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Abstract

Callender claims that ‘time is the great informer’ (Callender 2017, chapter 7), mean-

ing that the direction(s) in which our ‘best’ physical theories inform are temporal. This

is intended to be a metaphysical claim, and as such expresses a relationship between the

physical world and information-gathering systems such as ourselves. This paper gives two

counterexamples to this claim, illustrating the fact that time and informative strength dou-

bly dissociate, so the claim cannot be about physical theories in general. The first is a case

where physical theories inform in directions that we have no reason to regard as temporal.

The second is a case where our best physical theories fail to inform in directions that we

have independent (pre-theoretic) reasons to regard as temporal. Taking these two cases

into account suggests that the connection Callender makes between time and informative-

ness is perspectival. The second case demonstrates that, although scientists often seek
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information in temporal directions, the behaviour of the physical world can present serious

difficulties for finding it. In response, this paper proposes a perspectival reading of Cal-

lender’s claim, according to which the connection between time and informative strength

has more to do with the aims and objectives of science than the workings of the physical

world.

1 Introduction

We begin with the problem of how to distinguish time from space in post-relativistic physics. It

will be clear to many readers that time and space are essentially different, at least in the way

we experience them. Getting lost, for example, is a rather different problem to being late; travel

is permitted in any direction of space, but the same cannot be said for time; and, spatially

distant objects can be seen or accessed in a way that temporally distant objects cannot. These

(and other) differences are encoded in a host of ways across physics. Despite relativistic physics

teaching us about some important inter-dependence relationships between space and time,

their differences are nonetheless encoded by asymmetries in the models of the theory. There

remain questions about whether there might be a philosophical underpinning of the various

asymmetries between time and space that we find in physical theories, and about whether such

asymmetries are physically necessary.1

Callender addresses these questions with his attempt to ‘bind together’ the differences

between time and space, by claiming that ‘time is the great informer’ (Callender 2017, chapter

7), meaning that the direction in which the laws of our ‘best’ theories inform are temporal, not

spatial.2 This paper gives two counterexamples to this claim. The first is a case where physical

theories inform in directions that we have no reason to regard as temporal. The second is a

1To be clear, this paper is about asymmetries between time and space, and not about the asymmetry of time.
It has nothing to do with differences between past and future for example, and the thermodynamic arrow of time
will not be mentioned. It is about differences between time and space, and to the extent that spacetime can be
thought of as a single structure it is appropriate to refer to the ‘asymmetry’ of this structure as encoding some
of these differences.

2A different response might consider this asymmetry to be a defining characteristic of any structure that can
properly be called spatiotemporal. A proposal of this nature has been made use of in Le Bihan and Linnemann
2019, in order to strengthen connections between the asymmetric spacetime of general relativity and asymmetric
‘quasi-spacetime’ structures in theories of quantum gravity.
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case where our best physical theories fail to give precise information over short timescales or

accurate information over long timescales, where we have independent (pre-theoretic) reasons to

regard these directions as temporal. Taking these two cases into account breaks the connection

Callender makes between time and informative strength of physical laws. The second case

demonstrates that, although scientists often seek information in temporal directions, the

behaviour of the physical world can present serious difficulties for finding it. This motivates the

view that the connection between time and informative strength has more to do with the aims

and objectives of science than the workings of the physical world.

The positive proposal of this paper, namely that time is connected to the informative

strength of physical laws only for a certain set of scientific aims, is related to ‘temporal

perspectivalism’, a position advanced in Baron and Evans forthcoming. Their reading of

Callender’s argument leads to the conclusion that the asymmetry between time and space is an

artefact of our human epistemic situation. The alternative interpretation offered in the present

work is also a form of perspectivalism, but the scope is narrower: it is only the connection

Callender makes between time and informative strength, and not the asymmetry between time

and space per se, that is reduced to a set of perspectives. However, the persepctivalism in this

case is more worrying for objectivity, because the set of perspectives in question is identified

by the specific aims of some human scientists, rather than the epistemic situation of the entire

population. The proposal is rooted in empiricism (which Callender claims also to be committed

to), a weak version of which can be spelt out as follows: the informativeness of physical laws is

contingent on their formal characteristics being a good representation of empirically accessible

phenomena.

The structure of this paper is as follows. Section 2 gives a summary of the main argu-

ments including the ‘perspectival’ reading of Callender’s argument offered in Baron and Evans

forthcoming. Section 3 sets out the technical material necessary for understanding Callender’s

thesis and the two additional cases. Section 4 argues that the two additional cases are indeed

counterexamples to Callender’s claim, and explains how they motivate the alternative proposal
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connecting time to the aims of many scientific endeavours to provide certain forms of informa-

tion. Subsection 4.3 compares the two forms of perspectivalism, gesturing towards some possible

implications of their combination. Finally, section 5 briefly concludes.

2 Overview

Subsection 2.1 summarises the connection Callender makes between time and informativeness in

physical laws. This is followed by an overview, in subsection 2.2, of the reading of his arguments

suggested by Baron and Evans, leading to their proposal for a perspectival take on the time-

space asymmetry. It then outlines some further discussion of Callender’s argument in 2.3, laying

the groundwork for understanding the significance of the two counterexamples. Finally, also

in 2.3, it outlines an alternative proposal: the connection between time and informativeness

is an artefact of the aims and interests of scientists working on specific research programs.

This alternative proposal can be viewed as a perspectival reading of Callender’s argument, but

where the perspectivalism applies specifically to the connection between time and informativeness

rather than the asymmetry between time and space itself. This reading is, however, more

problematic for the generality of Callender’s metaphysical thesis than that suggested by Baron

and Evans, because the perspectives to which his claim is reduced form a subset of the regimes

used in scientific practice rather than the epistemic perspective of human beings in general.

2.1 Time as the Great Informer

Callender identifies features of time as it appears in physical theories, which distinguish it from

space. He attempts to weave these together into a general metaphysical thesis by connecting to

a Lewisian ‘Best Systems Account’ (henceforth, the BSA) of physical modality.3 His strategy

is to use the principles of the BSA to provide criteria for identifying a representative set of

physical laws, whose mathematical form he analyses in order to give a general message about

spatio-temporal structure. His conclusion is that ‘time is the great informer’ – time is the set

of directions on a four-dimensional manifold of events in which laws give the most information.

3See Lewis 1983 for details of this account. See also Massimi 2018a, Cohen and Callender 2009, Maudlin 2007,
Loewer 1996, and Belot 2011 (to name but a few) for discussion.
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He summarises this view with the statement that, ‘time is that direction on the manifold of

events in which we can tell the strongest or most informative stories.’ (Callender 2017, p.142).

So, the most informative directions on the manifold are labelled as ‘time’. We begin with

the notion of informativeness and end up with a set of privileged ‘timelike’ directions. I call

this hypothesis Callender’s Temporal Informativeness Proposal, and refer to it hereafter as TIP .

Callender gives several slight variants of this overall conclusion. In chapter 6 he writes, ‘the

temporal direction is that direction on the manifold of events in which our best theories can

tell the strongest, most informative “stories”. Put another way, time is that direction in which

our theories can obtain as much determinism as possible.’ (Callender 2017, p.120) A slightly

more precise formulation is given in chapter 7: ‘A temporal direction at a point p on 〈Md, g〉

is that direction (n,−n), where (n,−n) is an unordered pair of nowhere vanishing vectors, in

which our best theory tells the strongest, i.e., most informative, “story”.’ His strategy does not

‘assume that the “timelike” directions of g, if any, are themselves temporal directions. That’s

something we hope emerges from the analysis, not something put in.’ (Ibid, p.142/143).

By way of explanation for his proposed conclusion, Callender states that, ‘strength is linked

to time because it is deeply connected to the other temporal features of our universe. If I am

right, “strength” is the glue that binds together many otherwise detachable features central to

time.’ (Ibid, p.120). This paper does not aim to outright deny that there is any link at all

between strength (informativeness) and time, but instead to propose a different, perspectival,

explanation for it. It does so by acknowledging the lack of generality of the link Callender makes

between strength (informativeness) and time, questioning what it is that unites the examples in

physics where the link obtains and comparing them to examples where this link does not obtain.

