacuum:

“Quantum foam. ..is everywhere: inside black holes, in interstellar space, in
the room where you sit, in your brain. But to see the quantum foam, one would
have to zoom in with a (hypothetical) super-microscope, looking at space and
its contents on smaller and smaller scales. ..

“Since the quantum foam is everywhere, it is tempting to imagine an in-
finitely advanced civilization reaching down into the quantum foam, finding in
it a wormhole,. ..and trying to grab that wormhole and enlarge it to classical

10Visser defines a ‘quasipermanent’ wormhole to be a compact region Q with a non-trivial
topology which can be foliated as R x X. i.e., the wormhole topology remains stable for some
period of time. Compact wormholes which fail to satisfy this condition are dubbed ‘transient’.



size.” (1994, p494-496). In this respect, the multiply connected nature of the
quantum foam was assessed as a speculative method for both time-travel and
distant space-travel.

As well as being omnipresent on the smallest scales as vacuum fluctuations,
space-time foam has been postulated to play a cosmological role as the initial
geometrical state of the universe: “in the past, the Universe went through the
quantum stage when the temperature exceeded the Planckian value and the
fluctuations were strong enough to form a non-trivial topological structure of
space. In other words, on the very early, quantum stage Universe had to have
a foam-like structure. During the cosmological expansion, the Universe cools,
quantum gravity processes stop, and the topological structure of space freezes.
There is no obvious reason why the resulting topology has to be exactly that of
R3 - relics of the quantum stage foam might very well survive, thus creating a
certain distribution of wormholes in space,” (Kirillov and Turaev, 2007, p1).

Kirillov has vigorously argued that the properties of dark matter (DM) can
be explained in terms of the relics of this space-time foam. He claims that there
should be a gas-like distribution of wormholes in a Friedmann-Robertson-Walker
background:

“There are no convincing theoretical arguments of why such a foamed struc-
ture should decay upon the quantum stage - relics of the quantum stage foam
might very well survive the cosmological expansion, thus creating a certain
distribution of wormholes in the Friedman space. Moreover, the inflationary
stage in the past should enormously stretch characteristic scales of the relic
foam. . . parameters of the foam may arbitrary vary in space to produce the ob-
served variety of DM halos in galaxies (e.g., the universal rotation curve for spi-
rals constructed for the foamed Universe perfectly fits observations). Moreover,
the topological origin of DM phenomena means that the DM halos surround-
ing point-like sources appear due to the scattering on topological defects and
if a source radiates, such a halo turns out to be luminous too,” (Kirillov and
Savelova, 2011, p1710-1711).

By virtue of surviving until the period of inflationary expansion, these pri-
mordial wormholes would be stretched to enormous distances. In particular,
they could join replica Hubble volumes containing replica brains.

Kirillov acknowledges that “there remains a strong scepticism in accepting
the existence of actual wormholes. It bases, in the first place, on the fact that
spherical wormholes are highly unstable (they collapse during the characteristic
time ~ R/c, where R is the size of the throat section and c is the speed of light).
Therefore, to be more or less stable (and traversable) they require the presence
of an exotic violating the averaged null energy condition matter. It is possible
to find a source of such matter at Planck scales (e.g., due to the Casimir effect)
but such a matter does not exist at laboratory and astrophysical scales.

“It turns out that the problem of the stability of cosmological wormholes
can be easily solved when we consider less symmetric wormhole configurations.
In this case the presence of an exotic matter is not the necessary condition for
a wormhole to be traversable in both directions and be stable, while the less
symmetry gives rise to the fact that cosmological wormholes have the neck sec-

10



tions in the form of tori or even more complex surfaces,” (Kirillov and Savelova,
2016).

Initial attempts were made to rigorously formulate the concept of space-
time foam in path-integral quantum gravity. As with any sum-over-histories
approach to the dynamics of a quantum theory, the transition amplitude be-
tween an initial state and a final state is calculated by integrating or summing
over all the possible interpolating histories. In path-integral quantum gravity,
each of the space-times integrated over were smooth manifolds. The space-time
topology could be fixed, or a sum over different topologies could be included.
The transition amplitude between an initial spatial configuration (X1,71) and
a final spatial configuration (32,72) was ‘formally’*! written as:

S uM) [ eAMalin gyg).

M

The sum here is understood to be over 4-manifolds M bounded by a disjoint
pair of 3-dimensional geometries (X1,71) and (3o, v2). A is the action associated
to each interpolating space-time history, and v(M) is a weight assigned to each
interpolating 4-manifold. As John L. Friedman remarks, “the path-integral
approach to quantum gravity suggests that the microscopic topology of space-
time, as well as its geometry, will fluctuate because smooth Lorentzian four-
geometries interpolate between space-like three-geometries with different spatial
topologies,” (1991, p540).12

More recently, the concept of a space-time foam has been recast in the Loop
Quantum Gravity programme as a ‘spin foam’. In this approach, one sums over
discrete 2-complexes, consisting of faces, edges and vertices, with a representa-
tion of the Lorentz group SL(2,C) assigned to each face. For each 2-complex,
one sums over all possible combinations of representations assigned to the faces.
Each 2-complex is topologically dual to a 4-dimensional simplicial complex,
hence each 2-complex corresponds to a type of discrete space-time history. One
can fix the space-time topology, or include different topologies in the spin-foam
sum.

