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Abstract

After decades of neglect philosophers of physics have discovered gauge

theories—arguably the paradigm of modern field physics—as a genuine topic

for foundational and philosophical research. Incidentally, in the last couple

of years interest from the philosophy of physics in structural realism—in

the eyes of its proponents the best suited realist position towards modern

physics—has also raised. This paper tries to connect both topics and aims

to show that structural realism gains further credence from an ontological

analysis of gauge theories—in particular U(1) gauge theory. In the first part

of the paper the framework of fiber bundle gauge theories is briefly presented

and the interpretation of local gauge symmetry will be examined. In the

second part, an ontological underdetermination of gauge theories is carved out

by considering the various kinds of non-locality involved in such typical effects

as the Aharonov-Bohm effect. The analysis shows that the peculiar form

of non-separability figuring in gauge theories is a variant of spatiotemporal

holism and can be distinguished from quantum theoretic holism. In the last

part of the paper the arguments for a gauge theoretic support of structural

realism are laid out and discussed.
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1 The interpretation of gauge symmetry

The house of gauge theories and, accordingly, the house of the philosophical foundations

of gauge theories as well, has two wings, occupied by those who advocate either the Hamil-

tonian or the Lagrangian formalism to represent gauge theories. Among philosophers of

physics we find John Earman as one of the strongest supporters of the Hamiltonian view

(cf. his 2003, see also Belot and Earman 2001 and Belot 2003). Proponents of the Hamil-

tonian view consider gauge theories primarily as constraint systems with redundant gauge

degrees of freedom. As Henneaux and Teitelboim (1992) put it:

“Physical theories of fundamental significance tend to be gauge theories. These

are theories in which the physical system being dealt with is described by more

variables than there are physically independent degrees of freedom. The physi-

cally meaningful degrees of freedom then reemerge as being those invariant un-

der a transformation connecting the variables (gauge transformation). Thus,

one introduces extra variables to make the description more transparent and

brings in at the same time a gauge symmetry to extract the physically relevant

content. It is a remarkable occurrence that the road to progress has invariably

been toward enlarging the number of variables and introducing a more powerful

symmetry rather than conversely aiming at reducing the number of variables

and eliminating the symmetry.”

Supporters of the Lagrangian view, on the other hand, have a quite different notion of

what a gauge theory is. Here’s a claim from a prominent voice, Andrzej Trautman (1980),

that captures the Lagrangian perspective:

“For me, a gauge theory is any physical theory of a dynamic variable which, at

the classical level, may be identified with a connection on a principal bundle.

The structure group G of the bundle P is the group of gauge transformations

of the first kind; the group G of gauge transformations of the second kind may

be identified with a subgroup of the group Aut(P) of all automorphisms of P.”

This is obviously a quite different conception compared to the former one: the Lagrangian

view stresses in particular the importance of an underlying fiber bundle structure to

characterize gauge theories. It is, practically speaking, by far the most common and

widespread formalism in which gauge theories are presented today.

In this paper I shall adopt the Lagrangian view as well. Some results of the conceptual

analysis in this section will perhaps justify this choice. It should however be clear that,

since from the mathematical point of view Lagrangian and Hamiltonian formalisms are

equivalent, in the end both views must be conceptually intertranslatable.



Holism and Structuralism in U(1) Gauge Theory 3

1.1 Gauge principle – the received view

In his comprehensive collection of the milestone papers of gauge theory in the 20th century,

Lochlainn O’Raifeartaigh speaks of the gauge principle as the “cornerstone of modern

physics” (O’Raifeartaigh 1995).3 The gauge principle indeed serves as the conceptual

starting point of many gauge theoretic considerations and it shall be used here in the

same spirit. The general idea is to start from a free matter field theory, a Dirac field, say.

The Dirac Lagrangian4

LD = ψ̄(iγµ∂µ −m)ψ (1)

admits the symmetry transformations

ψ′ = eiqαψ, (2)

which form the unitary group U(1). As is well known, symmetries in physics do quite

generally reflect the invariance properties of certain classes of physical objects. Emmy

Noether’s famous first theorem is the mathematically precise expression of this fact—

it states that the existence of a k-dimensional symmetry group is connected with the

existence of k conserved currents. The Noether current of the Dirac field is usually

written as the charge density current µ = qψ̄γµψ.