Callender’s claim is that his ‘attractive idea about time is more or less implied by a “systems”

approach to laws’. He states also that ‘the difference [between time and space, based on the way

laws inform] ultimately lay in the distribution of physical properties’ (p.156). This part of his

thesis will also be challenged, especially through the analysis of chaotic systems in subsection 3.3.
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The argument for TIP is explicitly based on a Humean view of laws, according to which

‘laws are simply the best summary of the facts’ (ibid, p.140). This is where a commitment to

Humean metaphysics and empiricist epistemology is made. According to Callender (p.140),

‘Humean theories seek to explain the laws given the distribution of actual facts’, the actual

facts being facts which are (at least in principle) empirically accessible.4 In the language of

David Lewis, the laws supervene on the mosaic of particular facts (see Lewis 1983), meaning

that there could not be a change in the laws without there being a corresponding change in

the particular facts they describe (Bennett and McLaughlin 2005). There are formally different

ways to describe the same mosaic of facts, but these descriptions will not differ in content. The

BSA provides a way of distinguishing between these formally different descriptions, elevating to

the status of law parts of those descriptions, taking the form of deductive systems, which satisfy

some set of ‘theoretical virtues’, in particular simplicity and strength.5 Callender invites us to

‘consider various deductive systems, each of which only makes true claims about what exists’

(p.140). We then employ the theoretical virtues of strength and simplicity, emphasising strength

in particular, to identify the systems and associated laws which give the best description of

the world. ‘The motivation for the [BSA] theory is’, according to (Callender 2017 p.140),

‘the idea that physical laws seek to describe accurately as much of the world as possible in

a compact way.’6 TIP comes out of an analysis of laws which, Callender claims, achieve this goal.

We need not concern ourselves very much with the notion of simplicity. Callender briefly

discusses the simplifying role that time plays in physical laws, but asserts that ‘There is nothing

special about time here. [...] Space, for instance, is also the great simplifier.’ For this reason,

we must focus also on the virtue of strength, thought of as informativeness. ‘In balancing

simplicity and strength, a best system will [...] contain a way to generate some pieces of the

domain of events given other pieces. In other words, it will favour algorithms, and short ones at

4Taking the distribution of empirical facts as given follows from the commitment to empiricism, central to
Humean theories in general.

5Theoretical virtues may also include uniformity, elegance, generality and perhaps more, but we follow Cal-
lender in focusing only on simplicity and strength.

6Seeking to describe the world is another expression of the empiricist commitments of Humean theories, if ‘the
world’ is taken to refer to that which is observable, measurable or otherwise empirically accessible. If ‘the world’
consisted of more than this it would be difficult to understand laws as being descriptive, because we would have
no way of comparing descriptions with what they describe.

6



that. The more of what happens that is generated by small input the better.’ (Callender 2017,

p.141; my emphasis). The claim is that a privileged time parameter is what gives physical laws

their informative strength.

There are two versions of this argument given, an ‘informal’ one in chapter 7 and a ‘formal’

one in chapter 8. It is indicated that these two versions of the argument are supposed to work

together, that the latter version is intended to flesh out the former, adding credibility to it

with the investigation into formal characteristics of equations used in physics. This version of

his argument in chapter 8 proceeds by identifying a broad set of physical laws, generalised by

their mathematical form, which provide algorithms that are informative in this sense. These

laws take the form of partial differential equations (PDEs) which support well posed Cauchy

problems. He investigates the mathematical form of these PDEs, and it is in this mathematical

form that we find a privileged set of ‘informative’ directions that are defined as ‘timelike’: these

equations use antecedent data to provide maximal information in timelike directions.

PDEs which support Cauchy problems do provide concise algorithms and are particularly

informative over their domains of applicability. Section 4 explores Callender’s justification for

singling out these laws as being maximally informative, regardless of applicability. As described

in section 3, it is their geometric structure, specifically, they are hyperbolic, that makes the

distinction between timelike and spacelike directions. Hyperbolic PDEs, when defined on

some manifold, divide the tangent space of each point of that manifold into three regions by

a pair of intersecting cone-shaped surfaces, in a manner analogous to the light-cone structure

of special relativity and locally of general relativity. Restricting to well-posed problems means

that antecedent data can only be defined on surfaces corresponding to spacelike regions, and

the PDEs evolve this in directions that correspond to the timelike. Therefore, the physical laws

selected using the BSA criteria distinguish time from space, where the timelike and not the

spacelike directions are informative.

Callender suggests two alternative ways to read his proposal: one ‘conservative’ and one
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‘radical’. So far we have been vague about what exactly the mosaic of facts or manifold of events

or supervenience basis consists of. The two readings of the argument, to some degree, take care

of this issue. According to the more conservative reading, the supervenience basis consists of

events on a Lorentzian manifold endowed with a spacetime metric, which has an asymmetry

between time and space built into its signature. The best systems merely embody the structure

already assumed to be present in the manifold; the distinction between time and space does not

emerge through systematisation, but the connection between time and informativeness does.

According to Callender, however, the ‘radical perspective is the more natural development of

the theory.’ (Callender 2017, p.151). This second reading assumes only ‘the events e on M ’ and

the best systems ‘arrive at the spacetime metric g and laws L together’ (Callender 2017, p.150).

So, Callender’s preferred interpretation of TIP means that, by focusing on informative laws, the

asymmetry between time and space is derived through systematisation, and time is defined as

the set of directions that are maximally informative.

2.2 Temporal Perspectivalism

Samuel Baron and Peter Evans (in Baron and Evans forthcoming) explore some consequences

of adopting the radical reading of TIP , according to which, ‘the metrical difference between

the timelike and spacelike – the centerpiece of all our physical theories – also [in addition to

the link between time and informativeness] depends on the system’ (Callender 2017, p.151,

emphasis in original). What they propose is a thesis they call ‘temporal perspectivalism’,

where the distinction between time and space is only objective ‘so long as this is understood

in a deflationary, epistemic sense.’ (Baron and Evans forthcoming).7 They admit some

invariant structure in the world, existing independently of any perspective, which we then

divide into timelike and spacelike directions ‘based on our idiosyncratic epistemic constraints

and limitations concerning that structure’ (Baron and Evans forthcoming, p.18), so temporal

directions are picked out both by the notion of informativeness and the epistemic perspectives

of agents, and are not part of the invariant structure. To be clear, they do not refute TIP :

7Their view is inspired by, and analogous to, the ‘causal perspectivalism’ of Huw Price and Jenann Ismael (see
Price and Corry 2007 and Ismael 2016). This should not be confused with ‘perspectival realism’ (see Massimi
2016, Giere 2010 and Teller 2011, for example).
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they do not contest that the directions of maximal informativeness in our laws pick out time.

Instead, the resulting asymmetry between time and space is considered to be a mere artefact

of our human perspective, and this view is a consequence of accepting the radical version of TIP .8

To flesh this out, as a thought experiment, they consider the possibility of Martian scientists

who do not share our epistemic situation within the invariant structure of the world.9 Imagine

that these Martians are ‘smeared out’ across what we call the temporal dimension and two of

our spatial dimensions, and they seek laws that inform along their forth dimension (which would

be spatial, for us). They would identify their own natural kinds, as we do, according to the

kinds of empirical data available to them, and ‘one could imagine complete incomensurability

between the two ways of carving up the world’ (Baron and Evans forthcoming). Hypothetically,

they might design the same PDEs as us, based on the same concerns about informativeness,

but would disagree about which directions on the manifold should be regarded as timelike. The

point of temporal perspectivalism is that this would be a ‘no-fault’ disagreement: there is no

fact of the matter about who would be correct. Even if communication with these Martians

were possible, there would be no clear method for deciding which description to prioritise, and

no reason to privilege one over the other in a perspective-independent way. We would have our

‘time’ as the directions in which our laws are maximally informative; they would have theirs.

