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Abstract Path-dependence offers a promising way of understanding the role historic-
ity plays in explanation, namely, how the past states of a process can matter in the
explanation of a given outcome. The two main existing accounts of path-dependence
have sought to present it either in terms of dynamic landscapes or branching trees.
However, the notions of landscape and tree both have serious limitations and have
been criticized. The framework of causal networks is both more fundamental and
more general that that of landscapes and trees. Within this framework, I propose that
historicity in networks should be understood as symmetry breaking. History matters
when an asymmetric bias towards an outcome emerges in a causal network. This per-
mits a quantitative measure for how path-dependence can occur in degrees, and offers
suggestive insights into how historicity is intertwined both with causal structure and
complexity.

Keywords Path-dependence · Explanation · Historicity · Symmetry · Causal
networks · Mutual information

1 Introduction

In many complex systems the past matters in explaining which outcome eventually
obtains. This gives many processes in the special sciences, from chemical reactions
to the evolution of political institutions, a seemingly irreducible historical character.
The adoption of the QWERTY keyboard is often taken as a paradigm case of this
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phenomenon (David 1985). Originally, the QWERTY layout was designed to prevent
typewriters from jamming; however, it subsequently became entrenched, even though
the typewriter itself became obsolete, and even though there are more efficient ways
of organizing an English-language keyboard for a computer. Thus, to explain why the
present state of keyboards is as it is, one needs to integrate information about past states.

Perhaps the most prominent analysis of historicity has been in terms of path-depen-
dence. In the broadest sense, path-dependence merely implies that the path followed
by a system is explanatorily relevant for its final outcome. In this sense, the term is
simply anotherwayof saying ‘past statesmatter’.However, once this ‘explanatory rele-
vance’ is given a more precise characterization, narrower and more technical accounts
of path-dependence emerge. Such accounts were originally proposed in economics
and the social sciences (Arthur 1994; Pierson 2004), but more recently the issue has
been receiving increasing attention from philosophers of science (Szathmáry 2006;
Ereshefsky 2012; Desjardins 2011a, b, 2015).

In the philosophy of science literature, the notion of path-dependence is closely
related to two other ways of understanding historicity: ‘sensitivity to initial condi-
tions’ (Ben-Menahem 1997; Powell 2012) and ‘contingency’ (Beatty 2006; Beatty
and Desjardins 2009). In this paper, these approaches will be integrated into the
account of path-dependence (as also done by Desjardins 2011a) and therefore will
not be explicitly discussed. After all, path-dependence in the broad sense is more or
less synonymous with historicity to begin with, and so these other approaches are best
not seen as rival approaches, but as highlighting different aspects of path-dependence.

Among the more technical accounts of path-dependence, two classes of model can
be discerned. The first characterizes path-dependence as occurring when a system
could possibly evolve towards one of multiple local stable equilibria or attractor
states (e.g. Bassanini and Dosi 1999; Pierson 2004; Szathmáry 2006). In this way
certain key aspects of path-dependence, such as nonlinearity and sensitivity to initial
conditions, can be modeled as an evolution on what I call an attractor landscape
with multiple attractor states. Such a model, like the adaptive landscape metaphor
in evolutionary biology, has serious limitations, the main one being that in systems
with high dimensionality the topology of associated landscapes tends to be ridged and
holey. As wewill see, this means that the dynamics of such systems cannot bemodeled
as simply maximizing some scalar variable, and this precludes (or at least seriously
limits) a general formulation of path-dependence in terms of landscape topology (see
Gavrilets 2004; Kaplan 2008).

The second broad class of model has represented path-dependent processes as a
branching causal tree (Desjardins 2011a). However, branching trees also have limi-
tations when the causal structure becomes too complex, in particular when there are
multiple possible initial states, or when there is a significant number of non-tree events,
or ‘reticulations’, where branches converge (Moret et al. 2004). For example, an area
where the tree metaphor has received significant criticism is phylogenetics, where
phenomena such as hybrid speciation or lateral gene transfer cannot be captured in
tree models.

To address these limitations, the first purpose of this paper is to introduce the notion
of causal networks in some formal detail, and show how they are generalizations of
both landscapes and branching trees. Network models are already well established
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in the causal modeling literature (following Pearl 2000) and in phylogenetics (e.g.
Moret et al. 2004; Velasco and Sober 2010), but in the literature on path-dependence
they have been underutilized. Causal networks allow complex causal relations to be
represented when both tree or landscape metaphors fail.

The second, and main, purpose of the paper is to formulate a criterion of path-
dependence that fits naturally within a causal-network framework. Borrowing from the
notion of symmetry in physics, where it is used to characterize spatial configurations
or dynamical equations, I will propose to extend the application of the notion of
symmetry to the space of possible causal paths. The basic idea is that in ahistorical
explanation there is a symmetry (interchangeability) between the biases towards the
explanandum among all possible states at any given time. Path-dependence arises in
a causal network when some past state has a different probabilistic bias towards the
explanandum than the other contemporaneous past states—or in other words, when the
symmetry is broken. Thus symmetry is potentially a powerful tool to characterize the
path-dependence of a process without unnecessarily simplifying its causal structure
to fit the mould of either a tree or a landscape.

In a final section, I will outline how path-dependence can be quantified, as one
unresolved challenge remaining is to determine how precisely some processes can
be ‘more’ path-dependent than others. I propose adopting the measure of ‘mutual
information’, which is an information-theoretic concept used to quantify the amount
of information one variable contributes about another. This measure is conceptually
continuous with the symmetry formulation of path-dependence, and suggests one way
in which the properties of path-dependence can be studied formally.

2 Aspects of path dependence

In this first section I begin by selecting some salient properties of path-dependent expla-
nations of processes1 in order to develop some intuitions concerning the phenomenon.
I will loosely group these properties according to whether they are future-oriented or
past-oriented.

Among the past-oriented aspects, a key distinction is that between information-
preserving and information-destroying processes (Sober 1983, 1988; Desjardins
2011a, b). The latter is exemplified by what happens when a marble is released from
the rim of a bowl: the marble will roll down and rock back and forth until it comes
to a stop in the middle of the bowl. Given information about the final state alone, it is
impossible to reconstruct its initial state, since no matter where precisely on the rim
the marble was released, it would invariably have come to rest at the middle point.
This is an example of path-independence, as the precise path followed by the marble
makes no difference to the final state. In other words, the past of the marble is ‘erased’
and does not matter for the explanandum.

1 In this paper, I take path-dependence to be a property of an explanation or a representation of a process, not
a property of the process itself. A process is not identical with the representation of it, and epistemological
problems arise because of this disjunction; however, this will not be a concern for the purposes of this paper.
In the interests of brevity, I will often refer to representations of processes simply as ‘processes’.
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One of the most basic path-dependent processes is movement with friction. If one
slides a block of wood from point A to point B, then it matters whether the shortest
path between the points is chosen, or some more indirect route. In the latter case, more
heat will be generated due to friction between the block of wood and the surface. Thus,
some information about the past (i.e. the length of the path followed, or the speed with
which the block was pushed) is preserved in the final state.

In general, most real processes have both information-preserving and information-
destroying aspects, and in this way can only be said to be partially path-dependent.
For example, the morphology of the whale shows remarkable similarities with the
morphology of fish, yet there are significant differences as well. Some information
about the past is destroyed due to the convergent evolution towards the streamlined
morphology. However, a whale has lungs instead of gills, and its fins are exapted from
fingers, and thus some information about its land-based past is preserved.

A second group of properties of path-dependence concerns how the past makes a
counterfactual difference for the present: if the past were different, the outcome would
also be different. For example, if humanity had skipped the technology of typewriters,
and gone straight to computers, there would likely be no QWERTY keyboard. The
phenomenon of sensitivity to initial conditions—how a small change in initial condi-
tions can lead to a large change in outcomes—concerns this aspect of path-dependence
(Ben-Menahem 1997; Powell 2012). An example is the nonlinearity of the weather,
so that, so to speak, a butterfly can flap its wings in Paris and cause a storm in New
York. The outcome could not have occurred if the past were different.

