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Abstract 

Most discussions of the reproducibility crisis focus on its epistemic aspect: the fact that the scientific community 

fails to follow some norms of scientific investigation, which leads to high rates of irreproducibility via a high rate 

of false positive findings. The purpose of this paper is to argue that there is a heretofore underappreciated and 

understudied dimension to the reproducibility crisis in experimental psychology and neuroscience that may prove 

to be at least as important as the epistemic dimension. This is the communication dimension. The link between 

communication and reproducibility is immediate: independent investigators would not be able to recreate an 

experiment whose design or implementation were inadequately described. I exploit evidence of a replicability and 

reproducibility crisis in computational science, as well as research into quality of reporting to support the claim 

that a widespread failure to adhere to reporting standards, especially the norm of descriptive completeness, is an 

important contributing factor in the current reproducibility crisis in experimental psychology and neuroscience. 

Introduction 

The reproducibility crisis is usually depicted as resulting from a failure to follow some norms of scientific 

investigation (but see, e.g., Bird 2018). If sufficiently widespread, this failure can cause a proliferation of false 

positive findings in the literature, which can lead to low research reproducibility because false findings are mostly 

irreproducible. For example, many authors have argued that researchers in psychology, including journal editors 

and referees, tend to confuse nominal statistical significance of an experimental finding with its epistemic import 

(e.g., Rosenthal & Gaito 1963; Neuliep & Crandall 1990, 1993; Sterling 1959; Sterling, Rosenbaum, & Weinkam 

1995; Gigerenzer 2004, 2018). In effect, the psychological literature has been filling up over the years with 

statistically significant results, most of which are probably false. The problem is serious as most psychology papers 

use null hypothesis significance testing (NHST) and over 90% of them report positive findings (Fanelli 2010).  

However, besides the norms of scientific investigation, there are norms of scientific reporting, whose violation can 

also affect reproducibility even if it does not necessarily lead to a proliferation of false positives in the literature. 

Chief among these norms is the norm of descriptive completeness, which states that a research report should 

provide all the information necessary to enable a knowledgeable independent researcher to recreate the study. 

Widespread failure to follow the norm of descriptive completeness would have disastrous consequences, 

threatening the cumulative character of scientific knowledge, its technical applicability, and credibility. 

Yet scientists and philosophers of science seldom pay attention to the norms of scientific reporting. We take it for 

granted that researchers have no difficulty producing adequate descriptions of their experiments. After all, 

designing and conducting a scientific study is much more intellectually demanding than producing a research 
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report. Any high school graduate can write a report. And, let’s face it, the norms of scientific reporting are not as 

interesting as the norms of scientific investigation. The most general ones, which apply to any report regardless of 

study design or field, are pretty much self-evident. We all agree that a research report should be clear, concise, 

true and complete. What is more problematic is how to apply these norms in specific cases. To take the norm of 

descriptive completeness again, it is not obvious which details of, say, randomized controlled trials are essential 

to reproducibility. Which sampling decisions need to be reported and where – in the main text, in supplementary 

materials, in a repository? And what about information such as room temperature or the weather outside? Although 

nontrivial, such questions are frequently dismissed as pedantic and irrelevant. We often feel that only a pedant 

would seek precise answers to them. A reasonable person would simply err on the side of caution, wouldn’t they? 

The aim of this paper is to show that the pedants may actually be on to something. I contend that the norms of 

scientific reporting are violated much more frequently than we like to admit. More specifically, I argue that 

violations of the norm of descriptive completeness are probably so widespread as to affect research reproducibility 

in experimental psychology and neuroscience. Indeed, I claim that, without recognizing this, we will not be able 

to properly assess either the nature or the true scale of the reproducibility crisis. Although the open science 

movement advocates transparency and clear communication, empirical assessments of quality of reporting in 

experimental psychology and neuroscience are few and far in between. This makes it impossible to estimate the 

actual impact of reporting practices on reproducibility with any confidence. I exploit various kinds of evidence to 

provisionally assess the scale of the problem and argue that standard discussions of the reproducibility crisis in 

psychology and neuroscience ought to pay more attention to its communication dimension. 

The paper unfolds in the following manner. In section 1, I introduce the traditional distinction between the notions 

of replicability and reproducibility in experimental research. Based on a methodological analysis of the 

requirements of replicability and reproducibility, I show that the latter requirement, unlike the former, is 

inextricably linked with the norms of scientific reporting, especially the norm of descriptive completeness. In 

section 2, I describe the standard methods of estimating reproducibility of experimental research and show how 

they are applied to experimental psychology and neuroscience. I conclude that these methods ignore or even 

minimize the communication dimension of reproducibility, which suggests a possible blind spot in the existing 

assessments. I close the section by hinting at the first source of indirect evidence regarding the actual impact of 

communication failures on reproducibility – namely, the literature on the replicability and reproducibility crisis in 

computational modeling. As it will transpire, both kinds of crisis in computational modeling have been caused by 

a widespread failure to adhere to the norm of descriptive completeness. Thus, section 3 introduces the notions of 

model repeatability, model replicability and model reproducibility, and describes the methodological functions of 

model replications and model reproductions. It also characterizes the standard methods used to estimate the 

magnitude of the crisis and, based on available studies, provides the estimates for computational neuroscience. 

The crisis, it turns out, is serious. In section 4, I return to experimental psychology and neuroscience. Having 

shown that inadequate reporting has caused a replicability and reproducibility crisis in computational modeling, I 

look for empirical evidence regarding the claim that something similar may be happening in experimental research. 

I give two indirect arguments appealing to empirically confirmed deficiencies in the reporting practices of 

psychologists. It turns out that researchers are less than eager to share experimental data and they also display a 

remarkable tendency to misreport statistical information. These attitudes, though related to communication, need 

not impact research reproducibility, however. Therefore, in section 5, I bring up some direct evidence for my 
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central claim – I discuss four empirical studies: (a) by Grant et al. (2013), who investigate quality of reporting in 

psychological and social intervention trials in clinical psychology, criminology, education and social work, (b) by 

Robb et al. (2018), who examine compliance with field specific reporting guidelines in the latest studies of music-

based interventions in healthcare, (c) by Brown et al. (2014), who investigate descriptive completeness of 

psychological papers published in 2010, and (d) by Carp (2012), who focuses on reports of fMRI studies. They all 

indicate that quality of reporting relevant to reproducibility is poor: roughly over 50% of the reports are seriously 

deficient in this respect and even about 80–90% of the studies may be irreproducible due to incomplete reporting. 

