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Abstract

Modeling and computer simulations, we claim, should be considered
core philosophical methods. More precisely, we will defend two theses.
First, philosophers should use simulations for many of the same reasons
we currently use thought experiments. In fact, simulations are superior to
thought experiments in achieving some philosophical goals. Second, devis-
ing and coding computational models instill good philosophical habits of
mind. Throughout the paper, we respond to the often implicit objection
that computer modeling is “not philosophical.”

Over the past several decades, computer simulations have made a inroad
into philosophical work. Beginning with the pioneering work of Skyrms [1990,
1996, 2004, 2010] and Grim et al. [1998], many philosophers are incorporating
computational models into their research. Computer simulations models are
now making substantial appearances in social epistemology, ethics and political
philosophy, philosophy of language, and philosophy of science.1

Although computer modeling is becoming more popular, it has not gained
wide acceptance as a core philosophical method. Computer simulation is dis-
cussed in precisely one article in five recent handbooks dedicated to philosophi-
cal methodology;2 The PhilPapers entry on “Philosophical Methods” mentions
neither modeling nor simulation [Horvath, 2019]. Excepting the Munich Center
for Mathematical Philosophy, we are aware of no graduate programs in philos-
ophy that require a modeling or programming course. Some philosophers have

1The field is so large that we could not hope to capture all of it. But to get a sense
for the diverse ways that simulations are employed here is a large sample. For examples in
social epistemology see [Betz, 2013, Hartmann et al., 2009, Hegselmann and Krause, 2002,
2006, Mayo-Wilson, 2014, Zollman, 2014]. For ethics, social, and political philosophy see
[Alexander, 2007, Bicchieri, 2005, Bramson et al., 2017, Bruner and O’Connor, 2016, Holman
et al., 2018, Muldoon et al., 2014, 2012, O’Connor et al., 2019, Singer et al., 2017, Skyrms,
1996, 2004, Vanderschraaf and Skyrms, 2003, Zollman, 2005, 2008]. For philosophy of language
and logic see [Franke and Correia, 2017, Grim et al., 1998, Huttegger et al., 2010, O’Connor,
2014a,b, Skyrms, 2010, Wagner, 2009]. And for philosophy of science see [Alexander, 2013,
Barrett, 2007, Borg et al., 2018, Bruner, 2013, Bruner and Holman, 2017, Galeazzi and Franke,
2017, Grim et al., 2013, Holman and Bruner, 2015, Huttegger et al., 2015, Kummerfeld and
Zollman, 2016, Rosenstock et al., 2017, Smead, 2010, Zollman, 2007, 2010a].

2Specifically, only [Weisberg, 2016] discusses simulation. Simulation is not mentioned in
[Cappelen et al., 2016, Daly, 2015, D’Oro, 2017, Haug, 2013].
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recently taken aim at the value of the agent-based models most common in phi-
losophy [Arnold, 2014, 2015, 2019, Thicke, 2019].Finally, as modelers, we can
attest to hearing the following complaint time and again: “Interesting, but why
is your research philosophical?”3

Modeling and computer simulations, we claim, should be considered core
philosophical methods.4 More precisely, we will defend two theses. First,
philosophers should use simulations for many of the same reasons we currently
use thought experiments.5 In fact, simulations are superior to thought ex-
periments in achieving some philosophical goals. Second, devising and coding
computational models instill good philosophical habits of mind. Our second
argument explains what a modeler learns from the act of modeling; the first
explains what everyone can learn from computational models.

We were inspired to write this paper for two reasons. First, we think training
philosophers in computational methods should be more common. Although
we like logic, we think that logic should be one formal tool among many in
philosophical reasoning. Modeling and programming are two important formal
tools that fit naturally with paradigmatic philosophical methods.

Second, as modelers, we’ve encountered the same criticisms over and over
again informally, in conferences, and in referee reports. Most frequently, we
are simply told, “Your model contains too many false assumptions to teach us
anything of value.” So in the last section of the paper – after we develop our
argument for why simulations could be of use to philosophers – we collect and
respond to the objections that we hear frequently. These objections are not
entirely mistaken. Most are reasonable criticisms of bad simulations. So our
goal is to use the objections to improve philosophical simulation. Throughout
the paper, we respond to the often implicit criticism that computer modeling is
“not philosophical.”

Simulations can’t help address every philosophical problem. No simulation
will tell us whether abortion is moral. Moreover, simulations almost never
answer philosophical questions by themselves. So simulations should not sup-
plant other philosophical methods. Rather, simulations should be a tool in the
philosopher’s toolbox, to be used alongside thought experiments, careful analy-
sis of arguments, symbolic logic, probability, empirical research, and many other
methods. But for reasons we discuss below simulations are especially useful in
several philosophical subfields, including social epistemology, social and political
philosophy, and philosophy of science.

Section one contains our first argument. Philosophers have always used
thought experiments, and we take it as given that thought experiments are an
appropriate philosophical method. In §1.1, we describe six purposes of thought

3One of us was asked this by a now colleague during a job interview.
4Although he does not specifically mention computer simulations, we think that the argu-

ments in Williamson [2017, 2018] are consonant with ours regarding the value of modeling in
philosophy. Our arguments differ in several respects from his, but they are not inconsistent.

5We do not wish to argue that simulations are a species of thought experiments, although
we see the appeal of this way of describing things. For example, [Beisbart and Norton, 2012]
argue that simulations are more like arguments and not like traditional scientific experiments.
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experiments. Our list is not exhaustive, and we make no attempt to address
the rich philosophical literature on what thought experiments are (e.g., are they
arguments?), how thought experiments are related to intuitions, and whether
computer simulations and thought experiments are the same thing. By articu-
lating the uses of thought experiments, however, we are able to argue for simu-
lations by comparison. In §1.3, we argue that, for five of the six purposes that
we identify, simulations are sometimes more effective than thought experiments.

Section two contains our second argument. While related, this argument is
importantly distinct from the first. We describe several skills that philosophers
prize: the ability to disambiguate claims, to recognize implicit assumptions in
arguments, to assess logical validity, and more. We then explain how devising
and programming computational models can foster those skills, even if one has
no intent of using the simulation results in construction of the final published
argument. Our claim is unusual in that it suggests that philosophers would ben-
efit from using simulations privately as part of their argumentative development
even if that doesn’t ultimately show up in the finished product.

In the final section, we respond to some objections. These objections are not
exhaustive, but they include the criticisms we hear most often from skeptics.
We point out that with each objection comes an important lesson about how to
simulations should be used in philosophical research.

1 Simulations and Thought Experiments

In this section, we defend the use of computational models in philosophical
arguments. Our argument precedes by way of analogy to thought experiments.
(We are not the first to draw the connection between philosophical thought
experiments and computer simulation Grim et al. [1998].) As we are all familiar,
philosophers often ask their readers to perform thought experiments and use
the results of those for argumentative moves. We argue, in section §1.1, that
philosophers often use thought experiments to achieve one of the following aims:

1. Elicit normative intuitions

2. Justify counterfactual claims

3. Explore logical relationships among philosophical theses

4. Illustrate conceptual possibilities and impossibilities

5. Distinguish explanatory reasons and identify those causes that explain a
phenomenon

6. Explore the dynamics of social and physical systems

We don’t claim this list is exhaustive, but rather that these represent several
central ways that thought experiments are used. In §1.2, we reconstruct what
we believe are the strongest arguments that thought experiments succeed in

3



achieving these goals. Although we believe the conclusions of the arguments in
§1.2, those conclusions are strictly not necessary for our argument.