There is, on the other hand, electromagnetism, the theory governed by the Maxwell

equations and hence the Lagrangian LM +Lcoup = −1
4
FµνF

µν−µA
µ (for Lcoup = 0 we get

the homogeneous Maxwell equations). Fµν , the electromagnetic field strength tensor, can

be derived from the potentials via Fµν = ∂µAν−∂νAµ. In Maxwell’s theory the potentials

do not play a physical role—the theory just allows for a certain gauge freedom expressed

by the gauge transformations

Aµ(x) → A′
µ(x) = Aµ(x)− ∂µα(x) (3)

with an arbitrary scalar function α(x). The transformations (3) are spacetime-dependent

and therefore Noether’s second theorem applies, which in this case states the existence of

the Bianchi identity εµνρσ∂νFρσ = 0 (the homogeneous group of the Maxwell equations).5

So far, Dirac’s and Maxwell’s theories are in no relation to each other—two differ-

ent worlds governed by two different Lagrangians and two different types of equations.

However, it turns out that under the replacement

∂µ → Dµ = ∂µ + iqAµ (4)

with Aµ(x) = −∂µα(x) in LD—known as minimal substitution from classical mechanics—

Dirac’s theory also becomes covariant6 under a group of spacetime-dependent transfor-

3For an historical overview the reader may also consult Cao (1997).
4c = ~ = 1 throughout the paper.
5The importance of Noether’s work in variational theory and her corresponding theorems have recently

been in the focus of foundational and historical considerations mainly by the work of Brading and Brown
(2003) and Earman (2002, 2003).

6Here the notion of covariance is used in the sense of form invariance, i.e. a theory is covariant
under a certain group of transformations, if the equations of the theory remain unchanged under the
transformations.
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mations

ψ′(x) = eiqα(x)ψ(x). (5)

Written in terms of the covariant derivative (4), the Dirac Lagrangian (1) must hence be

replaced by LD → LD + Lcoup to restore the local symmetry (5).

Now the logic of the gauge principle, as usually presented, is the idea that the demand

of local gauge covariance of LD in and of itself already leads to the coupling of the Dirac

field to an interaction field—in this case to the electromagnetic field. This may be called

the received view of the gauge principle. The reason for the received view is that the vector

field Aµ in (4), which arises in order to restore the symmetry of the Dirac Lagrangian LD

under local gauge transformations (5), is simply identified with the gauge potential of a

non-vanishing gauge field Fµν. The problems and inconsistencies with this view will be

scrutinized in section 1.3.

Finally, we obtain the total Lagrangian

LDM = LD + Lcoup + LM = ψ̄(iγµ∂µ −m)ψ − µA
µ − 1

4
FµνF

µν (6)

for a proper gauge field theory, i.e. a combined matter field and interaction field theory

such as the Dirac-Maxwell theory.

1.2 Interlude: gauge theories and fiber bundles

Presented this way, the structure of a gauge theory is apparently based on the interplay

between three different types of gauge symmetry transformations:

1. Rigid transformations, usually called global gauge transformations (2),

2. Local gauge transformations, further classified as (following Pauli’s 1941 classic):7

(a) Gauge transformations of the first kind (5),

(b) Gauge transformations of the second kind (3).

As already mentioned, the concepts involved in gauge theories can suitably be inter-

preted within the enlarged geometrical arena of principal fiber bundles and their associated

vector bundles.8

A fiber bundle is a structure 〈E,M, π,F, G〉 with bundle space E, base manifold M,

projection map π : E →M, fiber spaces Fp, and structure group G. Fiber bundles can

be considered as generalizations of the Cartesian product in the sense that they in general

7Unfortunately, this terminology is not uniform. Some authors already call global and local gauge
transformations transformations of the first and second kind (as Trautmann’s quote for instance shows).

