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Abstract: Five conceptually distinct notions of symmetry in quantum theory are
studied in the algebraic setting where a quantum system is characterized by a
von Neumann algebra of observables and the set of normal states on the algebra.
It is shown that all five symmetry notions are closely related and that the glue
binding them together is the concept of a Jordan ∗-automorphism. For factor
algebras a Jordan ∗-automorphism reduces either to an ∗-automorphism or a ∗-
anti-automorphism. If the algebra is put in standard form then a ∗-automorphism
is always unitarily implementable, whereas a ∗-anti-automorphism is always anti-
unitarily implementable. However, there is no guarantee that a general von Neu-
mann algebra admits ∗-anti-automorphisms or, if it does, that it admits order
two (or involutory) ∗-anti-automorphisms). For non-factor algebras there can be
genuine Jordan ∗-automorphisms that are neither ∗-automorphisms nor ∗-anti-
automorphisms, and implementation is possible only through partial isometries.
These developments enable generalized versions of Wigner’s theorem on the im-
plementation of transition probability preserving symmetries for von Neumann
algebras. This review is largely an exercise in connecting the dots in existing math-
ematics and physics literature. But in the service of the philosophy of physics it is
an exercise worth doing since the practitioners in this field seem largely unaware of
or unappreciative of this literature and how it fits together to yield a multifaceted
but unified picture of quantum symmetries. Along the way various interpretations
issues worthy of further discussion are flagged.

1 Introduction

Various notions of symmetry in quantum theory have been studied in the
algebraic setting, both in terms of C∗-algebras and von Neumann algebras.
The latter seems the preferable setting because, arguably, C∗-algebras con-
tain too many states and not enough observables.1 Some care is needed in
carrying over results from C∗-algebras to von Neumann algebras since results

1See Clifton and Halvorson (2001), Ruetsche (2011, Ch. 6), and Wald (1994, Ch. 4.6).
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for C∗-algebras often appeal to all states on such algebras whereas the re-
sults one wants for von Neumann algebras should refer to normal states; and
again in the C∗-algebra setting some results make heavy use of pure states
whereas some von Neumann algebras do not admit any normal pure states.
However, the developments discussed below will suggest a partial retreat to
C∗-algebras (see Section 7).
Five conceptually distinct notions of symmetry are formulated for general

von Neumann algebras. It is shown that all five symmetry notions are closely
related and that the glue binding them together is the concept of a Jordan
automorphism.
For factor algebras a Jordan automorphism reduces either to a ∗-automorphism

or a ∗-anti-automorphism. If the algebra is put in standard form then a ∗-
automorphism is always unitarily implementable, whereas a ∗-anti-automorphism
is always anti-unitarily implementable. However, there is no guarantee that
a general von Neumann algebra admits ∗-anti-automorphisms or, if it does,
that it admits involutory ∗-anti-automorphisms. For non-factor algebras
there can be genuine Jordan ∗-automorphisms that are neither ∗-automorphisms
nor ∗-anti-automorphisms, and implementation is possible only through par-
tial isometries. These developments enable generalized versions of Wigner’s
theorem on the implementation of transition probability preserving symme-
tries to be proven for most if not all Neumann algebras.
This review is largely an exercise in connecting the dots in existing math-

ematics and physics literature. But in the service of the philosophy of physics
it is an exercise worth doing since the practitioners in this field seem largely
unaware of or unappreciative of this literature and how it fits together to
yield a multifaceted but unified picture of quantum symmetries. Along the
way various interpretations issues worthy of further discussion are flagged.
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2 Notions of symmetry for QM in the setting
of von Neumann algebras

Throughout N stands for a von Neumann algebra2 and S(N) for the normal
states onN. A state on a von Neumann algebraN is a positive linear map φ :
N → C such that φ(I) = 1. A normal state φ on N has various equivalent
characterizations: φ is completely additive on any family of mutually or-
thogonal projections in N; φ is ultraweakly continuous3; there is a trace class
operator ρ (aka density matrix) with Tr(ρ) = 1 such that φ(A) = Tr(ρA)
for all A ∈ N (Bratelli and Robinson 1987, Theorem 2.4.21). Five notions of
symmetry studied here can be formulated in terms of transformations of N
and S(N).

1) State space symmetry. The idea here is that a symmetry should preserve
the structure of the space of states. In particular, it should respect the facts
that the set of normal states is closed under convex linear combinations and
that the map A 7→ φ(A), A ∈ N and φ ∈ S(N), is continuous.

Def. 1. A state space symmetry is a bijection Φ : S(N) →
S(N) that is an affi ne map (i.e. Φ(λφ1 + (1− λ)φ2) = λΦ(φ1) +
(1 − λ)Φ(φ2) for all φ1, φ2 ∈ S(N) and all λ ∈ [0, 1]) and is w∗-
continuous (i.e. for any sequence {φn} ∈ S(N) such that φn(A)→
φ(A) for all A ∈ N, Φ(φn(A))→ Φ(φ(A)) for all A ∈ N).4

2) Transition probability symmetry. In ordinary QM where the algebra of
observables is B(H), the von Neumann algebra of all bounded operators on
H, transition probability symmetry is usually discussed in terms of tran-
sitions between normal pure states on B(H). In this setting normal pure

2A concrete von Neumann algebra N is a ∗-algebra of bounded operators acting on
a Hilbert space H such that N is closed in the weak operator topology, or equivalently
(by von Neumann’s double commutant theorem), N = N′′ := (N′)′, where N′ denotes
the commutant of N. For the mathematical background on von Neumann algebras, see
Bratelli and Robinson (1987) and Kadison and Ringrose (1997). W ∗-algebras, the abstract
version of von Neumann algebras, will be introduced in Section 7.

3The ultraweak topology is also called the σ-weak topology. For N acting on H it is
the weakest topology on N such that the elements of the predual of N are continuous.
This topology is intrinsic to the algebra in the sense that it is independent of the Hilbert
space representation of N. Ultraweak convergence implies weak convergence.