We then argue in §1.3 that computer simulations can be – for the last five
of these purposes – more effective than thought experiments. If computer sim-
ulations can achieve the same ends more effectively than traditional thought
experiments, they then should be employed by the philosophical community.6

Only the most narrow interpretation of philosophy – that which equates
philosophy with a specific method – could justifiably exclude computer simula-
tions, and such an interpretation would rule out a wide swath of research that
is typically called “philosophical.” We address that last possibility in §1.4.

1.1 Thought Experiments: Six Aims

The first use of thought experiments is perhaps most familiar: to evoke norma-
tive intuitions. Unhooking the violinist is morally justified. Pushing an innocent
person onto train tracks is not. And so on.

We don’t know what normative intuitions are, and we are agnostic about
whether such intuitions are reliable. We mention this first use of thought exper-
iments by way of contrast. Although cultivating intuitions might be the most
salient use to some readers, thought experiments have been used many other
ways, and arguably, the other uses are more common historically.

Philosophers use thought experiments to justify counterfactual claims, often
when a real experiment is impossible, unethical, or impractical. In Ground-
work of Metaphysics of Morals, for example, Kant asks us to imagine whether
everyone could break promises when convenient. He concludes that, in such a
world, no one would believe “promises” [Kant, 2012] thus destroying the act of
promising.

David Lewis [1969] defines conventional behavior in a thoroughgoing coun-
terfactual way. To be a convention, a common behavior must have an alternative
which could have been adopted. In the US we drive on the right side of the road
but could have driven on the left. Because of this, Lewis would call our practice
of driving on the right a “convention.” Other conventions require more imagi-
nation. Are the standards of logic conventional, as Carnap suggests? To answer
that question, we must imagine how those standards might have been different.

For a last example of counterfactual reasoning, we turn to a core question
in social epistemology: when are we justified in trusting others? Channeling
Donald Davidson, Coady [1992] claims we’re entitled to trust others by default
because most human utterances must be true. Coady argues that, otherwise,
utterances would not be understood as meaningful reports about the world.

[I]magine a world in which an extensive survey yields no correla-
tion between reports and facts . . . Imagine a community of Martians

6Importantly, we think that that some philosophers ought use simulations. This does
not entail that every philosopher working on a problem should use simulations. We are firm
believers in the division of cognitive labor and this applies as much in philosophy as it does
in other domains.
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who . . . have a language which we can translate . . . with names for
distinguishable things in their environment and suitable predicative
equipment. We find, however, to our astonishment that whenever
they construct sentences addressed to each other in the absence (from
their vicinity) of the things designated by the names . . . they seem
to say what we . . . observe to be false. But in such a situation there
would be no reason to believe that they even had the practice of re-
porting.

We chose the above examples because we think readers will agree they con-
tain squarely “philosophical” counterfactual claims. If the reader thinks the
boundaries between philosophy and science are fuzzy (as we do), then examples
can be multiplied almost indefinitely. Galileo asks us to imagine what would
happen if a perfectly smooth ball were rolled on a frictionless “plane” that ex-
tended indefinitely around the Earth [Galilei, 1967, pp. 147-148, 22]. Such a
“plane” would in fact be a spherical shell, and without friction, Galileo claims,
the ball would orbit the Earth in perfectly circular motion. In general, thought
experiments are used to justify counterfactual claims about not only people and
societies, but also rotating buckets (e.g. in Newton), arrows (e.g., in Zeno and
Lucretius), detached hands (e.g., Kant), and more.

The third use of thought experiments is related to the second: to explore
logical relationships and to show that particular conclusions do not follow from
common assumptions. Such thought experiments are sometimes called “destruc-
tive” [Brown and Fehige, 2017]. Jarvis Thomson’s [1971] violinist, for example,
might show that the conclusion “It’s unethical to kill a fetus” does not follow
from the assumptions that “A fetus is a person” and “Fetuses are innocent of
wrongdoing.” Gettier [1963] cases are intended to show that “S knows that
p” does not follow from the assumptions that p is true and that S justifiably
believes p.

Fourth, thought experiments are used to distinguish explanatory reasons
and to identify which “variables” explain a phenomenon. To dramatize the
difference between “doing harm” and “allowing harm”, for example, Foot [1967]
compares two thought experiments. In the first, a judge frames a man to save
five others, and in the second, a trolley driver flips a switch so that a runaway
trolley kills one person not five. The judge is unethical; the driver is not. And
the difference, says Foot, is explained by the fact the judge does harm, whereas
the driver merely allows harm to be done.

As a last example, Danto [1983] imagines a gallery with completely iden-
tical red canvasses hung on the wall, each with a very different history: some
accidental, others intentional. Some are art, Danto argues, and others are not.
He uses this to illustrate that nothing about the visual experience can explain
what counts as art.

Fifth, thought experiments are used to illustrate possibilities and impossi-
bilities. Hume, for instance, imagines someone who has never seen a particular
shade of blue but is shown a color spectrum with the relevant missing shade.
Hume admits that the subject might be able to imagine the missing shade.
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Hume’s thought experiment is part of an admission that it’s possible that not
all simple ideas originate in simple impressions.

The final use of thought experiments that we’ll discuss is often overlooked:
to explore the dynamics of social and physical systems. Galileo routinely em-
ploys thought experiments concerning falling objects. To motivate the theories
of special and general relativity respectively, Einstein imagines light clocks on
trains and light beams passing through elevators. Importantly, these thought
experiments ask us to imagine motion, movement, or change.

Squarely “philosophical” thought experiments often also involve imagining
motion or change. For instance, to refine his counterfactual theory of causa-
tion, Lewis [1986] imagines two rocks are fired at a glass bottle but one strikes
the bottle first. In general, debates about actual causation are full of thought
experiments involving motion and collisions of physical objects.

Philosophical thought experiments often require us to imagine social dy-
namics, not just physical ones. Three examples discussed above – from Kant’s
Groundwork, Lewis’ Convention, and Coady’s Testimony – illustrate this point.
For example, Kant asks us to imagine how people would react to changes in
norms concerning promise-keeping. The dynamical nature of these thought ex-
periments is sometimes hidden because we are asked to imagine a social system
in equilibrium. For instance, Kant’s thought experiment requires us to fast for-
ward through the process of the dissolution of the norm of promise keeping and
to imagine social interactions in a world in which the institution of promise-
keeping has evaporated.

Perhaps the most widespread use of thought experiments about social dy-
namics is in the social contract tradition. Hobbes famously concludes that
life without a sovereign would be “solitary, poor, nasty, brutish, and short”
[Hobbes, 1994, Chapter XIII].7 Hume [1751, Section 3.1] asks us to imagine
what justice would look like if one group in society were capable of completely
dominating another. Nozick [1974] uses his famous “Wilt Chamberlain” thought
experiment to argue that egalitarian societies will, through morally permissible
wealth transfers, end up inegalitarian.

In short, many thought experiments are used to explore how societies would
function in conditions that differ radically from our own and in conditions that
may have never existed.