The notion of a space-time foam entails that the metric-space structure of
space is radically different from that which our macroscopic experience condi-
tions us into believing it to be. There are wormhole networks connecting all
regions of space-time, irrespective of the apparent macroscopic spatial distance
between them. Moreover, the actual distance between a pair of points is de-
termined by the distance through the wormhole network, (possibly calculated
in terms of the spin foams dual to the triangulated wormhole network). The
length and connectedness of the wormhole network is envisaged to be constantly
fluctuating or interfering. There is no lower limit on the length of the worm-
holes joining an arbitrary pair of points, hence there is no lower limit on the

HThere are problems obtaining a tractable version of this expression, not the least of which
is integration over an infinite-dimensional space of 4-dimensional histories.

12 A topology-changing space-time must, however, be either time non-orientable or contain
closed timelike curves.

11



actual distance between an arbitrary pair of points. The distance might even
momentarily fluctuate to zero, hence the structure of space may be that of a
degenerate metric space.'?

Quite distinct from the notion of a 4-dimensional space-time foam, there is a
conjecture within superstring theory which also holds that space-time is multiply
connected by means of wormholes. This is the so-called ‘ER=EPR’ conjecture!*,
which holds that entangled particles are connected by a non-traversable worm-
hole: “ER=EPR tells us that the immensely complicated network of entangled
subsystems that comprises the universe is also an immensely complicated (and
technically complex) network of Einstein-Rosen bridges,” (Susskind, 2016). If
this conjecture is extended to Reeh-Schlieder correlations, then the ubiquitous
and robust nature of Reeh-Schlieder correlations entails that space-time must
be multiply connected by a dense network of wormholes.

However, it’s important to understand the larger theoretical context within
which the ER=EPR conjecture sits. Recall first that superstring theory repre-
sents the physical universe to be a 10-dimensional space-time. Within super-
string theory, there is a sub-genre of work devoted to the so-called AdS/CFT
correspondence.

The correspondence revolves around one particular 10-dimensional space-
time, AdSs x S°. This is obtained by first taking 5-dimensional anti-de Sitter
space-time, an empty, static space-time of constant negative curvature, equipped
with a negative cosmological constant. As Penrose points out, the conventional
definition of anti-de Sitter space-time yields a manifold of topology S! x R*,
which possesses closed timelike curves, (2016, p113). The universal cover of this
has topology R®. One can take the conformal compactification of each of these.

The conformal boundary of the anti-de Sitter space-time with topology
S x R* is compactified Minkowski space-time (see Penrose 2016, p114). The
conformal boundary of the universal cover anti-de Sitter space-time is confor-
mally equivalent to the Einstein static universe, with topology R x S2. Indeed,
the ‘cylindrical’ topology of the Einstein static universe is the one typically used
in diagrammatic representations of the AdS/CFT correspondence.

This conformal boundary .# is variously dubbed the boundary of AdSs,
or the boundary of AdSs x S°. Penrose emphasises that as a 4-dimensional
space-time, .# cannot be the boundary of a 10-dimensional space-time, (ibid.,
p108-109). Moreover, .Z is the boundary of the conformal compactification of
AdS5, not the boundary of AdSs. Furthermore, the product .# x S® is not the
conformal boundary of AdSs x S°.

Maldacena (1998) conjectured that string theory on the 10-dimensional
space-time AdSs x S, is equivalent to a supersymmetric conformal gauge field

13The multiply connected nature of space-time foam is crucial to a hypothesis proposed
later in this paper. Given that Reeh-Schlieder correlations diminish in an exponential fashion
with distance, to support the hypothesis it will be necessary to assume that space is multiply
connected by means of a dense network of wormholes, with the consequence that identical
copies and Boltzmann brain replicas of each person are separated by only very short distances.

14i e., Einstein-Rosen wormhole = Einstein-Podolsky-Rosen entanglement.
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theory'® on the 4-dimensional boundary, in the sense that there is a one-to-one
mapping between the states of the two theories.'® This is often referred to as a
‘holographic’ duality, on the basis that the five-dimensional interior ‘bulk’ AdSs
can be represented by the state of its 4-dimensional boundary.

However, as Penrose argues (ibid., p1l07), the analogy with real-world holo-
grams is not valid. The optical holograms we’re familiar with don’t represent a
3-dimensional volume with the information on a 2-dimensional surface; rather,
they represent the stereoscopic surface appearance of a 3-dimensional object
with the information on a flat 2-dimensional surface. The 3-dimensional inte-
rior of an object is not represented by a hologram.

Nevertheless, within the AdS/CFT programme, Susskind and Maldacena
subsequently conjectured that entangled black holes in the 4-dimensional bound-
ary ., correspond to non-traversable wormholes in the 5-dimensional bulk
AdSs5. This was then generalized to the conjecture that all entangled systems
in the 4-dimensional boundary are connected by non-traversable wormholes in
the bulk.