The ‘mere possibility’ of such Martian scientists, according to Baron and Evans, ‘suggests

that the distinction [between time and space] is pragmatic in origin.’10 (Baron and Evans

forthcoming, p.16).

Their reasons for adopting this odd-sounding view come from taking the radical reading

of Callender’s arguments at face value. If time is defined as the direction in which well posed

Cauchy problems are maximally informative, then we are at liberty to hypothesise agents for

8This consequence may be unpalatable to some readers, providing further motivation for looking for ways to
reject TIP .

9To be clear, this Martian thought experiment is Callender’s, but is described very clearly in Baron and Evans
forthcoming and used there to elucidate their position.

10Note that pragmatic concerns can come from two sources: our epistemic situation, which is the focus of
Baron and Evans, and particular aims and interests, which will be our focus later on. Of course these two sources
are related.
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whom this direction turns out to be different from our own. After all, scientific laws are designed

very much with our epistemic vantage point in mind – their very purpose is to give information

about what we do not have direct empirical access to. For us, this is what we call the temporal

future. For the Martians, this might be what we call East or West perhaps. Looking more

closely at this thought experiment reveals that it is the orientation of the distinction between

time and space that is discussed, not the existence of a distinction in the first place. ‘Time’ and

‘space’ are still distinguished for the Martians, only their ‘time’ is different to ours. We are not

invited to imagine the laws that scientists from Venus might come up with if, for example, they

had epistemic access to all four dimensions of the manifold. In this case, there would likely be

‘no-fault’ disagreements with us earthlings about whether there needs to be a privileged time

dimension at all, if our concerns lie solely with informativeness. So for Baron and Evans it is

taken to follow from Callender’s arguments that there are privileged time-directions, but there

may be disagreements between agents with differing perspectives about which directions these

are. A similar thought experiment, combined with Callender’s arguments, could lead to the

very definition of time being a matter of perspective.

In what sense are the hypothetical Martian scientists possible? Clearly, their possibility

cannot be a symptom of our physical laws because this would induce a circularity in the

reasoning. Without an answer to this question, it is difficult to understand how we could

motivate anything other than agnosticism about the objectivity of the directions we regard

as temporal. Ours might be the only possible epistemic situation for cognitive agents – who

knows? It is also difficult to see how any single scientific fact could avoid falling prey to this

sort of perspectival reading, since science is necessarily built up from our epistemic perspective

and makes use of empirical data we have access to. To avoid these difficulties, we shall explore

the extent to which Callender’s arguments induce a different sort of perspectival reading.

Might there be alternative human perspectives which would disagree about which directions are

temporal? If we define time as the direction in which laws are maximally informative, as has

been suggested by both Callender and Baron and Evans, this indeed turns out to be the case.

This is the case, so long as we do not restrict attention to well posed Cauchy problems. The
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disagreements between these different human perspectives would be based on their pragmatic

concerns relating to the kinds of projects they engage in, since not all scientists specialise in

dynamics. This points to an absurdity in defining time in this way; at best, informativeness

can be an ingredient in a pluralistic definition of time.

2.3 Temporal Aims

We need not consider imaginary alien scientists who disagree about which directions are

temporal in order to give a perspectival reading of Callender’s thesis. Instead, we shall think

about real human scientists whose laws inform in directions which are not regarded as temporal,

and others who struggle to generate any accurate information in directions which are uniformly

regarded as time by those scientists. TIP is reduced to a particular subset of human interests

and pragmatic concerns. Unlike with the thought experiments of Baron and Evans, everyone

agrees about which directions to regard as temporal. The ‘no-fault’ disagreements are about

which directions are maximally informative, because this depends on what we wish to be

informed about. The connection between time and informativeness is thus more strongly

perspectival, because it is as much about the interests and aims of particular groups of scientists

as the epistemic situation of humans, and so we replace TIP with TAP : Temporal Aims

Proposal.11

There are several ingredients of Callender’s argument that can be used to undercut TIP ,

one of which leads towards TAP . Our focus will be on the commitment to empiricism which,

if we recall, is a fundamental ingredient of Humean theories, and Callender’s proposal purports

to be both Humean and empiricist. This commitment sits uncomfortably with Callender’s

method of conducting an analysis of the purely formal characteristics of laws as a way of

generating metaphysical claims. If we perform a similar analysis whilst holding on to some

basic empiricist principles, we arrive at the conclusion that time is not ‘the direction on the

11My analysis of TIP means that it can be thought of as a perspectival truth in Michaela Massimi’s sense (see
Massimi 2018b), because its truth is dependent on a particular set of scientific perspectives (where alternatives
are available) as opposed to being dependent on the epistemic situation of an entire species.
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manifold in which we can tell our strongest or most informative stories’ (Callender 2017, p.142;

my emphasis), but is instead the direction in which we would most like to be able to tell our

best stories.12 The applicability of the laws to observable, measurable or otherwise empirically

accessible physical contexts is all-important here. My view is compatible with that of Baron

and Evans but, unlike theirs, does not rely on adopting the so-called ‘radical’ reading of

Callender’s proposal; it follows from the ‘conservative’ reading too. For this reason, it is neither

the distinction between time and space in general, nor the particular set of directions that are

defined to be timelike, that are relativised to human perspectives. Instead it is only the specific

connection between time and informativeness, and this is relativised to some human perspectives.

My main objection is almost pre-empted by Callender himself. ‘Confining attention to the

marks of strength but not to strength itself would be a mistake’, he warns us. He then goes on

to make this very mistake, and the rest of his argument follows from it. His analysis focuses on

too narrow a set of laws (identified by the marks of strength they exhibit) to draw a general

conclusion about the role of time. He goes on: ‘The degree to which a theory is informative is

determined by how much of the world it manages to imply, not (in the general theory, at least)

by formal characteristics.’ (Callender 2017, p.143; my emphasis). Attributing epistemic priority

to the world over formal characteristics of theories is part of the commitment to empiricism,

which is central to the BSA and to Humean metaphysics in general.13 Callender’s subsequent

analysis of Cauchy problems is in terms of their formal characteristics, therefore only managing

to achieve an assessment of their hypothetical informativeness. Their actual informativeness is

contingent on these formal characteristics being a good representation of the world. What we

shall see is that there are many empirically accessible physical phenomena to which Cauchy

problems simply do not apply. Perhaps more worryingly, the directions that are uniformly

labelled as time are especially uninformative for many of these phenomena. Section 3 presents

two examples to illustrate these points.

12The point here is to emphasise not only our pragmatic concerns that stem from our particular epistemic
situation, but also those which are about particular interests.

13See for instance Lewis 1999, Gupta 2006, Cottingham 1988, Quine 1951, Carnap 1991 and Feyerabend 1965
for discussion of these issues.
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Ongoing research in the area of dynamical systems theory presented in section 3.3 is focused

on developing techniques to try to make better predictions about the temporal future, but

often these techniques are complex – thus requiring some relaxation of the other ‘horn’ of the

BSA, namely simplicity. Nonetheless, one of the central aims of science is to make informative

predictions over directions that we have independent (pre-theoretic) reasons to regard as

temporal. The connection between time and informative strength in physical laws is thus more

plausibly thought of as being entirely pragmatic and not metaphysical, reducible to the aims

and interests of scientists rather than to the way the world is.