Again, the above list of uses of thought experiments is not exhaustive. There
are also obvious relationships between the various uses of thought experiments;
to illustrate a possibility (the fourth use), for example, is to illustrate a particular
type of logical relationship among theses (the third use). Further, philosoph-
ical thought experiments often are used in multiple ways. But we think it’s
important to distinguish uses of thought experiments to illustrate that talk of
“intuitions” is sometimes too imprecise to distinguish good from poor uses of
thought experiments. Kant’s thought experiment, for example, might elicit the
intuition that a world without promise-keeping would be bad or undesirable.

7Some scientists and philosophers have used computer simulations to explore philosophical
claims made about the dynamics of anarchy [Martinez Coll, 1986, Vanderschraaf, 2019].
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But that normative intuition should be distinguished from Kant’s counterfac-
tual “intuition” that promise-keeping would fail to exist in societies in which
promises were broken when convenient. The latter intuition, if it ought to
be called “intuition” at all, is a claim about complex social systems, and it
is amenable to empirical and mathematical investigation in ways the former
normative intuition might not be.

1.2 What makes thought experiments successful?

Not all thought experiments are successful, but many of the examples from the
previous section are often thought to be. Why?

Mach argues that thought experiments about the mechanics of physical ob-
jects are often reliable because they allow us to make use of implicit, non-
propositional physical knowledge. He writes:

Everything which we observe imprints itself uncomprehended and un-
analyzed in our percepts and ideas, which then, in their turn, mimic
the process of nature in their most general and most striking fea-
tures. In these accumulated experiences we possess a treasure-store
which is ever close at hand, and of which only the smallest portion
is embodied in clear articulate thought. The circumstance that it is
far easier to resort to these experiences than it is to nature herself,
and that they are, notwithstanding this, free, in the sense indicated,
from all subjectivity, invests them with high value. [Mach [1883, p.
36]. Quoted in Gendler [1998, p. 414]]

Gendler [1998, 2004] expands upon Mach’s reasoning, arguing that thought
experiments are often useful because they allow us to reason with non-propositional
representations, typically images. Gendler argues that mental manipulation of
images employs psychological processes different than those used in deductive
reasoning, and such processes are often essential for producing a belief in some
proposition about the imagined objects or events. Although Gendler and Mach’s
arguments are controversial,8 we grant their conclusions for the sake of our ar-
gument. Our question is, “Assuming Mach and Gendler’s arguments are sound,
which types of thought experiments are reliable for the purposes described in
the previous section, and why?”

We think that Mach and Gendler’s arguments most plausibly support the
conclusion that visualization is useful for illustrating possibilities and logical re-
lationships among various theses. Here, we expand on their arguments, drawing
on work in philosophy of mathematics on diagrammatic reasoning [Giaquinto,
2016, Shin et al., 2018].

In Euclidean geometry, a basic question is: which shapes can be drawn with
only a straightedge and compass? At first, it might seem impossible to bisect
an angle or construct a regular pentagon using these limited tools. But with the
help of mental visualization and pen-and-paper, we can do a shocking amount.

8See [Norton, 2004] and [Brown, 2004] for alternative views.
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Consider the construction of a square pictured in figure 1. In working
through straightedge and compass constructions like this one, most people imag-
ine the process: they engage in the thought experiment of construction. Instead
of drawing a sequence of diagrams, we could have described the construction
steps verbally. (Begin with a line and two points A and B on that line. Draw
a circle of arbitrary radius with center at B . . . ) But to foster and justify the
belief that a square can be constructed from a line segment, this would have
been less useful and, ultimately, would have required imagining the steps or
actually implementing them with pen and paper to understand. Why?

Figure 1 is easier to remember than a sequence of verbal construction com-
mands.9 This makes it easier for a reasoner to revisit earlier parts of a long
argument, which many philosophers since Descartes (at least) have recognized
is required for a reasoner to have a justified belief in the conclusion.10

Further, figure 1 is surveyable. Checking whether a geometric diagram is a
straightedge and compass construction is relatively easy. In a glance, one can
see the construction utilizes only the relevant tools. With a bit more effort, one
can be sure that the resulting diagram satisfies the definition of a square.11

Figure 1 is also mentally manipulable; we can re-imagine various parts of
the diagram at will. In a glance, one can see that the distance between the first
two points is arbitrary. So is the orientation of the first line, e.g. it could have
been at a 45-degree angle relative to the page. With a little imagination, you
can also see which parts are not arbitrary. For example, you can imagine what
the resulting figure would be if the circles in Steps 5 and 6 had different radii.

Figure 1 is manipulable because it omits and distorts. It omits the precise
distances and radii. It also distorts the lines, curves, and points, picturing them
as thin but nonetheless two-dimensional objects.

Finally, diagrams allow us to reason geometrically even when we lack explicit
propositional knowledge; this is a feature of thought experiments that Gendler
and Mach emphasize. Almost everyone knows what a line and a circle is, even
if they can’t define it in set-theoretic language (i.e. that a circle is the set of all
points in a plane equidistant from a given point).

Arguably, nearly everything we said about the Figure 1 applies to Galileo’s
thought experiment about the ball on the frictionless plane. Our mental image
of a ball on a plane can be recalled at will; it is surveyable because it involves
two simple objects (a ball and plane), and it is manipulable: we imagine balls
of different sizes, colors, and most importantly, material compositions behaving
in exactly the same way. Finally, the thought experiment, as Mach argues,
allows us to make use of our implicit knowledge of motion, which might be
non-propositional.

9There is extensive psychological evidence linking visualization to memory, e.g., [Cohen
et al., 2009].

10Descartes [1984][p. 14, margin 370-371] writes, “[V]ery many facts which are not self-
evident are known with certainty, provided they are inferred from true and known principles
through a continuous and uninterrupted movement of thought . . . deduction in a sense gets
its certainty from memory.”

11Proving that each side is of equal length is not complicated, but proving that steps 2-4
produce right angles is a bit more subtle [Euclid, 1908, proof of Proposition 12, Book I].
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Step 1 Step 2

Step 3 Step 4

Step 5 Step 6

Step 7 Step 8

Figure 1: Straightedge and compass construction of a square with arbitrary side
length.
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Of course not all thought experiments involve visualizing physical systems.
But the general point remains, if thought experiments are useful, it is likely be-
cause they engage parts of our cognition that are not propositional. By engaging
these parts of cognition, an author hopes that a thought experiment will help in
the construction, analysis, or recollection of philosophical arguments. So while
our example here has focused on the visual aspects of thought experiments,
analogous virtues might be found for some of the other thought experiments
described above.12

1.3 Simulations and Thought Experiments

We now argue that, when answering a philosophical question requires under-
standing the dynamics of social systems, simulations are better than correspond-
ing philosophical thought experiments. Although we focus on social systems,
many of our arguments apply equally well to physical systems involving multiple
interacting bodies. To illustrate the usefulness of simulations in achieving the
six goals enumerated in §1.1, we offer three examples.13

In 2013, the CDC asked polio researchers a very specific counterfactual ques-
tion: what would have happened in the 2010 polio outbreak in Tajikistan if a
larger age range of children had been vaccinated? Three distinct groups tackled
the problem by building simulation models. Their simulations addressed the
CDC’s question with a high level of exactness: each simulation predicted how
many additional people would have been saved by greater vaccination. Because
human behavior influences how diseases spread, researchers needed models to
explore social dynamics. The results of one such model is discussed in [Wassilak
et al., 2014], who found that the intervention would have had almost no positive
effect on the outbreak, a somewhat counter-intuitive result.