Allied to this is the Ryu-Takayanagi formula and associated concepts (see
Jaksland, 2020). Given a spacelike slice 3 of the 4-dimensional boundary .Z,
the Ryu-Takayanagi formula holds that the entanglement entropy between two
disjoint spatial regions B; U By = ¥ is proportional to the minimal area surface
in the bulk whose boundary separates By from Bs. In conjunction with this,
the entanglement between a pair of systems in the 4-dimensional boundary
is inversely proportional to the distance between them in the 5-dimensional
bulk AdSs. (The distance in the bulk is defined in the conventional manner
of differential geometry, i.e., in terms of the infimum of the length of all the
geodesics connecting them). For the algebras o7 and % associated with the
complementary spatial regions By from Bs, the two-point correlations for A; €
& and Ay € 475 are such that:

(TU|A; Ao W) — (| A1 0) (T|ApT) ~ e~™E

where ¥ is a state of the quantum CFT, L is the bulk distance and m is a
constant.

Which is certainly interesting. However, those not socially conditioned by
being a member of the string-theory community might want a bona fide the-
oretic ‘duality’ to be something which pertains to all the models of a theory,
not just one particular space-time. Moreover, the static, empty space-time in
question, equipped with a negative cosmological constant, seems rather alien
to our own Friedmann-Roberston-Walker space-time, replete with mass-energy
and a positive cosmological constant.

Nevertheless, both the concept of space-time foam, and the ER=EPR conjec-
ture, open up the possibility that space-time is multiply connected, from which

I5CFT = Conformal Field Theory.

16Maldacena’s paper has been cited 20,000 times. Nevertheless, at the time of writing,
Gilbert Toyne’s invention of the rotary clothes line in the 1920s still provides a greater con-
tribution to society.
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it follows that spatial regions separated by apparently enormous distances might
not be so distant after all. In a spatially infinite multiply connected universe,
one might not be so far away from one’s own replicas or near-replicas.

But is the universe spatially infinite? There is, first of all, a degree of ambigu-
ity to this question: space-times can often be foliated in many different ways by
a l-parameter family of spacelike hypersurfaces, and these hypersurfaces can be
of infinite volume in one foliation, but of finite volume in another. Aguirre pro-
vides a nice example of this in the case of an inflationary model in which a bubble
of true vacuum (a Coleman-De Luccia, or ‘CDL’ bubble) nucleates by quantum
tunelling from a false vacuum state: “The structure of a CDL bubble. . .looks
entirely different depending upon how spacetime is ‘foliated’ into space and time.
In the foliation outside that gives [the de Sitter metric appropriate to the false
vacuum|, the bubble is finite, non-uniform, and growing; in the foliation that
[represents the interior of the bubble as a Friedmann-Robertson-Walker space-
time with homogeneous spacelike hypersurfaces of constant negative curvature]
it is infinite,” (Aguirre 2008).

However, if there is at least one foliation of a cosmological model in which
the hypersurfaces are (i) homogeneous, and (ii) spatially infinite, then we can
deem the universe represented by such a model to be spatially infinite. The ho-
mogeneity condition supports the Boltzmann brain hypothesis because it entails
that the spatial universe is not just infinite, but randomly infinite. The condi-
tion of exact spatial homogeneity in a cosmological model of general relativity
corresponds to statistical homogeneity in terms of the distribution and motion
of matter in the physical universe. General relativistic cosmology only applies
above a certain length-scale L, so homogeneity means that the distribution and
motion of matter in each spatial volume of size ~ L? is sampled from the same
statistical distribution.

Spatially infinite cosmological models can be found in the class of Friedmann-
Robertson-Walker (FRW) models of ‘big-bang’ cosmology, and within the mod-
els of inflationary cosmology. Tegmark comments that “a spatially infinite uni-
verse is a generic prediction of the cosmological theory of inflation,” (2004,
p462-463). In terms of the FRW models, the spatially infinite cases are typi-
cally associated with the ever-expanding models in which the spatial curvature
k is either zero, k = 0, or negative k < 0. These are the FRW models currently
believed to represent our own universe. This should be qualified, however, by
noting that one can obtain spatially finite models with £ = 0 or k& < 0 by taking
quotient topologies, (Ellis 1971).

All of the FRW models with positive spatial curvature, k > 0, are spatially
finite. So if our universe belongs to this class, the Boltzmann brain hypothesis
would have to be relegated to the far future, and the conjecture in the final part
of this paper would have to be rejected.
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4 Critical phenomena and the brain

As a bridge between the cosmological and the neurological, we now turn to the
concept of criticality. In physics, criticality has typically been used to represent
phase transitions in condensed matter systems. For example, the dynamics of
metallic crystalline solids as they transition between paramagnetic and ferro-
magnetic states, or the dynamics of a fluid as it transitions between liquid and
vapour states, both exhibit critical behaviour.