3 Physical Laws

This section sets out the technical material that is relevant to the arguments presented. In

order to fully appreciate the central claims of this paper, it is necessary to engage with some

mathematical details. Only those equations which contribute towards understanding the

philosophical arguments are presented, and their relevance is explained. Section 3.1 describes

the structure of PDEs which support well posed Cauchy problems, required to understand the

details of Callender’s proposal and the ‘perspectival’ interpretation of Baron and Evans. The

mathematical details of two counterexamples to TIP , which instead motivate TAP , are given

in sections 3.2 and 3.3. The first of these is a problem for both readings of TIP , while the

second is problematic only for the radical interpretation.
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3.1 Time and Informative Strength

Cauchy problems are a kind of boundary value problem (BVP) which can be set for second order

linear PDEs in m independent variables.14 In its most general form:

φ(u, xi, pi, ri, sik) = 0, (1)

for i = 1, ...,m; k = 1, ...,m for i 6= k. The solution of the equation, u, is our unknown function

of the m independent variables, xi. The xis represent physical quantities, and the solution u

describes a function relating these to one another. φ is some arbitrary function of the variables in

parenthesis, where pi = ∂u
∂xi

, ri = ∂2u
∂xi2

and sik = ∂2u
∂xi∂xk

. The PDE is solved subject to antecedent

conditions:

AC1: u(x1, ..., xm−1, 0) = u0(x1, ..., xm−1),

AC2:
∂u
∂xm

(x1, ..., xm−1, 0) = u1(x1, ..., xm−1).

Antecedent data of this form is called Cauchy data, defining the problem as a Cauchy problem.

Notice that both conditions AC1 and AC2 are known functions of m− 1 of the m independent

variables, and so must be given on a hypersurface of dimension one less than the full solution

space.

In order to be ‘well posed’, a Cauchy problem must satisfy the following three criteria:

WP1: A solution must exist.

WP2: The solution must be unique.

WP3: Solutions must vary continuously with antecedent data.

The first two of these criteria are jointly sufficient to define the equation as deterministic.15

They ensure that one and only one solution corresponds to each set of antecedent conditions.

14My presentation of Cauchy problems and of PDEs is taken primarily from Hadamard 2003, Garabedian 1964,
Klainerman 2010, I. Rubinstein and L. Rubinstein 1998, and Robinson 1998. The simplest Cauchy problem is
set for a first order ordinary differential equation, and the definition of a Cauchy problem generalises to PDEs
of order n. For ease of exposition, our discussion focuses only on the case of second order PDEs, since these are
the most prevalent in physical problems.

15Note that this is a mathematical definition of a deterministic equation, and should not be confused with
philosophical issues about deterministic theories or worlds.
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The third criterion is stronger, requiring that variations of the antecedent data map to

corresponding variations of the solution by a continuous function. In practical applications this

means that errors made in the computation of either AC1 or AC2 are not amplified, or at least

that the amplification of errors can be controlled.

In order to establish conditions under which equation (1), together with antecedent conditions

AC1 and AC2, meets the three criteria to be well posed, leading to the discussion of space and

time, we express (1) in linear form:

∑
i,k

Aik
∂2u

∂xi∂xk
+
∑
i

Bi
∂u

∂xi
+ Cu = f, (2)

where Aik is a matrix, Bi is a vector and C is a scalar, all of which we assume to be constant,

and f is some linear function of the independent quantities xi.
16 Equation (2) may be classified

according to the eigenvalues of Aik as follows:

• Elliptic iff all eigenvalues of Aik are non-zero and have the same sign;

• Hyperbolic iff all eigenvalues of Aik are non-zero, and all but one have the same sign;

• Parabolic iff any eigenvalues of Aik vanish.

Cauchy conditions AC1 and AC2 yield unique solutions only for hyperbolic PDEs. Other kinds

of boundary condition (for example Dirichlet or Neumann boundary conditions, which will be

defined in section 3.2) are either too restrictive for a solution to exist, or are not sufficient to

give a unique solution. Conversely, Cauchy data is either too restrictive or insufficient to yield

unique solutions for elliptic and parabolic equations. These require either Dirichlet or Neumann

boundary conditions. Therefore, a well posed Cauchy problem consists of a hyperbolic PDE

subject to conditions AC1 and AC2.

16We assume that equation (2) has constant coefficients in the interest of simplicity of presentation. In full
generality, the coefficients of a second order linear PDE may be known functions of the xis, but classification of
PDEs with variable coefficients is much more difficult, though not impossible. For the sake of argument, we may
assume that the results suitably generalise.
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The characteristics of a PDE place restrictions on where antecedent data can be defined in

order to ensure the existence of a unique solution.17 Characteristics of equation (2) are defined

to be surfaces or hypersurfaces ξ(x1, ..., xm) = c, for constant c, where ξ is a solution of

∑
i,k

Aik
∂ξ

∂xi

∂ξ

∂xk
= 0. (3)

Figure 1: Conoid character-
istic surfaces in R3. The
width of the cones is set
by the value of the constant
c. For a continuous problem
there are infinitely many of
these surfaces, with a vertex
at each point of the manifold.

Solving equation (3) for our different classes of PDE shows that elliptic PDEs have no real

characteristics, and parabolic PDEs have one family of plane characteristics for each constant

xm. Hyperbolic PDEs, where Cauchy problems are well defined, have two families of conoid

characteristics. In R3 these are pairs of two-dimensional cone-shaped surfaces sharing a vertex

at each point of the domain. In higher dimensional spaces, conoid characteristics are higher

dimensional generalisations of this basic structure. Figure 1 shows a geometric representation

of the characteristics of a hyperbolic PDE in R3.

The Cauchy-Kowalewski theorem states that, to ensure the existence of a unique solution,

antecedent data for a PDE must not intersect or be tangent anywhere to a characteristic.18

Recall that antecedent conditions AC1 and AC2 must be defined on a (hyper)surface of

dimension one less than the full solution space, and consider where such a surface may be

placed so as to avoid the characteristics of a hyperbolic PDE. As shown in figure 2, in R3 this

17Characteristics are important for several other reasons too, for example in many cases solving the ‘character-
istic equation’ associated with a PDE is a crucial step in solving the PDE itself. For the purposes of this paper,
however, we only need to be aware of the relationship between characteristics and antecedent conditions.

18This was first proved for a special case by Augustin Cauchy in 1842 and in full generality by Sophie Kowalewski
in 1875. The proof requires also that equation (2) be analytic and regular, though these further restrictions are
not important for our discussion here.
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can be any two-dimensional open surface which passes through the vertices of the cones, whose

curvature is such that it never touches the cones. A (hyper)surface on which Cauchy data is

defined is known as a Cauchy surface.19

Figure 2: Conoid character-
istic surfaces in R3, with a
Cauchy surface. The Cauchy
surface extends infinitely in
all directions, and the char-
acteristics are defined at ev-
ery point on the Cauchy
surface.

A linear hyperbolic PDE that satisfies criteria WP1 and WP2, in regions of its domain where

solutions are defined for correctly formulated Cauchy data, will also satisfy WP3.
20 This is the

case, provided that solutions do not intersect and are not tangent anywhere to a characteristic,

and that they do not intersect one another.21 This means that the solution function to a

hyperbolic PDE describes a set of trajectories, each of which passes through a point on the

Cauchy surface and propagates inside but not outside the characteristic cone defined at that

point.

A canonical example of a hyperbolic equation, which has all of the geometric properties

described above, is the wave equation:

m−1∑
i

∂2u

∂xi2
− 1

c2
∂2u

∂xm2
= f(x1, ..., xm), (4)

for constant c.22 This equation informs about propagation of electromagnetic or sound waves

19For the sake of simplicity, this paper ignores many of the issues surrounding the lack of generality of the
result of the Cauchy-Kowalewski theorem about the relationship between characteristics and antecedent data.
Most significantly, there well-known approaches to general relativity that involve null (characteristic) antecedent
data.

20Cauchy problems which satisfy WP1 and WP2 but violate WP3 are called ill-posed, and are invariably not
of the hyperbolic form. They are relatively rare in physical contexts. An example is the inverse gravimetric
problem. See for instance I. Rubinstein and L. Rubinstein 1998.