A second famous (and infamous) example comes from an area known as
cellular automata.14 An old philosophical question is: what is the relationship
between the complexity of a whole and the complexity of its parts? While this
question can be made precise in many ways, the cellular automata Rule 110
provides a stunning illustration (see Figure 2).

Imagine a collection of cells, arranged in a line. Each cell has two states:
on and off. There is a common clock, and with each tick, each cell updates its
state based on the state of each of its neighbors (the cells on the immediate
right and left). There are many rules that could govern the transition from one
state to another, and Rule 110 is one such rule. There is nothing intuitively

12It maybe that some philosophical thought experiments fail because they attempt to engage
cognitive processes that we don’t have or ones that are unreliable. This will – in effect – be
our argument in favor of simulation for social systems that we present in the next section.

13We have chosen three examples from outside philosophy (or on the boundary between
philosophy and other sciences) because we think the critical distance from philosophical prob-
lems will better illustrate our point to a philosophical audience. We could have chosen any of
a number of wonderful philosophical simulations.

14Cellular automata lie on the boundary between computer simulation and mathematical
modeling. This particular result was subject to a lawsuit regarding intellectual property,
which has made it famous in two ways.
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Figure 2: A graphical illustration of Rule 110. The focal cell is pictured in the
middle of a row of three. Shaded (blue) cells are “on” and unshaded (white)
cells are “off.” The single cell beneath each row indicates the next state of the
focal cell. These eight transition rules fully define how every cell in an arbitrary
array of cells evolves over time conditional on the state of its two neighbors

Figure 3: An illustration of the starting and final state for a particular instance
of the Schelling model. Here there are two types of agents, black and grey.
Each agent will be unhappy if her type represents less than one-third of her
neighbors and will move. These preferences lead to a highly segregated society
where people are, on average, similar to three-quarters of their neighbors.

appealing about the rule, but it has one extremely important property: it is
Turing complete [Cook, 2004]. That means that any computer program, no
matter how complicated, could be implemented using a line of sufficiently many
cells programmed to follow Rule 110. This shows it is possible to get almost
arbitrary complexity out of something incredibly simple.

Rule 110 represents both purposes two and three of our enumeration: ex-
ploring the conceptual space by showing the connection between the simplicity
of parts and the complexity of aggregate behavior.

Our final example is a famous model attributed to Schelling [1971].15 The
causes of segregation in modern cities are legion and well known. Institutional,
explicit, and implicit discrimination make it impossible for people of certain

15Schelling was anticipated in some ways by Sakoda [1971]. For a complete discussion see
Hegselmann [2017]. Given that this model is universally known as Schelling’s model, we will
follow the convention of attributing it to Schelling.
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races, nationalities, or religions to live in certain parts of a city. Once estab-
lished, homogeneous neighborhoods often stay that way, and even once some of
the more overt mechanisms are removed, segregation remains.

Schelling suggested another possible cause: perhaps a slight preference about
the race of one’s neighbors could also produce large-scale segregation. He imag-
ined individuals arranged on a checker board, who would move if they were
among a minority (e.g. less than 33%) in their neighborhood. Allowing time
for relocation, this model produces large-scale segregation without any of the
overt discrimination that features in the history of most cities (see Figure 3).
This shows that there might be important causes of segregation, that may be far
more difficult to fight, than the institutional ones that feature so prominently.

Schelling’s model achieves several of the goals outlined above. It identifies
an important, possible cause of a critically important phenomena. It does so by
exploring a certain type of counterfactual – where there is no explicit discrimi-
natory policy – regarding a complex social system.

Of course, we could go on. The social sciences are replete with examples of
mathematical models and simulations achieving these various ends. But why
do we think simulations are more reliable when social dynamics are concerned?
Thought experiments, some argue, are successful in part because they require
us to visualize a situation or event. Because some mental images are (i) easy
to remember, (ii) surveyable, and (iii) manipulable (because they omit and
distort), thought experiments might be effective tools for exploring the logical
relationships among various philosophical and scientific principles. Further,
mental images might also encode implicit, non-propositional knowledge that
would be nearly impossible to use otherwise.

But, when thought experiments concern social systems, there is good reason
to suspect our imagination is much less reliable. Social systems are complex in
several ways that mechanical systems are not.16

Imagined social systems often contain more interacting agents than imag-
ined physical ones. Kant asks us to imagine a society filled of people breaking
promises, whereas Galileo asks us to imagine a single ball and plane. Further,
the complexity and number of variables in imagined social systems is typically
larger than that of mechanical systems; Galileo asks us to consider only the
shape, weight, and speed of objects; Kant asks to consider the beliefs, desires,
intentions, etc. of people.

Thought experiments about social dynamics are even more complicated.
Equations governing the motion of mechanical objects are often geometrically
representable (and so visualizable); the dynamical laws of social systems are
typically not. Basic mechanical systems are more-or-less deterministic; most
social systems are probabilistic.

Finally, our “implicit knowledge” of social systems is often not knowledge at
all. Mach argues that our experience provides us with a wealth of mechanical

16An anonymous referee points out that we say of “mechanical systems” is true of inclined
planes but not of clouds and other complex physical systems. We agree, and the difference be-
tween clouds and planes provides further support for our argument: no contemporary scientist
thinks it is reasonable to predict the behavior of clouds without computer simulations.
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knowledge, but his argument (if successful at all) relies on the fact that physical
laws are constant across space and time. Our personal experience of the physical
world, therefore, can be used to make inferences about the mechanics of objects
at different times and places, and under conditions we have not encountered.
But social norms vary widely around the world and across time; there’s no
reason to expect our local and recent experiences will help us understand the
dynamics of societies with different norms, environments, and histories.

A surprising, clear illustration of this problem is provided by Wagner [2011].
Although he does not describe it this way, Wagner’s model provides a beautiful
test bed for Coady’s thought experiment. Imagine an alien species arrives.
Since we have no language in common, we must learn to communicate with
them about some matter of grave importance. To start let’s suppose that we
have a reoccurring interaction with the aliens where we are trying to develop
a language with only two simple words, “true” or “false.” We display some
visual fact about the universe to the aliens and they respond with one of two
prespecified words. We must come to learn which of those two words means
“true” and which means “false.”

So far this describes a very simple version of the signaling game invented by
Lewis [1969]. If we suppose that the aliens want to communicate successfully
with us and we want to communicate successfully with them, we will evolve to
communicate effectively.17 But Coady’s situation is different: what if they don’t
want to communicate with us? What if our interests are completely opposed:
they want us to believe false things and disbelieve true ones? Could it even
be the case that we establish a system of communication with them where we
could cogently say “everything they say is false?”

Take a moment and reflect on what you think about this situation, as a test
for your intuitions. We already know what Coady’s are. Have you decided? In
the case with two predicates – “true” and “false” – your intuition was probably
right. No meaningful language would exist between us and the aliens.