8Cf. Schutz (1980) or Nakahara (1990) for mathematical expositions of fiber bundles. In the philo-
sophical literature Sunny Auyang’s (1995) was the first broad portrayal of fiber bundle theories within
the Lagrangian view, but mention should also be made of Cao (1997) and, more recently, Healey (2001)
and Nounou (2003).
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only locally look like M×F (here we assume all fibers Fp at p ∈M to be homeomorphic

to the typical fiber F). A local trivialisation is then given by a diffeomorphic map φi : Ui×
F→ π−1(Ui) within some open set Ui ⊂M. In order to obtain the global bundle structure

the local charts φi must be glued together with transition functions tij(p) = (φ−1 ◦ φj) (p).

If all transition functions can be taken to be the identity the bundle is called trivial. In

this case not only its local but also its global structure is that of M× F.

In physics two classes of bundles play a crucial role: If the fiber is given by

some n dimensional linear vector space Vn the bundle is called a vector bundle

E(M,Vn, GL(n,V)). The general structure group for Vn = Rn is G = GL(n,R). For a

principal bundle P(M, G) the fiber F is identical to the structure group G. To any prin-

cipal bundle there naturally exists an associated vector bundle with the same structure

group and transition functions.

Four types of bundles can in general be distinguished:

1. trivial bundles with flat connections

2. trivial bundles with non-flat connections

3. non-trivial bundles with flat connections

4. non-trivial bundles with non-flat connections

Cartesian product spaces can be considered as bundles of the first type with Galileian

spacetime as a concrete physical example. It has absolute time R—the bundle’s base

space—and relative space R3, i.e. fibers with structure group O(3). The bundle is globally

isomorphic to the direct product R ×R3 and therefore trivial. Physically speaking, the

flatness of the connections indicates that space is non-dynamical. Now suppose space

or rather spacetime to be curved according to some dynamics as in general relativity.

Suppose further that the spacetime base manifold is topologically trivial, then this gives

an example of the second case, since one can prove that any bundle over a contractible

base space is a trivial bundle. Of much more interest are of course the non-trivial cases.

A simple example is the line bundle over a circle, i.e. a structure which locally looks like

S1 × I with I =]0, 1], and which can globally either be a cylinder or a Möbius strip. In

this latter case the structure group is Z2 = {1,−1}. Both cylinder and Möbius strip are

however locally isomorphic to the flat plane, the bundle is therefore considered a bundle

with “flat connections” between the fibers, that is, without curvature. An example for

the fourth, most general case, would finally be given by a curved Riemannian space with

some globally non-trivial topology.

In the Lagrangian view of gauge theories one usually considers fiber bundles over

spacetime M as base space with a continuous Lie group, the gauge group G, as struc-

ture group. The connection of the principal bundle P(M, G) is physically interpreted

as a gauge potential. Mathematically, a connection can be thought of as a rule which

decomposes the tangent of P into a horizontal and a vertical part TuP = VuP⊕HuP for

every u ∈ P. Let g be the Lie algebra of G, then the connection is defined as a g-valued
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one-form projecting TuP to VuP ∼= g. Physicists are familiar with this concept as the

covariant derivative (4) already introduced.9 Furthermore, matter fields are defined as

local sections in the associated vector bundle E of P. A bundle section is defined as a

mapping σ : M→ E and can be thought of as a generalization of a tangent vector field.

With π (σ(p)) = p the section σ(p) ∈ Fp is local (conversely, a bundle is called trivial, if

it admits a global section).

We see that in bundle terminology the distinction between local gauge transformations

of the first kind—matter fields as sections in E—and second kind—gauge potentials as P-

connections—is reflected by the distinction between E and P. The generators of the gauge

group G represent gauge bosons, the bundle curvature—the covariant derivative of the

connection and, hence, a g-valued two-form—encodes the interaction field strength. In this

terminology the bundle structure of the Dirac-Maxwell theory—and QED, respectively—

is P(R1,3, U(1)) with Minkowski spacetime R1,3. Yang and Mills in 1954 extended this

approach to higher unitary and, thus, non-abelian gauge groups SU(n), two years later

Utiyama was the first (published!) approach considering gravitational gauge theories.10

1.3 Are gauge transformations observable? – To overcome the

received view of the gauge principle

The received view of the gauge principle is widely adopted, as the following quotes from

textbooks show. First Aitchison and Hey (1982, p. 176):

“We shall demonstrate that such a phase invariance is not possible for a free

theory, but rather requires an interacting theory ... The demand of this type

of phase invariance will then have dictated the form of the interaction—this is

the basis of the gauge principle.”