The underlying notion here is the contingency of the explanandum, where ‘con-
tingency’ refers not to the modal structure of the explanandum (i.e. whether or not it
is true in all possible worlds), but to the structure of its causal history. The outcome
is contingent if, given what we know about its causal antecedents, it could not have
occurred.2

A helpful distinction here lies between ‘causal-dependence contingency’ and
‘unpredictability contingency’ (Beatty 2006). Causal-dependence contingency refers
to the counterfactual dependence of the outcome on some prior state. ThusA is ‘contin-
gent upon’B if and only if, wereB not present, Awould not obtain. Causal-dependence
contingency is thus a very broad notion, and also covers deterministic processes where
there is dependence on initial conditions, such as the Newtonian dynamics of individ-
ual particles.

Unpredictability contingency refersmore specifically to indeterminism in a process,
or at least, a modeled indeterminism in the explanatory structure.3 It is insufficient to
know the prior states in order to ‘predict’ the outcome state. Beatty describes this as
‘contingency per se’ (2006, pp. 38–40), thus indicating that contingency can also be
used as a one-place predicate attaching to an explanandum.

2 This is partially why historical explanations do not fit the mould of deductive (or even inductive) expla-
nations. The explanandum cannot be deduced from a general principle, or inductively inferred with high
probability, but maintains some degree of ‘contingency’.
3 Many processes in statistical physics and the special sciences are modelled as probabilistic, even though
the underlying causal processes may be deterministic. See also footnote 1.
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These two notions of contingency capture two different senses in which the out-
come could not have occurred, given the initial state. Unpredictability contingency
is not necessary for path-dependence, as some perfectly predictable processes (e.g.
Newtonian dynamics) depend on initial conditions, and thus the outcome is dependent
on which causal path had been taken.4 This has led some to refer to dependence on
initial conditions as ‘weak’ path-dependence, and the cases where the process depends
on multiple past states as ‘strong’ path-dependence (Ereshefsky 2012).

These two orientations, future-directed and past-directed, are in no way mutually
exclusive, and most real examples involve both perspectives. Consider the phenom-
enon of positive feedback, where the system is initially balanced between two basins
of separate attractors, and where any initial fluctuation will snowball and result in
a large, self-reinforcing change. A classic example of this is the emergence of the
VCR videocassette technology (Arthur 1994). Initially, the videocassette market was
precariously poised between two competing technologies, VCR and Beta; however, a
slightly greater adoption of theVCR technology by consumers led to it becomingmore
widely available in video outlets, in turn precipitating further adoption by consumers.
Thus VCR came to dominate the market. In this example, there is unpredictability
contingency (the initial greater adoption was purely contingent) and sensitivity to ini-
tial conditions, but also some information-preservation, as given the outcome of VCR
dominance, we can extract some information about some of the past states.

Another interesting combination of both orientations occurs in instances where
the initial state neither snowballs nor is erased, but where it simply constrains future
evolution. For example, developmental mechanisms, such as the processes determined
by the Hox genes, constrain possible body-plans and thus the adaptations that are
possible (Young and Hallgrímsson 2005). There is a counterfactual dependence in the
sense that past states (like a certain configuration of the Hox genes) preclude some
possible future states. When the past constrains the outcome to the extent that only a
single outcome becomes possible, the phenomenon is known as ‘entrenchment’ or the
‘lock-in effect’. There is also some information-preservation here, as it is possible to
reconstruct the past to a certain extent.

3 Three challenges

With these phenomena in mind, three challenges face any account that attempts to
uncover the more formal structure of path-dependence. The first is to account for
how path-dependence is a matter of degree. While some measures have been intu-
itively suggested in the literature (e.g. Desjardins 2011a), a more rigorously developed
account is lacking. This is partly due to the fact that the literature is relatively new.
However, perhaps it is partly due to some confusion about two ways in which ‘degree’
can be understood.

The first way is when the past matters at multiple moments instead of a single
instant. Thus, insofar the evolution of the whale is represented as depending on at

4 Wewill see later on that unpredictability contingency is not sufficient either: some probabilistic processes
are ahistorical.
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least two moments (the transition from fish to land-based animal, and from land-based
to aquatic reptile) instead of just one in the case of VCR history (the instant when
VCR happened to become more frequent than Beta), the evolution of the whale can be
considered more path-dependent than that of the VCR. The outcome state gives more
‘information’ about the past in the first case than in the second.

The second way the past matters ‘more’ is when a difference in the past leads
to a ‘greater’ difference in outcome. For example, the past matters ‘more’ when
a butterfly flapping its wings leads to a hurricane than when the flapping would
merely lead to a small displacement of air. Note that these two types of degree are
not necessarily equivalent: for example, if the hurricane happens to be some attrac-
tor state, in such a way that many other kinds of small disturbance would likewise
have led to the hurricane, the fact of a butterfly flapping its wings is not very rel-
evant to explain why the hurricane occurred. The background conditions (pressure,
temperature differentials) would be more informative; what actually triggered the
hurricane would be relatively unimportant. In this way, while the first measure of
path-dependence concerns how informative the past is for explaining the present, the
second measure compares the ‘distance’ between the outcome states of given initial
states.

In this paper I will leave this second sense of degree aside, mainly because the
information-focused sense of degree is more fundamental and leads to interesting
connections with information theory. However, another reason is that formalizing this
second sense of degree would not be worthwhile for the purposes of this paper. Allow
me to briefly sketch why. The distance-focused degree can either refer to nonlinearity
or discontinuity.5 If one takes it to be discontinuity, it is a discrete property of a
process and hence not a good candidate for a gradualist degree of path-dependence.
If one interprets it as nonlinearity, then one would need to detail what it means for
one outcome to be ‘very different’ from another. What metric is one to define on,
for example, the space of possible videocassette technologies? It seems impossible to
introduce any metric without relativizing it to explanatory interests. Thus, if taken as
nonlinearity, this distance-based degree of path-dependence seems to depend mainly
onwhat explanatory interests are at stake rather than on the nature of path-dependence.

Besides accounting for how path-dependence comes in degrees, a second challenge
is that the evolution of a system may be path-dependent at only certain times, or only
with regard to certain outcome states. Thus path-dependence seems to have different
scopes, some more local, others more global. A third, final challenge concerns the
way in which path-dependence seems to depend on the grain of analysis adopted
to describe the process. For example, the evolution of the whale is path-dependent
when one distinguishes between the two states ‘fish’ and ‘marine mammal’; however,
path-dependence disappears when the outcome state is more coarsely described (e.g.

5 In brief, a function is linear when f (x + y) = f (x) + f (y); thus when a function is nonlinear a slight
change in input will lead to an effect that is not linearly proportionate, and could potentially be very
large. When a function is discontinuous, some modifications of the input, no matter how slight, will lead
to relatively large effects. If a process is nonlinear but continuous, small changes will still lead to small
effects; however, in a discontinuous process, some changes, no matter how small, will lead to lead to large
effects, even if the process is otherwise linear.
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‘aquatic animal’).6 What counts as an adaptation or a constraint is to some extent
dependent on the grain of analysis (see Wilkins and Godfrey-Smith 2009). In general,
introducing amore fine-grained description of the explanandum seems tomake it more
path-dependent: an account of path-dependence should be able to integrate this fact.

4 Establishing a framework

In this section I will outline two different frameworks that have been proposed to
systematize these insights about path-dependence: attractor landscapes and causal
trees. The second framework has been explicitly developed in somedetail inDesjardins
(2011a, 2011b), while I draw the first framework from a number of different accounts
(Szathmáry 2006, Bassanini and Dosi 1999, Desjardins 2015). Both frameworks have
significant (but interesting) limitations, and are best seen as limiting cases of causal
networks.

4.1 Attractor landscapes

An attractor is an equilibrium set of states towards which the system evolves when it is
in a given neighbourhood (the ‘basin’), and once in the attractor state, the system will
tend to return there if perturbed. Its usefulness as a concept primarily lies in allowing
for some long-term predictability, even in dynamics that are nonlinear and chaotic. An
attractor is global when its basin covers all of state space, or local, when the basin is
a subset of state space. In what I call an ‘attractor landscape’, each state is assigned a
scalar variable (on a two-dimensional landscape, this is the height), with the attractors
being local maxima (or minima), and the system tending towards maximizing (or
minimizing) the scalar variable. Examples of such landscapes are potential energy
landscapes, where valleys in the landscape correspond to minimal-energy states, or
adaptive landscapes, where the peaks represent states with maximal fitness.