21There are less clear results for parabolic PDEs, but these are not the focus of the present work.
22Regarding the status of the wave equation (and other PDEs) as laws: the wave equation is derived from

Hooke’s law, to use conventional terminology. However, what counts as a law and what doesn’t is not our concern
here.
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in directions which we have independent reasons to regard as temporal. We can see that the

second derivative of one of the independent variables, xm, is distinguished by its negative

sign. In applications, xm is chosen to represent time, because this equation is used to describe

dynamics, i.e. time-evolution.

To summarise the results of this section, we require a clear asymmetry between the hyper-

surface on which antecedent data is defined and the directions in which solutions propagate, in

order to define a well posed Cauchy problem. In physical applications, this means that Cauchy

problems provide the most natural means for modelling time evolution, provided the dynamics of

the target system are relatively simple and ‘well behaved’. For this reason, the Cauchy problem

has become known as the Initial Value Problem (IVP). So, Cauchy problems are informative in

directions that are naturally interpreted as timelike. This fact underwrites Callender’s formal

argument for his TIP . However, the Cauchy problem is not the only type of problem of physical

relevance. This will be emphasised by the examples given in the following two subsections. Their

abilities to inform about the manifold of empirical events, considered neutrally, will be compared

in section 4.

3.2 Informative, Non-temporal Directions

This subsection presents a case where laws inform in non-temporal directions. Dirichlet and

Neumann problems are two different sorts of BVP that can be set for second order linear PDEs

of the form (1) or its linearized form (2). Dirichlet and Neumann boundary conditions are not

of the correct form to ensure the existence of unique solutions for hyperbolic equations, but they

are for parabolic and elliptic equations. PDEs of the parabolic type, like hyperbolic equations,

inform in timelike directions, so we do not discuss them here. Elliptic PDEs, on the other hand,

do not single out a privileged set of directions, despite providing powerful algorithms which are

informative in many areas of physics. For correctly formed antecedent data, they satisfy criteria

WP1-WP3 (despite these being originally explicated in the context of Cauchy problems), thus

meeting Callender’s standard of informativeness.

18



A canonical example of an elliptic equation is the Poisson equation:

∑
i

∂2u

∂xi2
= f(x1, ..., xm). (5)

This equation has many physical applications, for example for finding the electric potential

for a given charge distribution.23 The form of this equation makes no distinction between

spatial and temporal variables. Recall from the previous subsection that elliptic equations have

no real characteristics, so, as long as we are working in real space, the Cauchy-Kowalewski

theorem imposes no restrictions on where to define the antecedent data to ensure the existence

of a unique solution. The form of the antecedent data, however, is important. As mentioned,

Cauchy data is either overly restrictive or leads to instabilities for elliptic PDEs. Instead,

we require either Dirichlet or Neumann boundary conditions defined on a closed boundary

surrounding the region of interest.

A Dirichlet boundary condition takes the following form:

BCD: u(x1, ..., xm) = u0(x1, ..., xm),

for xi ∈ δΩ, where δΩ is a closed surface or hyper-surface. In other words, a Dirichlet boundary

condition gives the value of the solution on a closed boundary.

A Neumann boundary condition takes the following form:

BCN : v(x1, ..., xm) ∂u
∂xi

(x1, ..., xm) = u0(x1, ..., xm),

again for xi ∈ δΩ, where δΩ is a closed (hyper-)surface. The function v defines a tangent vector

at each point on the boundary. So, a Neumann condition gives the directional derivative of

the solution on a closed boundary. Usually, only one of these types of boundary condition is

required to solve an elliptic PDE such as the Poisson equation. What elliptic equations do is

take information (either the solution or its directional derivative) on a closed boundary and

23There are many well-known physical applications for other elliptic PDEs, for example relating to energy
functionals of fields defined over space and time, but the simple example of the Poisson equation is given simply
to illustrate the geometric properties of this sort of PDE.
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‘evolve’ it inwards or outwards from that boundary. An illustration of the two-dimensional case

is shown in figure 3. For the three-dimensional case, imagine information on the surface of a

soap bubble propagating either outwards or inwards.

Elliptic equations can generate information in multiple directions simultaneously, and there

is no special in-built asymmetry between these directions and the boundary on which the

antecedent data is defined. Recall that elliptic PDEs have no real characteristics and thus no

restrictions on where in the domain this boundary can be, so no particular set of directions is

privileged by elliptic PDEs. We therefore have no reason to regard the informative directions

of an elliptic PDE as temporal. In general these will not correspond to ‘time’ directions as

measured by clocks.

Figure 3: A closed boundary in R2

where Dirichlet or Neumann boundary
conditions may be defined. The ellip-
tic PDE then evolves this information
either outwards to fill the manifold ex-
terior to this region, or inwards to fill
the interior of the boundary.

Defining time as the set of directions in which laws generate the most information leads

to incompatibilities between the various ‘times’ emerging from different applications of elliptic

PDEs, and between the ‘times’ arising from analyses of hyperbolic and elliptic PDEs.24 Callen-

der’s reasons for restricting attention to hyperbolic PDEs, rather than giving up on TIP , are

discussed in section 4. Next, we come to our second set of counter-examples to TIP , which are

not acknowledged by Callender.

3.3 Uninformative, Temporal Directions

This subsection details a different sort of counterexample to TIP , namely chaotic dynamical

systems, in which the directions that are ordinarily defined to be time are particularly

24Here, ‘times’ refers to the set of directions that are maximally informative in each case, the point being that,
for elliptic equations, there is an absurdity in defining time in this way, since it does not correlate with any other
more familiar definitions of time.
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uninformative. This type of example provides motivation for TAP , for the empiricist, because

scientists and mathematicians working on the subject of chaos are trying to develop methods

for generating information in timelike directions, despite the observed behaviour of the physical

world making it especially difficult to do so.

Many physical systems are said to be unstable under perturbations of initial conditions,

or chaotic, where initial conditions are now understood to be measured values of our m − 1

independent variables, where xm = 0. This is as opposed to any of the antecedent functions u0

and u1 described in subsection 3.1 (AC1 and AC2), or either of the u0s of subsection 3.2 (BCD or

BCN).25 The models now under consideration are more directly related to empirical phenomena

than the functional equations previously discussed, because they operate at a lower level of

abstraction. What is meant by instability here has to do with the way the variables x1, ..., xm

are related according to some function u, which may be (but is not necessarily) the solution to a

Cauchy problem. If the measured values of x1, ..., xm−1 at xm = 0 are perturbed slightly, giving

say x̃1, ..., x̃m−1, then the values of these variables at xm 6= 0 will also differ from one another,

giving rise to two different functions u = u(x1, ..., xm−1, xm) and ũ = u(x̃1, ..., x̃m−1, xm). For a

dynamical system, these functions will map onto two trajectories in an m−1-dimensional phase

space, where each point on a trajectory represents the full state of the system at some value of xm.

A dynamical system is chaotic if it is both deterministic, in the sense defined in subsection

3.1, and exhibits sensitive dependence on initial conditions (SDIC). To exhibit SDIC is to be

unstable, in the sense that functions u and ũ will separate at an exponential rate as xm varies

uniformly. For this definition to make sense, we let xm be identical in both functions, allowing

it to naturally represent a time parameter. This means that the distance between phase

space trajectories arising from a function, u, will grow exponentially with time. In practical

applications, this leads to extreme inaccuracies in predictions of measurement outcomes, since

the dynamical equation amplifies errors in the initially measured data. The function, u,

25Technically speaking, Cauchy, Dirichlet or Neumann problems whose solutions depend sensitively on the
antecedent conditions defined in the previous two subsections would also count as chaotic, but this paper aims
to focus on the more empirically salient cases concerned with physical measurement.
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therefore does not provide an empirically adequate description of the physical world outside of

a very restricted range of values of xm close to xm = 0. That is, predictions about the future

and retrodictions about the past based on these models are practically impossible. In these

cases, the asymmetry between the variables x1, ..., xm−1 and xm, corresponding to space and

time variables respectively, arises from an asymmetry between what we have empirical access

to and what we do not. It is not the case that the direction of increasing xm is informative; in

fact, quite the opposite is the case.