But what if we change the story in the most minor way? What if we intro-
duce three potential predicates? Maybe now we want to discuss the location
of something relative to another and we want to know is it much further away,
much closer, or approximately the same distance. And suppose that, again, the
aliens want to deceive us in a particular way. When the object is approximately
the same distance, they want us to believe its further; when the object is fur-
ther away, they want us to believe it’s closer; and when the object is closer, they
want us to believe it’s approximately the same distance.18

17There are many details that our short description leaves out. For one form of social
learning, modeled by the replicator dynamics, this was first shown by simulation by Skyrms
[1996] and then by more general mathematical proof by Huttegger [2007]. For another model
of learning called reinforcement learning, simulations are first discussed in Skyrms [2006] and
mathematical proofs by Argiento et al. [2009]. Of course there are other ways to model
individual learning, some have been discussed others not (for a somewhat dated survey, see
Huttegger and Zollman 2011).

18This is sometimes called cyclic dominance, and has a familiar structure from the children’s
game Rock-Paper-Scissors. If you played a lot of Rock-Paper-Scissors as a child, don’t dismay,
it turns out to be critical in evolutionary game theory [Szolnoki et al., 2014].
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Our intuition was that this small difference would make no difference, no
meaningful language would exist. And, in one very strange sense, it’s true. But
the dynamics were nothing like what we imagined. Wagner [2011] shows that,
under one model of learning, you have chaos.

“Chaos” is a term of art, and Wagner’s paper argues that this case meets
those conditions. For us, what matters is that the aliens will deceive us for a
while, but then we will catch on, and then things will change again. But what’s
important about chaos is that those change points are completely unpredictable,
even in theory. If you have the slightest error in your understanding of the
current state of communication, you will be unable to predict whether or not the
aliens or the humans will have the upper hand after some amount of time. Lest
one think that Wagner’s model is unusual, chaotic systems have been found in
the study of other philosophically significant systems like the Prisoner’s dilemma
[Glance and Huberman, 1993, Nowak and May, 1992, Suzuki and Akiyama,
2008].

Notice how shockingly simple Wagner’s social system is. There are only two
homogeneous groups: humans and aliens. They communicate using only three
predicates. Yet the system is in principle unpredictable. Why expect that our
intuitions are reliable for states of anarchy, like those imagined by Hobbes? Or
for the dynamics of complex languages, like those imagined by Kant?

When complex social systems are at issue, simulations can be used to over-
come these deficiencies of thought experiments. Simulations can be used to track
the interactions of thousands of agents whose many features are governed by
complex probabilistic laws. Purportedly “implicit knowledge” might likewise be
encoded into a simulation, but unlike a thought experiment, one’s “knowledge”
is made explicit and public. It is, therefore, capable of being criticized, refined,
and altered not only by the modeler but also by those who want to interpret
the modeler’s results and use them for their own purposes.

Computational models also inherit many of the virtues of thought experi-
ments. To be of any use, computational models must omit features of the target
system they represent; they often contain idealizations and distortions as well.
And omissions, idealizations, and distortions in computational models have the
same benefits they do when incorporated as parts of thought experiments. They
allow one to isolate the important variables in explaining a social phenomenon;
to explore whether the spread of a norm or the evolution of a particular behavior
is possible under particular circumstances, etc.

Simulations are also “manipulable” like thought experiments. Just as details
of thought experiments can be changed to test the robustness of a conclusion or
the relationship between assumptions and conclusions, so can the code of model
be updated and altered to check for robustness.

Finally, simulations of social systems are sometimes visualizable, even when
a corresponding thought experiment would produce no concrete mental image.
By rendering the agents and their properties in particular ways, simulations can
make complex patterns – and dynamics in particular – available to the eye in a
way that a thought experiment might not.

In short, for purposes of our argument, we grant that some thought exper-
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iments allow us to access some types of implicit, non-propositional knowledge.
We also grant that such knowledge might not be incorporated into computa-
tional models. But those two admissions do not entail that thought experiments
should be preferred, in all cases, to simulations. Why? We have argued that
humans often do not have reliable implicit, non-propositional knowledge of so-
cial dynamics – or that such knowledge can be reliably distinguished from mere
opinion and prejudice – and we have argued that simulations inherit many of
the virtues of reliable thought experiments in precisely these circumstances.

1.4 When should a method become a core part of philos-
ophy?

Even if simulations are better than thought experiments for achieving some
philosophical ends, do the philosophical ends justify the computational means?

Neither ethical nor practical concerns speak against simulation. Typically
the opposite is true. Like thought experiments, simulations can substitute for
real experiments that are unethical, costly, or impractical. Given that philo-
sophical thought experiments often involve remote conceptual possibilities and
ethically grey scenarios, simulations seem like an ideal way of exploring the
social dynamics that philosophers would otherwise need to speculate about.19

But perhaps philosophers should leave model-building to scientists and engi-
neers. Understanding climate models is obviously important for some ethicists
and philosophers of science. But that doesn’t mean that ethicists ought to learn
how to construct climate models. A division of labor is necessary.

Unfortunately, unlike empirical research on climate change, certain philo-
sophical questions are simply not being addressed by scientists. Further, a
complete division of labor is typically impossible. Climate change ethicists need
more than a passing familiarity with climate models. In general, to answer many
philosophical questions, we philosophers might need to be able to manipulate
existing models developed by scientists. Finally, if all philosophers lacked the
ability to develop computational models, our community would be unable to
interpret and evaluate scientific models that are relevant to our own work.

The last point clarifies why we’ve claimed only that the philosophical com-
munity should contain modelers. We do not claim that all philosophers should
be modelers, even in cases in which models are indispensable. Societies need
doctors, but no particular person must be a doctor. Similarly, philosophy needs
computational modelers, but not all philosophers must be computational mod-
elers. In fact, both empirical work and theory – including theoretical models
developed by philosophers – suggest that philosophy benefits from a diversity of
research approaches. One reason is that simulations and thought experiments
are unreliable in different ways. Thus, philosophers, we think, should use both
methods so as to discover and avoid errors associated with each method, in the

19This is not to say there are no ethical questions about conducting thought experiments
or simulations. Like any form of research there are important ethical questions about fraud,
transparency, inductive risk, etc.
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same way that two scientific methods might be used to estimate a quantity, even
if one is believed to be more accurate in the case at hand.

Finally, critics might grant simulation is a fine research method but not a
philosophical one. “Simulation is just not philosophy,” one might say. Such a
critic either confuses a descriptive for a normative claim or begs the question
entirely. We grant that, historically, computer simulation has been rare in
philosophy (as it has been in every field!). Our thesis concerns methods that
philosophers ought to use more often. And to baldly assert that “Simulation
ought not be considered philosophy” is just to beg the question.

2 Simulations and Philosophical Habits of Mind

We now argue that modeling and programming foster philosophical habits of
mind. This argument is distinct from that in §1 which focused on how a philo-
sophical argument might benefit from including simulation models as part of
the argument. In this section, we argue that modelers benefit from developing
and programming computational models, even if their models are never read by
others. Just as many philosophers sketch their arguments in logical or pseudo-
logical notation to check for validity, developing a simulation can force one to
uncover hidden assumptions or ambiguities that would go unnoticed without
such an exercise.