Landscapes can be used to systematize some aspects of path-dependence, for
example, the distinction between information-preserving and information-destroying
processes. Reconstructability becomes impossible when the explanandum (the out-
come state) is a global attractor state, because any possible initial state tends towards
the attractor state. When there are multiple attractors present, the process is partially
information-preserving, as one can extract some information about the past (namely,
in which basin the system was initially located) from the outcome.

With this in mind, one could formulate path-dependence in terms of the following
negative condition:

Definition (Path-dependence—attractor formulation) An explanation of an outcome
is path-dependent if and only if that outcome is not explained as a global attractor.

Note that ‘global’ is always defined relative to the state space under consideration.
The middle of the bowl is a global attractor when the state space is confined to the
positions of the marble on the hollow surface of the bowl; it (obviously) is no longer

6 See also Fig. 6.
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an attractor when the marble is placed next to the bowl. Thus, when an attractor is
deemed global within the scope of the explanation, then whatever precise initial state
obtains does not make any difference for the outcome, as the system will be in the
attractor state. Conversely, when there is no global attractor, then there are at least two
initial states that lead to different outcomes.

The accounts ofBassanini andDosi (1999) andSzathmáry (2006) implicitly drawon
this criterion. Szathmáry distinguishes between ‘strong’ and ‘weak’ path-dependence
(not to be confused with Ereshefsky’s distinction). Strong path dependence occurs
when the process is irreversible and when there are multiple stable attractors. This is
straightforwardly covered by the attractor formulation.

However, what Szathmáry calls weak path-dependence could seem problematic
for this definition. An outcome may not be a global attractor, and yet have occurred
path-independently in the weak sense, as long as the causal-dependence on initial
conditions is ‘effectively’ eliminated as time goes to infinity.7 This type of weak path-
dependence will tend to occur in high-dimensional state spaces, when the number of
possible states is ‘much’ greater than the number of states actualized over the course
of a system’s history, so that the asymptotic convergence of possible trajectories will
tend not to occur (Szathmáry 2006).

Nonetheless, weak path-dependence is also covered by the attractor formulation,
because the asymptotic convergence that Bassanini and Dosi describe concerns the
convergence of the average position of a trajectory. Even though the actual instan-
taneous positions of two possible trajectories will in general be very different at any
given time, when a system is weakly path-dependent, the long-run average position
converges to a global equilibrium state.8 Thus, whether or not the past matters in weak
path-dependence depends on what precisely the explanandum is: the average position
over a long period of time (past does not matter), or the actual position at a specific
time (past does matter). By contrast, strong path-dependence implies that both the
instantaneous and the long-run average position converge to a single attractor state.

The landscape framework has serious limitations. An area where it has already
received significant criticism is in its application to biological evolution in the short-
to middle-term (i.e. adaptive landscapes).9 One important criticism concerns how
landscapes change when the dimensionality of state space is increased. Landscapes
imply that a system can evolve smoothly to a neighbouring state; Gavrilets (2004)
has shown how the topology of high-dimensional adaptive landscapes tends to consist
more of ‘ridges’, ‘rugged peaks’ and ‘holes’ than of smooth hills. The likelihood

7 Effective elimination is what Bassanini and Dosi (1999, p. 15) call asymptotic path-independence, which
occurs when two possible trajectories come arbitrarily close within a finite time-span, and for an infinite
number of times thereafter. (If the dynamics is Markovian, then this condition reduces to the following:
two possible trajectories intersect in finite time, because once there is a single intersection, it is expected
that the paths will overlap for all subsequent times.) If this condition is met, then the difference an initial
condition makes on a subsequent history is eliminated in finite time. In this way, weak path-independence
is a form of ergodicity.
8 Compare with Doeblin’s theorem in the theory of Markov processes (e.g. Stroock 2005).
9 Note that while some have argued in their defense that they are best used as an explanatory template, as a
heuristic for hypothesis generation (Ruse 1996; Skipper 2004), others have questioned their adequacy even
as metaphor (Pigliucci and Kaplan 2006; Kaplan 2008; Plutynski 2008).
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increases of a (nearly) neutral network forming, and of the number of local peaks
increasing (see Gavrilets 2004, pp. 45–80). The absolute scalar difference (in this
case, fitness) between any two states becomes increasingly meaningless for predicting
whether one state will evolve into the other or not.

What this suggests is that according as one needs more variables to characterize a
particular outcome, the less likely one will be able to analyze the occurrence of that
outcome as some kind of optimum of a single scalar quantity (e.g. fitness). While the
attractor formulation of path-dependence may remain true, it becomes increasingly
empty, as simple global attractors tend to not occur at all in complex systems. As
landscapes become increasingly ridged and holey, the basins of local peaks shrink,
and the system likely does not exhibit any global optimizing behavior.

In this way, attractor landscapes may have limited applicability. Furthermore, they
cannot represent many interesting path-dependent processes; they are best suited to
represent convergent processes, or processes where there is a choice between multiple
local attractors.10 Causal trees are better suited for evolutions in high-dimensional
spaces, where the probability that causal paths intersect is very low, and thus where
every state actualized is unique.

4.2 Causal trees

In the following I will briefly outline a formal characterization of trees, and then
(drawing on the work of Desjardins) consider how path-dependence can be formulated
within this framework. I will try to show that this framework is in a sense the opposite
of attractor landscapes: best suited for high-dimensional state spaces, but weak at
representing convergent causal structures.

A tree is a causal graph rooted in a single point, from which branches split off
but never join as one moves from past to present. The states of a tree form a partially
ordered set of states, where every state has only a single immediate predecessor, but
can have any number of successors. Thus not every pair of states can be connected by
a forward-directed causal chain, even though every state in a tree is indirectly causally
linked through a common ancestor.

A causal tree maps out the possible paths an individual entity can follow. If the
system consists only of a single entity, only a single path will actually be followed;
if the system is an ensemble of individual entities, there will be a distribution over
the possible paths according to the probabilities of the paths. The branching events or
nodes, which connect a single state to two or more possible descendant states, can be
thought of as abstractions of contingent events with causal impact on the path of the
system. For example, in macroevolutionary phylogenetic trees the nodes abstractly
represent speciation events, where a given biological population diverges to two or
more distinct species.

10 Compare this with the analysis of conservative vector fields: if a dynamics can be represented as the
gradient of a scalar, then it is path-independent.
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Fig. 1 Path dependence in a
causal tree (Source Desjardins
2011a; 2011b)

Fig. 2 Path dependence in a
causal network

With this in place, one can formulate path-dependence in the followingway (adapted
from Desjardins 2015)11:

Definition (Path-dependence—causal tree formulation) An explanation of an out-
come is path-dependent if (1) a given initial state branches off into at least two paths;
(2) these paths lead to at least two possible outcomes (with non-zero probability); and
(3) following different paths affects the probability of a given outcome state.

This formulation of path-dependence captures some crucial properties, such as
unpredictability contingency and causal-dependence contingency. It can also be used
to capture the information-preserving aspect of path-dependence, and theway inwhich
it can come in degrees (Desjardins 2011a). However, I would like to point to three
limitations. The first and foremost is that, in contrast to attractor landscapes, causal
trees cannot capture causal relationships where branches join. This is a problem for

11 For a more mathematical characterization, see Desjardins (2011a).
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even the formulation of path-dependence, as path-dependence presupposes that there
are alternative paths leading to the same outcome, and thus some convergence. This
can be seen more clearly by redrawing Fig. 1 so that the same states are represented
by the same points; then the causal model becomes Fig. 2, which is, strictly speaking,
no longer a causal tree.

Putting this problem aside (for example, by expanding the notion of tree to allow
for some reticulations), it remains unclear how to analyze cases with multiple possible
initial states. For example, in Fig. 3, noneof the paths leading too1 affect the probability
of o1 occurring, and thus the occurrence of o1 does not seem to be path-dependent
in the sense that its occurrence is not affected by the choice of path. Yet, there is a
clear dependence on initial conditions, for if one knows that the initial state is s∗

0 , the
probability of o1 occurring is .4, as opposed to .8, if s0 were to be the initial state. The
example in Fig. 3 thus seems to involve some combination of path-dependence and
path-independence that is not captured by the causal tree formulation.

A second, related limitation is that the causal tree formulation concerns onlywhether
the occurrence of an outcome is path-dependent, but it is unclear how it can be applied

Fig. 3 Path-dependent or not?