I close the paper with a brief summary of the argument and a few remarks on the significance of the communication 

dimension to the reproducibility crisis. 

1. Replication Studies and the Replicability vs. Reproducibility Requirements in Experimental 

Research 

Given the aim of this paper, the most important difference we need to draw between various kinds of replication 

studies concerns authorship. Thus, I define an independent replication as one conducted by independent 

investigators – i.e., a research team that does not overlap with the authors of the original study. By contrast, an 

internal replication of experimental research is performed by a research team that does overlap with the authors 

of the original study. Both independent and internal replications are said to be successful when the results they 

yield are sufficiently similar to those of the original study; what precisely counts as sufficiently similar varies with 

the field. I say that research is replicable to the extent that its successive internal replication attempts are likely to 

be successful. By analogy, I say that experimental research is reproducible to the extent that its independent 

replication attempts are likely to be successful. It follows that there can be two corresponding requirements 

imposed on experimental research: first, that it be replicable and, second, that it be reproducible. 

The other significant distinction regarding repeat experiments concerns the extent to which a replication attempts 

to reflect the original study. I use the term direct replication for studies intended to recreate as closely as possible 

all the parameters of the original study. Because it is often impossible to duplicate a psychology or neuroscience 

study down to the smallest detail, any amendment to the original procedure should be justifiable by appeal to the 

best contemporary understanding of the phenomena under investigation. I use the term conceptual replication for 

replication studies intended to extend the original result or make it more robust by modifying some parameters of 

the study under investigation. Conceptual replications are not the focus of this paper, so whenever I talk about 

replications without qualifying them as conceptual, I am referring to direct replications. 

Although rarely mentioned in the literature before the 11th century AD, the requirement of replicability may be as 

old as the experimental method itself (Steinle 2016). A practitioner of empirical science quickly learns how many 

things can, and often do, go wrong during an experiment. Therefore, it is plausible to suppose that early scientists 

had developed the habit of repeating their experiments on numerous occasions in order to convince themselves 

that the outcomes they obtained were sufficiently consistent. Unsurprisingly, assertions of replicability were also 

used as a rhetorical device, intended to persuade the readers of a scientific text that the claims made by the author 

were true. For example, the Arab scholar Ibn-al-Haytham, known in Europe as Alhazen, often concluded his 

experiment descriptions with the words “this is always found to be so, with no variation or change” and Galileo 

Galilei stressed that he had performed his inclined plane experiments “a full hundred times” (see Steinle 2016, p. 

43). 
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The requirement of reproducibility is much more recent by comparison. It was first invoked as an essential element 

of the experimental method both in Saggi di naturali esperienze (1667), published by the Accademia del Cimento 

in Florence, and in Thomas Sprat’s History of the Royal Society of London for the Improving of Natural Knowledge 

(1667) (cf. Steinle 2016, pp. 46–47). The link between the requirement of reproducibility and the appearance of 

the first institutions of modern science was no historical accident. The idea of reproducibility was part and parcel 

of a system of social inventions that had transformed the investigation of nature in the 17th century into a massively 

collaborative endeavor that has since yielded unprecedented rewards. 

As already mentioned, the idea that a credible experimental finding must be replicable came with the awareness 

that an investigator has to control a wide range of experimental parameters in order to obtain consistent outcomes. 

Assuming that the researcher is not sloppy, irreplicability either signals indeterminacy in the world or reveals that 

the researcher has an insufficient understanding of the phenomena under investigation. In either case, the primary 

advantage of replicating research is that it guards the investigator against accepting certain kinds of false positives 

and guides further research. From an investigator’s point of view, a result that replicates is stable enough to warrant 

an explanation. By contrast, a result that does not replicate indicates that more research is needed to determine the 

source of the problem.  

The requirement of replicability serves the individual investigator rather than the research community as a whole. 

The policy of attempting to replicate obtained findings allows the scientist to reject empirically unstable results, 

but does not necessarily shape the way she communicates her research to others. Although keeping a record of 

how an experiment was conducted facilitates replicability, it is not its necessary condition. The investigator may 

be able to replicate a finding by remembering a few distinguishing features of the experimental setup and relying 

on habit to recreate it. More to the point, she may produce highly replicable research and be secretive about how 

she is able to do so. In fact, following the requirement of replicability and keeping the necessary know-how hidden 

from others was typical of much of early experimental practice. 

The requirement of reproducibility, by contrast, presupposes communication. It would simply be impossible for 

an independent investigator to recreate a study unless its author provided a complete and accurate description of 

the experimental procedure. The fact that a finding can only be reproduced if appropriately communicated to an 

independent investigator entails that the requirement of reproducibility imposes some general constraints on 

scientific reporting. Not only does it reinforce the traditional qualities of effective communication, such as 

accuracy, clarity, precision and conciseness, but it also demands that the research report contain all the information 

necessary for a competent reader to be able to recreate the study. 

This link between the requirement of reproducibility and the norms of scientific reporting, including the norm of 

descriptive completeness, is immensely important. Ensuring reproducibility does not only help to reduce the rate 

of false positives in the literature but it also facilitates accumulation of knowledge and boosts scientific progress 

by making research fully available to anyone who wishes to build on it. Finally, reproducibility is necessary for 

developing technologies based on scientific findings. This is so even if we lack theoretical understanding of the 

phenomena under investigation, as in the case of high-temperature superconductivity research, which has led to a 

number of valuable inventions although the nature of the effect remains unexplained (see Steinle 2016, p. 50). 
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In light of these remarks, it is clear that reproducibility has two separate but interdependent aspects. Under the 

epistemic aspect, reproducibility is seen to involve an experimental stability that lends credibility to specific 

findings and, derivatively, to a whole field of research. Experimental stability is a good proxy for empirical truth 

although, strictly speaking, the two are logically independent. First, a field of study may produce highly stable 

results that are in fact false – say, due to a widespread use of a statistical analysis package containing an 

undiscovered bug. Second, it is possible that most findings generated within a field of research are true but 

irreproducible (this may be the kind of scenario envisaged by those who are unmoved by the reproducibility crisis). 

Under the communication aspect, reproducibility involves the publishing of experiment descriptions that meet the 

norms of scientific reporting. Violation of any of these norms affects the ability of independent investigators to 

assess or reproduce a finding. The norm of descriptive completeness is crucial in this latter connection because, if 

it is not being followed, researchers are unable to find information necessary to duplicate the study. As a result, 

even a perfectly stable experimental finding cannot be validated or used to develop new technologies. 

