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Abstract

It is often assumed that the complete physics theory of the universe is computable - in sense that

it can provide meaningful theoretical predictions for every phenomenon of the universe. Against this

view, it is argued that once quantum mechanics is understood as encompassing a novel concept of

probability, thereby resolving the measurement problem in straightforward ways, the interpretation

speaks for uncomputability of the complete physics theory. The reasons why a new theory of

probability is needed are explored, along the lines of the principle of indifference and the sleeping

beauty problem.

Keywords: uncomputable theory, generalized probability, measurement problem, principle of indifference,

Sleeping Beauty Problem
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I. INTRODUCTION

This paper first explores the measurement problem as suggesting a novel concept of

probability, with breakdown of the classical probability theory arising out of Kolmogorov

axioms. What probability theory is required by quantum mechanics is explored. The new

probability theory implies that the full theory of the universe is uncomputable - it cannot

be derived or used for predictions.

The key issue behind the measurement problem is that measurements affect probability

in a very non-trivial way, so how we use the usual classical probability theory needs to be

modified in order to make sense of reality. One question is whether this is because reality is

not intuitive or because the concept of probability needs to be changed - here, we take the

side of the need to change the concept of probability.

Assume again that the state of the universe can be imagined even hypothetically and

theoretically. But given that Equation (1) breaks down in quantum mechanics - and since

the state of the universe being entirely known is theoretically equivalent to having measured

the universe in the ‘novel probability’ view of quantum mechanics - this would break quantum

mechanics itself, because the circumstance is where the classical probability theory should

apply. (Equation (1) in this circumstance means initially assigning probability to orthogonal
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universe outcomes at time t and calculating probability of orthogonal universe outcomes at

time t′ ≥ t.) Therefore in this view, the full theory of the universe is uncomputable. Illusions

of subjectivity in the measurement problem come from this issue.

We further explore why a novel probability theory would be required, along the lines of

the principle of indifference[1] and the sleeping beauty problem[2–4].

II. MEASUREMENT PROBLEM: BREAKDOWN OF CLASSICAL PROBABIL-

ITY

In the conventional and classical theory of probability that comes from Kolmogorov ax-

ioms, the following equation then holds:∑
i0∈It0

P (i0)P (f1|i0) = P (f1) (1)

It0 refers to a set of all possible mutually orthogonal outcomes at time t0, f1 ∈ It1 refers

to one specific outcome at time t1. P (·) refers to (unconditional) probability measure, with

P (·|·) referring to probability measure conditional on the latter term after |. t1 ≥ t0.

In quantum mechanics, Equation (1) breaks down - that is, the equation does not hold all

the time. This is the most important issue revolving around the measurement problem. (The

other issue is about a preferred measurement basis, which would be discussed together given

that it is actually the same issue in the ‘novel probability’ view of quantum mechanics.) [5] In

essence, Equation (1) is what surrounds Bell’s theorem[6], Bell-Kochen-Specker theorem[7,

8], their variants and Hardy’s paradox[9] as well.

From the probability theory perspective, unless we have reasons to stick with the classical

probability theory, it is unclear why breakdown of Equation (1) means wavefunction collapse.

Maybe, reality could be asking for the use of an alternative theory of probability. Breakdown

of the classical probability theory may open up for the new type of statistical correlation

that quantum mechanics requires, as visible in Bell-type inequalities. Instead of explaining

quantum correlations in terms of (non-)existence of (local) reality, we could instead think

of them in terms of a new generalized probability theory and the corresponding generalized

theory of correlations. In fact, quantum reconstruction projects have provided rationality

criteria that can derive quantum mechanics.[10–12]

In the classical probability theory, measurements themselves do not necessarily affect
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probability arithmetic. When calculating P (f1) in the classical probability theory, one does

not have to consider whether particular outcome i0 was measured at time t0. Because one

does not hold knowledge of what outcome i0 held in reality, one can simply proceed to use

unconditional probability (relative to I0) P (f1) as genuine probability measure of outcome

f1.

In quantum mechanics, because of breakdown of Equation (1), it matters whether an

outcome was measured in time t0. If Agent A measured particular outcome i0, then even if

agent B does not recognize measurement and observation results of agent A, unconditional

P (f1) would no longer be valid probability measure of outcome f1. That is, P (f1) in such a

case has to be calculated in quantum mechanics as P (f1) = P (f1|i0). In fact, this feature is

used in quantum cryptography (for communication) to check presence of an eavesdropper.[13]

A. Textbook view and statistical alternative

Quantum states are largely thought to evolve continuously via the Schrödinger equation

before a measurement. Thus, the conventional textbook view has been that state (almost

identically, wavefunction) collapse occurred when measurements are done.