In many critical systems, there is a correlation length &, which measures the
length-scale over which the constituent elements exist in the same phase. For
example, many systems undergoing critical phase transitions are represented by
the Ising model, where binary values s(z;) are assigned to a discrete lattice of
sites x;. In these models, the coupling between adjacent sites tends to correlate
their values, but thermal fluctuations tend to randomize them, so that the
correlation coefficient I'(r) = (s(z;)s(x; + r)) drops off as an isotropic inverse
exponential function of radial distance r (Hughes 2010, p168):

[(r) = exp(=r/¢)

where & is the correlation length. For systems approaching a critical state,
however, the correlation function has a power-law form:

o-()

In a fluid, the correlation length might measure the size of liquid droplets
within a background of vapour. Alternatively, in a magnetizable crystalline
solid, £ measures the size of domains whose units are magnetically aligned in
the same direction.

Batterman defines the correlation length as a typical length-scale over which
correlation exists: “For a fluid in equilibrium at a given temperature away
from criticality, there is a well-defined average size for the droplets. One can
now introduce the correlation length, &, which, roughly speaking, characterizes
the spatial extent of the average droplets of liquid. (Put slightly differently:
The correlation length is the typical distance over which the behavior of one
microscopic variable or degree of freedom can be correlated with the behavior
of another.)” (Batterman 2011).

Hughes, however, defines the correlation length as the mazimum length-scale
over which correlation exists: “Effectively this parameter provides a measure of
the maximum size of locally ordered islands...it is worth emphasizing that £
gives a measure of the mazimum size of locally ordered regions,” (Hughes 2010,
pl68).

In these examples, with all other variables fixed, the parameter controlling
the phase transition is the temperature T'. As it approaches a critical tempera-
ture T, the correlation length diverges:

&(T) — oo .
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“Near the critical temperature, islands of all sizes up to the correlation length
coexist, and participate in the behaviour,” (Hughes 2010, ibid). Moreover, as
the size of the correlated domains approaches the size of the entire system,
“external perturbations applied to any part of the system may lead to a change
in the state of the whole system,” (Cocchi et al, 2017).

So criticality involves: (i) Long-range correlations; and (ii) Maximal sensi-
tivity to small perturbations.

Criticality has also been used to represent patterns of activity in the brain:
“A set of recent observations...show that the neural functioning of the brain
is close to criticality, which is confirmed by the distributions of avalanches and
neural activity with a scaling that fits this regime and therefore its behavior
is very sensitive to small perturbations. The states of the brain that exhibit
critical behavior are the most suitable for more efficient neural processing infor-
mation. The critical point characterizes the maximum capacity of exchanging
information without bottlenecks, and as in every second order phase transition,
it exhibits long range correlations of neural function. . . close to the critical point
the system is maximally sensitive to small fluctuations, for instance a change of
one neuron can trigger an avalanche of activity,” (Gambini and Pullin, 2019).

Recent empirical research in neuroscience has established that whilst the
neural network of the brain exists close to criticality, in a healthy subject at
least it remains subcritical at all times: “computational optimality may not
have been the only evolutionary constraint, but stability might have been an
additional goal. Stability is compromised in the supercritical state as the super-
critical state was linked to epileptic behaviour. It may well be that the brain in
all its vigilance states maintains a safety margin to the supercritical state, be-
cause supercriticality allows for runaway activity, which is pathological, energy
demanding and may induce erroneous learning,” (Priesemann et al, 2013).

Clusters of neurons which exhibit heightened levels of activity over a period
of time are referred to as ‘neural avalanches’. In the close-to-critical state, the
size-distribution of neural avalanches possesses the form of a power-law distri-
bution. The distribution is said to be ‘scale-free’: “A power-law indicates that
the activity between the units is correlated, but the units don’t form strongly
interconnected subgroups,” (Priesemann et al, 2013). In the range between
the inter-unit separation, and the correlation length &, there is no privileged
length-scale.

Priesemann and colleagues analysed the criticality of brain-states under con-
ditions of both wakefulness and sleep, which brings us to the study of dreams.

5 Dreams
Modern sleep science partitions the process of sleep into a number of successive

stages, each identified by distinctive brain-wave patterns recorded by Electro-
Encephalography (EEG), a non-invasive method of detecting patterns of electric
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potential on the outer surface of the skull.!” Some stages of sleep involve dream
experiences, the scientific status of which has been succinctly summarised as
follows:

“A first reason for thinking that dreams are experiences during sleep is the re-
lationship between dreaming and REM (rapid eye movement) sleep. Researchers
in the 1950s discovered that sleep is not a uniform state of rest and passivity, but
there is a sleep architecture involving different stages of sleep that is relatively
stable both within and across individuals. Following sleep onset, periods of
non-REM (or NREM) sleep including slow wave sleep (so called because of the
presence of characteristic slow-wave, high-voltage EEG activity) are followed by
periods of high-frequency, low-voltage activity during REM sleep. EEG mea-
sures from REM sleep strongly resemble waking EEG. REM sleep is additionally
characterized by rapid eye movements and a near-complete loss of muscle tone.

“The alignment between conscious experience on the one hand and wake-
like brain activity and muscular paralysis on the other hand would seem to
support the experiential status of dreams as well as explain the outward passiv-
ity that typically accompanies them. Reports of dreaming are in fact much more
frequent following REM (81.9%) than NREM sleep awakenings (43%). REM re-
ports tend to be more elaborate, vivid, and emotionally intense, whereas NREM
reports tend to be more thought-like, confused, non-progressive, and repetitive,”
(Windt 2019, Section 2.3).