Fig. 4 Path-dependent or not?
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to a set or distribution of states, or how path-dependence is something that can change
over time. In other words, the tree formulation does not seem to allow for different
scopes of path-dependence. For example, in amore complexmodel such as Fig. 4, there
seem to be pockets of path-independence, even though the process may be globally
path-dependent. The origin of this limitation lies less in the specific formulation of
path-dependence, but rather in the causal tree framework itself; this is one important
reason for representing causal relationships by causal networks (directed acyclical
graphs).

Finally, it remains unclear how precisely the degree of path-dependence should be
defined. Desjardins (2011a) suggests two types of metric that roughly correspond to
those mentioned in Sect. 2. The first is the degree of divergence or convergence, where
maximal divergence is maximal path-dependence and maximal convergence is maxi-
mal path-independence. The second is the degree of ‘similarity’ between outcomes: a
causal tree is more path-dependent when the different outcomes are more dissimilar.
However, it would be desirable to introduce a more precise, quantitative measure.12

It is not clear, within a causal tree, what ‘similarity’ between outcomes could mean
without introducing some independent scalar metric.

4.3 Causal networks

As has been done with causal trees, I will now construct causal networks with some
more formal detail. Besides allowing for increased generality when describing path-
dependence, there are to further advantages in doing this. The first is that it will
become clear how a model can be coarse-grained so as to obtain either a causal tree
or an attractor landscape, thus showing how the two frameworks are limiting cases of
causal networks. The second is that it places path-dependence within the context of
graph theory, to which the tools of information theory can be readily applied, and this
will allow for a quantitative measure of path-dependence to be proposed.

A causal network is a directed, acyclical graph represented by the ordered pair
(V, E), where V is the set of nodes and E is the set of edges connecting the nodes. In
this paper, causal networks are taken to be formalizations of causal explanations, and
hence certain nodes are of particular interest, namely the outcome states and the initial
states. For this reason it will be useful to think of the ordered pair (V, E) as a 3-tuple
(O, I, R)whereO is the set of outcome states, I the set of initial states, and R : O → I
a web of causal relations between initial and outcome states. The causal relations
themselves may be productive or difference-making—the precise nature of causality
will not be of concern here. In general, causal networks will contain intermediate
states, between the sets of initial and outcome states. Letting these intermediate sets
of states be represented by Oi = Ii+1, with I = I0, O = On , the relation R can be
decomposed in n + 1 instants: R = R0 ◦ R1 ◦ · · · ◦ Rn , where each Ri : Ii → Oi is a
simple mapping relation.

12 Also, it can be shown that maximal divergence is, perhaps surprisingly, a case of maximal path-
independence (see Fig. 8).
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Fig. 5 Parallel, divergent and
convergent structures

Three basic causal patterns will be of interest. In a parallel structure, the outcome
would not have obtained if a particular initial state had not been present. Thus, there is
at most one initial state associated with a given outcome, and in this way the parallel
structure corresponds to causal-dependence contingency. By contrast, in a divergent
structure, multiple outcomes are associated with a single initial state. This means that,
given the initial state, the descendant state cannot be predicted: this is unpredictability
contingency. When the structure is neither parallel nor divergent, it is convergent, and
this occurs when multiple initial states converge on a single outcome state. A path-
dependent explanation, as actually used in scientific practise, is almost invariably a
complex combination of these basic structures (Fig. 5).

The probability of an outcome in a particular explanatory framework can be calcu-
lated by means of the probability distribution over initial states, and the probabilities
of the different paths between an initial state and the outcome. By the law of total
probability we get P(o) = ∑

i P(i)P(o|i). Each conditional probability P(o|i) can
be written as P(o|i) = ∑

p P(pio) = ∑
p
∏

i≤ j≤o π( j → j + 1), where the pio are
the different paths connecting initial state i to outcome o, and where π( j → j + 1)
represents the transition probability connecting two past states. Thus the probability
of an outcome is ultimately reducible to the initial probability distribution and the
structure of the causal pathways leading up to the outcome.

In general, the causal structure changes by fine-graining or coarse-graining the
degree of analysis. Fine-graining can be thought of as introducing a new variable to
characterize the initial or outcome states, and in this way states that were previously
identical become differentiated. More explicitly, a state may be characterized by n
variables, s = (x1, x2, ..., xn), and one example of fine-graining is to introducem new
degrees of freedom, defining a new state s′ = (x1, x2, ..., xn, ..., xn+m). So a single
state s in n-dimensional space corresponds to an m-dimensional set in the fine-grained
(n+m)-dimensional space. In this way fine-graining can be thought of as a one-to-many
mapping, where a single state is replaced by a set of states.

The inverse operation is coarse-graining, and this is done by means of an equiva-
lence relation∼, which allows one to express that multiple states are ‘similar’ in some
way. The equivalence relation defines an equivalence class on the states, O/ ∼, where
all the states which are ‘similar’ are represented by a single state. One way this can
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Fig. 6 Two representations of the evolution of the whale. The right-side representation models the evolu-
tionary process in detail, and is path-dependent. The left-side one coarse-grains over the aquatic mammal
state (AM) and fish state (F), and represents the evolution of AM as (relatively) path-independent

be done is by abstraction, where certain degrees of freedom are dropped, so that only
the other features of a state are considered.

This offers a first step in making sense of how path-dependence is sensitive to the
grain of analysis adopted in a causal model. Going back to the example of the evolution
of the whale, what is striking here is that there is both convergence towards a fish-like
morphology, and a divergence in other respects (such as bone-structure or respiratory
system). One way to analyze this is in the following way: the evolutionary process
can be represented as convergent evolution when the aquatic mammal state (AM)
and fish state (F) are characterized by a single variable—their overall morphology;
however, when the two states are characterized by additional variables (bone-structure,
respiratory system, etc.), the evolutionary process is divergent. In the first case, the
paths F − M − AM and F − F − F converge; in the second, fine-graining introduces
path-dependence in the representation of the evolutionary process (Fig. 6).

One can summarize the effects of the grain of analysis on causal structure by means
of the following (a proof is provided in the appendix):

Theorem 1 Acoarse-graining of the explanandummakes an explanation increasingly
convergent and a coarse-graining of the explanans makes an explanation increasingly
divergent.

This theorem gives some deeper insight into why attractor landscapes and causal
trees are limited. In any attractor landscape, there is a countable number of privileged
outcomes (attractor states), and each of these outcomes will have an associated sub-
set of the initial states (the basin). When state space is described at a finer level of
detail—e.g. when more variables are needed to adequately describe each state—the
convergence of each basin on its respective attractor state will tend to decrease. A
given attractor state will be disambiguated between two different states, each with its
own basin. Ultimately, when the outcome states are described with sufficient detail,
there will be no convergent structures any longer, only parallel structures, and the
landscape metaphor disintegrates.

By contrast, the causal tree framework tends to be adequate as long as the number
of possible states is much greater relative to the number of realized initial states, so
that the probability of reticulations occurring is small. For example, this occurs when
the dimensionality of the state space is relatively large. Taking the number of variables
necessary to describe an entity as a proxy for the complexity of that entity, this can
also be formulated in terms of complexity. The dynamics of an individual, complex
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entity is likely to be path-dependent. By coarse-graining the state space (representing
the complex entity abstractly) while keeping the number of initial states constant, the
convergence of the network increasesmonotonically, and the ‘tree-ness’ of the network
decreases. In this way a causal tree can be seen as the limiting case of a causal network
when the state space is much larger than the set of initial states.

5 The symmetry formulation

In this section, the main contribution of this paper, I will propose how the concept
of symmetry breaking can be used to characterize path-dependence and historicity in
causal networks. The motivation for this proposal comes from the two main ways
symmetry is used in physics (see also Brading and Castellani 2007). The first, and
most intuitive application of symmetries is to properties of a system, usually spatial
configurations. A spatial configuration is symmetrical when it remains the same under
some distance-preserving permutation of the elements (reflections, inversions and
rotations). For example, a snowflake has some rotational symmetries (its appearance
is unchanged when it is rotated by a multiple of 30°), reflection symmetries and a
point symmetry. Similarly, a liquid has a maximal spatial symmetry: no matter how
it is rotated, inverted or reflected, it would look the same. Such symmetry is broken
during the transition to a solid: a particular molecular structure arises which will
typically only have a limited number of symmetries.