4Convergence φn → φ in the w∗ topology is pointwise convergence, i.e. for any A ∈ N
and any ε > 0 there is an N(A, ε) such that |φn(A)− φ(A)| ≤ ε for all n > N(A, ε).
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states coincide with vector states5, and the transition probability between
pure states φ1, φ2 with representing (unit) vectors ξφ1 , ξφ2 ∈ H, is given by
the familiar formula |〈ξφ1 , ξφ2〉|

2. But some von Neumann algebras do not
admit any normal pure states (for example, Type III algebras). Neverthe-
less, there are well-defined notions of transition probability between any pair
of normal states on an arbitrary von Neumann algebra, and some of these
notions turn out to be useful in the analysis of symmetries. Here we use
that of Raggio (1982), which relies on the standard form of a von Neumann
algebra.6

A standard form for a von Neumann algebra N consists of a quadruple
(N,H, J, C) where J : H → H is a conjugation7 and C ⊂ H is a self-dual cone8
such that (i) JNJ = N′, (ii) JZJ = Z∗ for all Z ∈ Z(N) (where Z(N) :=
N ∩N′ is the center of N), (iii) Jξ = ξ for all ξ ∈ C, and (iv) A(JAJ)C ⊆ C
for all A ∈ N. Every von Neumann algebra can be put in standard form in
the sense that it is ∗-isomorphic to a von Neumann algebra in standard form
(Haagerup 1975, Theorem 1.6). If N acting on H is in standard form then
for any normal state φ ∈ S(N) there is a unique vector ξφ ∈ C such that
φ(A) = 〈ξφ, Aξφ〉 for all A ∈ N. For φ1, φ2 ∈ S(N) the Raggio transition
probability is defined as PR(φ1, φ2) := 〈ξφ1 , ξφ2〉, which is real number lying
in [0, 1], equal to 0 if and only if ξφ1 and ξφ2 are orthogonal, and equal to 1
if and only if ξφ1 = ξφ2 . Since the standard form of a von Neumann algebra
is unique up to a unitary transformation the Raggio transition probability is
independent of the chosen standard form. For N = B(H) Raggio transition
probability for normal pure states reproduces the familiar sense of transition
probability. The standard form will also play a role later in the discussion of
the Hilbert space implementation of symmetries.
These preliminary remarks lead us to posit:

Def. 2. A (Raggio) transition probability symmetry for N is

5A state φ on N acting on H is a vector state iff there is a ξ ∈ H such that φ(A) =
〈ξ, Aξ〉 for all A ∈ N. A state φ is mixed iff there are distinct states ϕ1 and ϕ2 and
λ1, λ2 ∈ R, with 0 < λ1, λ2 < 1 and λ1 +λ2 = 1, such that φ = λ1ϕ1 +λ2ϕ2. A pure state
is a non-mixed state.

6Other generalized concepts of transition probability are discussed in Raggio (1984)
and Leung et al. (2016).

7A conjugation J is a conjugate linear map, J(c1ξ1 + c2ξ2) = c1Jξ1 + c2Jξ2, c1, c2 ∈ C
and ξ1, ξ2 ∈ H, that is norm preserving and has the property J2 = I. For example in a
L2C(R) realization of a separable H, (Jψ)(x) := ψ(x) defines a conjugation.

8Self-dual means that C = {ξ ∈ H : 〈ξ, η〉 ≥ 0 for all η ∈ C}.
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a bijection Φ : S(N) → S(N) such that PR(Φ(φ1),Φ(φ2)) =
PR(φ1, φ2) for all φ1, φ2 ∈ S(N).

The justification for using this concept of transition probability lies in its
usefulness in extending symmetry notions to arbitrary von Neumann alge-
bras.

3)Algebra symmetry. The idea here is that a symmetry is a mapping that pre-
serves the structure of the algebra of observables. The most straightforward–
if naive– way to cash this in is in terms of a ∗-automorphism ofN, a bijection
Θ : N→ N satisfying

(i) Θ(λA+ µB) = λΘ(A) + µΘ(B)

(ii) Θ(A∗) = Θ(A)∗

(iii) Θ(AB) = Θ(A)Θ(B).

for all λ, µ ∈ R and A,B ∈ N. However, it seems more in touch with experi-
ments to focus on the self-adjoint elements NSA ⊂ N. Although NSA is not
an algebra with respect to the usual notion of multiplication it is an algebra

under Jordan multiplication A◦B :=
1

2
(AB+BA). Thus, mirroring the con-

ditions for a ∗-automorphism, a Jordan ∗-automorphism of NSA is defined
as a bijection θ : NSA → NSA such that for all λ, µ ∈ R and A,B ∈ NSA

θ(λA+ µB) = λθ(A) + µθ(B)

θ(A∗) = θ(A)∗

θ(A ◦B) = θ(A) ◦ θ(B).

A Jordan ∗-automorphism θ can be extended to a bijection Θ : N → N

using the fact that any A ∈ N can be uniquely decomposed as A = R + iS
with R, S ∈ NSA, and by setting Θ(A) := θ(R) + iθ(S). So a Jordan ∗-
automorphism of N is defined a bijection Θ of N such that for all λ, µ ∈ R
and A,B ∈ N

(i) Θ(λA+ µB) = λΘ(A) + µΘ(B)

(ii) Θ(A∗) = Θ(A)∗

(iii′) Θ(AB +BA) = Θ(A)Θ(B) + Θ(B)Θ(A).
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Thus, we posit

Def. 3. An algebra symmetry is a Jordan ∗-automorphism of N.

By this definition a ∗-automorphism is an algebra symmetry as is a ∗-anti-
automorphism, the latter of which is a bijection of N satisfying

(i) Θ(λA+ µB) = λΘ(A) + µΘ(B)

(ii) Θ(A∗) = Θ(A)∗

(iii′′) Θ(AB) = Θ(B)Θ(A).

for all λ, µ ∈ R and A,B ∈ N.
4 ) Expectation value symmetry. This is the symmetry notion that is closest
to experimental results. The version that comes from Roberts and Roepstorff
(1969) combines bijections of states and observables. So let Θ : N→ N and
Φ : S(N)→ S(N) be bijections.

Def. 4. An expectation value symmetry is a pair (Φ,Θ) that
preserves expectation values, i.e. Φ(φ)(Θ(A)) = φ(A) for all φ ∈
S(N) and all A ∈ N.

5) Quantum event space symmetry (aka quantum logic symmetry).