Needless to say, other norms of scientific communication, besides the norm of descriptive completeness, are also 

relevant to reproducibility. These include the norm of accuracy and the norm of clarity. Reports that either 

misrepresent the experimental procedure or are plagued by ambiguity can make it impossible for an independent 

investigator to recreate the study. What is perhaps less obvious, providing too much information – i.e., information 

that is not necessary to duplicate a study – can have similar effects (Miłkowski, Hohol, & Hensel 2018). Although, 

in what follows, I touch on whether these norms are being followed, I focus on the norm of descriptive 

completeness because its violations seem to have the largest impact on the current reproducibility crisis. 

2. Assessments of Reproducibility in Experimental Psychology and Neuroscience – the Epistemic 

Dimension 

Like any empirical feature, reproducibility can be measured directly or indirectly. The direct method of assessing 

reproducibility is simple. It consists in actually trying to independently replicate research. The trouble is that, in 

many fields, replication attempts are too rare to warrant generalization. According to Makel, Plucker & Hegarty 

(2012), who searched publication data from the hundred psychological journals with the highest five-year impact 

factor, the string “replicat*” appears in 1.57% of papers published in the years 1900–2009. Based on a closer 

analysis of a random sample, Makel and colleagues estimated that only about 64.8% of the papers mentioning the 

word “replication” are actual replications. This puts the overall rate of replication attempts at 1.07% (though, 

admittedly, in the period after 2000, it is estimated at 1.96%). However, out of those 1.07%, only 47.1% were 

performed by independent investigators and 14% were direct rather than conceptual replications. When coupled 

with the publication bias, a large number of underpowered conceptual replication studies can, in fact, create an 

illusion of robustness (Romero 2019). Given these figures, it is nearly impossible to arrive at a credible estimate 

of reproducibility based on prior replication attempts. Indeed, although Makel, Plucker, & Hegarty (2012) found 

that the reproducibility rate in psychology between 1900 and 2009 was 64.6% (69.4% in 2000–2009), their 

estimate is probably off the mark as it does not distinguish between direct and conceptual replications and relies 

on a biased literature.  

Another method for directly assessing the reproducibility rate of a discipline involves selecting a representative 

sample of studies and attempting to replicate them. The largest such effort in behavioral sciences is the 

Reproducibility Project: Psychology conducted by the Open Science Collaboration (2015). Its results have been 
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widely publicized: only 36-47% randomly selected recent studies from three of the most prestigious psychological 

journals have been successfully replicated (n = 100). The estimated reproducibility rate differs according to the 

field: e.g., it is about 50% in cognitive psychology and about 25% in social psychology. The average effect size 

was 50% smaller than that reported in the original study. 

We may also glean important information from studies investigating smaller numbers of effects, such as the Many 

Labs 2 replication project, which examined 28 psychological effects reported in both classic and contemporary 

studies. Its main objective was to assess variation in reproducibility across samples and settings rather than estimate 

the reproducibility rate, so the sample was not random: some of the effects under scrutiny had been known to be 

highly reproducible and the selection criteria included simplicity of design and brevity of experimental procedure, 

which arguably favored easily reproducible results. The outcome: 50% of the effects have replicated (p < .0001) 

(Klein el al. 2018). A related effort, with similar selection criteria, has replicated 3 out 10 effects (Ebersole et al. 

2016). Both replication projects also showed considerable effect size inflation in original reports. 

Large-scale replication projects are logistically and financially demanding, even if the studies under investigation 

are relatively cheap and simple. The challenges are even greater in neuroscience where research is more resource-

intensive. Boekel et al. (2015) conducted a preregistered multi-study replication attempt of 17 structural brain-

behavior (SBB) associations, such as that individual differences in the number of Facebook friends and real social-

network size are positively correlated with grey matter volume in several brain areas. Only one of the correlations 

(about 6%) has replicated. The sample was only 36 subjects but the conclusion is consistent with that of Kharabian 

Masouleh et al. (2019), who reanalyzed a large dataset containing brain scans and selected psychological tests. 

Given the heterogeneity of both experimental psychology and neuroscience and the difficulties associated with 

conducting large-scale replication projects, most assessments of the reproducibility crisis are indirect. They are 

based on estimating the value of certain parameters that are either known or supposed to indicate reproducibility. 

A large number of these meta-scientific studies focus on the truth of scientific results. They involve sifting through 

the published record and applying a wide range of statistical methods to estimate the value of such parameters as 

the average statistical power and effect size (e.g., Ioannidis 2005; Button et al. 2013; David et al. 2013; Szucs & 

Ioannidis 2017, Stanley, Carter, & Doucouliagos 2018), the prevalence of various biases (e.g., Fanelli 2009, 2010, 

Scheel 2019), the flexibility of current research methods (e.g., Patel, Burford, & Ioannidis 2015), etc.  

A second group of meta-scientific studies of reproducibility attempt to discover the frequency of behaviors that do 

not conform to the principles of scientific investigation. These studies are relatively rare and often involve 

conducting anonymous surveys among researchers, asking them about their conduct, experiences or attitudes (e.g., 

Anderson, Martinson, & DeVries 2007; Fanelli 2009; Baker 2016; Mobley et al. 2013; Héroux et al. 2017; John, 

Loewenstein, & Prelec 2017). Although there are surveys that ask scientists about selective reporting, which 

obviously violates the norm of descriptive completeness, they do not generally target the communication 

dimension of reproducibility.  

What is the reproducibility rate in experimental psychology and neuroscience? It should come as no surprise that 

opinions on this point vary. Despite our best efforts, we still lack sufficient data to assess the situation, and the 

data we do have are interpreted in a variety of ways because every analysis relies on some controversial 

assumptions (see Amrhein, Trafimow, & Greenland 2019). Let me illustrate this with a vivid example. On one 
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side of the spectrum, Gilbert et al. (2016) argue that the empirical evidence obtained by the Open Science 

Collaboration (2015) is actually consistent with the reproducibility rate in psychology being around 85%. This is 

because, they claim, the replicability benchmarks adopted by the Open Science Collaboration did not take into 

account the infidelities of the replications (some of which may even suggest bias) and the replications were 

underpowered because power calculations were based on considerably inflated effect sizes reported by original 

investigators (cf. Anderson et al. 2016 for a rejoinder; for more on the question of power in large-scale replication 

efforts, see Camerer et al. 2018). On the other extreme, Johnson et al. (2017), who performed a reanalysis of the 

Open Science Collaboration (2015) dataset, claim that the pre-study odds of experimental hypotheses in 

psychology – i.e., the probability that a hypothesis being tested is actually false – are likely below 10% and the 

rate of false positives is likely over 90% (cf. Szucs & Ioannidis 2017 for similar estimates based on a different 

methodology and Bird 2018 for a general argument that low reproducibility may be the result of low pre-study 

odds even in the absence of questionable research practices). 