An even stronger claim can be found in Ryder (1996, p. 79):

“Present day theories ... state that interactions between fundamental fields

(like electrons, quarks, weak vector bosons, and so on) are dictated by a gauge

principle. ...it emerges that, in order to have a local symmetry, we need a spin

1 massless gauge field, whose interaction with the ‘matter’ fields is dictated

uniquely.”

From these quotes one may get the impression that the application of the gauge

principle—the demand that the theory is invariant under local gauge transformations—

in one way or the other changes physics. But this would leave us with a puzzle—quite

aptly noticed by Michael Redhead (1998, p. 503) in his truly justified question: “... how

9Different, yet equivalent definitions of bundle connections and their close relation to the physicist’s
understanding are discussed in Drechsler and Mayer (1977).

10For the history see again O’Raifeartaigh (1995) and Cao (1997). For philosophical issues concerning
gauge theories of gravity the reader may consult Liu (2001) and Lyre and Eynck (2003).
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Figure 1: Schematic configuration of the ’t Hooft (1980) experiment.

can symmetry under a mere choice of conventional representation dictate any genuinely

physical principle at all?”

In order to scrutinize this puzzle, our first concern should be the question, whether

gauge transformations may yield any observable effects (as recently stated by Kosso 2000,

for instance). Let us first consider global gauge transformations. In the case of quantum

gauge theories—the case of interest here—gauge transformations are transformations of

the phase of the wave function ψ → ψeiχ. Now the question, whether global phase trans-

formations are observable, can safely be answered in the negative, since changes in the

global phase—a rotation of the entire Hilbert space—do not change any observables in

quantum theory. More precisely, the expectation value 〈Â〉 = 〈ψ|Â|ψ〉
〈ψ|ψ〉 of any observable Â is

invariant under ψ → ψeiχ. Global phase transformations are therefore clearly without ob-

servable effects. But what about local phase transformations ψ(x) → ψ′(x) = ψ(x)eiχ(x)?

Gerard ’t Hooft (1980) offers a seemingly convincing argument to support the ob-

servability of local phase transformations (and, in turn, the received view of the gauge

principle). He considers a simple double-split experiment with an interference pattern. By

inserting a phase shifter behind the slit in one of the two paths a shift of the interference

pattern occurs (the schematic experimental configuration is given in figure 1). The very

point now is that, according to ’t Hooft, the phase shifter should be considered as a real-

ization of a local phase transformation. However, applying a phase shift only to one part

of a total wave function which is in a superposition of many parts—such as the double

slit wave function ψ = ψI + ψII on the two paths PI and PII—leads to a relative phase

shift instead of a proper phase transformation. As Brading and Brown (forthcoming)

quite correctly put it: “Local gauge freedom is the freedom to vary the overall phase of the

wavefunction from point to point, but it is not the freedom to vary the phase of ψI with

respect to ψII at a single spacetime point. Under a local gauge transformation the phase

of ψI at some point on the screen will be changed by the same amount as the phase of ψII

at that same point. What we need in order to change the interference pattern is a relative

phase transformation of ψI with respect to ψII at each point on the screen.” For instance,

a λ/4-phase shifter in PII leads to ψII → ψIIe
iλ/4. This changes the total wave function
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ψ to ψ̃ = ψI +ψIIe
iλ/4 and, quite obviously, ψ and ψ̃ do have different expectation values.

For that reason a clear distinction must be made between relative phase shifts and local

phase transformations—or more generally between transformations of subsystems of a

total system and symmetry transformations proper. ’t Hooft’s experiment only shows the

observability of the former.