Recent empirical research in neuroscience has also revealed the different cor-
relation structure of the brain’s ‘vigilance’ states. Specifically, neural avalanche
statistics enable us to define and differentiate between: (i) a state of full wake-
fulness; (ii) Slow-Wave-Sleep (SWS), during which it is believed that memories
are consolidated and the waste products of neural metabolism are scavenged;
and (iii) REM sleep, during which vivid dreams are experienced.

Slow-Wave-Sleep corresponds to the third stage of NREM sleep, dubbed N3
sleep. “Only few reports contained elements of dreaming after awakenings from
N3 sleep early during the night, when large slow waves are most prevalent in the
EEG signal...It is important to note that reports of dreams after awakenings
from NREM sleep are not merely a recall of dreams that occurred during the
REM sleep phase, because (1) dreaming has been reported after awakenings
from the first period of NREM sleep before the occurrence of REM sleep and
(2) individuals reported dreams after awaking from short naps that consisted of
NREM sleep only. As such, it has been suggested that dreaming during NREM
sleep relates to ‘covert REM’ brain activation processes, which occur outside
polysomnographically scored REM sleep. In line with this view, it is important
to realize that wakefulness, REM, and NREM sleep are not necessarily mutually
exclusive phenomena; sleep is far from being homogenous in terms of mental
experiences. Hence, dreaming might be described along a continuum, ranging
from thought-like mentation that is typical of the early stages of NREM sleep
to very vivid dreams that are more typical of REM sleep,” (Mutz and Javadi,

17Brain-waves are macroscopic oscillations in which clusters of neurons engage in synchro-
nized firing patterns.

17



2017).

EEG data simply detects patterns on the surface of the skull, and there-
fore under-determines the pattern of activity in the interior of the brain. A
more informative technique is to record Local Field Potentials!® (LFP) using
intracranial electrodes which penetrate into deep brain structures, with several
spatially separated contacts on each shaft. Priesemann et al (2013) studied
LFPs in human subjects, and found that in each vigilance state, the distribu-
tion of neural avalanche sizes could be fitted by a power-law distribution with
cutoff, corroborating the notion that the brain is in a state close-to-criticality
in each case.

However, it transpires that whilst all three vigilance states are subcritical, it
is the SWS state which exhibits the greatest degree of correlation. REM sleep
has the weakest degree of correlation, in relative terms, with a lower frequency
of larger neural avalanches, (as evident in Figure 2). Full wakefulness exhibits
an intermediate degree of internal correlation.

Priesemann et al conclude: “Our analyses of avalanche dynamics from hu-
man intracranial depth recordings indicated that the human brain operates close
to criticality from wakefulness to deep sleep, as indicated by a power-law like
distribution of avalanche sizes for each vigilance state. However, the sizes of neu-
ronal avalanches changed with vigilance states: SWS showed larger and longer
avalanches, wakefulness showed intermediate ones, and REM showed smaller
and shorter ones. The larger avalanches of SWS confirm the correlated charac-
ter of SWS dynamics across brain areas, while the smaller avalanches of REM
revealed a fragmented organization of brain dynamics compared to wakefulness
and SWS,” (ibid.). (Priesemann et al model the differences between vigilance
states to be “mediated by tiny changes in effective synaptic strength.”)

So, when we dream, whilst the brain still resides in a state close to criticality,
a state where it is still sensitive to small perturbations, it has retreated into the
condition where it possesses the smallest degree of internal correlation.'®

18These are electric potentials in the extracellular medium, generated by neurons in the
local neighbourhood of the recording electrode.

190ne might submit the conjecture that human dream experiences during REM sleep are the
resonantly amplified manifestation of Reeh-Schlieder correlations between space-like separated
replica brains. Such a hypothesis holds that dreams are external perturbations of a neural
network, induced when the brain is still sensitive to small perturbations, but when the strength
of its internal correlations are at their weakest, and therefore most sensitive to small external
perturbations. Dream experiences include coherent alternative personal episodes and histories,
as well as experiences with no temporal or spatial coherence, and even experiences which are
unconstrained by the laws of physics. The hypothesis entertained here is that some of your
coherent vivid dreams may be induced by the experiences of your replicas on distant worlds,
whilst other dreams, the ones which are most disconnected, or which violate the laws of physics,
are induced by the random experiences of your Boltzmann brain replicas. By definition, each
replica brain possesses exactly the same modes of oscillation, and exactly the same power-law
distribution of neural avalanches. The hypothesis is that when the internal correlations of one
brain drops below a threshold in REM sleep, the distant correlations become detectable, in
the first-person experiential form of dreams.
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Figure 2: Charts A and B plot the distribution f(s) of avalanche size s for 5
patients monitored over two nights, in four vigilance states: wakefulness, REM
sleep, and two types of Slow Wave Sleep, s2 and s3/s4. Chart B plots the data
for each patient-night. (From Priesemann et al, 2013).