The textbook view often is stated in terms of the anti-realism view: reality simply does

not exist before measurements. That is why Equation (1) breaks down - probability arith-

metic only makes sense for potentially realizable outcomes - and realizable outcomes are

determined when measurements are conducted. This raises the question of why measure-

ment decisions matter - it seems to introduce subjective aspects into physics.

If we think of arithmetic and rules of quantum mechanics as a generalized probability

theory that complements, generalizes and, as to be visited, repairs the classical probability

theory that follows from Kolmogorov axioms, then the issue regarding realism versus anti-

realism is simply dissolved. Because agents already possess knowledge that the generalized

probability theory in use allows for measurements to significantly interfere with probability

arithmetic, allowing for breakdown of Equation (1), there is no surprise. As with the quan-

tum cryptography example, if an agent notices that an experiment result does not match

with expected probability, this simply means that the agent does not have full knowledge

(or model) of what is going on. In case of the quantum cryptography example, Agent A and

B conduct an experiment, expecting non-existence of an eavesdropper - if an actual result
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deviates from an expected result, that would mean that a previously unnoticed (from the

statistical model) eavesdropper exists.

The whole circumstance is similar to what happens in statistics - a statistician has a sta-

tistical model of reality and experiments with reality - if the result suggests reality deviating

from the model, then the model is repaired.

B. Remaining subjectivity issue? Uncomputable complete theory

One may argue that this still leaves subjectivity issues - it is not simply enough for agents

to know how measurements proceeded. What measurement outcome was actually observed

plays a significant role in probability arithmetic of quantum mechanics. For example, if an

eavesdropper exists while Agent A and B are conducting quantum communication experi-

ments, then to obtain valid probability measure at each time moment, what the eavesdropper

measured - not just the fact that the eavesdropper exists - is important.

Does this really mean that subjectivity plays a significant role in quantum mechanics? No

- in fact, there was a misunderstanding in the aforementioned statement. To understand this

point, we need to think of what the new probability theory presented by quantum mechanics

- which we may call as the quantum probability theory - says. Again, the argument is repli-

cated. Suppose that we can even imagine the state of the full universe. But in such a case,

this would be theoretically equivalent to having measured the entire universe. Furthermore,

Equation (1) should hold for the entire universe: by Equation (1) for the entire universe,

we are saying that probability is assigned for each possible orthogonal universe outcome at

time t, and then we ask probability of each possible orthogonal universe outcome at time

t′ ≥ t. In this circumstance, because each state of the universe is ‘the’ state of the universe,

one cannot imagine orthogonal states interfering with each other in the present or future.

Yet quantum mechanics suggests otherwise. Thus, the complete theory of the universe must

then be uncomputable - it cannot be derived or used. (An alternative view of quantum

mechanics, given by the Everettian many-worlds view, may be suggested[14] - we would not

discuss this view furthermore, other than this brief mention. There, different worlds and

universes may interfere with each other.)

Therefore, all we can do is to note what measurement procedures are experimentally

confirmed to be reliable and to use these procedures to explore and update theories that
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may provide new measurement procedures. Using these existing measurement procedures,

we note down available measurement outcomes and check against existing theories and

models.

It is not subjective decisions per se that drive the measurement problem under the prob-

ability theory view of quantum mechanics - it is the limitation (that the complete theory

of the universe is uncomputable) induced by quantum mechanics that creates illusions of

subjectivity and the measurement problem. While the objective universe exists, we cannot

fully access it, leaving appearance of subjectivity.

III. ISSUES WITH CLASSICAL PROBABILITY AND THE ALTERNATIVE

There already were several issues with the classical probability theory that call for a new

theory of probability. Two issues are explored: the issue revolving around the principle of

indifference and the sleeping beauty problem.

A. A problem with the principle of indifference

The problem is simple. Suppose we know that random variable X has support on (0, 1)

but we know nothing else. If we invoke the principle of indifference, then we would assign

P (x) = 1 for 0 < x < 1. However, when we think of random variable Y with y = x2, then

Y also has support on (0, 1). Furthermore, we also have no other knowledge for Y as well.

Invoking the principle of indifference to Y suggests that P (y) = 1 for 0 < y < 1. Yet this

is incompatible with the principle of indifference applied to X. Bertrand’s paradox can be

considered to be a more sophisticated variant of this issue[1] as well.