There is yet another argument supposedly in favor of an observability interpretation

of local phase transformations: The eigenvalue equation of the momentum operator p̂µ =

−i∂µ for a plane wave ψ = eipx is simply given by p̂µψ = pψ. Apparently, the locally

phase transformed wave function now obeys the new equation p̂µψ
′ = [p + ∂µχ(x)] ψ′.

The argument is not really different from the gauge argument itself, simply because the

inhomogeneous term in the covariant derivative is indeed nothing but the gradient of the

local phase qAµ(x) = −q∂µα(x) = −∂µχ(x)—and we shall see now that this “change” is

not observable.

Let us, for the sake of clarity, consider the general form of local gauge transformations

of the first kind ψ′ = eiχ(x)ψ and hence a covariant derivative

Dµ = ∂µ − i∂µχ(x) (7)

instead of (4). To see in more general terms that the Lagrangians LD and L′D =

ψ̄′(iγµDµ − m)ψ′ are indeed equivalent, the following consideration should suffice: Let

|x〉 be the position representation of a wave function Ψ(x) = 〈x|φ〉, where
{
|φ〉

}
span

an abstract Hilbert space, then local gauge transformations |x′〉 = eiχ(x)|x〉 = Û |x〉 must

properly be seen as mere changes in |x〉. Such a change of the representation now ob-

viously affects the operators as well. Generally, Hilbert space operators transform as

Ô′ = ÛÔÛ+, and in the particular case of the derivative (or the momentum operator,

respectively) we get the covariant derivative (7), which is thus uncovered as nothing but

a mere change in the position representation.

Therefore, by using the appropriate momentum operator p̂′µ in the new representation,

the inhomogeneous term in the expectation value of the original momentum operator, as

introduced in the preceding section, is cancelled and, hence, from p̂′µψ
′ = pψ′ it can easily

be seen that no physical change has occurred. Thus, local phase transformations turn

out as not observable at all. Furthermore, since the tacit substitution ∂µχ = qAµ used

in the gauge principle has of course no physical meaning, the true Noether current of

the Dirac theory is really just the probability density current Sµ = ψ̄γµψ. The essential

point of all this is that local phase transformations mean no more and no less than

simple changes in the representation—at best be interpreted as changes in the generalized

fiber bundle coordinates and much on the same—dynamically meaningless!—footing of

ordinary coordinate transformations in spacetime.11 What does all this tell us now about

our understanding of the gauge principle?

11Accordingly, this result generalizes to the case of gauge transformations in gauge theories of gravity
as well. Roughly stated, local gauge transformations in this case are local Lorentz rotations or Poincaré
translations of tetrads θα

µ(x) representing local reference frames. At first glance it looks as if such
transformations would be observable, however, because of gµν(x) = gαβ θα

µ(x) θβ
ν (x), any transformation

of the tetrads leads to a recalibration of the metric as well leaving the total physical state unchanged.
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Clearly, the question whether some transformations are observable or whether the

dynamical laws are invariant under those transformations are, in the first place, two

separate issues. However the logic of the received view of the gauge principle suggests

to connect these two points. As we have seen in section 1.1, the demand of local gauge

invariance of a formerly interaction-free Lagrangian leads to a covariant derivative where

the inhomogeneous term is interpreted as indicating the existence of a non-vanishing and

observable interaction field. The message of the gauge principle is therefore often put as if

the (supposedly observable) effect of local gauge transformations would be compensated

by introducing an appropriate (seemingly observable) gauge interaction field. ’t Hooft

makes the same claim by pointing out that the shift of an interference patterns in a double

slit experiment can either be produced by asserting a phase shifter or by asserting a magnet

behind the slit, so that an Aharonov-Bohm experiment is realized. He then concludes

that “the magnetic field compensates the phase shift” and that “in gauge theories fields

are introduced to restore the symmetry.”

We will address the Aharonov-Bohm experiment in great detail in section 2, but for

the moment we just record the fact that ’t Hooft’s claim doesn’t hold because local phase

transformations are already unmasked as not observable. From this insight, however, the

whole logic of the received view breaks down. Since the introduction of an interaction

field as intended by the received view seemingly changes physics (those fields are even

directly observable themselves), it is necessary from this view to consider local gauge

transformations as changing physics as well in order to tell the story about compensation.