It is not my aim here to investigate which proposed estimates are the most plausible and why. Instead, I want to 

stress that the methods of assessment targeting what I call the epistemic dimension of the reproducibility crisis 

ignore the communication dimension. In fact, multi-study replication projects are typically designed so as to 

minimize the impact of inadequate reporting on estimated reproducibility. Replication teams in the Open Science 

Collaboration contacted the original authors to obtain original study materials, request “any important information 

about the methodology that may not have appeared in the original article” and “share the methods draft for 

comments and suggested edits” (Reproducibility Project: Psychology Researcher Guide, https://osf.io/ru689/). 

Many Labs 2 and 3 had a similar protocol (Klein et al. 2018, p. 448; Ebersole et al. 2016, p. 70). Boekel et al. 

(2015) also solicited materials from original authors. Interestingly, their initial plan had been to replicate 9 studies. 

They ended up with only 5 because, among other things, the original authors of 3 studies either failed to supply 

ROI masks or the masks they sent did not match the coordinates reported in the papers. 

Since the methods of assessment described so far cannot detect the possible impact of descriptive incompleteness 

on reproducibility, it is at least imaginable that this has led the community to consistently underestimate the 

magnitude of the reproducibility crisis in experimental psychology and neuroscience. I begin to explore this 

possibility in the next section, where I discuss the prevalence of incomplete reporting in computational modeling. 

The data suggest that computational sciences are experiencing a crisis similar to that in experimental psychology 

and neuroscience. However, unlike in experimental research, there, the main culprit is believed to be inadequate 

reporting practices. This constitutes the first piece of indirect empirical evidence I usher in to support the 

hypothesis that communication problems are also affecting the reproducibility of experimental psychology and 

neuroscience.  

3. The Communication Dimension of the Reproducibility Crisis: The Case of Computational 

Modeling 

There are three senses in which computational models can be duplicated. First, a model is said to be repeatable to 

the extent that its author can rerun it herself at a later date and obtain the same output given the same input data. 

Second, a model is said to be replicable to the extent that an independent researcher can run the original source 

code on original input data and obtain the same output as the original investigator. Third, a model is said to be 
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reproducible to the extent that an independent researcher can reimplement it without using the original source code 

and, given the same input, obtain the same output as the original investigator (Delling et al. 2016).  

Note that the contrast between replicability and reproducibility of experimental research, drawn in terms of 

authorship, breaks down when applied to computational modeling: both model replication and model reproduction 

are performed by an independent investigator. This is unfortunate but inevitable if we want to keep to standard 

usage. Speaking of terminology, I should also warn the reader that there are two competing ways of using the 

terms “model replicability” and “model reproducibility” in the literature. I have chosen to follow a convention 

inspired by Drummond (2009) and endorsed by the Association for Computing Machinery. According to the other 

tradition, the meanings of the two terms are reversed: i.e., what I defined as model replicability is referred to using 

the term “model reproducibility” and vice versa (cf. Plesser 2018; Miłkowski, Hensel, & Hohol 2018). Needless 

to say, there are also writers who use the terms “model replicability” and “model reproducibility” more or less 

interchangeably (see Barba 2018). 

Someone unfamiliar with computational modeling may be surprised to learn that neither repeatability nor 

replicability is easy to accomplish. After all, computers are deterministic machines, aren’t they? In fact, however, 

the sheer complexity of the models and the rapid changes of programming environments make rerunning a 

computer simulation and actually getting the same output a potentially tedious exercise, especially after a year or 

two. In order to ensure repeatability, the modeler has to document every step of the computation leading from 

input data to the final result because the slightest variation may affect the output. This includes keeping track of 

software versions as well as the exact versions of scripts and parameters used. Because human memory is limited, 

it is also important to store descriptions connecting successive versions of the code to the conceptual model the 

code is intended to implement (Sandve et al. 2013). 

Making sure that computational research is repeatable and replicable is as much about record keeping as it is about 

quality of the research. And, just as in experimental studies, keeping detailed notes facilitates error correction 

(Donoho et al. 2009). In a sense, researchers who want to build repeatable models need to be able to communicate 

effectively with the future versions of themselves, and researchers who want to produce replicable models need to 

communicate effectively with other modelers. Insofar as a future version of the original investigator is similar to 

other modelers, replicability can be identified with repeatability plus public availability of the code and data. This 

is why nine out of the ten rules for replicable computational research recommended by Sandve et al. (2013) focus 

on repeatability. Note, however, that the idea that notes should be written as if they were addressed to someone 

other than the author – as if their intended reader were a different modeler – had been shaped by the requirement 

of reproducibility. 

There are two dimensions along which computational models are evaluated. The first concerns what is known as 

correctness, which is a relation between an implementation and the conceptual model the implementation is taken 

to embody. Checking for correctness is called model verification. Verifying a computational model is basically 

demonstrating that the code operates as intended or, as Balci put it, “model verification deals with building the 

model right” (1997, p. 135). The second dimension is validity, also called faithfulness (and sometimes fidelity), 

which is a relation between the model and the system it represents. To validate a model is to demonstrate that it 

describes the behavior of the source system (the target phenomenon) at the level required by the objectives of the 

study (Zeigler, Muzy, & Kofman 2019, pp. 32–33). As Balci put it, “validation deals with building the right model” 
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(1997, p. 135). Verification and validation are conducted throughout the model development process but, since no 

method of model analysis guarantees either perfect verification or perfect validation, both activities extend beyond 

that. 

Replicating a model provides a method of its verification (Rand & Wilensky 2006) and, although there are other 

methods as well, ensuring model replicability has some important advantages besides offering an opportunity to 

discover previously undetected errors. Replicability enables researchers to reuse and modify the original code and 

also contributes to model validation by making it possible to run the simulation on new datasets. Both of these 

contribute to theoretical progress. 