The quantum probability theory resolves this issue, which can be checked from the fact

that the fundamental measure of quantum uncertainty is von Neumann entropy. There, von

Neumann entropy is unaffected by linear (basis) transformations, in contrast to Shannon

entropy in the classical probability theory. Surely, in some sense, this really is brushing

aside the issue. We are still allowing for multiple unitarily inequivalent representations

that essentially encode the same ‘theory.’ Yet the reason why we have the issue with the

principle of indifference (or the principle of maximum entropy, in general) becomes much

more mathematically clearer - the quantum probability theory allows for multiple unitarily
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inequivalent representations, which force us to make some choice beforehand.

B. Sleeping Beauty Problem

There is and will likely be no unique consensus to the Sleeping Beauty problem. Here, it

would be assumed that the thirder resolution[3, 4] is correct.

The thirder argument presents a challenge against the classical probability theory - but

before continuing on, the Sleeping Beauty problem would briefly be explained. On Sunday,

a fair coin is tossed. Sleeping Beauty possesses no knowledge of the coin toss outcome and

is put to sleep. If head comes up, then Sleeping Beauty is awakened and interviewed only

on Monday. If tail comes up, then Sleeping Beauty is awakened and interviewed twice - on

Monday and Tuesday. For both coin toss outcomes, after the Monday interview is finished,

Sleeping Beauty is put back to sleep. In each interview, Sleeping Beauty is asked: what

credence does Sleeping Beauty assign on each coin toss outcome? The thirder position

argues that P (head) = 1/3, while the halfer position argues that P (head) = 1/2.

The thirder argument is in conflict with the classical probability view that because

P (head) = 1/2 unconditionally on Sunday and no new knowledge has been provided to

Sleeping Beauty, P (head) = 1/2 should be maintained. The original and canonical thirder

argument by Adam Elga[3] invokes the principle of indifference - therefore, it is possible to

view that even the Sleeping Beauty problem is a variant of the general principle of indiffer-

ence issue. Here, the additional issue is that one justifiable way of invoking the principle of

indifference seems simply incompatible with the classical probability theory.

The canonical response to this issue is that credence assignment is to be distinguished

from probability assignment. However, it is unclear how we should separate credence from

probability - this involving the complicated question of what probability actually refers to.

It may be argued that objective probability exists separately from subjective experience of

probability that we may call as credence, but then we have to reconsider how subjective

Bayesian notions of probability may be reconciled with the classical probability theory. We

do not experience objective probability - we experience subjective probability. If so, then

what would be the point about separating credence from probability?

Thus, it is more reasonable to justify the thirder argument in terms of a new generalized

probability theory, rather than sticking with the classical probability theory. In this view,
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the Sleeping Beauty problem shows that a new theory of probability is needed. The quantum

probability theory provides why P (head) may be 1/2 at some moment, while 1/3 at some

other moments. Let us again remind of breakdown of Equation (1), but this time with time

reversed: ∑
i1∈It1

P (i1)P (f0|i1) 6= P (f0) (2)

Or restate as to align with the Sleeping Beauty problem:

P (Mon)P (head|Mon) + P (Tue)P (head|Tue) 6= P (head) (3)

where Mon refers to Monday, Tue refers to Tuesday.

IV. CONCLUSION

One important point of this paper is to establish that myths, mysteries and controversies

around quantum mechanics disappear when we consider it as a generalized probability theory

that we may call as the quantum probability theory. Rules and arithmetic of quantum

mechanics are to be viewed as probabilistic principles. The measurement problem seems to

arise because we are clinging onto arithmetic of the classical probability theory, represented

by Equation (1). The purported subjective observer requirement for quantum mechanics is

an illusion - it only arises because under the new probability theory, the state of the entire

universe cannot even be theoretically imagined - otherwise, inconsistency arises. This means

that the complete physics theory of the universe is uncomputable - we cannot derive or use

it. This puts limitations on our knowledge of the universe, which seems to open up for

elements of subjectivity, when they are just illusions.

The question could be raised - why is a new probability theory necessary? The discussions

around the principle of indifference[1] and the Sleeping Beauty Problem[2–4] addressed this

question - indeed, the quantum probability theory is necessary. The question of deriving the

quantum probability theory was relegated to quantum reconstruction projects, which derive

quantum mechanics from epistemic requirements[10–12]. Once epistemic conditions require

that only the classical probability theory and the quantum probability theory are possible,
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we are done in firmly establishing quantum mechanics as a necessary probability theory.
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