The projections P(N) of N can be thought of as representing quantum
events or propositions. P(N) is a lattice when equipped with the natural
partial order ≤ where, for E,F ∈ P(N), E ≤ F iff range(E) ⊆ range(F ).
Meet ‘∧’and join ‘∨’are defined respectively as the least upper bound and
greatest lower bound. Lattice complementation Ec is taken to be orthocom-
plementation, i.e. Ec := E⊥ = I − E. This orthocomplemented lattice is an
example of what is sometimes called a quantum logic.

Def. 5. An event space symmetry (aka quantum logic symmetry)
is a bijection Π : P(N)→ P(N) such that for all E,F ∈ P(N)

(α) Π(E) ≤ Π(F ) iff E ≤ F

(β) Π(0) = 0 and Π(I) = I

(γ) Π(E⊥) = Π(E)⊥
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and

(δ) For any family {Eα} ⊂ P(N), ∨αΠ(Eα) = Π(∨αEα)

and ∧αΠ(Eα) = Π(∧αEα).

There are no doubt other useful and interesting symmetry notions in the
setting of von Neumann algebras, but these five cover much of the territory.
It is therefore remarkable that they turn out to be closely bound; and, as
seen below, the glue that holds them together is Jordan ∗-automorphisms.

3 Linking symmetry concepts

Relating 1) and 3). Let Θ : N→ N be a bijection. Then for any φ ∈ S(N),
Θ∗(φ)(A) := φ(Θ(A)), A ∈ N, defines a linear functional Θ∗ from S(N) to C.
It is easy to verify that if Θ is a Jordan ∗-automorphism then Θ∗ is a bijective
map of S(N) onto itself; and furthermore Θ∗ is a w∗-continuous affi ne map
(see Emch 1971, pp. 153-154). Thus, if Θ is a Jordan ∗-automorphism then
Φ = Θ∗ is a state space symmetry. The technique of proof used in Kadison
(1965) and Emch (1971, Theorem 2, p. 155) serves to establish the converse:
If the bijection Φ : S(N) → S(N) is a w∗-continuous affi ne map then there
is a Jordan ∗-automorphism Θ : N → N such that Φ = Θ∗.9 Following
Emch (1971, p. 155) the upshot of this mutual implication relation between
state space and algebraic symmetries may be glossed as demonstrating the
equivalence of the Heisenberg and Schrödinger pictures as they are drawn in
the present algebraic setting.

Relating 2) and 3). Here the heavy lifting has been done by Leung et al.
(2016). They prove that if Φ : S(N)→ S(N) is a bijection then Φ preserves

Raggio transition probabilities iff there is a Jordan ∗-automorphism Θ : N→
N such that Φ = Θ∗.

Relating 4) to 1) and 3) (and thus to 2)). The technique of proof used
in Roberts and Roepstorff (1969) for C∗-algebras serves to establish that if
(Φ,Θ) is an expectation value symmetry then Φ is a w∗-continuous affi ne
map, and Θ is a Jordan ∗-automorphism. This gets us from 4) to 1) and 3)

9The Kadison and Emch results are for C∗- algebras, and they use the fullness of the
space of all states on such an algebra. The normal states S(N) of a von Neumann algebra
N are also full: if A ∈ N is positive then there is a φ ∈ S(N) such that φ(A) > 0.
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and, thus, to 2). In the other direction, suppose that Θ : N→ N is a Jordan
∗-automorphism. Then Θ∗(φ)(A) = φ(Θ−1(A)), A ∈ N, defines a bijective
map Θ∗ of S(N) onto itself. Setting Φ = Θ∗, (Φ,Θ) is an expectation value
symmetry. And similarly, if Φ is a state space symmetry then there is a
Jordan ∗-automorphismΘ such that (Φ,Θ) is an expectation value symmetry

Relating 5) to 1)-4). In one direction we want to establish that ifΘ is a Jordan
∗-automorphism of N then its restriction to P(N) is a logic symmetry of
P(N). A Jordan ∗-automorphism is order preserving (Bratelli and Robinson
1979, Theorem 3.2.3) so it satisfies property (α) for a logic symmetry. It
then follows directly from the definitions of ‘∧’ and ‘∨’ that a Jordan ∗-
automorphism satisfies (δ) for a finite family of projections, and from this plus
the fact that a Jordan ∗-automorphism is continuous in the strong operator
topology (see Emch 1972, Result 1, p. 156) it follows that (δ) is satisfied.
The proof of the satisfaction of properties (β) and (γ) for a logic symmetry is
straightforward. From the fact that a Jordan ∗-automorphism is real linear
it follows that Θ(O) = Θ(I− I) = Θ(I)−Θ(I) = O. Furthermore, Θ(2I2) =
2Θ(I) = 2Θ(I)2, which implies that Θ(I) equals I or O; but it can’t be
the latter since then Θ(I) = Θ(O) contradicting the injective character of
Θ. From this we get for any projection E ∈ N, Θ(E⊥) = Θ(I − E) =
Θ(I)−Θ(E) = I −Θ(E) = Θ(E)⊥.
Establishing that a logic symmetry of P(N) extends to a Jordan ∗-

automorphism of N is far from trivial. That this is so with only a mild
restriction on N can be inferred from a remarkable theorem of Dye (1955)
showing that, provided N contains no Type I2 summand, an orthoautomor-
phism of P(N) (i.e. a bijection of P(N) that preserves orthogonality in both
directions) is implemented by a unique Jordan ∗-automorphism of N. To
apply the theorem to the case at hand note that if Π is a logic symmetry of
P(N) then [E,F ] = 0 iff [Π(E),Π(F )] = 0 for all E,F ∈ P(N), and, thus,
Π preserves orthogonality in both directions.10

Upshot : The five conceptually distinct symmetry concepts sketched above
all coalesce around the notion of a Jordan ∗-automorphism. An algebra sym-
metry (= Jordan ∗-automorphism) is a logic symmetry; and, with the mild
restriction on the algebra noted above, every logic symmetry is uniquely ex-
tendible to an algebra symmetry. An algebra symmetry Θ generates a state

10See also Kruszynski (1976). His proof relies of Gleason’s theorem which, in generalized
form, implies Dye’s theorem (see Section 9 below).