Performing a reproduction attempt can also confirm or disconfirm the computational model’s correctness. A failed 

attempt at reconstructing a model based on its verbal description indicates that either the description is flawed 

(inaccurate or incomplete) or the original implementation was incorrect (Cooper & Guest 2014). Yet model 

reproductions also serve a different, more important function. They allow us to separate the theoretical assumptions 

of the conceptual model from the extrinsic properties of its implementation – i.e., features of the implemented 

model that are not intended as part of the theoretical description of the world provided by the conceptual model. 

The two kinds of properties often get conflated because most researchers do not specify the conceptual model 

independently of its implementation (Cooper & Guest 2014; McClelland 2009). Thus, reproductions improve our 

understanding of the model and contribute to its validation, which is more theoretically significant than model 

verification (Miłkowski, Hensel, & Hohol 2018; Drummond 2009). 

Given the importance of model replicability and reproducibility, it is unsettling that, like experimental psychology 

and experimental neuroscience, computational modeling is experiencing a confidence crisis associated with poor 

replicability and reproducibility of published research. And, same as with experimental science, there are two 

kinds of methods that can be used to assess the rates of replicability and reproducibility. The direct methods of 

assessment involve performing model replications or model reproductions whereas the indirect methods focus on 

estimating the value of various parameters known or supposed to affect model replicability or model 

reproducibility. 

The direct methods of assessment are even more rarely used in computational modeling than in experimental 

science. There is the journal ReScience C, established in 2015, dedicated to publishing model reproduction studies 

(Rougier et al. 2017) but there are no initiatives like the Open Science Collaboration that aim to estimate the rates 

of replicability or reproducibility of computational models across the discipline. Although some research teams 

make consistent attempts to reproduce models in their field of interest, the results of their efforts do not yet add up 

to anything resembling a general picture of the crisis. For example, Manninen et al. (2018) have tried to 

reimplement two models of neural signal transduction, two spiking neuronal network models and eight models of 

astrocyte activity. They managed to obtain all the original results for four studies (25%). As for model replicability, 

its direct assessments are almost never made, which is not a serious problem, however, because indirect 

assessments have much more scope and provide a good approximation of the upper bound on estimates of 

replicability. The study by Manninen et al. (2018) is the only attempt I know of to directly assess model 

replicability. The team evaluated the replicability of 10 spiking neuronal network models. Only 3 of the models 

were available on line – the proportion of replicated results was over 60% for all three studies. 



10 
 

Most information we have about the replicability crisis in computational studies comes from estimates of the 

prevalence of its necessary condition: public availability of the code and data. According to a survey by Gundersen, 

only 6% out of the 400 papers delivered at two top AI conferences organized in recent years have made the source 

code for the algorithms publicly available (Hutson 2018). As to the field of computational simulation, Stodden et 

al. (2018) have recently evaluated the effectiveness of a share-artefacts-on-demand policy introduced by the 

journal Science in 2011. It turned out that, out of the 204 computational studies selected by Stodden and colleagues, 

24 (about 12%) provided the source code and data by means of an external link or supplementary materials. After 

contacting the authors of the remaining studies, Stodden and colleagues were able to obtain artifacts for another 

24% of the papers. According to a survey conducted by Miłkowski, Hensel and Hohol (2018), the situation in 

computational neuroscience is slightly better, though far from ideal: 32% out of the 242 papers published between 

January 1, 2016, and September 26, 2018, in three prominent computational neuroscience journals provided the 

source code for the model. This matches almost exactly the proportion of available artefacts reported by Manninen 

et al. (2018) for the ten spiking neuronal network models they attempted to replicate. 

Unfortunately, we do not have similar data on the reproducibility crisis, which is both understudied and vastly 

underappreciated by the modeling community. I venture that model reproducibility rates are lower than those of 

model replicability because, other things being equal, model reproductions are harder and more time-consuming 

to perform than are model replications. Information necessary to reconstruct a model based on its verbal description 

is interspersed throughout the paper, some of it is ambiguous or missing, and the equations and figures contain 

mistakes which a researcher attempting a reimplementation must try to correct. The time it took Manninen et al. 

(2018) to reproduce a model ranged between 2 hours and over 2 weeks – by contrast, a replication took them 

between no time at all and 2 days. We can also predict that, without a radical change in the way computational 

modeling is being done and evaluated, both crises are going to get worse because replications and reproductions 

become increasingly difficult and time-consuming as the models get larger and more complex – which of course 

they are. 

Despite paucity of data on the extent of the reproducibility crisis in computational modeling, the community is 

becoming increasingly aware of the need to improve descriptive completeness of reporting. The first step has 

already been taken. Various subfields of computational modeling have developed and endorsed reporting 

standards. For example, Nordlie, Gewaltig and Plesser (2009) provided detailed guidelines and recommendations 

regarding descriptions of neural network models. This is an important development because it shows that 

researchers in some areas have noticed how difficult it may be to decide what to include in a research report and 

how exactly to go about it, especially in a rapidly growing field. Which information about a neural network model 

ought to be included in the main body of the paper and which can be relegated to supplementary materials? What 

if there is a space limit? How to construct complete and unambiguous diagrams and tables? In any subfield, there 

are a number of such seemingly mundane questions that must be answered in an informed and reasoned way if 

research is to be effectively communicated and thereby potentially reproducible (see Miłkowski, Hensel, Hohol 

2018).  

It is still an open question whether standards of reporting developed by some communities in computational 

modeling are actually being met. None of the papers describing the ten spiking neuronal network models 
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investigated by Manninen and colleagues presented model parameters in the format proposed by Nordlie, Gewaltig 

and Plesser (2009) (Manninen et al. 2018, p. 12). 

Having described the nature of the replicability and reproducibility crisis in computational modeling and assessed 

its scale based on available data, let me return to experimental psychology and neuroscience. The second indirect 

empirical argument for my hypothesis that the two disciplines are suffering from the reproducibility crisis in large 

part because of the researchers’ failure to adhere to the norm of descriptive completeness appeals to evidence of 

two worrying patterns of behavior concerning communication. 