Many of the skills that modelers develop, we believe, correspond to the five
uses of models and thought experiments we focused on in the previous sec-
tion. That is, if our arguments in the previous sections were successful, then
modelers should (just as readers who assess philosophical arguments containing
models) become more successful at justifying counterfactual claims, exploring
logical relationships among philosophical theses, developing concrete descrip-
tions of “possibility spaces”, distinguishing explanatory reasons, and exploring
the dynamics of social and physical systems. Thus, in this section, we focus on
two additional philosophical skills that, we think, are especially advanced by
devising and programming models, namely, the skills of (i) identifying implicit
assumptions in arguments and (ii) disambiguating claims and distinguishing
concepts. We then argue that the benefits of modeling typically outweigh the
harms and that no other method is known to be as effective in acquiring some
philosophical skills.

We take inspiration from one of Josh Epstein’s arguments to the social sci-
ence community:

The first question that arises frequently – sometimes innocently and
sometimes not – is simply, “Why model?” . . . my favorite retort
is, “You are a modeler.” Anyone who ventures a projection, or
imagines how a social dynamic – an epidemic, war, or migration –
would unfold is running some model.

But typically, it is an implicit model in which the assumptions are
hidden, their internal consistency is untested, their logical conse-
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quences are unknown, and their relation to data is unknown. But,
when you close your eyes and imagine an epidemic spreading, or any
other social dynamic, you are running some model or other. It is
just an implicit model that you haven’t written down [Epstein, 2008].

Ultimately, our argument rests on an empirical assumption, namely, that
constructing computational models helps one acquire certain philosophical skills.
We admit that our evidence for the premise is derived from personal experience
and untested (but plausible) causal hypotheses. As modelers, we have ample
first-hand experience of cases in which developing a model has clarified our own
thinking and suggested fruitful paths for research. As teachers, we have seen
students’ philosophical thinking improve by developing computational models.20

2.1 Simulations promote real thinking

We now explain why, when investigating social dynamics, developing computa-
tional models helps the modeler practice (i) identifying implicit assumptions in
arguments and (ii) disambiguating claims and distinguishing concepts.21

Let’s start with the ability to identify implicit assumptions. Again, consider
Kant’s claim that we would stop taking promises seriously if everyone broke
promises when convenient. If a philosopher were to develop a simulation model,
they must ask and answer many more questions. To examine Kant’s claim, a
modeler must represent (a) actions like making, breaking, and keeping promises,
(b) properties of agents, such as their beliefs (e.g., about how likely various peo-
ple are to break promises) and their interests (so we can know what it means
for breaking a promise to be “convenient” or in the agent’s self interest), and
(c) relationships among agents (e.g., with whom do agents most frequently com-
municate? Are some agents more likely to need to make promises and others
more likely to need to decide whether to accept or deny promises?). Even at
this early stage, the modeler is forced to ask questions that Kant simply never
asks: should we represent beliefs by binary variables (Tom is reliable vs. not),
qualitatively scaled items (e.g., Tom is very reliable, somewhat reliable, some-
what unreliable, etc.), or numerical variables (e.g., Tom’s reports are true x% of
the time)? What does it mean for an act to be in the agent’s best interest? For
example, is “best interest” captured by some expected utility model, a maximin
principle, or something else entirely?

As these representational choices are made, a modeler is also forced to make
dynamical assumptions: how do agents’ beliefs, interests, and behaviors change

20One can, and should, develop tests for our empirical premise. But as an argumentative
matter, it is worth noting that philosophers accept the efficacy of philosophical training on
the basis of equally weak evidence. Relatively little empirical research compares the effect of
traditional philosophical training with that of training in other disciplines (e.g., in economics
or mathematics). So it’s also an empirical question whether teaching other core philosophical
methods – like thought experiments – is the best way of teaching one to do philosophy.

21We are not the first to notice the virtues of modeling a practice for the philosopher.
Williamson [2017, 2018] also suggests that devising and manipulating models helps to instill
important philosophical habits.
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over time? Here, again, the modeler must ask questions that Kant does not.
What information do agents learn when a promise is broken? For instance, if
Tom breaks a promise to Sally, does Sally learn so? Do others learn of that
broken promise? If so, who? How much do people remember? How is an
agent’s behavior a function of her beliefs and desires? In short, a modeler is
forced to answer dozens of questions that casual consideration of Kant’s thought
experiment would not require one to answer.

One might stop at this point and say: “these questions are irrelevant, Kant’s
claim doesn’t depend on these.” But how can we know without developing a
model? Surprising results depend on very subtle assumptions about how people
learn.22

Anyone who develops an explicit mathematical model (computational or
not) of Kant’s thought experiment should answer questions like the ones we’ve
posed. But we suspect that trying to program a model makes the questions
especially forceful. The reason is fairly simple: you can’t hide assumptions
from a computer. A computer doesn’t know what your variables are supposed
to represent. It won’t draw semantic inferences from the names you use for
variables. For instance, a computer won’t assume a variable called “belief”
represents something propositional. Further, a computer doesn’t know what
types of standard assumptions are made about belief updating or rational choice.

Contemplating how to create a computational model of Kant’s thought ex-
periment, in short, forces one to identify the implicit assumptions about the
nature of belief, rationality, social interaction, and so on, that Kant makes to
reach the conclusion that promise-keeping would cease to exist in a world in
which breaking promises “when convenient” was universal. In identifying those
implicit assumptions, a modeler is then forced to draw distinctions (e.g., be-
tween different representations of belief) that a reader who engages with Kant’s
original text would not make.23

Of course, some choices made by the modeler will be arbitrary. In fact, every
modeling assumption she might consider could be unrealistic. What is impor-
tant is that, in constructing a model, she recognizes that various psychological,
sociological, etc. assumptions are necessary for any argument whatsoever, even
those that purport not to rely on modeling assumptions. To paraphrase Epstein,
Kant was running some model or other. It’s just not one that he wrote down.

22These issues show up in philosophy where different assumptions about how individuals
learn can have interesting implications on evolution of communication in Lewis signaling games
[Barrett and Zollman, 2009, Huttegger et al., 2006, Skyrms, 2010].

23During this process of identifying and disambiguating assumptions, a modeler is naturally
led, just as a reader of such a model might be, to question whether the assumptions necessary
for Kant’s argument are reasonable and whether Kant’s conclusion would follow from slightly
different assumptions about how agents are represented and how their properties change. This
later process is called “robustness” testing and in a frequent task completed by modelers in
scientific domains [Odenbaugh and Alexandrova, 2011, Weisberg, 2006].
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2.2 Tradeoffs: Skills vs. Bad Habits

In devising and programming computational models, philosophers develop, prac-
tice, and hone their philosophical abilities. But does it follow that, ceteris
paribus, philosophers should devise and program computational models?

As we discussed in §1.4, devising and programming computational models is
not normally unethical, costly, or impractical. And although it’s plausible that
there are other methods that might help one hone one’s philosophical abilities
more effectively, we don’t know of one more effective for philosophical questions
involving social dynamics.