Since, however, local gauge transformations can be shown as not observable, the received

view proves itself untenable.

Hence, the way the gauge principle is used in a considerable part of the physics

literature—such as Ryder—is certainly overstated. For a mere change of representa-

tion cannot “dictate” a real physical interaction. The demand of local gauge invariance

of the Dirac Lagrangian (1) under a certain group G leads to the replacement (4) of the

usual by the covariant derivative, where an extraneous inhomogeneous connection term

occurs. The mathematical formalism ensures that this will be a G-connection. From the

pure logic of the gauge argument, however, this connection is still flat, i.e. with vanishing

bundle curvature, whereas in an overstated reading of the gauge principle it looks as if

one could enforce the existence of a non-vanishing curvature tensor, i.e. a real dynamical

field.12

12Similar critical readings of the gauge principle have been discussed in the last years by the following
authors: Brown (1999), Healey (2001), Lyre (2000, 2001), Martin (2002, 2003), and Teller (2000).—One
may however, as indeed Paul Teller in an unpublished draft (1999) contrary to his 2000 publication does,
raise the objection that the above analysis of the application of the gauge argument in ordinary quantum
wave mechanics fails, since—as differential operators—position and momentum are strictly speaking no
linear operators on the Hilbert space L2(R), i.e. they cannot be defined on all vectors of L2(R) but only
on a dense subset of differentiable functions thereof. The usual stance to this is a pragmatic one: the
gauge argument has either to be applied within the approximation of considering position and momentum
as “almost” linear operators or one has to rigorously refine quantum mechanics in terms of rigged Hilbert
spaces or other means. By way of contrast, Teller (1999) comes to the astonishing conclusion that the
gauge argument only applies in the second quantized formalism and that here the argument indeed leads
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Local gauge symmetry can thus simply be restored by writing the theory “generally

covariant” by means of a covariant derivative. The situation is indeed entirely analo-

gous to the case of general relativity, where Christoffel symbols in the geodesic equation

might simply occur due to choosing “curvilinear” coordinates in flat Minkowski spacetime.

The Levi-Civita connection by itself does therefore not necessarily represent a true grav-

itational potential with a non-vanishing gravitational field, i.e. non-vanishing Riemann

curvature as a result of a certain dynamics. Rather, the connection term might just occur

due to some peculiar choice of coordinates.

Does this mean then that the gauge principle is physically void? Surely, the general

question is what it means for a group of transformations to constitute a symmetry of a

given dynamical system. Quantum electrodynamics, for instance, is certainly quite aptly

characterized as a U(1) gauge theory. The physical significance of this statement lies in

the fact that the dynamical field of the theory, the electromagnetic field strength tensor

F µν , is characterized by this symmetry as the curvature tensor of the U(1)-connection,

and that, hence, the Maxwell Lagrangian LM = −1
4
FµνF

µν shows invariance under (global

and local) U(1) symmetry. So of course the characterization of a gauge theory by some

gauge group G as its symmetry group is a physically meaningful statement, insofar as the

existence of a real dynamical interaction field shall be indicated. But this very existence

has to be tested empirically and cannot be enforced by some symmetry requirement.

Perhaps this is what many physics authors have in mind when they write about the

gauge principle—and perhaps Aitchison’s and Hey’s statement that the demand of local

phase invariance dictates the form of the interaction—i.e. the form of the coupling term—

should be read this way as well. But then it must be noted that it is not necessary to

call this a “principle” since what happens is merely that one plugs in a certain gauge

group G in the first place—in the above sense of being an empirically already vindicated

symmetry group—and then gets the corresponding G-connection as a mere mathematical

consequence.