4. Two Worrying Patterns of Behavior in Experimental Psychology and Neuroscience 

There are at least two attitudes that involve withholding information from fellow researchers or misrepresenting it 

but do not directly affect reproducibility. The prevalence of these attitudes affects experimental research by giving 

rise to something akin to the replicability crisis in computational modeling. In computational modeling, failure to 

share code and data limits the ability of independent investigators to assess the correctness of a model’s 

implementation and inhibits scientific progress by making it impossible to reuse code. In experimental research, 

failing to share experimental data limits the ability of independent investigators to assess the validity of the 

arguments and inferences made by the original authors and, at least in the case of neuroimaging data, inhibits 

progress by preventing reuse. Note also that the methodological differences between model replication and model 

reproduction carry over to experimental research. When reanalyzing the data of an empirical study, one can run 

the original analysis script and check how well the outputs match with reported outcomes (analytic/computational 

replication), or write a new script based on the description provided in the original paper and compare its outputs 

with reported outcomes (analytic/computational reproduction). 

Kidwell et al. (2016), who investigated articles published in 2012 and 2013 by five prominent psychology journals, 

found that less than 3% of the papers declared public availability of the data (and most of the datasets turned out 

to be unusable or incomplete). A similar problem occurs in neuroscience, where less than a few percent of fMRI 

scans are available in public repositories (Poline et al. 2012). Furthermore, researchers have been known to refuse 

to share data. In 2005, Wicherts and colleagues contacted the authors of 141 papers published in four APA journals, 

which require the authors to share data on request. Only 27% of the authors complied (Wicherts et al. 2006).  

On the upside, we are seeing signs of improvement. When Vanpaemel et al. (2015) requested data from the authors 

of almost 400 papers published by APA journals, 38% of the authors complied. Furthermore, data sharing is now 

in vogue and the consequences of this are beginning to be felt. Nelson, Simmons and Simonshon (2018) have even 

gone so far as to proclaim a renaissance of psychological science. However, most data are not in yet and the current 

enthusiasm for open science may prove to be a short-lived phenomenon. What is relevant to my argument is that 

researchers, including those in experimental psychology and neuroscience, have persistently exhibited a marked 

reluctance to share data. This reluctance seems to emerge spontaneously in many fields despite declared adherence 

to Mertonian norms of scientific investigation (Anderson, Martinson, & DeVries 2007; Houtkoop et al. 2017). 

A second behavioral pattern associated with communication is the misrepresentation of statistical results. Although 

it rarely renders replication attempts impossible, it can increase the rate of false positives in the literature and make 

it difficult or even impossible to assess the credibility and theoretical significance of published findings, which, in 

the long run, is bound to affect the reproducibility rate in a whole field (cf. Muthukrishna & Henrich 2019). Garcia-
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Berthou and Alcaraz (2004) found that over 11% of Nature papers using NHST reported incongruent statistical 

results, meaning that reported p values were inconsistent with other statistical information provided in the text. 

Bakker & Wicherts (2011) performed a similar study focusing on psychology. They found that about 18% of 

statistical results were misreported and, more importantly, about 15% of the papers contained reporting errors that 

affected at least one statistical conclusion. Nuijten et al. (2016) further confirmed these findings by performing an 

automated analysis of 30,717 papers published between 1985 and 2013 by eight top psychology journals: 49.6% 

of the papers using NHST contained at least one inconsistency and 12.9% contained an inconsistency that affected 

a statistical conclusion. Given the perceived role of statistical significance in psychological inference, the 

frequency of this kind of reporting error is striking. It would seem that p values should be the subject of especially 

close scrutiny both by the authors of a paper and its reviewers. Although some of the errors are likely intentional, 

a great deal of them are probably honest mistakes that have not been caught before publication.  

The two behavioral patterns I have discussed – namely, not sharing data and misreporting statistical information 

– are only indirectly relevant to the communication aspect of the reproducibility crisis in experimental psychology 

and neuroscience because neither a lack of original data nor many of the mistakes in statistical information prevents 

direct independent replication. My argument here is that if researchers withhold or misrepresent one kind of 

information (irrelevant to reproducibility) then they are likely to withhold or misrepresent other kinds of 

information as well (potentially relevant to reproducibility). For example, out of 326 empirical studies published 

between 2012 and May, 2015, in four leading psychology journals, almost 20% contained a materials availability 

statement but of the materials “reportedly available at a website or repository, 60% (N = 27) were actually 

available, 46.7% (N = 21) were correct materials, 33.3% (N = 15) were usable materials, and 13.3% (N = 6) were 

complete materials” (Kidwell et al. 2016, p. 9). I would submit that the same, mutatis mutandis, applies to reporting 

infidelities but they are much more difficult to detect.  

Needless to say, both inferences are based on folk psychology and do not have sufficient empirical support. 

However, the corresponding psychological constructs – i.e., the dimensions of conscientiousness and 

honesty/dishonesty are largely domain-independent and manifest themselves in numerous aspects of life (see, e.g., 

Roberts et al. 2009; Mazar & Arieli 2015). 

5. Direct Evidence for Widespread Failure to Provide Complete Research Descriptions in 

Experimental Psychology and Neuroscience  

It is time to confront our main question head on: “What proportion of published research reports in experimental 

psychology and neuroscience do not contain all the information a knowledgeable investigator would need in order 

to recreate the reported study?”  

Naturally, a reasonable answer must involve a review of the literature on those aspects of quality of reporting that 

are likely to influence reproducibility. Studies of this kind, though not necessarily targeting reproducibility, are 

relatively common in biomedical science. They usually compare a corpus of publications against an established 

set of guidelines, developed by experts, informed by research and consistently updated. Some guidelines, such as 

Consolidated Standards of Reporting Trials (CONSORT, http://www.consort-statement.org/), Animal Research: 

Reporting of In Vivo Experiments (ARRIVE, https://www.nc3rs.org.uk/arrive-guidelines) and The Strengthening 

the Reporting of Observational Studies in Epidemiology (STROBE, https://www.strobe-
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statement.org/index.php?id=available-checklists), apply to many fields and study protocols, whereas others, such 

as Standards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA, https://www.stricta.info/), 

are much more specific (for more details see https://www.equator-network.org/, which provides a comprehensive 

list of reporting standards in health research). The guidelines are presented in the form of checklists, flowcharts 

and, increasingly, full-text explanations and elaborations (e.g., Moher et al. 2010).  