Nonetheless, one might worry that the intellectual benefits of computational
modeling are outweighed by the bad habits it encourages. Some modelers, we
hypothesize, might adopt non-robust assumptions for the sake of running a
simulation of some type. Other modelers might adopt implausible assumptions
simply because a particular programming language (e.g., NetLogo) makes those
assumptions easy to implement.24 By itself, adopting false or implausible as-
sumptions is not a sin, for reasons we will discuss below. But becoming confident
in the conclusions drawn from models constructed in these ways – or a collection
of models sharing similar implausible assumptions – is a problem.

We grant that unreflective modeling can encourage some bad habits. But we
remind the reader: consider the alternatives. The same is true for any method.
Unreflective commitment to to a naive philosophical method can engender logi-
cally correct, but useless, philosophical argument – as anyone who has taught an
undergraduate course can attest. The solution to both problems is not to aban-
don the method, but rather to improve it and make the practitioner understand
the limitations of their own research strategies.

Avoiding intellectual vice, whether those encouraged by modeling or more
traditional philosophical methods, requires training and diligence. Just as we
think philosophers can learn to avoid the above sins of demands for rigor, we
think modelers can learn to express greater modesty when the best models are
unfit for the desired purposes.

3 Objections

Before addressing objections, we note that simulation is now indispensable in
science, from physics, to climate science and geology, to biology and social
sciences. Without simulations there could be no modern science.25 For this
reason, some objections to modeling in philosophy would be equally applicable
to scientific uses of computer simulation modeling. We’re not suggesting that
philosophers should just “trust the scientists.” There are bad simulations in the

24This point has been made explicitly by the philosopher and modeler, Jason McKenzie
Alexander in talks and personal conversation.

25For philosophers of science, simulations raise many interesting epistemological questions.
How can simulations tell us something about the real world? What distinguishes good sim-
ulations from bad ones? Are simulations always replaceable by some sort of analytic model?
See [Downes, 2021, Weisberg, 2013, Winsberg, 2010] for many of the issues.
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sciences as well. But we urge the reader to consider the following: if an objec-
tion attacks the epistemic benefit of all computer simulations, the philosopher
must be prepared to dispense with an enormous amount of successful scientific
practice.

3.1 Your model is false

One might object, “your model is false” or “Your assumption that X is false.”26

Yes, we know. The important question is, “Do the false assumptions undermine
the model’s intended purpose?”

Consider again the uses of thought experiments and simulations that we
discussed above. Some simulations, like thought experiments, are intended to
show that a particular event, phenomenon, or dynamics is possible. For example,
signaling games are often used to show how organisms might develop complex
patterns of communication using only extremely simple learning strategies. The
goal of such models is not to show that, for example, vervet monkeys did evolve
to produce alarm calls in a particular way, but rather, that scientists might not
need to postulate complex mental states in order to explain the development
of a primitive language. Similar remarks apply to models used to show how
self-interested organisms might develop cooperative norms, even if such organ-
isms frequently find themselves in competitive situations. Models intended to
illustrate a conceptual possibility (e.g., to provide a “how possible” story) need
not contain exclusively true assumptions.

Consider a second use of models: to identify important variables or distinc-
tions. Mayo-Wilson [2014], for example, argues that philosophers should con-
sider honest miscommunication and network structure when investigating when
testimony is trustworthy. Mayo-Wilson’s model is not intended to support a
particular policy, but rather, to show that idealizations made in philosophical
thought experiments are not harmless: variables that some social epistemolo-
gists ignore are often crucial for identifying when to trust others. When models
are used in this way, again, it’s not essential that all the model’s assumptions
are true.

The same is true of models that are intended to explore logical relationships
among various theses, and in particular, to show that certain widely-held con-
clusions do not follow from common assumptions. For example, science-policy
makers often assume that, as long as scientists are honest and truth-seeking, it
is always beneficial to encourage scientists to share their findings and seek out

26One of us once discussed a mathematical model from economics with a political philoso-
pher, who remarked that the model couldn’t possibly be relevant to their philosophical work.
In philosophy, the political philosopher said, we are concerned with valid arguments with true
premises. Since the model made false assumptions, it could not be part of an argument with
true premises. This view of modeling is a natural consequence of the logical picture of model-
ing that accompanied the semantic view of theories in philosophy of science. Along with most
contemporary philosophers of science, we believe this way of viewing modeling is the result
of an equivocation of the way “model” is used in logic and in the various sciences [Downes,
1992, Weisberg, 2013]. This objection can also be mistakenly raised in scientific contexts as
well [Waldherr and Wijermans, 2013].
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others’ work before continuing with their own research. Zollman [2007, 2010b]
shows that might not be the case. Even if one is skeptical about the robustness
of Zollman’s results [cf. Rosenstock et al., 2017] or thinks Zollman’s idealiza-
tions are suspect, the model is still of value: it forces a policy-maker to ask the
question, “Is there any reason the sharing of information might backfire in the
case at hand?” Models intended to show that a conclusion does not follow from
assumptions need not contain only true assumptions.

Even when a model is used to draw a conclusion about the world, however,
it is often not fruitful to show that a particular modeling assumption is false.
Planets aren’t perfect spheres; planes aren’t frictionless, and collisions among
gas molecules aren’t perfectly elastic. But physicists regularly make those as-
sumptions and succeed anyway. We won’t try to answer the question of which
idealizations are useful (and when). We want only to emphasize the follow-
ing. Some false assumptions are useful, and others aren’t. The use of false
assumptions is not by itself an objection to modeling practice as a whole.

The gap between a model and the real world is always inductive [Sugden,
2000]. Good models are like the real world in some respects and unlike it in
others. When a model resembles the world in some respects X, it will, as a
matter of contingent fact, turn out to resemble the world in other ways Y . But
the correlation between X and Y is never discoverable a priori. So one ought
not ask “Are the model’s assumptions true?” but rather, “Does the model
resemble the world in the relevant respects for the question at hand [Waldherr
and Wijermans, 2013, Weisberg, 2013]?”

3.2 Your model isn’t validated

Our critic might grant that false models are often useful. They might object,
however, that most models developed by philosophers are not validated, i.e., the
predictions of the models have not been tested against the real world [Martini
and Pinto, 2016, Thicke, 2019]. That is, the critic grants that many false models
yield reasonable predictions. For instance, models that describe the planets as
point masses are fairly accurate for describing planetary motions over thousands
of years. The critic just denies that philosophers’ models are useful in this way.

Again, we emphasize that simulations, like thought experiments, have many
purposes, and validation just isn’t necessary for many of those purposes. For
example, to illustrate that certain events or situations are possible, it’s often not
necessary to validate one’s model.

Of course, it is important to validate models (when possible) for particular
purposes. Validation is extremely important in epidemiology, for example. This
is in part why the CDC asked the simulation teams to use the historical case of
an actual polio outbreak. This allowed the modelers to choose parameters that
fit the actual outbreak and only alter the one variable.

But even when validation is important, it can’t always be achieved. The
outbreak of COVID-19 occurred during this revision of this paper, and early
models of the progression of that disease were often wrong. But we could not
wait for careful validation of the predictions of those models, before using them
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for policy intervention. Doing so would have left millions dead. As of the
writing of this paper, now months into the pandemic, we may still not yet be
in a position to have carefully validated models of the disease.