Symmetries are also applied to the dynamics of a system, i.e. the way in which two
subsequent states of a system relate to each other. Thus, instead of transforming the
physical elements of the system, the variables in the laws of motion are transformed,
and a symmetry is said to be present when the laws ofmotion remain invariant. In other
words, the transformation is a symmetry of the dynamics if the transformed variables
are related to each other in the same way as the untransformed variables are. One well
known example is the time symmetry of Newtonian dynamics: because the second
law gives a relation between the force and the second time-derivative of position (i.e.
the acceleration), it is invariant under the transformation t → −t . Thus, if one were to
see an animation of a group of interacting particles, one could not tell by Newtonian
dynamics alone whether the animation was being played forwards or backwards. In
thermodynamic phenomena this time symmetry is broken: heat flows from warm to
cold (the entropy increases), but never from cold to warm. A rewinded heat flow does
not obey the second law of thermodynamics.

Here I will apply symmetry to the causal paths between past states and a partic-
ular outcome. A network will be symmetrical when the different past states can be
permuted without affecting the causal structure of the network. Just as the snowflake
remains unaffected by rotations, path-independent causal networks remain unaffected
by permutations of past states (both initial and intermediary states). In itself, this basic
idea is not much more than a reformulation of path-independence in the broad sense;
however, it offers the resources to deal with some of the shortcomings of the tree and
landscape frameworks.
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5.1 Symmetry

More formally, let Ps be the probability distribution over the outcomes given that the
system is in state s. One way to think of Ps is as the probabilities of the different
possible outcomes as ‘viewed from’ s. The probability of any particular outcome o as
viewed from s can be written as the sum of the probabilities of the different possible
paths between s and o:

Ps(o) = P(o|s) =
∑

p

P(pos)

where the variable pos represents the possible paths between o and s. When there is
only a single initial state s0, one can assign an unconditional probability to an outcome
P(o) = Ps0(o). This is the case in causal trees; however, in a general causal network,
there is no unique way of specifying the unconditional probability of an outcome.

Note that these probabilities need not imply any fundamental indeterminism. For
example, in ecological systems of foraging rabbits, the dynamics of how rabbits move
around may not be fundamentally indeterministic, and may be perfectly predictable
if, for example, the position, visual cues and neural states of the rabbits are perfectly
known. Yet, we may choose to ignore such details, and to characterize the state of a
rabbit in terms of position only. This is obviously an underdeterminantion, andmultiple
outcomes will be possible given the same position. In this way, coarse-graining and
even ignoring certain variables can give rise to probabilistic causal relations (see
Strevens 2006; Matthen 2009). For the purposes of this paper the precise nature of
these probabilities need not concern us further, and we will treat them simply as given.

The notion of causal symmetry can be assigned different scopes, some more local,
others more global:

Definition (localized to time and outcome) A causal network is causally symmetric
towards outcome o at time t when the biases of any two states s and s′ at time t
towards o are equal: Ps(o) = Ps′(o).

This notion of symmetry is relevant for the question as to whether a particular
instant in the past matters for a particular outcome. When the explanatory interest
concerns the question whether any past state matters for a particular outcome, the
following scope of symmetry is more appropriate:

Definition (localized to outcome) A causal network is causally symmetric towards
outcome o when the biases of any two states s and s′ towards an outcome o (at any
time t) are equal: Ps = Ps′ .

This type of symmetry corresponds most closely to how path-dependence was
formulated in the causal tree formulation, except that now an allowance is made for
multiple possible initial states. Symmetry can also be localized to time alone:

Definition (localized to time) A causal network is causally symmetric at time t
when the biases of any two states s and s′ at time t (towards any outcome o) are equal:
Ps = Ps′ .
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Fig. 7 An illustration of how the different notions of symmetry come apart. Each state branches out in an
equiprobable way

Finally, a properly ‘global’ notion of symmetry can be formulated, so as to predicate
path-dependence about an explanation as a whole, not just an outcome: a network can
be said to be causally symmetric when it is causally symmetric at every time t (or
equivalently, towards any outcome o). This concept of global symmetry entails the
three local notions of symmetry, and the most localized notion of symmetry is implied
by the three others.

The transformation group associatedwith global symmetry is the group of permuta-
tions of the past states at any given time. Global symmetry arises when the conditional
probability distribution over the outcomes remains invariant under permutation of the
past states at any given time.

Figure 7 illustrates how these four scopes of symmetry can diverge. First, the
network is not globally symmetric, since, for example, P(o1|s4) = 1/2 �= 0 =
P(o1|s5). Thus, in order to explain why o1 occurred, it is relevant that s4 and not
s5 occurred. However, the network is symmetric with regards to some outcomes at
some particular times. For example, at t5 the network is symmetric towards o2 as
P(o2|s3) = P(o2|s4) = P(o2|s5) = 1/2. It does not matter what state the system is
in at t5 to explain why o2 occurred. Similarly, the network is symmetric towards o3 at
t3.

Concerning the two other notions of symmetry, the network is symmetric at t3, as
the biases of s1, s2 and s3 are equal towards any of the outcomes o j . In an explanation
of any outcome, it will not matter what state the system was in at t3. Finally, the
network is symmetric towards o3. To explain why o3 occurred, it will not be necessary
to integrate any information about the past. Regardless of the path the system took, o3
would have occurred with probability 1/3.

Deepening the parallel with spatial symmetries, causal symmetry can be given a
geometric interpretation within a causal network. A network is symmetric at time t if
every state at that instant t branches out to all descendant states in an identical way.
Thus the branching pattern emitted by one state must be mirrored by all other possible
states at that time. This basic pattern is represented in Fig. 8, where the thickness of
the lines is a measure for the probability of the different transitions. Some descendant
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Fig. 8 Fundamental pattern of
symmetry

states may be very improbable while others may be heavily biased; what matters is
that the biases are symmetric across the different initial states. At a symmetric instant
in the network, the different states can be exchanged and permuted without the causal
structure being affected.

This basic pattern of symmetry is bothmaximally divergent andmaximally conver-
gent. It is maximally divergent because each state branches out towards all possible
descendant states; it is maximally convergent because each descendant state is con-
verged upon by all possible predecessor states.

Anticipating the next section, where symmetry is linked with path-independence,
this fact suggests that path-dependence is to be sought between the extremes of perfect
predictability and perfect unpredictability. Both the perfectly predictable network—
where all paths converge onto a single outcome—and the perfectly unpredictable
network—where all states diverge maximally—are ahistorical. Path-dependence
requires some degree of unpredictability, but maximal unpredictability contingency
implies path-independence. This is a concrete result that precludes any subsumption
of unpredictability contingency under historicity (e.g. Beatty 2006).

An additional effect of the basic pattern of symmetry is one of erasing history.
In Fig. 7, the network up until t3 could be replaced by any arbitrary causal network
without making any difference to the outcome. This effect is encapsulated in the
following result:

Theorem 2 If a causal network is symmetrical at t , it is also symmetric at all prior
instants. The bias of any state towards a given outcome is shared throughout the states
at any given time, and is preserved over time.

Thus a sufficient condition for global symmetry is that only the last causal transition is
symmetrical, i.e. each direct parent of the outcome states branches out to all outcomes.
Note that, given such a symmetrical structure, none of the past states affects the
outcome, and hence there is no history to erase, strictly speaking. History matters
only to which intermediary states occur, and before the occurrence of the symmetrical
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pattern, it is possible to reconstruct the past. Once a symmetrical pattern occurs, such
reconstruction is impossible.13

A concrete example that could be represented by such a causal structure is mass
extinctions. To the extent that one can idealizemass extinctions as the random selection
of certain phenotypes (without regard to fitness), it is impossible to reconstruct the
distribution of phenotypes before the mass extinction given the distribution after the
extinction.14 Even though non-symmetric processes may have dominated up until the
point of the mass extinction, once the mass extinction has taken place, the effect of
these processes on history is wiped out.

5.2 Symmetry breaking

These different notions of symmetry are different ways in which the past does not
matter, different ways in which the system is independent of the path taken. Path-
dependence itself can be formulated as the breaking of symmetry, and thus has different
scopes as well.

Definition (Path-dependence—symmetry formulation) A causal network is path-
dependent relative to a certain scope if and only if the symmetry relative to that
scope has been broken.

In this way, a network may be globally path-dependent even though at certain times
it may be path-independent, or even though certain outcomes may emerge in a path-
independent way.