There are many examples of chaotic system to choose from to illustrate this point. Unlike

the linear PDEs we have been analysing so far, which can be grouped into classes which share

quantitative features, models of chaotic systems are rather heterogeneous in their mathematical

form. What they share is the qualitative feature of a combination of determinism and

SDIC.26 The model presented here is one among many, chosen for its simplicity and physical

applicability. Its qualitative features, shared by other chaotic models/systems, mean that the

temporal dimension is particularly uninformative.27

The Lorenz model is a simplification of a model of convection in fluids.28 More specific details

of this model than what is presented below are largely irrelevant; it must be acknowledged

only that the model (and others exhibiting SDIC) were empirically motivated, and solutions

can be reproduced experimentally. Other physical systems whose dynamics exhibit SDIC (but

which are not modelled by the Lorenz equations) include many problems in celestial mechanics,

acoustics, hydrodynamics, some quantum scenarios and even quantum gravity (see for example

Diacu and Holmes 1996, Ott 1993, Palis 1993 and authors 1987 for classical cases, and Dittrich

et al. 2017 for the case of quantum gravity).

26For a comprehensive analysis of the various types of model which get called ‘chaotic’, see Zuchowski 2017.
Her work includes discussion of problems with defining chaos, and with trying to ascertain whether SDIC is a
feature of the model or the system. These more involved issues are not our concern here – we assume that SDIC
can arise in deterministic models (which are deterministic in the sense defined in section 3.1), and that it is a
feature of the target system as well as the model because it has empirical consequences.

27The philosophical literature on chaos for the most part focuses on modelling problems, especially in ‘special
sciences’, which are tangential to the concerns of the present work. See for instance Frigg et al. 2014, Zuchowski
2017 and Werndl 2009.

28For discussion of the physical applicability of the model, see Lücke 1976 for example.
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This model is a well-known example of a simple chaotic model. It is a system of ordinary

differential equations as follows:29

dx

dτ
= −σx+ σy, (6)

dy

dτ
= −xz + rx− y, (7)

dz

dτ
= xy − bz, (8)

where x is proportional to the intensity of convective motion, y is proportional to the tem-

perature difference between ascending and descending currents, and z is proportional to the

deviation of vertical temperature from linearity; σ, r and b are constants; and τ is a time

parameter. To connect to our earlier notation, let x1 = x, x2 = y, x3 = z and x4 = τ . We

are now playing a different game to Callender. Rather than identifying the most informative

directions and calling them ‘time’, we are looking at physical equations with a time parameter

already defined in order to investigate its properties. Equations (6) to (8) each depend on

instantaneous values of x, y and z, and solutions give trajectories describing how these variables

change over time. Initial conditions for this system are just values of the three variables at τ = 0.

Depending on the values of the constants σ, r and b, and depending on the initial values

of x, y and z, solutions of this system can vary dramatically as a result of slight perturbations

of initial data. This phenomenon can be quantified by calculating Lyapunov exponents, which

measure the rate of divergence between neighbouring trajectories. To spell this out, the

solutions u(x, y, z, τ) and u(x̃, ỹ, z̃, τ) will diverge at a rate of eλτ , where λ > 0 is known as the

Lyuponov exponent.30 An illustration of this phenomenon is shown in figure 4.

Mathematically, this is a consequence of the nonlinear terms in equations (7) and (8).31 For

29An ordinary differential equation can be thought of as a special case of a partial differential equation, to
connect this to our earlier discussion of PDEs. Many chaotic models do consist of systems of PDEs but these
tend to be much more complicated; to present such an example here would distract from our main discussion.

30Calculating Lyuponov exponents is just one widely used method for quantifying SDIC which is appropriate
in many contexts of physical interest, though not all.

31More generally, chaos can arise in deterministic systems either as the result of non-linearity, or of discontinuity
in the sense of violations of the condition WP3 defined in subsection 3.1. This second variety of chaos is much
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Figure 4: A pair of chaotic
trajectories in three-
dimensional phase space.
u(x, y, z, 0) is depicted in
red and u(x̃, ỹ, z̃, 0) in blue.
In practice, the two sets of
initial values, (x1, y1, z1) and
(x̃1, ỹ1, z̃1) may be arbitrarily
close to one another.

this reason, despite the equations having been designed to inform in timelike directions, the

information generated can be highly unstable. It may therefore be completely inaccurate with

respect to the empirical world because we never have access to arbitrarily precise data through

measurement. Approximate predictions about empirical phenomena are generated through

statistical analysis of many solutions. This kind of analysis often involves identifying which

sets of initial data lead to stable solutions and which do not, rather than simply providing

information about what will be measured given one particular set of initial conditions. The

empirically adequate information that one can glean from a model of a chaotic system therefore

does not correspond to any direction or set of directions on the manifold.

The next section explains in more detail why the above cases are counterexamples to TIP ,

and why they suggest an alternative proposal, TAP .

4 Comparison

This section compares the informativeness (in Callender’s sense) of the models described:

hyperbolic PDEs are compared with elliptic PDEs in subsection 4.1, and with chaotic systems

in 4.2. In subsection 4.3, the positive proposal of this paper, TAP , is reiterated and compared

with the reading of Callender’s argument put forward in Baron and Evans forthcoming. Both

are forms of perspectivalism, and can be made compatible with one another in the present case.

less studied than the non-linear cases, and has been shown only to arise in systems with infinite-dimensional
state space. See Kalmar-Nagy and Kiss 2017 for an example.
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Callender’s argument for TIP relies on his focus on hyperbolic PDEs which support well

posed Cauchy problems. Once we restrict attention to PDEs of this form, as shown in section

3.1, the set of directions that they inform over do indeed correspond to timelike directions in

physical applications. It is interesting to observe how their geometric structure enables them

to effectively inform over timelike directions, in their domains of applicability. Does this give

us any reason to posit a general connection between time and informative strength in physical

laws? To answer positively to this question, as Callender does, requires some justification for

restricting attention to hyperbolic PDEs, and for taking them to be representative of physical

laws in general. Callender justifies this move by appealing to the theoretical virtue of strength

as informativeness, inspired by the BSA.

Recall that Callender stipulates that the ‘degree to which a theory is informative is deter-

mined by how much of the world it manages to imply’ (Callender 2017, p.143). His claim is

then that hyperbolic PDEs with Cauchy data provide laws that are maximally informative in

this sense. Is this claim correct? The answer to this question depends on what we consider

‘the world’ to refer to. Taking our empiricist principles seriously, even in a minimal sense, re-

quires that what we mean by ‘the world’ should make some contact with empirically accessed

or accessible phenomena.

4.1 Hyperbolic vs Elliptic PDEs

Callender uses the three criteria (labelled WP1, WP2 and WP3 in section 3.1) as a way of

making his notion of informativeness precise. Although Jacques Hadamard first outlined these

conditions in his work on the Cauchy problem (see Hadamard 2003, p.40; originally published

in 1923), it is not the case that only well posed Cauchy problems meet them. They are sufficient

conditions for a Cauchy problem to be ‘well posed’, but it is not the case that any problem

which meets them is a well posed Cauchy problem. A Cauchy problem is defined by the type of

antecedent data prescribed for it, and the three conditions were added in order to distinguish

those Cauchy problems that are ‘well posed’ from those that are not.
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What Callender has overlooked is the fact that elliptic PDEs such as the Poisson equation,

together with the correct sort of antecedent data such as Dirichlet or Neumann boundary

conditions, also meet conditions WP1, WP2 and WP3. That is, if such a problem is correctly

formulated, there exist unique solutions for each set of antecedent data which vary continuously

with that data. What’s more, elliptic PDEs in general require only one boundary condition for

their solution, in contrast to hyperbolic PDEs which require two. Considered in purely formal

terms, then, elliptic PDEs are at least as informative as their hyperbolic cousins. That is, their

ability to inform is at least equivalent, provided we make no assumptions regarding the nature

of the systems we wish to be informed about.