In such cases, scientists and philosophers use the word “validation” to mean
something like, “testing the assumptions of the model against the world.” To
validate an early model of COVID-19, for example, one might ask “is the mod-
eled disease transmitted at the same rate that we think COVID-19 is? Is the
model of the way people move and interact realistic?” Further validation might
involve checking the model’s parameter settings against the world or against an-
other validated model. As we are all aware, even models that have be carefully
validated in this more indirect way can be wildly off. But, sometimes that is
the best that one can do.

Unfortunately, there are times where validation, even in this weaker sense,
is complicated or impossible. One should be honest about these limitations,
but it is not always a reason to abandon modeling entirely. It’s not that we
should trust, uncritically, an unvalidated model. But rather that a weak induc-
tive argument, properly understood, is better than no argument at all. Most
importantly, the cases that make model validation impossible will make it like-
wise impossible to assess the (typically implicit) assumptions of arguments that
do not use an explicit model.

Finally, when comparing computational models to other forms of argumen-
tation, it’s important to distinguish apparent from actual validation. Leading
scientific journals like Nature and JAMA routinely publish short science-policy
proposals. Such proposals often contain quantitative empirical data and basic
statistical models (e.g., regressions). Scientists then use this data to defend
counterfactual claims about how science would be if we adopted a novel policy.

In contrast, agent-based models of science (in both philosophy and science)
are rarely motivated by quantitative empirical data. Instead, such models are
often justified by “plausibility” arguments and stylized historical case studies.
So on first glance, the former statistical models seem better validated than the
latter agent-based ones.

But care is needed. All science policy proposals rely on causal hypotheses
about how scientific institutions, corporations, and individual scientists respond
to incentive schemes. Philosophers’ agent-based models make those causal hy-
potheses explicit. Two-page editorials in JAMA rarely do. And the statisti-
cal models published in science policy papers almost never justify the required
causal conclusions. Instead, we conjecture, the implicit causal assumptions are
accepted unconsciously on the basis of qualitative plausibility arguments and
observations of current scientific practice. With regard to science policy propos-
als, all existing arguments would benefit from validation, but we don’t see any
reason to suppose the causal hypotheses implicit in scientists’ reasoning will be
easier to validate than those in philosophers’ models.
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3.3 Your model might have a coding error

Computer programs can contain errors. So occasionally, a computational model
represents a system different from the one the modeler intended.27 One might
object that this possibility represents a reason to exclude modeling from philo-
sophical discussion.

As before, we ask the reader to consider the alternatives. In order for coding
errors to be a reason to abandon simulation methods, it would need to be the
case that coding errors were more common than other forms of conceptual errors
like equivocation, fallacious reasoning, and the like. And we see no reason to
suppose that.

But even if coding errors were extremely common, we have already illustrated
an important benefit of computer simulation. Modelers should make their code
available to others. When they do so, errors are uncovered and fixed. So even
if coding errors were more common than other forms of error – something we
do not believe – simulations would not be epistemically inferior because those
errors that sneak through would be easier to detect and remedy. And even if
code is not published, scholars often attempt to replicate models – sometimes
finding critical errors when they do [Will and Hegselmann, 2008].

Like the other objections, there is an important grain of truth behind this
one. Computer scientists have developed powerful methods for detecting cod-
ing errors. Philosophers should be trained to use these methods. With such
training, we can reduce a source of error without abandoning a fruitful method.

3.4 Epistemic opacity

In principle, one can check mathematical proofs step-by-step. Similarly, a rig-
orous philosophical argument contains all the steps necessary to reach a con-
clusion.28 In principle the reader has all the relevant facts to reconstruct the
justification for the claims offered in a paper using one of these methods. For
example, we provided you with all you need to see how to construct a square
using a straightedge and compass in Figure 1.

Humphreys [2008] argues that, in contrast, simulations are “epistemically
opaque” because even experts may not be able to see how the results were
generated. Of course, a simulator could provide the code, but that may not
be enough to fully understand how or why the simulation produced particular
results.

Humphreys argues that opaqueness is a unique feature of computer simula-
tions. We disagree: experiments are often analogously opaque. A scientist can
provide you with her “raw” data, but those data do not provide you with any
information about how or why the experiment produced a given result. Fur-
ther, raw data are often the output of some detectors, the observations of a lab

27This possibility lies behind the dialog among Alexander et al. [2015], Thoma [2015], Weis-
berg and Muldoon [2009].

28Note that in practice published mathematical proofs often contain large gaps that special-
ists must fill in and published philosophical arguments are notorious for their enthymematic
structure.
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assistant, etc., and one who lacks knowledge of the data gathering procedures
will likewise lack knowledge of why the experiment produced a given result.

Similarly, although the opacity of simulations stands in contrast to the visual
thought experiments we discussed in section 1.1, not all thought experiments are
epistemically transparent. We often cannot explain why some actions are ethical
or why some objects count as pieces of art. A virtue of thought experiments is
that they allows us to use non-propositional knowledge that may be opaque to
us. In this respect, some thought experiments are more opaque than computer
simulations.

Humphreys does not think epistemic opacity is a reason to exclude simu-
lations from scientific practice. However, if one wanted to use this concept in
order to argue against philosophical simulations (but not a scientific ones) then
one would need to argue that philosophers should be more concerned about
epistemic opacity than scientists. Perhaps such a argument is possible, but we
are hard pressed to devise one that isn’t question begging. Why should philos-
ophy be more epistemically transparent than the sciences? And if it should be,
why are thought experiments acceptably opaque when simulations are not?

Here too, there is grain of truth behind the objection: computer simulations
can be more or less transparent. A modeler can describe her model perfectly,
summarize her simulation results in excruciating detail, and yet, fail to explain
why the model produced the given results.

That is bad practice, but it’s not an inherent limitation of simulation mod-
els: some modelers make the relationship between model and results crystal
clear. Philosophers of science should characterize what makes those modelers
successful.

Social and professional norms can help as well. If journals require modelers
to make their code available, reviewers can ask for additional explanation or
analysis to help make the results of models less opaque. Improving philosophical
training, therefore, can help to make simulation practice better by creating a
pool of reviewers and editors who know the right questions to ask.

4 Conclusion: The Computational Philosophy

Leibniz once said, “Calculemos!” (Let us calculate!) We say, “Let us simulate.”
Our computational philosophy resembles, in some important ways, the me-

chanical philosophy of Locke, Galileo, and Leibniz among others. Just as the
mechanical philosophers were skeptical of a priori speculation about the physical
world, we are skeptical of a priori speculation about the social world. So just as
the mechanical philosophers urged that the methods of philosophy be extended
to include controlled experiments (of sometimes artificially simple physical sys-
tems), we urge philosophers to embrace simulations of social dynamics.

But unlike the mechanical philosophers who deemed certain methods and
types of explanations unintelligible, we’re pluralists about philosophical method-
ology. So we end with a thought experiment that, we think, cannot be replaced
by a social simulation. In upcoming centuries, human brains might be aug-
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mented by digital computers that allow us to remember and compute in ways
that we currently cannot. Imagine future philosophers can, without any ef-
fort, mentally run social simulations by accessing computers that have been
implanted in their brains; sometimes those philosophers run simulations un-
consciously. Would the computationally-augmented “thought” experiments of
future researchers count as philosophy? We think so, and we see no reason to
think that current simulations run “outside” the brain are any less philosophical.
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