The attractor and causal tree formulations of path-dependence can be seen as special
cases of this more general definition. If a causal network converges onto a global
attractor, this means that any two states s and s′ at any time t will lead to the outcome
with probability 1: Ps(o) = P ′

s(o) = 1. Conversely, if the outcome is not a global
attractor, there is at least one possible state that is not in the basin of that outcome.
In this case there are at least two states s or s′ that have a different bias towards the
outcome at some time t : the symmetry towards o is broken.

In the tree-framework, path-dependence was limited to comparing possible paths
leading to one of a number of possible outcomes. The requirements of the causal tree
formulation of path-dependence – there must be multiple possible outcomes (i.e. so
that convergence can only be partial), and paths towards some outcome affect the
probability of the outcome – are captured within the negation of symmetry (localized
to time and outcome). These requirements can be deduced by the condition that at
least two states on different paths have a different bias towards the outcome.

The significance of this definition may be further illustrated by pointing out what it
does not entail. First, it does not entail that no outcome is probabilistically privileged.

13 Another implication is that while history may matter for the occurrence of some intermediary state, it is
impossible for history to matter for an outcome at some time in the past but not ultimately (compare with
Desjardins 2015).
14 In this way, while mass extinctions introduce contingency into evolution (as famously emphasized by
Gould 1989), to the extent that they make the reconstruction of the past more difficult, they actually remove
some degree of historicity.
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Fig. 9 Unconditional probabilities of outcomes versus path-dependence

Fig. 10 Symmetry towards o2
is broken, even though all paths
to o2 are equiprobable

Some outcomes may be more likely than others, and yet the network is symmetrical;
all outcomes may be equiprobable, and the network path-dependent (Fig. 9). The
unconditional probability of an outcome is irrelevant; what matters is whether the
conditional probabilities are equal or not.

A second orthogonal distinction is between path-dependence and the probabilities
of the paths. The occurrence of an outcome may be path-independent, even though
some pathsmay be heavily biased. For example, on the left side of Fig. 9, there are three
possible paths towards o1. Even if the system may be much more likely to pass by s1
than the other intermediary states (e.g. x = 0.98 and y = z = 0.01), P(o1|si ) = 1/2
for each intermediary state si . History does not matter: it makes no difference whether
the system takes the s1 path or the s2 path, in each case o1 will obtain with probability
1/2.

Thus, in a path-independent network it may be possible to reconstruct the past;
conversely, retrodictability may be impossible in a path-dependent network. Such is
the case in Fig. 10, where the two possible paths towards o2 are equiprobable, but
yet where the symmetry is broken at the intermediate states since P(o2|s1) = 2/3 �=
1/3 = P(o2|s2).
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Fig. 11 Weak global attractor:
convergence and
path-dependence

There is no retrodictability here since, given that the system is in o2, it is
equiprobable that the system passed through s1 as through s2.15 The relation between
retrodictability and path-dependence will be taken up again in the final section, but
since this result may seem puzzling here, one can illustrate it with an example. Say that
s1 represents ‘financial crisis’ and s2 represents the avoidance of a financial crisis. The
outcome state o2 is a state of revolution. A financial crisis may be very improbable,
but yet, once it occurs, revolution may be very likely. Conversely, a revolution may
occur spontaneously with a very small likelihood. Even though these two paths may
be equiprobable, if society actually underwent a financial crisis, any historian would
integrate this information to explain the outcome.

5.3 Symmetry preservation and restoration

An additional advantage of the symmetry formulation is that it can distinguish between
different scopes of path-dependence. Certain parts of a causal networkmay behave in a
path-independent way, even though the network as awhole is path-dependent. The past
may not matter in the causal explanation of a particular outcome, but yet may matter
in the explanation of the set of outcomes. Or, the evolution of the system may be path-
independent until a certain moment in time, after which the causal network becomes
path-dependent. Path-dependence (localized to time) can emerge at a particular instant
in the causal network.

Two combinations are of particular interest: cases where symmetry towards a par-
ticular outcome is preserved, despite global symmetry being broken, and cases where
global symmetry is restored for a subset of the causal network. An example of the first
is represented in Fig. 11. Here the outcome o is a global attractor in the sense that all
possible initial states can evolve towards o, and the occurrence of o is path-independent
as all prior states are equally biased towards o. Yet global symmetry is broken in the
network as a whole.

15 By Bayes’ rule, P(s1|o2) = P(o2|s1)P(s1)
P(o2)

= 2/3·1/3
4/9 = 1/2.
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Fig. 12 The ancestral monkey
population (AM) branches into
quadrupedal monkey (QM) and
ape (A). The latter state has the
capacity to evolve any limb
ratio; the former can only keep
the 1:1 ratio

Such a stateo can be termed aweakglobal attractor: a state that remains a possibility
with a fixed probability regardless of the path the system takes. When a weak global
attractor is present in a network, a local symmetry is preserved, even though the global
symmetry may be broken.

The second case of particular interest concerns states that branch out towards all
possible descendant states in an equiprobable way. Evolvability would be a concrete
example of this causal structure.16 For example, in most mammals, forelimb and
hindlimb are locked by certain developmental constraints in a 1:1 ratio. A species can
evolve longer hindlimbs only if the forelimbs grow by the same amount. However,
in ancestral ape populations, a proper subset of quadrupedal monkeys, this constraint
was relaxed, to allow for different possible ratios. Amore formal representation would
look something like Fig. 12.

Once the intermediary state A is realized, which outcome state (limb ratio) is
actually reached depends on the environment. In an extreme case, if absolutely no
information about A’s environment is available, all possible outcomes are to be mod-
elled as equiprobable. This means that once A occurs, it no longer matters for the
outcome what preceded that state. The causal network emanating from A constitutes
a symmetrical causal tree. To the extent some outcomes can be privileged over others,
symmetry is only restored to a certain degree (see next section). In either case, the
state A can be thought of as a ‘flexible’ state: it partially restores symmetry, limited
to a subset of the whole causal network. Thus, while global symmetry once broken
cannot ever be restored, global symmetry can be locally restored (to a certain degree).

6 Degree of path-dependence

No account of path-dependence can be considered complete without giving some
criterion of how history matters more in some processes than in others. We will focus
only on how to quantify path-dependence according to how informationally relevant
the past is for the outcomes. As already mentioned, a possible alternative way to
measure path-dependence could be by quantifying how much an outcome changes

16 The analysis given in Brown (2014) can be seen as dealing with this causal structure.
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if past states are changed. This would require the introduction of a separate metric
(presumably dependent on explanatory interests) of what it means for outcomes to be
close or distant, with associated problems (see Sect. 2). Instead, the focus will be on
quantifying the degree of information given by the past in such a way that is consistent
with the account of path-dependence presented thusfar.

6.1 Prediction and retrodiction

In this approach, path-dependence is closely related to predictability and retrodictabil-
ity in the following sense. An outcome is more predictable if a past state contains more
information about which outcome will occur. Likewise, the past is retrodictable from
the present if the outcome contains information about which causal path had been
followed.

However, path-dependence precludes both perfect predictability and perfect
unpredictability. Recall how a convergent network is perfectly predictable but
path-independent, and a maximally divergent network is unpredictable but is also
path-independent. In deciding then whether or not a network is path-dependent,
it is thus irrelevant whether the outcome can or cannot be predicted from a past
state.

The same point can be made about retrodictability. Thus it may be possible to
know with fair certainty what causal path the system has followed, but for the net-
work still to be symmetrical and hence path-independent. In Fig. 9, we can know
with fair certainty, given o1, that the system passed through s1, even though passing
through s1 did not affect the probability of o1. Retrodictability is possible despite
path-independence towards o1. Conversely, the outcome state may not contain any
information about which causal path was followed, and yet the network can be
path-dependent. This is the case in Fig. 10, where both paths leading to o2 are
equiprobable, but where the choice between s1 and s2 affects the probability of the
outcome.

The relation between predictability (retrodictability) and path-dependence can be
mademore precise by observing that the amount of information the past contains about
the present is not relevant for path-dependence, but rather that the past contributes to
predictability. Thus, in a network converging on a single outcome, the outcome is
perfectly predictable regardless of whether the precise past state is known. However,
knowing the past does not contribute any information not already contained by the
structure of the causal network. Neither does it matter how much information the
present contains about the past, but only how much the present affects retrodictability.
In Fig. 10, knowing which of the two intermediary states is reached helps to predict
which of the three outcomes is likely to occur, whereas knowing which outcome
occurred affects retrodictability.