8



space symmetry Φ = Θ∗, and every state space symmetry is generated by an
algebra symmetry. Similarly, every Raggio transition probability symmetry
is generated by an algebra symmetry, and every algebra symmetry generates
a Raggio transition probability symmetry. Finally, if (Φ,Θ) is an expecta-
tion value symmetry then Φ is a state space symmetry and Θ is an algebra
symmetry; if Φ is a state space symmetry then there is an algebra symmetry
Θ such that (Φ,Θ) is an expectation value symmetry; and if Θ is an algebra
symmetry there is a state space symmetry such that (Φ,Θ) is an expectation
value symmetry.
Stepping back from the technicalia, the root notion behind all five sym-

metry concepts is that a symmetry transformation in quantum theory is a
transformation that preserves some physically important structure identified
by the theory. For each of the five concepts the structure preserving trans-
formation is either a Jordan ∗-automorphism or is generated by a Jordan ∗-
automorphism. An apparently stronger notion of symmetry transformation
would require that the transformation preserves structure that is so central
to the description of a quantum system that the transformation produces
physically equivalent descriptions of the system, at least so far as the de-
scriptive apparatus of the quantum theory can discern. Arguably, if physical
equivalence is limited to what is experimentally testable then preservation
of expectation values is suffi cient as well as necessary for generating phys-
ically equivalent descriptions. If so, Jordan ∗-automorphisms are the key
to generating equivalent descriptions in the algebraic approach to quantum
theory.
In any case, enough has been said to make it evident that to under-

stand quantum symmetry we need to understand more about Jordan ∗-
automorphisms and their implementations.

4 Jordan ∗-automorphisms in ordinary QM
For ordinary non-relativistic QM (sans superselection rules) the algebra is
N = B(H). For B(H) the normal pure states on B(H) are in one-to-one
correspondence with the rays of H. A Wigner symmetry T is a bijection of
the unit rays of H that preserves the standard notion of transition proba-
bility between the states corresponding to any pair of rays. Wigner (1931)
announced the fundamental theorem that any such symmetry T is imple-
mented by a unique (up to phase factor) vector map T : H → H that is
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either unitary U or anti-unitary V .11 In the former case ΘU(A) := UAU∗,
A ∈ B(H), is a ∗-automorphism. In the latter case ΘV (A) := V A∗V ∗ is also
a Jordan ∗-automorphism, but it is an ∗-anti—automorphism rather than a
∗-automorphism.12
Apart from its negative function of showing concretely that the impli-

cation that a Jordan ∗-automorphism is a ∗-automorphism is not valid in
physically interesting cases, this example has the positive virtue of leading
one to wonder which features of ordinary QM generalize to arbitrary von
Neumann algebras. In particular,
Q1: Are Jordan ∗-automorphisms of a von Neumann algebra exhausted

by ∗-automorphisms and ∗-anti—automorphisms?
Q2: B(H) admits both non-trivial ∗-automorphisms and ∗-anti—automorphisms.

Is the same true of arbitrary N?
Q3: That a ∗-automorphism (respectively, a ∗-anti-automorphism) Θ of

N acting on H is unitarily implementable (respectively, is anti-unitarily im-
plementable) means that there is a unitary U : H → H (respectively, anti-
unitary V : H → H) such that Θ(A) = UAU∗ (respectively, Θ(A) = V A∗V ∗)
for all A ∈ N. A unitarily implementable ∗-automorphism is sometimes
called a spatial automorphism (e.g. Dixmier 1984 and Emch 1972), and
that terminology will be adopted here.13 By extension of language an
anti-unitarily implementable ∗-anti-automorphism will also be called spa-
tial. Similarly, for Ni ⊆ B(Hi), i = 1, 2, a ∗-isomorphism (respectively,
∗-anti—isomorphism) Θ : N1 → N2 is called spatial a if there is a unitary
U : H1 → H2 such that Θ(A) = UAU∗ for all A ∈ N1 (respectively, an
anti-unitary V : H1 → H2 such that Θ(A) = V A∗V ∗ for all A ∈ N1). All
∗-automorphisms and all ∗-anti-automorphisms of B(H) are spatial. Is this
also true for arbitraryN? Are all ∗-isomorphisms and all ∗-anti-isomorphisms
between arbitrary von Neumann algebras spatial?
Q4: Do the answers to the first three questions lead to interesting gener-

11A bijection V : H → H is anti-unitary iff it is conjugate linear, V (c1ξ1 + c2ξ2) =
c2V ξ1+c∗2V ξ2) with c1, c2 ∈ C and ξ1, ξ2 ∈ H, has an inverse V −1, and is norm preserving,
i.e. ||V ξ|| = ||ξ|| for all ξ ∈ H.
12There were gaps in Wigner’s proof that were not filled in until three decades later; see

Uhlhorn (1963) and Bargmann (1964). Uhlhorn’s version of Wigner’s theorem opens the
way for a generalization to arbitrary von Neumann algebras; see Section 9 below.
13If a ∗-automorphism of N is spatial and the implementing unitary belongs to N then

the automorphism is called inner. In what follows issues of spatiality are pursued with-
out regard to whether or not the automorphism is inner. But the importance of inner
automorphisms will be noted in Section 10.
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alizations of Wigner’s theorem for general von Neumann algebras?
The answer to the first question is given in the next section. The answers

to the remainder unfold in successive sections.

5 Jordan ∗-automorphisms are sums of par-
tial ∗-automorphisms and partial ∗-anti—automorphisms

A fundamental result due to Kadison (1951, Theorem 10 and Cor. 11)14 (see
also Bratelli and Robinson 1979, Theorem 3.2.3) shows that if Θ is a Jordan
∗-automorphism of N then there is a projection E in the center Z(N) of N
such that Θ(AB) = Θ(A)Θ(B)E + Θ(B)Θ(A)(I − E) for all A,B ∈ N.
Until further notice I will concentrate on factor algebras, i.e. algebras

N such that Z(N) ={λI}, λ ∈ R. For a factor algebra N a central projec-
tion E is either I or O so that any Jordan ∗-automorphism of N is either
a ∗-automorphism or an ∗-anti—automorphism, and the study of quantum
symmetries cum Jordan ∗-automorphisms is then reduced to the study of
these objects. However, for non-factors genuine Jordan ∗-automorphisms are
possible, and for such automorphisms neither ∗-automorphisms nor ∗-anti—
automorphisms by themselves, but only in combination, are realizations of
the various notions of symmetry studied above.