5.1 Neurons and neural networks

The brain can be represented as a neural network, which on an abstract level
consists of a set of nodes, and a set of connections between the nodes. The nodes
possess activation levels; the connections between nodes possess weights; and
the nodes have numerical rules for calculating their next activation level from
a combination of the previous activation level, and the weighted inputs from
other nodes. A negative weight transmits an inhibitory signal to the receiving
node, while a positive weight transmits an excitatory signal.

The activation levels in a neural network are also referred to as ‘firing rates’,
and in the case of a biological brain, generally correspond to the frequencies of
the so-called ‘action potentials’ (or ‘spikes’) which a neuron transmits down its
output fibre, the axon. The neurons in a biological brain are joined at synapses,
and the neural network weights in this case correspond to the synaptic efficiency.
The latter is dependent upon factors such as the pre-synaptic neurotransmitter
release rate, the number and efficacy of post-synaptic receptors, and the avail-
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ability of enzymes in the synaptic cleft, (Bickle, Mandik and Landreth 2019).

In physical terms, the propagation of each action potential is a pattern in
the ionic electric field E(z) of the axon. The state of a nerve fibre, such as
an axon, is defined by the distribution of positive and negative ions inside and
outside the fibre. In the rest state of a nerve fibre, there is an excess of negative
ions inside the fibre, and a net positive charge on the outside. In its rest state,
the interior of a nerve fibre is at a voltage of approximately —70mV relative to
the exterior.

When the nerve fires, a region of charge imbalance reversal propagates down
the fibre. As the signal approaches, sodium gates open in the cell membrane,
permitting the flow of positive sodium ions from the outside to the inside, re-
versing the charge imbalance so that a region of net positive charge is created
inside the fibre, with a region of net negative charge on the outside; when the
region of charge reversal has passed, potassium gates open to permit the flow
of positive potassium ions from the inside to the outside, restoring the excess of
negative charge on the inside.

If a signal reaches an excitatory synapse, it releases a neurotransmitter which
injects a current pulse that makes a positive contribution to the electrical poten-
tial difference between the inside and outside of the next neuron; if it reaches an
inhibitory synapse, it releases a neurotransmitter which contributes a negative
potential difference.

In terms of the conditions under which a neuron can be triggered into firing,
there are two different types: integrators and resonators. For integrators, there
is a threshold voltage below which the neuron will not fire. The contributions
from incoming synapses are summed (‘integrated’), and if the net result exceeds
the threshold, the neuron fires. In contrast, resonators exhibit subthreshold
oscillations, and fire when current pulses are injected with the same frequency
as that of the subthreshold oscillations. As such, resonators can fire even when
they receive inhibitory pulses of current.

Cell membranes are perforated by ionic channels. These are proteins con-
taining aqueous pores, through which ions can flow, driven either by concen-
tration gradients or electric potential gradients. These channels can be opened
or closed. When the state of a channel is dependent upon the membrane po-
tential V| it is said to be ‘voltage gated’. A channel can be opened or closed
by voltage-dependent changes in the conformation of the protein; these are re-
ferred to as ‘activation’ gates. However, a channel can also be closed by other
means, such as the presence of a channel-blocking particle; these are referred to
as ‘inactivation’ gates, (Izhikevich, 2006, p32-33).

Inward currents correspond to the transfer of positive ions inside the cell,
increasing the membrane potential (i.e., making it more positive, a change re-
ferred to as ‘depolarization’). Outward currents correspond to the transfer of
positive ions from inside to outside, decreasing the membrane potential (i.e.,
making it more negative, a change referred to as ‘hyperpolarization’).

As a function of membrane potential, let m (V') denote the probability of an
activation gate being open, and let h(V') denote the probability of an inactivation
gate being open. The voltage-dependence of these gates works to produce spikes
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as follows:

“The amplifying gating variable is the activation variable m for voltage-gated
inward current or the inactivation variable h for voltage-gated outward-current.
These variables amplify voltage changes via a positive feedback loop. Indeed,
a small depolarization increases m and decreases h, which in turn increases
inward and decreases outward currents and increases depolarization. Similarly,
a small hyperpolarization decreases m and increases h, resulting in less inward
and more outward current, and hence in more hyperpolarization.

“The resonant gating variable is the inactivation variable i for an inward
current or the activation variable [m] for an outward current. These variables
resist voltage changes via a negative feedback loop...To get spikes in a mini-
mal model, we need a fast positive feedback and a slower negative feedback,”
(Izhikevich, 2006, p129-130).

The resonant characteristics of neurons were spelt out by Hutcheon and
Yarom (2000): “there are three classes of frequency-dependent mechanism in
central neurons: (1) solitary resonances caused by unaided resonant currents; (2)
amplified resonances that arise from the interaction of resonant and amplifying
mechanisms; and (3) spontaneous oscillations caused when a resonant current
interacts so strongly with an amplifying current that the resting membrane
potential becomes destabilized. Only in this last class is the frequency preference
of the neuron overtly displayed as a pacemaker oscillation. In the first two classes
the frequency preference of the neuron is latent and revealed only in the presence
of inputs.”