One may wonder here if contribution to predictability and contribution to retrod-
ictability are equivalent. If they were not equivalent, one would need to distinguish
between two measures of path-dependence: a forward-oriented and a past-oriented
measure. However, it is straightforward to show that they are equivalent.
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Assume the past does not affect predictability, then the probability of an outcome
conditional on an earlier state is simply the unconditional probability: P(o j |s) =
P(o j ). Thus, in a network where the past does not contribute to predictability, the
conditional probability of an outcome is equal to the unconditional probability. Simi-
larly, it is the contribution of the present to the retrodictability of the past that matters.
It does not matter when P(s|o j ) = P(s) for every previous state s of a given out-
come o j . We would want to show that if P(o j |s) = P(o j ) for every outcome o j and
intermediate state s, then P(s|o j ) = P(s) (and vice versa).

From Bayes’ rule,

P(s|o j ) = P(o j |s)P(s)

P(o j )

and the desired result follows from the assumption that the past does not affect pre-
dictability. Thus it is impossible for the past to affect predictability without the present
affecting retrodictability, and vice versa.

6.2 Mutual information

Predictability is the lack of uncertainty about what the outcome state will be. Thus
maximal unpredictability corresponds to a uniform probability distribution over the
possible outcomes; maximal predictability assigns probability 1 to a single outcome
and zero to the rest. In this way the conditional entropy of a set of outcome states O
given a past state s,

Hs(O) = −
∑

o

Ps(o) log Ps(o) = −
∑

o

P(o|s) log P(o|s),

is a good measure for how predictable the outcomes seem from the perspective of past
state s. It has a number of desirable properties: it is maximal for a uniform distribution,
and zero when one of the outcomes is certain. A different conditional entropy, of O
given a set of past states S at time t , is obtained by taking the weighted average over
the states in S:

H(O|S) =
∑

s

P(s)Hs(O).

If it is known with certainty which state s ∈ S occurred, then H(O|S) = Hs(O).
The extent to which uncertainty is reduced by knowing which past states s ∈ S

occurred—the quantity, we have argued, relevant to path-dependence as symmetry
breaking—is measured by the mutual information between the outcome states O
and the set of past states S at some instant t :

I (O; S) =
∑

o,s

p(o, s) log
p(o, s)

p(o)p(s)
(1)

Note that this formulation of mutual information is a measure of path-dependence
localized to a particular instant in the causal network. Analogous measures can be

123



Synthese (2017) 194:4101–4131 4125

formulated for the other notions of symmetry (both local and global); however, the
measure 1 is sufficient to extract the philosophically interesting properties.

Mutual information is consistent with the symmetry account of path-dependence
in many different respects. First, mutual information is nonnegative I (O; S) ≥ 0,
and zero if and only if the causal network is symmetric at s ∈ S. This can be seen
as follows. If the network is symmetric at s, then for any given outcome state o and
s∗ ∈ S: p(o|s) = p(o|s∗). From this and Theorem 2 can be deduced that these
conditional probabilities are equal for all ancestor nodes, including any of the initial
states s0: p(o|s) = p(o|s0) = p(o). In this case p(o, s) = p(o|s)p(s) = p(o)p(s)
and hence

I (O; S) =
∑

o,s

p(o)p(s) log 1

= 0

The mutual information is zero. The opposite also holds true: if mutual information
is zero between O and S, then p(o, s) = p(o)p(s) for every s ∈ S.17 This implies
symmetry.

Second, the claim that path-dependence is to be measured by information-
contribution rather than information-content is underlined by the relation between
mutual information and Shannon entropy.18 Mutual information represents the infor-
mation gain represented by an intermediate state:

I (O; S) = H(O) − H(O|S) (2)

Thus, the degree of path-dependence is measured by the reduction in the uncertainty
of the outcome states when information about later intermediary states S is integrated.
Path-independence arises when there is no change in entropy content.

This suggests another way of viewing this aspect of path-dependence, in terms of
the divergence of probability distributions. Mutual information can be expressed as
the degree by which the unconditional p(O) and the conditional distribution p(O|S)

diverge.19 When there is no divergence, p(O|S) = p(O) and the outcome states are
independent of the past states S. Thus also in this respect, mutual information seems
to be a natural operationalization of the symmetry formulation of path-dependence.

Third, mutual information is symmetric, i.e. I (O; S) = I (S; O). This means that
the present is relevant for the past in exactly the same way that the past is relevant

17 For the derivation, see e.g. Cover and Thomas (2006), Chapt. 2.
18 See Cover and Thomas (2006).
19 The technical expression is that mutual information is the expectation, given S, of the Kullback-Leibler
divergence between the distribution p(O) and the conditional distribution p(O|S):

I (O; S) = ES [DKL (p(o|s)||p(o)] .

This is simply a quantitative expression of how much the conditional probability distribution is expected to
diverge from the unconditional distribution, ‘from the perspective’ of some time in the past.
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for the present. This allows the previous arguments about the relation between path-
dependence and predictability to be represented more formally. Here follows the case
for predictability; identical reasoning can be applied to retrodictability (where Ho(S)

is the relevant measure for retrodictability). Perfect unpredictability means that the
conditional entropy of the outcome states O is maximal, at any given set of past states
S. This means that the unconditional entropy H(O), which, in our framework, is the
conditional entropy given the initial states S0, is alsomaximal. Hence themutual infor-
mation I (O; S) is zero, implying path-independence. Perfect predictability implies
that the unconditional entropy Hs(O) is zero at every past s; hence I (O; S) is likewise
zero.

This operationalization allows for information-theoretic analyses of path-depen-
dence. Two interesting lines of inquiry for further research can be indicated. A first
concerns how mutual information changes as the grain of analysis changes. Thus, in
the introduction we outlined how the path-dependence of a process depended on how
both the initial states and the outcome states were described. The same process could
be described as path-dependent and as path-independent. We already showed how
fine-graining and coarse-graining had an effect on the convergence and divergence
of a network; hence, one would expect the fine-graining of the outcomes to increase
mutual information and thus path-dependence. With this in mind, we can conjecture
that describing the outcome states at a more detailed grain of analysis increases the
degree of path-dependence:

In a given causal network (O, I, R), if O = {o1, o2, . . . , on} is fine-grained
to O ′ = {o11, . . . , o1k1 , o21, . . . , o2k2 , . . . , on1, . . . , onkn }, then I (O ′; S) ≥
I (O; S).

The second line of inquiry would be to investigate howmutual information changes
over time, and how it is affected by symmetry breaking.20 For example, an interesting
consequence of the nonnegativity of mutual information is that, through equation (2),
the conditional entropy at some set of past states is never greater than the unconditional
entropy: H(O) ≥ H(O|S). The entropy H(O) can be thought of as the uncertainty
on the distribution of outcome states without knowing anything about the past (i.e. the
difficulty in reconstructing the outcome distribution). In this way the inequality means
that ‘information never hurts’: knowing something about past states may turn out to
be useless, but will never increase the uncertainty over the outcome states.

What is of interest is how the conditional entropy evolves over time H(O|S). While
a analysis in full generality is beyond the scope of this paper, two simple cases can
be mentioned. The first concerns the case where a network remains symmetric until
some intermediate set of states S, afterwhich the symmetry is broken. From (2) follows
that the mutual information is zero at all past states S∗ before S, and from (2), this
means that H(O) = H(O|S∗). Thus the conditional entropy remains constant until
the breaking of the symmetry, after which it monotonically decreases. This is the same
result, derived by different means, as in Theorem 2.

20 See Sober and Steel (2011) for a related analysis of entropy change in Markov models. Since causal
networks are Markovian, many of their results would also be applicable here.
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Fig. 13 Decrease of entropy,
despite uniformity

A second simple case is when the network is a causal tree. Here H(O) = H(O|S0)
(since there is only one initial state), and each branching even creates a sub-tree.
Hence H(O) = H(O|S0) ≥ H(O|S1) ≥ H(O|S2) . . . , and conditional entropy
monotonically decreases over time. In a branching tree, later states always contain
more information about the outcome than the initial states do.