Dirichlet or Neumann boundary value data is as empirically accessible as Cauchy data.32

There is a sense in which all three kinds of data are mathematical idealisations, and none

of them are directly empirically accessible. Imagine for a moment the practical impossibility

of making empirical measurements of some physical quantity on a Cauchy surface. Cauchy

surfaces are spatially unbounded and so to collect a complete set of Cauchy data would require

an infinite number of measurements. Measurement is also itself a physical process, meaning that

data takes time to gather and we do not ever have empirical access to every point on a Cauchy

surface simultaneously. The idea of an ‘initial’ function defined on a Cauchy surface, and the

stark distinction between time and space built into the definition of this sort of problem, is part

of the idealisation. In practice, symmetry principles are used so that the initial function can be

stipulated or found using an elliptic equation, as mentioned in subsection 3.2. It makes little

sense to compare the availability of initial and boundary data, since both involve a high degree

of idealisation as well as empirical measurement. It also makes little sense to compare how

often each kind of problem appears in physical applications.33 Both kinds of problem appear in

physics, both are used, and both bear some relation to describing and predicting patterns in

empirical data.

32I would like to thank an anonymous referee for raising the issue of comparing the empirical accessibility of
the different kinds of data.

33It could be claimed, for example, that hyperbolic PDEs are more ‘typical’ in physical applications. It is
not clear how typicality should be judged in the present case: as typicality of use or of physical processes. In
either case, there is no measure over the space of PDEs in science, and so this sort of claim would require further
evidence if it is to be endorsed. I would like to thank an anonymous referee for raising the issue of typicality.
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This point is not entirely ignored by Callender. Although he does not explicitly compare

their informativeness, he does briefly argue for the fundamentality of hyperbolic systems,

mentioning that ‘Geroch (1996) writes, “elliptic and parabolic systems arise in all cases as

mere approximations of hyperbolic systems”’. He goes on to say that this point is ‘sometimes

demonstrably correct: many equations not of [hyperbolic] form (8.1) can be derived from ones

that are by taking limits or making simplifying assumptions. The elliptic Poisson equation, for

instance, is a truncation of the linear hyperbolic Maxwell equations’ (Callender 2017, p.165;

emphasis added). There arises here the obvious objection that a point which is only sometimes

demonstrably correct cannot be a suitable candidate for motivating a general claim, especially

given that the ‘sometimes’ in fact refers only to scalar theories. Gauge theories, including

general relativity, have constraint equations built in, in the form of elliptic equations, which

must be solved in order to set the Cauchy problem.

The above point also relies on taking fundamentality to mean ‘non-approximate’, when

in fact there is no consensus in the literature about what this term means, even in specific

contexts.34 We are then faced with at least two options for how to read ‘non-approximate’.

Callender’s analysis of the above quotation from Geroch suggests a formal reading, where

approximation is a particular kind of mathematical derivation. This reading is antagonistic

to our empiricist principles, because no mention is made of fit to empirical data. Hyperbolic

systems are not more exact (accurate and/or precise) than elliptic systems in the sense of being

closer approximations to what is measured in the physical world.35 Callender’s reasoning is thus

not sufficient to favour the Maxwell equations over the Poisson equation, or to prefer hyperbolic

over elliptic systems in general. No argument is given for regarding hyperbolic systems as more

informative than elliptic systems. Neither can be considered in isolation as the best guide to

investigating the role played by time in physical laws. They are simply used in different ways,

34It is not the intention here to engage in discussion about what exactly is meant by ‘fundamental’. The
interested reader may refer to, for example, Tahko 2018 and references therein, and especially Crowther 2019 for
the the case of physical theories. The issue is mentioned here only for the sake of completeness, and readers may
have in mind some basic intuitive notions of fundamentality.

35This point also applies to chaotic systems, and will be returned to in subsection 4.2.
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depending on the kind of information sought.

When comparing the informativeness of hyperbolic and elliptic systems, it is important to

be aware of what it is we wish to be informed about. That is, our aims must be acknowledged.

If we wish to be informed about dynamics, an elliptic system will not do. Given that the

study of dynamics just is the study of processes evolving in time, it is to be expected that the

mathematical tools designed for this purpose distinguish timelike directions, as hyperbolic PDEs

do.

4.2 Stable vs Chaotic Dynamical Systems

Chaos is studied as a branch of dynamical systems theory, where the aim is to inform in

temporal directions. Chaotic dynamical systems are characterised by the fact that this

task is made particularly difficult by the behaviour of such systems. The point is not to

dwell on the metaphysics of laws, but simply to apply the principles of the BSA. This

means taking some set of physical phenomena and looking for the best (strongest and simplest)

methods for describing the observed regularities and for making empirically relevant predictions.

As emphasised in section 3.3, the study of chaotic systems has empirical motivations. The

goal is to develop the most effective methods for making empirical predictions in timelike

directions, a procedure which often involves a variety of techniques to mitigate the instability.

In general it is the case with these systems that reasonably accurate predictions can be made

only for short timescales, even when using our best predictive tools. Our best description of

such a system should surely take this into account. So, if we seek the best description of some

physical system exhibiting chaotic behaviour, we see quite the opposite of Callender’s TIP .

That is, the temporal directions about which we wish to be informed are especially uninformative.

The informativeness of hyperbolic PDE systems depends on the behaviour of the target

system – a hyperbolic system does not always faithfully encode the observed dynamics. Tem-

poral directions in well posed Cauchy problems have the potential to be especially informative
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due to the way the problems have been designed. However, they inform only about possible

(non-actual) empirical phenomena unless the dynamics of the target system are ‘well behaved’

in the sense of being non-chaotic. In other cases, alternative methods (usually statistical) are

used to try to make the best possible empirical predictions, but it does not make sense to

speak of ‘the direction(s) of information propagation’ when such methods are employed. The

dynamical equations generate information over time, but this information is wildly inaccurate

when compared to empirical phenomena. The dynamical equations for such systems are also

not at all simple, usually being characterised by non-linearity. Statistical analysis of phase

portraits is more informative in the sense of giving accurate information, but the information

generated is not temporally oriented. The non-temporally-oriented statistical methods also keep

track of the regularities of chaotic systems, but these are generally ‘higher level’ or ‘emergent’

regularities.36 The point is not exactly to decide which formal methods count as laws, either

‘properly speaking’ or according to the BSA, but to understand how we come to be informed

about physical systems and the role time plays.

Callender recognises that ‘there is no guarantee that the best theory will contain algorithms

that permit such a nice time’, but claims that ‘nature must be kind. So far, it has been.’

(Callender 2017, p.145). Chaotic phenomena shows that this claim is false: they are cases where

nature is not ‘kind’, where the best theories consist of amalgamations of statistical methods

which do not contain algorithms permitting a ‘nice time’. Information in temporal directions

is what is sought, but accurate and precise information (in the sense of correctly corresponding

to empirical data) is not what is found. The existence of systems exhibiting such behaviour

in the physical world, and recognition of the great efforts made by mathematical physicists to

generate at least approximate short-term predictions in such cases, together motivate replacing

TIP with TAP .

36This is mentioned in relation to a point raised by an anonymous referee, who questioned whether the formal
methods presented count as laws. Laws, for the Humean, simply keep track of empirical regularities. For the
best systems theorist, they do so in the ‘best’ way. If the ‘best’ way of describing a chaotic system is not strong
or simple enough to satisfy certain best systems theorists, they must admit that there are empirical phenomena
which exhibit some regularity but about which there are no laws.
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Objections to my argument from chaos may again appeal to the supposed fundamentality

of hyperbolic systems, as well as the non-fundamentality of chaotic systems. This objection

would provide an alternative reason for favouring hyperbolic over chaotic systems, despite

their informativeness about the empirical world being incomparable, thus supporting a weaker

version of TIP on the grounds that the informative directions in our most fundamental laws

are timelike. Taking ‘fundamental’ to mean either ‘non-approximate’ or ‘exact’, so long as we

are empiricist and exactness has something to do with fit to empirical data, means that it is

simply not the case that hyperbolic systems are more fundamental than chaotic ones.