In general terms, the resonance of an electrical system can be defined as a
peak in the impedance profile. If an electrical circuit is probed with an input cur-
rent I(t) of constant amplitude and varying frequency, the corresponding voltage
V(t) is deemed to be the output response. Both the amplitude and phase of the
voltage response can differ from that of the input current. Taking the Fourier
transform of the current .#I(k) and the voltage .#V (k), the impedance is de-
fined to be the ratio Z(k) = .ZFV (k)/FI(k) = |Z(k)|e#*), with the modulus
|Z (k)| representing the ratio of the voltage-current amplitudes, and the argu-
ment 0z (k) representing their phase-difference. The impedance profile provides
the ratio of the amplitudes at each frequency/wave-number | ZV (k)|/|-F1(k)|,
(see Figure 3).

The resonant property of neurons is a consequence of two mechanisms: “one
that attenuates voltage responses to inputs that occur at high frequencies and
another that attenuates responses to inputs arriving at low frequencies. The
resulting combination of low- and high-pass filtering behaviour effectively creates
a notch filter that is capable of rejecting inputs at frequencies outside the pass-
band,” (ibid., p218).

The low-pass filter property is a consequence of the fact that the outer mem-
brane acts like a capacitor and conductor in parallel. The high-pass filter prop-
erty is a consequence of transmembrane ionic currents which activate slowly rela-
tive to the membrane time constant,?° and which oppose low-frequency changes

20This is the product of the resistance and capacitance, RC.
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Figure 3: Impedance amplitude as a function of frequency in electrical circuits
and neurons. (From Hutcheon and Yarom, 2000).

in membrane voltage.

Hutcheon and Yarom claim that amplification occurs when there is a res-
onant current, and another ionic current which, in contrast to the former, en-
hances voltage fluctuations of the membrane, and activates quickly. Amplifying
currents of sufficient strength are capable of triggering self-sustained oscillations
of the membrane potential.

As an example, Hutcheon and Yarom cite pyramidal neurons in the neocor-
tex, which possess a 5-20Hz amplificatory resonance (the frequency is voltage-
dependent), occuring at membrane potentials more positive than —55mV. The
oscillation can be eliminated with TEA, a K™ channel blocker, which switches
off the resonant current, and it can be attenuated with TTX, a Na™ channel
blocker which switches off the amplificatory current.

REM sleep is characterised in terms of EEG traces by a so-called ‘theta’
oscillation at 4-12 Hz. This oscillation is believed to originate from the hip-
pocampus: “Supporting evidence includes that the average magnitude of theta
power measured by multisite recordings along the hippocampus-neocortex axis
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monotonically decreased with distance from the hippocampus and that the dis-
tribution of theta power on the neocortical surface reflects the physical layout
of the underlying hippocampus,” (Yamada and Ueda, 2020).

Yamada and Ueda reason that “isolated hippocampal neurons can exhibit
oscillations at the theta frequency band in vitro when it is bathed in acetyl-
choline or kainate receptor agonist. .. Therefore it is plausible to assume that
the neurons of [the] hippocampus possess an intrinsic ability to generate the
theta oscillation. Interestingly, a recent study showed that a majority of hip-
pocampal neurons are self-oscillatory, and the properties of oscillation, including
frequency, are affected by environmental ions and cellular Ca?". This effect oc-
curs without changes in synaptic connectivity or neural circuit, suggesting that
the intrinsic neural properties directly affect circuit-level oscillation.

“Together, the body of evidence suggests that the brain oscillations, includ-
ing hippocampal theta oscillation, originate from intrinsic cellular properties.
The intrinsic oscillation resonates and is amplified in neural circuits,” (ibid.).

The Reeh-Schlieder theorem entails that there are correlations in the quan-
tized ionic electric field E(f) of spacelike separated replica brains, so that:

(VIE(/)E(9)W) # (P[E())T) (¥|E(g)¥) ,

where f and g have compact support within spacelike-separated volumes occu-
pied by replica brains. The brains are structural replicas in the sense that their
network graphs and synaptic weights are identical, even if their firing patterns
happen to be different.

Given that the firing patterns of the neuronal network of a brain are deter-
mined by the pattern in the ionic electric fields, and given that there are cor-
relations between the ionic electric fields of spacelike separated replica brains,
it follows that the firing patterns of one such brain are, in principle, capable of
influencing the firing patterns of another.

However, in the real-world of neurobiological systems, weak electric fields
have to compete with various sources of noise: “Stochastic fluctuations arise
from many biochemical processes, such as aqueous diffusion and protein ‘breath-
ing motions’, in addition to transmembrane voltage noise. Thus, molecular
changes within biochemical pathways are thoroughly randomized, with average
values controlled but containing an inherent molecular shot noise uncertainty,”
(Weaver et al 1998).

On the other hand, the sensitivity of neurons is enhanced by a surprising
phenomenon called ‘stochastic resonance’ (SR):

“SR is a nonlinear phenomenon whereby the addition of a random inter-
ference (‘noise’, as it is almost universally called) can enhance the detection of
weak stimuli or enhance the information content of a signal (e.g. trains of action
potentials or signals generated by a neuronal assembly). An optimal amount of
added noise results in the maximum enhancement, whereas further increases in
the noise intensity only degrade detectability or information content. The phe-
nomenon does not occur in strictly linear systems, where the addition of noise to
either the system or the stimulus only degrades the measures of signal quality. In
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its simplest manifestation, referred to as ‘threshold SR’ or ‘non-dynamical SR’,
stochastic resonance results from the concurrence of a threshold, a subthreshold
stimulus, and noise,” (Moss et al, 2004).