6 The existence of ∗-automorphisms and ∗-
anti—automorphisms

Any von Neumann algebra admits ∗-automorphisms galore. If N acts on
H choose a unitary U : H → H with U ∈ N.15 Then Θ(A) := UAU∗,
A ∈ N, defines ∗-automorphism of N. Not every ∗-automorphism is of this
form, i.e. not every ∗-automorphism is inner. But is it the case that every
∗-automorphism is spatial, i.e. implemented by a unitary that is not neces-
sarily in the algebra? This question will be treated in the following section.
Before turning to this matter some comments on ∗-anti—automorphisms are
in order.
14Note that by a C∗-isomorphism Kadison (1951) means a Jordan ∗-isomorphism and

not a ∗-isomorphism of the algebra.
15Recall that any N is generated by its unitary elements in the sense that if {U} is the

set of unitaries in N then {U}′′ = N.
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Which von Neumann algebras admit ∗-anti—automorphisms? Type I fac-
tors for sure. But apparently the general answer is not known. Why is there
a worry here? Let J : H → H be a conjugation. For N = B(H) and any
conjugation J of H, the map ΘJ(A) := JA∗J , A ∈ B(H), is a bijection of
B(H) having all of the properties required for a ∗-anti-automorphism. More-
over ΘJ is of order 2 (aka involutory), i.e. Θ2

J = I. But before concluding
that for some conjugation J of the Hilbert space on which N 6= B(H) acts
ΘJ(A) defines a ∗-anti-automorphism of N it needs to be established that
JA∗J ∈ N for all A ∈ N. Størmer (1967, Theorem 4.5) shows that for a
factor N there exists a conjugation J such that JNJ = N iff N admits an
∗-anti-automorphism order 2.
A ∗-anti-automorphism order 2 need not be of this form. For N =

B(H) and dim(H) either finite and even or else infinite there is an anti-
conjugation16 J ′ : H → H. ThenΘJ ′(A) := −J ′A∗J ′ is a ∗-anti-automorphism
of order 2 of B(H).17 Further, when H admits an anti-conjugation J ′ then
ΘJ ′ 6= ΘJ for any conjugation J (see Strømer 1967, Lemma 3.9). And
ΘJ and ΘJ ′ are, up to conjugacy, the only ∗-anti—automorphisms of B(H)
(see Ayupov 1995).18 But again, for N 6= B(H) it needs to be established
that −J ′A∗J ′ ∈ N for all A ∈ N before concluding that ΘJ ′ is a ∗-anti-
automorphism of a N.
[Digression. When dim(H) = 2 the Hilbert space is isomorphic to C2, and

linear operators are elements ofM(2,C), 2x2 complex matrices. Θ

(
x y
w z

)
:=(

z − y
−w x

)
defines a ∗-anti-automorphism of order 2. It is implemented

as ΘJ ′(A) = −J ′A∗J ′, A ∈ M(2,C), where J ′ is an anti-conjugation of C2

given by J ′
(
x
y

)
=

(
y
−x

)
(see Strømer 1967, p. 363).19 There is an in-

teresting connection here with the quaternions. A quaternion a+ ib+ jc+kd
(where a, b, c, d ∈ R and i, j,k are the quaternion units satisfying i2 = j2 =

k2 = ijk =− 1) is represented on M(2,C) as
(

a+ bi c+ di
− c+ di a− bi

)
.

16A map J ′ : H → H that is conjugate linear, norm preserving, and has the property
J ′2 = −I.
17ΘJ′(A) can be written as J ′A∗J ′∗ since J ′∗ = J ′−1 = −J ′.
18Two ∗-anti—automorphisms Θ1 and Θ2 of N are conjugate if and only if there is a

∗-automorphism Ψ of N such that Θ2 = Ψ−1 ◦Θ1 ◦Ψ.
19J ′ does not have a representation in M(2,C) since it is not a linear operator.
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Quaternions are precisely the elements of M(2,C) satisfying ΘJ ′(A
∗) = A.]

These remarks indicate the character of ∗-anti-automorphisms but do lit-
tle towards establishing which algebras, beyond B(H), admit them. Some
sobering negative results are known. Connes (1975a, 1975b) gave exam-
ples of a Type III factor and a Type II1 factor where there are no ∗-anti-
automorphisms at all. Subsequently Jones (1980) gave an example of Type
II1 factor which admits ∗-anti-automorphisms but none are of order 2.
For a factor algebra N that does not admit ∗-anti-automorphisms the

study of Jordan ∗-automorphisms boils down to the study of ∗-automorphisms.
But one might adopt the attitude that such an N is not an appropriate
arena for quantum physics since it cannot accommodate symmetries that
correspond to ∗-anti-automorphisms; indeed, if N that does not admit ∗-
anti-automorphisms of order 2 it would seem that time reversal and CPT
reversal symmetries cannot be accommodated since two successive applica-
tions of each of the symmetries should not result in any change in the physical
situation.

7 Hilbert space implementations of Jordan ∗-
automorphisms for factor algebras

7.1 Hilbert space implementations of ∗-isomorphisms
and ∗-anti-automorphisms

A von Neumann factor algebra is either Type I, II1, II∞, or III (Takesaki
1979, Cor. 1.20, p. 297). It is known that factors of Type I, Type II1,
and Type III all have the property that any ∗-automorphism is spatial (see
Emch 1971, pp. 156-158). However, it is also known that Type II∞ factors
with a II1 commutant admit non-spatial ∗-automorphisms (Kadison 1955).20
Spatiality of ∗-isomorphisms holds for some kinds of non-factor algebras, e.g.
those with abelian commutants (Dixmier 1984, III.3.2, Cor. 1 of Prop. 3),
but spatiality of ∗-isomorphisms of non-factors is not to be expected as the
norm.
Nevertheless, there is a more liberal sense in which ∗-automorphisms of

20Type II algebras contain finite dimensional projections but no minimal projections.
In Type II1 algebras the identity operator is finite dimensional whereas in Type II∞ it is
infinite dimensional.