If chaos were to arise only in complex systems where approximations to the underlying

dynamics are made, the objection to TAP from fundamentality, where ‘fundamental’ roughly

means ‘exact’ or ‘non-approximate’, might carry some force. However, there is no entailment

in either direction between chaos and complexity, and chaos often arises in systems which are

not complex.37 The approximate statistical methods mentioned in subsection 3.3 are used in

the study of chaotic dynamical systems to deal with the SDIC that is present in the more

precise description. SDIC does not arise as a result of approximation. This refutes the possible

objection to the significance of chaotic systems based on their non-fundamentality, where

‘fundamental’ is taken to mean ‘non-approximate’.

If ‘fundamental’ were instead taken to refer to that which is described by putatively

fundamental theories, such as general relativity, quantum field theory or quantum gravity, the

objection that chaotic dynamics are non-fundamental still does not hold. As maintained in

(Dittrich et al. 2017), ‘ full general relativity is almost certainly chaotic’. The same authors

then go on to make the case that quantum gravity involves chaotic dynamics. Of course these

claims are controversial. The idea that general relativity should involve chaos in the form of

non-linear equations has met with some resistance, perhaps based largely on aesthetic concerns

and stipulations of physical reasonableness. However, as John Wheeler pointed out, ‘it is

no objection to the physical reasonableness of general relativity to find that the equations

37See for instance Ladyman, Lambert, and Wiesner 2013 for discussion of where chaos and complexity come
apart.
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are non-linear. To argue that physics “does not like” non-linear equations is as futile as

standing under the roar of Niagra Falls and trying to reason away the hard reality of non-linear

hydrodynamics.’ (Wheeler 1964). Regarding the quantum case, it is an established fact that

chaotic dynamics occur in quantum systems (see for example Haake 1991 and Stöckmann 2000

for comprehensive treatments of the subject, with reference to experimental results), although

here the situation is not nearly as straightforward as in the classical case described in section 3.3.

The discussion of fundamentality is somewhat tangential to our main discussion. Empiricist

principles commit us to take seriously the available empirical data, and this alone does not

involve prioritising certain sets of data over others. The issue of fundamentality is mentioned

only to alleviate the potential concerns of those empiricists who are also reductionists, who

believe we should not be looking to ‘special sciences’ to address metaphysical issues. Chaos

is not only a ‘special science’ phenomenon, and so should be taken into consideration in a

thorough investigation into the role played by time in physical theories. What this phenomenon

demonstrates is a failure of our ability to predict, despite scientists’ best efforts. This failure is

enforced by the dynamical behaviour of the physical world. It shows that it is neither physics

in general, nor the behaviour of the physical world, that grants time its informative strength in

those special cases where temporal directions in laws successfully inform. Rather, it is the way

in which scientists construct laws, to provide the kind of information that is sought, which is

very often information about unknown, empirically inaccessible temporal directions.

4.3 Two Forms of Perspectivalism

The arguments given in this paper have been in support of the claim, referred to as TAP ,

that the connection Callender makes between time and informative strength in physical laws

holds only relative to a particular set of aims and research interests. This was demonstrated

by the counterexamples presented. TAP can be viewed as a perspectival reading of one of the

central claims of Callender’s proposal, which I have been referring to as TIP . The ‘perspective’

to which it is reduced is understood to mean some collection of research perspectives. It is

suggested that physics which aims to make predictions in directions that are already understood
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to be ‘time’ will have ‘time’ as the informative direction in its laws. When such laws do not

generate accurate and precise information due to the observed behaviour of the systems to

which they are applied, as is the case for chaotic systems, alternative techniques are used to

gain as much information as possible in ‘time’ directions.

The proposal put forward in Baron and Evans forthcoming is a different sort of persepctival

reading, where ‘perspective’ is understood as the epistemic perspectives of some group of

agents, in this case the human species, or ‘creatures like us’. Their ‘temporal perspectivalism’

is explicitly based on the ‘causal perspectivalism’ of Huw Price (Price 2005). To explain what

is meant by a perspectival claim, Price uses the example of foreigners, reminding his readers

that who is regarded as ‘foreign’ depends on perspective. The people who are ‘foreign’ to

Frenchmen are different to those who are ‘foreign’ to Englishmen, but this does not mean that

either party is incorrect about their judgements. The same kind of analogy can be applied

to the ways in which physical laws are used to generate information. There will be ‘no-fault’

disagreements about which directions are informative, depending on what kind of information

is sought. There will also be potential ‘no-fault’ disagreements about which directions are

informative depending on the epistemic perspective, a hypothesis which can be fleshed out

more thoroughly by identifying what it is about a particular epistemic perspective which

makes it suitable for gathering information along a particular set of directions. The former,

interest-relative, perspectivalism is what has been referred to here as TAP . The latter is the

species-relative perspectivalism developed in Baron and Evans forthcoming, is here applied to

‘informative directions’ rather than ‘time directions’ as in the original work. The two forms of

perspectivalism are compatible, when applied to the same claim, since epistemic perspectives

and research perspectives identified by aims and interests are not independent.
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5 Conclusion

Callender’s claim (TIP ) is that our most informative models inform in timelike directions.

This paper has proposed a modification to this claim (TAP ), which says instead that what

is the most informative set of directions in the most informative model depends on what we

wish to be informed about, that is, on our aims. The extent to which models geometrically

distinguish time from space depends on the extent to which we wish to be informed about

processes evolving in time (dynamics), where we have a host of independent reasons to

regard this evolution as happening in time. This point is highlighted by consideration of ellip-

tic systems, where the aim is to find information in spatial directions and not to study dynamics.

The extent to which the ‘time’ directions in a model, designed with the aim of informing

over time, are in fact informative with respect to a physical system of interest depends on the

behaviour of that system. This is demonstrated by the case of chaotic systems, where the aim

is to study dynamics but the ‘time’ directions in the models are uninformative. The empiricist

principles Callender set out with are particularly important with respect to this last point,

because they force us to think about informativeness in terms of correspondence of a theory

or law with empirical data. The proposal, TAP , should be understood as a fairly weak claim:

scientists often (but not always) wish to generate information in temporal directions. Where

the aim is to generate such information, and where the physical world behaves in such a way

as to allow for such information to be generated (both are required), strong algorithms may be

applied which, unsurprisingly, inform in temporal directions.

These messages illustrate the more general problem that the actual achievements or

capabilities of science can sometimes fall short of its aims. Where some scientific discipline sets

out to make accurate and precise empirical predictions, there always exists the possibility of

failure. In the case of chaotic systems, it remains to be seen whether this is only a failure of

our current best models to achieve the predictive aims, or an in principle incapability of any

model to make the kinds of predictions sought. The way that the subject has been presented

here suggests the latter interpretation, although this will most likely depend on the particular
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system in question. Future developments in the field may also turn out to demonstrate otherwise.

To return very briefly to the question of a philosophical underpinning for the various asym-

metries between time and space, Callender’s account cannot succeed. This paper has pointed out

the lack of generality of the key component of his account, namely the connection between time

and informative strength in physical laws, and suggested a perspectival reading of it. Recognis-

ing that this claim cannot underpin the asymmetries between time and space, its metaphysical

thrust consists in a relationship between the world and information-gathering systems such as

ourselves. This paper has pointed out that this relation only sometimes obtains, but that often

it is the objective of scientific inquiry to forge such a relation. Identifying when this relation

obtains and when it doesn’t, and asking why it does or does not obtain in these cases, would be

interesting projects for deepening the analysis.
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