The phenomenon is illustrated in Figure 4 for the case of a system with
a symmetric double-well potential. The perturbations due to noise alone are
capable of causing transitions back and forth between the two local minima.
There is a typical time-scale for this. When the weak, sub-threshold periodic
signal has a period equal to twice the time-scale of the noise-induced transi-
tions, stochastic resonance occurs. In effect, the noise boosts the weak signal to
detectable levels.

Nonlinear Bistable System Signal Extraction

Weak embedded P — Magnified Recovered

signal input output signal input signal
e o——— 0 X /\/\/\ o—
— AAA Wi

Figure 4: Stochastic resonance in the presence of noise. (From Lin et al, 2019).

Including the presence of stochastic resonance, Weaver et al obtained a the-
oretical estimate of the lower limit of the sensitivity of a neuron to an electric
field of ~ 100pV/mm. A subsequent experimental study by Francis et al ver-
ified that networks of pyramidal cells from the mammalian hippocampus are
sensitive to electric fields of this order:

“The mammalian hippocampus has several unique features that render it
particularly sensitive to electric fields. Cellular packing is so dense that it can
display epileptiform events even in the absence of functioning chemical synapses,
a condition under which electric fields likely play a significant role in ensemble
activity. Hippocampal pyramidal cells have somata asymmetrically placed with
respect to their dendritic trees, and the sensitivity of a neuron to firing rate
modulation from an imposed electric field is related to the amount of posi-
tional asymmetry of the soma with respect to the dendritic tree. In addition,
the individual pyramidal cells are aligned such that adjacent cells have par-
allel dendrites, which favor interaction with fields aligned along the collective
somatodendritic axes,” (Francis et al, 2003).

In particular, Francis et al discovered that “neuronal networks respond to
fields more sensitively than single neurons. Whether this is a manifestation of
simply increasing the numbers of neuronal detectors or is from array-enhanced
signal detection caused by coupling remains to be determined,” (ibid.).?!

21The presence of ionic and macromolecular noise places a severe constraint on the hypoth-
esis that distant replica brains are capable of influencing each other. Whilst replica brains
will, by definition, share ezactly the same power spectrum of noise, REM dreams can only
be caused by correlations with replica brains if the replica brains are permitted to exercise
contingently different firing patterns. FEx hypothesi, each neuron in a replica brain can be
mapped to a particular neuron in one’s own brain, but different firing patterns entail that the
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6 Conclusions
In summary, the reasoning in this paper runs as follows:

1. The most fundamental theory currently available to us is quantum field
theory, the only such theory which includes the axioms of both quantum
theory and relativity. This theory predicts that there exist correlations
between apparently distant spacelike-separated regions of space, irrespec-
tive of how far apart those regions appear to be. The strength of these
Reeh-Schlieder correlations, however, decays exponentially with distance,
suggesting they could only be detectable with the most sensitive systems
imaginable.

2. Our best available cosmological theories suggest that space is randomly
infinite. Moreover, our understanding of statistical mechanics suggests
that under randomly infinite conditions, all possible states of all possible
bounded physical systems will be realised an infinite number of times.
This includes all possible states of all possible brains. Some of these replica
brains have developed as part of biological species which have evolved by
natural selection; others have formed spontaneously, by chance. The latter
are referred to as ‘Boltzmann brains’.

3. The topological connectivity of space, and hence its structure as a metric
space, remains an open question. Under the ‘ER=EPR’ conjecture, for
example, entangled systems are connected by non-traversable wormholes.
Given the ubiquity of Reeh-Schlieder entanglement, this would entail that
space-time is multiply connected by a dense network of wormholes, bring-
ing the apparently distant parts of entangled systems into arbitrarily close
proximity. This mitigates the exponential decay of Reeh-Schlieder entan-
glement with distance.

4. The human brain is the most complex physical system known to us. It
exists in a state close-to-criticality, which entails that it possesses a high
level of internal correlation, and is extremely sensitive to small pertur-
bations. The human brain cycles through different states of ‘vigilance’
during the course of each day, during which its proximity to a critical
state varies. In the state known as REM sleep, the human brain drops
to a minimal level of internal correlation, whilst still residing in a state
close-to-criticality. During REM sleep, humans experience vivid dreams.
These dreams includes experiences of other personal histories, as well as
experiences with no temporal or spatial coherence.

pattern of ionic and macromolecular noise in those corresponding neurons will be different.
Nevertheless, if space-time possesses a multiply-connected structure, such as that entailed by
the concept of quantum space-time foam, or the ‘ER=EPR’ conjecture, then replica brains can
exist in arbitrary proximity to each other, offsetting the difficulties posed by the exponential
decay in the strength of the Reeh-Schlieder correlations. Thus, it is hypothesized that the
threshold sensitivity of ~ 100¢V/mm is sufficient for a mammalian brain in a sub-critical
REM sleep state to resonantly amplify the Reeh-Schlieder correlations with replica brains.
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