13



any von Neumann algebras can be counted as spatial. The motivation for this
liberal construal starts with the attitude that algebras that are ∗-isomorphic
may be counted as the “same” even though they act on different Hilbert
spaces. This attitude can be underpinned by a more abstract form of von
Neumann algebras that are freed from a Hilbert space representation. One
way to achieve this goal is by means of a partial retreat into abstract C∗-
algebras which are characterized independently of a Hilbert space represen-
tation. A W ∗-algebra is a special type of C∗-algebra, namely a C∗-algebra
with a pre-dual, i.e. an algebra that is the dual of a Banach space. A C∗-
algebra is ∗-isomorphic to a von Neumann algebra if and only if it is a dual of
Banach space, which is to say that it is a W ∗-algebra (Sakai 1988, Theorem
1.16.7). Different but ∗-isomorphic concrete von Neumann algebras acting on
different Hilbert spaces may be regarded as different representations of the
same abstract von Neumann/W ∗-algebra. The analysis of quantum symme-
tries given Sections 2-4 above can be carried out on W ∗-algebras rather than
on concrete von Neumann algebras since the analysis depends only on the
structure of the algebra (in particular, on the Jordan ∗-automorphisms of the
algebra) and the space of normal states on the algebra, things that are invari-
ant over the isomorphism class of concrete von Neumann algebras.21 From
this more abstract perspective one is free to choose whichever Hilbert space
representation of the W ∗-algebra at issue is convenient in discussing Hilbert
space implementation of quantum symmetries. And since Raggio transition
probability, which was used to bring transition probability symmetry into
our family of symmetry notions for general von Neumann algebras, requires
the use of the standard form of algebras, it seems natural to use this form in
assessing the Hilbert space implementation of symmetries. I will refer this
as the standard implementation.
Recall that if Ni ⊆ B(Hi), i = 1, 2, are are Neumann algebras (factors

or non-factors) in standard form then there are conjugations Ji of Hi such

21As with concrete von Neumann algebras, the normal states of a W ∗-algebra can be
characterized equivalently as the completely additive states or the ultraweakly continuous
states; but obviously the existence of a density operator representation makes no sense for
abstract W ∗-algebra. Since a ∗-isomorphism α : N1 → N2 is automatically ultraweakly
continuous, if φ is a normal state on N1 then φ ◦ α−1 is a normal state of N2. Whether
or not a normal state of N is a vector state does, of course, depend on the Hilbert space
on which N acts. Not all normal states are vector states; but if φ is a normal state on N
acting on H then φ is a vector state on N acting on H⊗ `2(N) as N ⊗ I`2(N) (see Jones
2009, Theorem 7.1.3).
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that (a) JiNiJi = N′i and (b) JiZiJi = Z∗i for all Zi ∈ Z(Ni). And note
that if conditions (a) and (b) are satisfied then any ∗-isomorphism of N1

onto N2 is spatial (Dixmier 1957, III.1.5, Theorem 6) and, a fortiori, any
∗-automorphism of an algebra satisfying (a) and (b) is spatial. Hence, all
∗-isomorphisms and all ∗-automorphisms of von Neumann algebras, factors
and non-factors, count as spatial in the standard sense.
Using this result only a simple argument is needed to show that any

∗-anti-isomorphism between algebras in standard form is anti-unitarily im-
plementable. Let Ni ⊆ B(Hi), i = 1, 2, be in standard form so that there are
conjugations Ji of Hi as in (a) and (b), and let α be a ∗-anti-automorphism
from N1 onto N2. We wish to show that α is implementable by an anti-
unitary V . Towards this end note that the map β : N1 → N′1 given by
A → J1A

∗J1 is a ∗-anti-isomorphism and, consequently, as the composi-
tion of two ∗-anti-automorphisms the map γ := α ◦ β−1 : N′1 → N2 is a
∗-isomorphism. But since N′1 also satisfies (a) and (b) with the same J1 as
N1 we know that γ is implementable by a unitary U . So α(A) = γ(β(A)) =
U(JA∗J)U∗ = (UJ)A∗(UJ)∗, which is to say that α is implemented by the
anti-unitary V := UJ .22

7.2 Implementing Jordan ∗-isomorphisms for factor al-
gebras

If the standard sense of spatiality of ∗-automorphisms and ∗-anti—automorphisms
is employed then the problem of Hilbert space implementations of Jordan ∗-
automorphisms is solved for factor algebras. To repeat, a Jordan ∗-automorphism
of a factor algebra is either a ∗-automorphism or a ∗-anti—automorphism, and,
as we have just seen, ∗-automorphisms and ∗-anti—automorphisms are respec-
tively unitarily and anti-unitarily implementable in the standard sense. The
Hilbert space implementation of Jordan ∗-automorphisms for non-factors is
a different matter and requires a more subtle treatment.

22This is essentially a rearangement of Theorem 1 of Kadison (1998), which supplies a
different proof of the unitary implementability of γ.
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8 Hilbert space implementations of Jordan ∗-
automorphisms for non-factors

The result on the spatiality in the standard sense for ∗-automorphisms and
∗-anti-automorphisms of von Neumann algebras applies to non-factors as well
as factors. But non-factors may admit genuine Jordan ∗-automorphisms that
are neither fish nor fowl, neither ∗-automorphisms nor ∗-anti-automorphisms,
and in such cases the above account of Hilbert space implementations of Jor-
dan ∗-automorphisms for factors is not applicable. Non-factor algebras can-
not be swept under the rug because the application of quantum theory cannot
be confined to factor algebras– non-factor algebras are encountered in a va-
riety of contexts, including cases where superselection rules23 arise and the
thermodynamic limit in quantum statistical mechanics. The obvious need for
an account of the Hilbert space implementation of Jordan ∗-automorphisms
for non-factors went unmet for many years until it was satisfied by an elegant
treatment by Riekers and Roos (1989).24