Although there is much room for improvement, both psychology and neuroscience have developed and, to an 

extent, adopted a number of reporting standards. The Publications and Communications Board of APA appointed 

the first Working Group on Journal Article Reporting Standards (JARS) in 2006. The group’s report was published 

as an article (APA Publications and Communications Board Working Group on Journal Article Reporting 

Standards, 2008) and the guidelines were incorporated, in the form of four tables and a flowchart, into the sixth 

edition of the Publication manual of the American Psychological Association (American Psychological 

Association, 2010). The recommended standards related to: (1) reports of new data collections regardless of 

research design, (2) studies with a manipulation or intervention, (3) studies using random and nonrandom 

assignment of participants to experimental groups and (4) meta-analysis reporting standards (MARS). The 

guidelines have recently been updated and expanded (Appelbaum et al. 2018). Neuroscientists follow biomedical 

and psychological reporting guidelines but also have specific standards of their own, such as Picton et al. (2000). 

The most important developments cited by the authors of JARS as providing motivation for the development of 

reporting standards were the movement toward evidence-based practice in medicine and education and an 

increasing reliance on research syntheses, especially meta-analyses, in behavioral and social sciences. This 

highlights that reporting standards are typically formulated with more than one aim in mind, which means that not 

all research into quality of reporting will be relevant to reproducibility. The functions of reporting standards that 

have little or no impact on reproducibility include improving the readers’ ability to accurately interpret the research 

and facilitating application of datamining techniques. For example, it is largely irrelevant to reproducibility if most 

papers in a field do not contain some specific information in their titles or abstracts, though it may be relevant to 

datamining and, derivatively, to meta-analyses. 

Research into how well the psychological and neuroscientific literature actually conforms to reporting guidelines 

is scarce, especially if we restrict our attention to adherence to standards potentially relevant to reproducibility. 

Alas, the situation is not hopeless. There are a handful of studies that can shed some light on our question. Most 

of them are found at the intersection of experimental psychology and neuroscience, on the one hand, and computer 

science and biomedicine, on the other. The sample is far from representative but beggars can’t be choosers. Below, 

I discuss the findings of four such studies. 

The first study, by Grant et al. (2013), investigated adherence to a variety of published standards in controlled 

randomized trials (CRTs) of social and psychological interventions. It covered clinical psychology, criminology, 

education and social work, targeting reports “representative of the best trial research in these disciplines” (Grant 

et al. 2013, p. 8). Given its large scope, it can give us a general idea of guideline effectiveness in reports of CRTs 

of non-pharmacological treatments. The findings did not vary significantly with discipline. Average compliance 

with all standards across the disciplines was 42%.  
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Adherence to reporting standards related to internal and external validity was 38% and 47%, respectively. To zoom 

in on some of the details relevant to reproducibility: while 60% of the studies reported trial eligibility criteria, the 

majority failed to list all inclusion and exclusion criteria, and although 71% of the studies provided the number of 

participants assigned to each condition, compliance with reporting guidelines concerning descriptions of random 

sequence generation, allocation concealment and blinding ranged between 15 and 23%. This suggests that 

descriptively incomplete reporting has a considerable impact on the reproducibility of CRTs of psychological and 

social interventions as well over 50% of reports published in high-impact journals are seriously deficient and, 

apparently, not more than 15% of the reports are complete. 

The second study, by Robb et al. (2018), has less scope but provides much more detail. It examines reporting 

quality of music interventions in healthcare by comparing the latest literature (187 papers from 2010–2015) against 

a set of guidelines specific to the field (Robb, Burns, & Carpenter 2011). Most of these guidelines were expressly 

designed to improve reproducibility and translatability to treatment. The guidelines apply to the following aspects 

of the interventions: theoretical background (rationale for selected stimulus, specification of how the stimulus is 

expected to affect the targeted outcome), content (details of the intervention: intervention strategies, who selected 

the music, what kind of music it was, how the stimulus was delivered, etc.), delivery schedule (number, duration 

and frequency of sessions), interventionist (the number, qualifications and credentials of the persons who delivered 

the intervention), treatment fidelity (strategies of ensuring that the conditions were delivered as intended), setting 

(location, privacy level and ambient sound) and unit of delivery (individuals or groups). 

As expected, information in some categories was reported by most studies. Thus, 100% of the reports specified 

the intervention strategies (e.g., music listening, songwriting, rhythmic auditory stimulation, etc.), 91% specified 

the unit of delivery and 89% – the person selecting the music (e.g., patient or investigator); 81% of the studies 

provided a complete description of the delivery schedule. However, only 53% of the reports described the 

theoretical background of the intervention, 34% specified music and non-music materials used, 23% provided 

information on volume of the music, 20% reported on treatment fidelity, 18% characterized the level of privacy 

and 12% described the level of ambient sound; 15% of the studies using recorded music provided reference for 

sheet music or sound recording. Overall, compliance was below 50% in descriptions of four out of the seven 

aspects covered by the guidelines. As each of these aspects, with the possible exception of theoretical background, 

is directly relevant to reproducibility, it follows, again, that at least 85% of recent studies published in the field of 

music intervention may be irreproducible due to incomplete reporting. 

Unlike the first two studies I have discussed, the third one, by Brown et al. (2014), assessed the psychological 

literature in terms of standards that had not been explicitly adopted by the community. Brown and colleagues 

began by creating a comprehensive list of information needed by a naïve researcher to replicate a psychological 

study. The list, which they called The Replicability and Meta-Analytic Suitability Inventory (RAMSI), was based 

on Mill’s canons, various extant standards, such as CONSORT, and empirical studies into factors affecting the 

outcomes of psychological research. With RAMSI in hand, the investigators examined 1,083 quantitative research 

reports published during 2010 by the five highest, middle and lowest ranking psychology journals as judged using 

the top 100 ISI Web of Science 5-year impact factor. 

RAMSI consists of five groups of items: method, participants, assessor, experimenter and results. Brown et al. 

(2014) found that quality of reporting was best in the category of results (descriptive completeness was 65–69%) 
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and worst in experimenters (11–16%). Overall scores of descriptive completeness were low (29–32%) regardless 

of journal rank. Although, due to the method of its development, RAMSI is open to the charge of arbitrariness, the 

study seems to offer a unique insight into the reporting practices in psychology relevant to reproducibility.  

My fourth and final example comes from neuroscience, where Poldrack et al. (2008) presented a detailed reporting 

standard of fMRI research, providing both a set of general principles and a checklist of parameters any fMRI study 

description should contain. Given the noisiness of fMRI measurements, the value of a majority of the numerous 

study parameters specified by Poldrack et al. (2008) can arguably affect the final outcome of a study. 