Such a result may seem counterintuitive at first. Cannot a network start off with a
bias towards some outcomes, and then evolve towards a uniform distribution, such as
in Fig. 13? Would this not increase the conditional entropy? The answer is that the
network does not evolve towards a uniform distribution over all possible outcomes.
The evolution towards uniformity is outweighed by the fact that any branch will have
some inaccessible outcomes. Thus, while s0 branches out to four different outcomes,
s1 and s2 branch out to only two different outcomes. The entropy of four equiprobable
outcomes is log 4, whereas the entropy of two equiprobable outcomes is log 2. In this
case, H(O|S) = log 2 and H(O|S0) = 2

3 log 3+ 1
3 log 6 > log 2. In this way, entropy

also decreases here over time.

7 Discussion and conclusion

This article has attempted to give some more formal basis to the concept of path-
dependence, and has argued that this is best done bymeans of symmetry considerations
in the framework of causal networks. The two alternative frameworks, attractor land-
scapes and causal trees, are not only less general than causal networks, and thus not
applicable to awide range of cases, but are alsomere limiting cases of causal networks.
In particular, networks tend to reduce to trees when the dimensionality of state space
is high (in virtue of less convergence); and to landscapes when the dimensionality is
low (in virtue of more convergence).

Within the causal network framework, symmetry considerations allow for a both
technically and intuitively powerful way of describing path-dependence. Symme-
try comes in different scopes—some more global, others more local—and path-
dependence in its most general form arises when global symmetry is broken. Local
symmetries can be broken for specific states, or at specific times, and in this way
path-dependence is something that can emerge at a certain point in time. Other inter-
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esting phenomena include privileged states that preserve and states that restore local
symmetries (weak global attractors and flexible states).

The degree to which global symmetry is broken or preserved can be quantified by
means of mutual information. This measure, which quantifies how much information
one variable contributes about another, is perhaps not the only possible way to quan-
tify path-dependence and historicity; however, it is conceptually continuous with the
qualitative account presented in this paper, and has the added advantage of opening
up an information-theoretic perspective on path-dependence.

As a final point of discussion, I would like to suggest some broader philosophical
themes implicit in the symmetry account, in particular, the way in which historicity
is intertwined with causal structure and complexity. The symmetry formulation of
path-dependence states that as long as a network remains symmetrical, history does
not matter for the eventual outcome. One way in which this can be rephrased is that
in a symmetrical network, it could very well be that time did not pass at all, or passed
very slowly. The durational aspect of time makes no difference. Prior to the symmetry
breaking, the network can be extended or compressed, added to or subtracted from
arbitrarily, without this making any difference for whatever outcome would eventuate.
If we allow the durational aspect of time to be represented by the quantity of causal
transitions in a network, time only emerges as a relevant physical quantity when the
causal symmetry is broken.

Such considerations offer a novel perspective to Curie’s general claim, “It is dis-
symmetry that creates the phenomenon”.21 While originally formulated in a different
context and with a different notion of symmetry in mind (see Earman 2004 or Brading
and Castellani 2007 for a discussion of this), in the context of the present paper Curie’s
claim becomes relevant if one understands ‘phenomenon’ as ‘event of historical sig-
nificance’. Events are represented in causal networks by the nodes from which the
vertices branch out; for these events to count as ‘phenomena’, they must lead to the
breaking of the symmetry. An analogue inmodern physics would be the collapse of the
wave function in the standard interpretation of quantum theory: the event of observing
the spin of the electron causes the possible causal paths to branch out, and only one
path to be realized (either spin up or spin down).22 At some deep level, observability
seems to be connected to the breaking of symmetry.

What is a curious fact is that such causal symmetries are continually broken inmany
dynamics in the special sciences (see Longo andMontévil 2012 for the formulation of
a similar idea). History matters at every instant. For example, in biological evolution,
with each new evolutionary development, new constraints are set in place, and the set
of possible outcomes is made smaller. Exceptions are, of course, possible, but seem
to be limited to the global preservation of local symmetries (convergent evolution), or
the local restoration of global symmetry (evolvability). In any case, such exceptions
are rare occurrences in the space of biological possibility; as a rule, most evolutionary
processes are historical and path-dependent.

21 “C’est la dissymétrie qui crée le phénomène.” (Curie 1894, 400).
22 Or, if one adheres to the Many-Worlds Interpretation, both these paths are realized, but in different
parallel universes.
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This observation about biological evolution has been long recognized (see Beatty
1995); however, a similar conclusion would seem to be applicable to special sciences
in general. This underlines the fact that explanations of the deductive kind (e.g. D–N
explanations) are particularly inadequate when it comes to the sciences of complex
systems, and suggests that path-dependence is more fundamental to scientific expla-
nation than is currently acknowledged by the philosophical literature.

Why this should be—why some processes are muchmore historical than others—is
a deep question that can only be posed in this context. If one considers only the contrast
between biology and physics, one factor that would seem relevant is complexity. In
statistical physics, an individual entity might have only six degrees of freedom (three
for position, three formomentum); in ecology, an individual biological organismhas an
intractable number of degrees of freedom. On themicroevolutionary scale it is feasible
to abstract away from this multitude of variables and focus only on a very limited
number of causally relevant variables (i.e., ‘traits’). This is one reason why population
genetics can be so elegantly mathematicized.23 By contrast, on the macroevolutionary
scale, such a limitation of state space does not seem possible, and state space seems
to be necessarily high-dimensional (because potentially every trait can be relevant
as environments change). This fact would go part of the way to explaining why the
vast majority of macroevolutionary processes seem to be unavoidably historical and
path-dependent.

Thus the question as to why historicity emerges in complex systems seems to
be intimately related to the question of why simplicity emerges in complex systems
(Strevens 2006). Some complex systems allow for some degree of prediction, either
through laws or through numerical simulations. Others do not, and for these systems
narrative, historical explanations seem to be unavoidable, and perhaps are even opti-
mally explanatory.

Acknowledgements I wish to thankAndreasDeBlock,Grant Ramsey andMichael Strevens for interesting
discussions about related topics. Support for this research was generously provided by Research Foundation
Flanders (FWO).

Appendix

Theorem 1 Acoarse-graining of the explanandummakes an explanation increasingly
convergent anda coarse-graining of the explanansmakes an explanantion increasingly
divergent.

Proof Wewill prove it for an explanation that is purely parallel, thus neither convergent
nor divergent. The generalization for a random explanation holds analogously.

Assume a deterministic explanation (O, I, f ), so that f is a bijection f : I → O .
Define an equivalence relation ∼ on O such that o1 ∼ o2 iff o1, o2 ∈ A for some A
(dependent on theoretical interests) with #A > 1. Because f is a bijection there exists

23 Whether the mathematization corresponds to causal reality is a different question. This is related to the
debate whether drift and natural selection actually pick out causal forces in reality, or are just a statistical
abstraction from the high-dimensional state space (see e.g.Matthen 2009 for the relation between abstraction
and natural selection).
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a uniquely defined B ∈ I such that f (B) = A. Call B the ‘basin’ and A the ‘attractor’
of f on I .

Then O/A represents a coarse-graining of the explanandum and I/B a coarse-
graining of the explanans. So define an associated function Rc : I → #O/A : i �→
f (i) and relation Rd ∈ I/B×O = ( f −1(o), o)|o ∈ O . Because f is a bijection, #I =
#O > #O/A and #O = #I > #I/B, and hence Rc will be a non-injective surjection,
and Rd a non-function. Hence the number convergent structures has increased in
explanation (O/A, I, Rc), and the number of divergent structures has increased in
(O, I/B, Rd). �
Theorem 2 Let (O, I, R) be symmetrical at some instant in time. Then (O, I, R) is
symmetric at all prior instants.

Proof Assume (O, I, R) is symmetric at time t , corresponding to the set of inter-
mediate states S. Let S′ represent some earlier generation of states. From the local
symmetry of (O, I, R) at S we can deduce that P(o|s∗) = p ∈ [0, 1] for all s∗ ∈ S.

Take a random predecessor state s′ ∈ S′. Assume it branches out to a number of
states s∗ ∈ S. Then

P(o|s′) =
∑

s∗
P(o|s∗)P(s∗|s′)

= p
∑

s∗
P(s∗|s′)

= p

since the sum of the probabilities of all paths leaving s′ is 1. Thus the network is
symmetric at S′.

This also means that the bias p towards outcome o is preserved as long as the
network remains symmetric. �
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