Recall that if Θ is a Jordan ∗-automorphism of N acting on H then there
is a decomposing projection, i.e. a central projection E ∈ Z(N) such that
Θ(A) = Θ1(A)E + Θ2(A)(I − E), A ∈ N, where Θ1(AB) = Θ(A)Θ(B)
and Θ2(AB) = Θ(B)Θ(A), A,B ∈ N, act as partial ∗-automorphisms and
∗-anti-automorphisms respectively. In the Riekers-Roos scheme these par-
tial ∗-automorphisms and ∗-anti-automorphisms are implemented as partial
isometries of H. A partial isometry is a linear or anti-linear mapW : H → H
that is an isometry on (kerW )⊥. (kerW )⊥ is called the initial space, and
rangeW is called the final space. W is a partial isometry iffW ∗W is a pro-
jection from H onto (kerW )⊥. Further, kerW ∗ = (rangeW )⊥, and WW ∗ is
a projection onto kerW ∗. Unitaries/anti-unitaries are partial isometries with
initial and final spaces consisting of the entire H. A pair of partial isometries
(X, Y ) of H, with X linear and Y conjugate linear, are said to implement
(Θ, E) if

23A non-trivial center for the algebra of observables is a characteristic feature of one
conception of superselection rules; see Earman (2018).
24Their results are framed in terms of Jordan ∗-isomorphisms. Here I restate them

in terms of ∗-automorphisms in order to maintain parallism with statements for factor
algebras given above.
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XX∗ = E X∗X = Θ−1(E) (RR)

Y Y ∗ = E⊥ Y ∗Y = Θ−1(E⊥)

Θ(A) = XAX∗ + Y A∗Y ∗, A ∈ N.

Riekers and Roos (1989) establish the existence of such implementations
of Jordan ∗-automorphisms of the standard form of a von Neumann alge-
bra as well as the uniqueness once the decomposing projection E is speci-
fied. In general the decomposing projection is not unique; but a maximal
decomposing projection is unique. If N is a factor then either E = I or
E = 0. In the former case Θ is a ∗-automorphism, and the linear X is
a total isometry and, therefore, a unitary; in the latter case Θ is a ∗-anti-
automorphism, and the anti-linear Y is a total isometry and, therefore, an
anti-unitary. Pure ∗-automorphisms and pure ∗-anti-automorphism are, of
course, Jordan ∗-automorphisms, and the (RR) representation implies the
spatiality ∗-automorphisms and ∗-anti-automorphisms of algebras, factors or
non-factors, in standard form.

9 Generalized Wigner theorems for von Neu-
mann algebras

Many different results have been labeled a “generalized Wigner theorem.”
Here I give my own (admittedly idiosyncratic) take on what deserves to wear
that mantle.25 The first goal is to generalize Wigner’s result from the spe-
cial case of B(H) to as general a von Neumann algebra as possible and,
more specifically, to reach the conclusion that a putative symmetry trans-
formation generates a Jordan ∗-automorphism of the algebra. And for the
generalization to count as a generalized Wigner theorem the putative symme-
try transformation must be recognizably related to Wigner’s original notion
of symmetry. The second goal is to spell out the Hilbert space implementa-
tion of the Jordan ∗-automorphism for the von Neumann algebras covered
by the first generalization, and to show that the implementation conforms to
Wigner’s form, or else to explain why this is not possible.

25For an overview of the history of Wigner’s theorem and proposed generalizations see
Chavalier (2007). For a sampling of other opinions on this matter, see Baker and Halvorson
(2013), Kharatyan (1974), Shultz (1982), and Valente (2019).
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The first candidate for a generalized Wigner theorem takes off from a
result of Uhlhorn (1963) showing that, provided dim(H) > 2, the conclusion
of Wigner’s theorem for B(H) can be derived from the apparently weaker
condition that the ray mapping of H is a bijection preserving orthogonality
of rays in both directions. The rays of H are in one-one correspondence with
the minimal projections of P(B(H)) so a bijection of unit rays preserving
orthogonality can be lifted to an orthoautomorphism of P(B(H)). If h is a
bijection of minimal projections of P(B(H)) define the associated orthoau-
tomorphism h̃ of P(B(H)) as follows: for E ∈ P(B(H)), h̃(E) is the largest
projection orthogonal to h(E0) for every minimal E0 ∈ P(B(H)) orthogonal
to E (Araki 1990, p. 125). If h̃1 and h̃2 are orthoautomorphisms of P(B(H))
that agree on the minimal projections then they are the same. Dye’s theorem
can then be invoked to conclude that the orthoautomorphism of P(B(H)) is
a Jordan ∗-automorphism of B(H), which is always implemented by either a
unitary or an anti-unitary transformation of H, as Wigner’s theorem showed.
Thus, for dim(H) > 2 Wigner’s theorem may be regarded as a special case of
Dye’s theorem. From this perspective, the generalization of Wigner’s theo-
rem to any von Neumann algebra containing no Type I2 summand is already
given by Dye’s theorem. So our first generalization of Wigner’s theorem is
simply Dye’s theorem:

(W1) If N is a von Neumann algebra containing no Type I2 sum-
mand then any orthoautomorphism of P(N) extends to a unique
Jordan ∗-automorphism of N.

Another generalization which is closer to the language of Wigner’s original
result and which overcomes the lack of complete generality in (W1) due
to its exclusion of algebras with Type I2 summands can be fashioned by
combining Raggio’s (1982) notion of transition probability for normal states
of von Neumann algebras with the results of Leung et al. (2016).

(W2) If N is a von Neumann algebra and Φ : S(N) → S(N)
is a bijection of normal states of N preserving Raggio transition
probabilities then there is a Jordan ∗-automorphism Θ of N such
that Φ = Θ∗.

Since the (W2) generalization uses Raggio transition probability which
assumes the use of a standard form of the algebra it seems appropriate to

18



use this form in expanding (W2) include Hilbert space implementations of
the symmetry. Then using the results of Section 7 on the standard implemen-
tation of ∗-automorphisms and ∗-anti-automorphisms we have the following
for factor algebras:

(W2′) If N is a von Neumann algebra and Φ : S(N) → S(N)
is a bijection of normal states of N preserving Raggio transition
probabilities then there is a Jordan ∗-automorphism Θ of N such
that Φ = Θ∗. If N is a factor then Θ is either a ∗-automorphism
or a ∗-anti-automorphism. And if N acting on H is in standard
form then accordingly Θ is either implementable by a unitary
U : H → H or by anti-unitary V : H → H. And accordingly
if φ ∈ S(N) then either Φ(φ)(A) = Θ∗(φ)(A) = φ(Θ(A)) =
φ(U∗AU) or Φ(φ)(A) = Θ∗(φ)(A) = φ(Θ(A)) = φ(V ∗A∗V ) for
all A ∈ N. If φ is a vector state with representative vector ξφ ∈ H
then Φ(φ) is also a vector state with representative vector Uξφ or
V ξφ according as Θ is implementable by U or by V .