Recently, Carp (2012) has investigated adherence to this standard. He selected 241 fMRI papers drawn from 68 

neuroscientific journals, such as PLoS ONE, NeuroImage and Cerebral Cortex, and compared them against 

Poldrack’s et al. (2008) checklist. The parameters were grouped into four categories: experimental design, data 

acquisition, pre-processing and modeling. Each category covered from 6 to 16 parameters. As to experimental 

design, most studies reported the number of subjects (99.6%), the proportion of female subjects (over 86%), the 

number of recording sessions (over 98%) and the design type (over 83%). By contrast, only about 6% of the studies 

reported whether and how the task design was optimized for efficiency, less than 22% of the papers described 

criteria for excessive head movement and about 28% of the studies reported the number of subjects scanned but 

excluded from analysis. The list goes on. As to data acquisition, about 42% of the studies reported the voxel 

dimensions, about 36% the coverage achieved, and just over 22% the order of slice acquisition. Pre-processing 

was the most poorly described category: only three parameters were specified by a majority of the studies – about 

14% of the studies reported the reference slice used for slice-timing correction and only about 1% described the 

interpolation method used during co-registration. Again, the list goes on. As Carp concludes (2012, p. 297): 

The widespread omission of these parameters from research reports, documented here, poses a serious 

challenge to researchers who seek to replicate and build on published studies. Changing even a single critical 

methodological decision may qualitatively alter the results of an experiment; changing many decisions at 

once may exert profound and unpredictable effects on research outcomes. 

6. Concluding Remarks 

If my analysis is correct then the reproducibility crisis experienced by experimental psychology and neuroscience 

stems from two sources. First, the researchers are violating the norms of scientific investigation, which leads to an 

increase in false positives, which in turn leads to failed replication attempts. We know that this is happening from 

the standard account. Second, however, the researchers are also violating the norms of scientific reporting that 

must be followed if research is to be reproducible.  

My argumentation for this latter claim proceeded in several stages. I started off by showing the existence of an 

almost conceptual link between effective communication and reproducibility: namely, that an independent 

investigator cannot recreate a study without knowing how it was performed. I then described the standard, 

epistemically oriented methods of assessing the reproducibility of experimental research in psychology and 

neuroscience, arguing that they neglect the possible contribution of inadequate reporting. Next, I showed how 

widespread failure to follow the norm of descriptive completeness had in fact led to a replicability and 

reproducibility crisis in computational modeling. If I were to make an educated guess I would put model 

replicability at about 20–60% and model reproducibility at about 10–40%. But the point is that the existence of a 
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replicability and reproducibility crisis in computational modeling demonstrates how much of an impact incomplete 

reporting can actually have on reproducibility. Having established that, I returned to experimental psychology and 

neuroscience. Here, I pointed to two worrying behavioral patterns that constitute indirect evidence for the 

researchers’ tendency to produce descriptively incomplete or misleading research reports. And, finally, I discussed 

four empirical studies into quality of reporting whose results are directly relevant to my claim – they all indicate 

that failures to properly communicate research affect reproducibility in a major way. 

It follows that a good approximation of the scale of the reproducibility crisis in experimental science should involve 

taking the rate of false positives and adding to it the rate of inadequate research descriptions in the literature. To 

paraphrase and extend Ioannidis’ (2005) dictum: most scientific findings are false but many of the true ones may 

actually be irreproducible anyway.  

Of course, the operation of adding the relative contributions of false positives, on the one hand, and inadequate 

research descriptions, on the other, remains somewhat metaphorical because we have no idea whether the two 

dimensions are independent. It is logically possible that most inadequate research reports happen to describe false 

positive findings, which would make a relatively small fraction of true positives irreproducible. And it is also 

logically possible that that the opposite is true: that most inadequate research reports happen to describe true 

positive findings, in which case a relatively large fraction of true positives would be irreproducible. In the absence 

of data, it is probably reasonable to treat failure to follow the norms of scientific investigation and failure to adhere 

to the norms of scientific reporting as if they were independent. Be that as it may, the impact of incomplete 

reporting on research reproducibility in experimental psychology and neuroscience, as well as in other disciplines, 

seems considerable although much more work needs to be done to properly assess its extent and causes. 

My claim that inadequate, and especially incomplete, reporting may actually be a major cause of the current 

reproducibility crisis in experimental psychology and neuroscience – and that this contribution is relatively 

neglected – should not be confused with the ideas of the open science movement (see Crüwell et al. 2019 for a 

review). Although I whole-heartedly support many open science initiatives, my focus in this paper is purely 

epistemic: I simply want to know what proportion of findings in experimental psychology and neuroscience are 

likely irreproducible. The open science movement, by contrast, is primarily interested in improving the quality of 

scientific research and communication in many respects, including but not limited to reproducibility. 

Of course, the recommendations are based on evidence, which means that the open science movement is both 

sensitive to relevant empirical findings and stimulates further meta-scientific research. However, studies into 

adherence to reporting standards relevant to reproducibility have come mostly from the biomedical sciences, where 

the communication aspect of the reproducibility crisis seems to have received much more recognition than in 

experimental psychology and neuroscience. It is no coincidence, for example, that the following quote comes from 

a paper written mostly by biomedical scientists: “Poor transparency can have very real costs. For example, the 

Reproducibility Project in Cancer Biology – a major effort to replicate 50 high-impact cancer biology papers – 

recently had to abandon 32 replication attempts partly because pertinent methodological information about the 

original studies was not available” (Hardwicke et al. 2020, p. 7). In a sense, then, I am simply applying some 

insights from computational modeling and biomedicine to experimental psychology and neuroscience. My fear is 

that, if the reproducibility project mentioned by Hardwicke and colleagues were to be reported, after completion, 
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from a purely epistemic perspective, the abstract would read something like: we conducted a replication of 18 

high-impact cancer biology studies. 

In fact, Boekel et al. (2015) did write in the abstract: “Here, we attempt to replicate five SBB correlation studies 

comprising a total of 17 effects” – which is also how I reported the study in section 1. Of course, this does not  

misrepresent Boekel and colleagues’ findings, especially given that the reader learns about the excluded studies 

from the Materials and Methods section of their paper (and about the number of excluded effects from a 

preregistration protocol, http://confrepneurosci.blogspot.com/2012/06/advanced-methods-and-analyses_26.html). 

But, I submit, it would not be entirely inadvisable to consider a slightly different formulation as well: “Here, we 

attempt to replicate eight SBB correlation studies comprising a total of 23 effects”.  
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