For non-factor algebras the implementation cannot in general duplicate
the Wigner form since a Jordan ∗-automorphism of a non-factor may not
reduce to a either a ∗-automorphism or a ∗-anti-automorphism. The clos-
est such implementation proceeds via the Riekers-Roos scheme using partial
isometries, leading to:

(W2
′′
) If N is a von Neumann algebra and Φ : S(N) → S(N)

is a bijection of normal states of N preserving Raggio transition
probabilities then there is a Jordan ∗-automorphism Θ of N such
that Φ = Θ∗. And if N acting on H is standard form then there
are partial linear and anti-linear isometries X and Y of H per
the scheme (RR) such that for any φ ∈ S(N) and any A ∈ N

Φ(φ)(A) = Θ∗(φ)(A) = φ(Θ(A))

= φ(XAX∗ + Y A∗Y ∗)

= φ(XAX∗) + φ(Y A∗Y ∗).

This seems to be as general a form of Wigner’s theorem as can be achieved
with the four corners of the present approach to quantum symmetries.
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10 Concluding remarks

The five symmetry concepts studied above form a neat package, except for
the fact that the generalized concept of transition probability lacks the clear
operational significance that the familiar notion of transition probability pos-
sesses for N = B(H). If φ1 and φ2 are normal pure states on B(H) the
transition probability from φ1 and φ2 means the probability that a system in
state φ1 will give a Yes answer to the measurement of the support projection
of state φ2, in which case the post-measurement state of the system is state
φ2. This inference follows from a fact and a postulate. The fact is that the
support projection for a normal pure state on B(H) is a filter for that state.
(The support projection for a normal state on N is the smallest element of
P(N) to which the state assigns probability 1. For a normal pure state on
B(H) the support projection is the projection onto the ray corresponding to
said state. A filter for a normal state φ on a von Neumann algebra N is an

element Eφ ∈ P(N) such that for any normal state ω,
ω(EφAEφ)

ω(Eφ)
= φ(A) for

all A ∈ N, provided that ω(Eφ) 6= 0.) The postulate is the Lüders projection
postulate, asserting that if a system with algebra N initially in state ω re-
turns a Yes answer to a measurement of E ∈ P(N), ω(E) 6= 0, then the post

measurement state is ω′ =
ω(EAE)

ω(E)
. The problem with extending this op-

erational significance to a concept of transition probability for mixed states
is that mixed states do not have filters. Of course, one could say that the
concept of Raggio transition probability for mixed states acquires physical
significance from its demonstrated web of relations to the other symmetry
concepts studied above. Nevertheless, it would be reassuring to have a more
direct operational indicator of physical significance.
There are also several pieces of unfinished business. To begin, the analy-

sis of quantum symmetries on offer here needs to be extended to include
dynamical symmetries. The obvious idea is to express, say, time transla-
tion invariance in terms of a one-parameter group Θt, t ∈ R, of Jordan
∗-automorphisms of the von Neumann algebra characterizing the system of
interest. The development of this idea cannot parallel the above analysis,
e.g. it cannot be the case that for factor algebras Θt is either a group of
∗-automorphisms or a group of ∗-anti-automorphisms for the obvious rea-
son that ∗-anti—automorphisms do not form a group, the composition of
two ∗-anti—automorphisms being a ∗-automorphism. If Θt is a group of ∗-
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automorphisms for an algebra in standard form then the ∗-automorphism
group is implemented by a unitary group Ut. If further Ut is strongly contin-
uous then by Stone’s theorem it has a self-adjoint generator.26 And if there is
some means to identify which one parameter group of ∗-automorphisms ex-
presses time translation invariance then this generator may be identified with
the Hamiltonian of the system. It is more usual in physics to proceed the
other way round; that is, to start with a Hamiltonian and then exponentiate
to get a one-parameter unitary group which supplies both the Schrödinger
dynamics (states but not observables evolve) and the Heisenberg dynamics
(observables but not the states evolve). From this point of view it is not
surprising that the concept of a Jordan ∗-automorphism, as distinct from a
∗-automorphism, does not enter the analysis of time translation symmetry.
There is also a bit of a puzzle about implementability of symmetries:

Since neither the definitions of nor the analysis of the relationships among
the five symmetry concepts discussed above rely on Hilbert space imple-
mentations, why then is so much attention in the literature devoted to this
matter? Riekers and Roos (1989) opine:

[I]t is a general experience in physics, that in order to construct a
symmetry transformation and to calculate with it, one needs an
explicit [Hilbert space] implementation. (p. 98)

Does this general experience point to a general truth about symmetry trans-
formation? And, if so, is the truth about a merely pragmatic virtue of explicit
Hilbert space implementations, or is it about what is essential to our under-
standing and deployment of symmetries? The safe answer is something of
both. But this requires further thought.
Finally, it is worth mentioning a topic that, at first blush, seems irrelevant

to present concerns. The seminal result for quantum probability theory is
Gleason’s theorem (Gleason 1957). In its original form it applied only to
B(H) with separable H: Any countably additive probability measure on
P(B(H)) with dim(H) > 2 extends uniquely to a normal state on B(H).
Several decades of work generalized the theorem to include non-separable H
and most von Neumann algebras: IfN is a von Neumann algebra acting onH
26The issue of whether the unitary implementer of a symmetry is inner has not played

any role in the forgoing. But at this juncture it comes to the fore. In order for the self-
adjoint generator H of Ut to count as an observable its spectral projections must belong
to the algebra, which implies that Ut be inner.
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(separable or non-separable) and containing no Type I2 summand then any
completely additive probability measure on P(N) extends to a unique normal
state onN. This form of Gleason’s theorem implies Dye’s theorem (see Bunch
and Wright 1993), which as we have seen can be regarded as a generalized
version of Wigner’s theorem. It is remarkable that key aspects of quantum
symmetries are already fixed by the basic structural features of quantum
probability, but some connection is hardly surprising if one appreciates how
thoroughly a probabilistic theory quantum mechanics is.
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