A final remark on some possible conceptual weaknesses of the Hamiltonian view should

be made. From the Lagrangian LDM (6) we can gather what should perhaps be considered

a genuine gauge theory: a coupled matter field and interaction field theory (here: the

Dirac-Maxwell theory—again: with the gauge principle not being sufficient to introduce

LDM starting from the Dirac theory LD alone). As opposed to this, sometimes in the

literature Maxwell’s theory LM is already called a gauge theory, but perhaps one should

in this case rather speak of a theory with a mere gauge freedom. The Hamiltonian

formalism seems not to be suited to grasp this subtle distinction, which corresponds to the

possibility of distinguishing between first kind local gauge transformations of the matter

fields and second kind transformations of the gauge potentials. This is also related to the

fact that the Hamiltonian view lacks a genuine fiber bundle picture, where, as already

mentioned, this distinction is reflected in the concepts of principal and associated vector

to the existence of a non-flat connection! I am sceptical about this, but a rigorous discussion of this
would mean to delve into the quantum field theoretic formalism which is not the purpose of the present
paper.
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Figure 2: Schematic experimental configuration of the AB effect.

bundles. At the end, of course—given the mathematical equivalence between Lagrange

and Hamiltonian view—these weaknesses are perhaps only apparent ones. However from

the practising physicist’s point of view they make quite a difference.

2 The ontology of gauge theories – underdetermined

Aharonov and Bohm (1959) were the first who realized that in quantum gauge theories,

already on the non-relativistic and semi-classical level (i.e. the minimal coupling of the

Schrödinger wave function to an electromagnetic field), remarkable effects are possible—

remarkable in the sense that no entirely “local” explanation can be given. They discussed

in their paper what is nowadays called the magnetic and the electric AB effect.13

In fact, the AB effect forms only the prelude to the even more general class of topo-

logical effects which are possible in gauge theories with an underlying non-trivial fiber

bundle structure and which are known as monopoles or instantons for instance (cf. Naka-

hara 1990 and Ryder 1996, chap. 10). It should, however, be noticed that the AB effect

can finally be distinguished from these entirely topological effects, as will become clear

in section 2.3. It is nevertheless sufficient for our interest in the basic ontology of gauge

theories to consider the AB effect as a first example here.

2.1 The Aharonov-Bohm effect and different notions of locality

Put crudely, the magnetic AB effect is just this: A split electron beam passing—in a

field-free region—around a solenoid which confines a magnetic field nevertheless shows

a shift in the interference pattern upon alteration of the magnetic field. A schematic

13Cf. Peshkin and Tonomura (1989) for a detailed review of the intense discussion in the physics
literature the AB effect has caused in its first three decades of history. In recent times the AB effect has
also attracted interest within the philosophical literature. Here, mention should be made of Batterman
(2003), Healey (1997, 1999, 2001), Leeds (1999), Liu (1994), Maudlin (1998), Nounou (2003) as well as
Lyre (2001) and Eynck, Lyre and Rummell (forthcoming).
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experimental setting of the AB effect is given in figure 2. Quantitatively, the phase

shift can be calculated from the loop integral over the potential, which—due to Stokes’

theorem—is related to the magnetic flux

∆χ = q

∮

C
~A d~r = q

∫

S
~B d~s = q Φmag. (8)

The AB effect must indeed be considered as demonstrating a genuine non-local in-

teraction between the magnetic field and the quantum wave function and cannot easily

be explained away as a side-effect of some sort of improper shielding. The reason for

this is that, on the one hand, the magnetic field can in principle—and as opposed to the

schematic experimental setting in figure 2—perfectly be confined in toroidal magnets (cf.

Tonomura 1998) and that, on the other hand, the unavoidable penetration of the quan-

tum wave function into the solenoid is not correlated to any scaling of the effect with the

quality of the solenoid’s shielding. It is therefore obvious that the effect shows at least

some sort of non-locality. But which exactly? To tackle this question we must delve into

the different meanings the concept of non-locality may have in physics (cf. also Healey

1997 on non-locality and the AB effect).

As argued in Eynck, Lyre and Rummell (forthcoming), one may at least distinguish

three different notions of locality in physics (or metaphysics, respectively). The first two

of them, local action and point-like interaction, are strongly connected with the very

concept of field theories in physics. Local action can be restated as follows:

Local action

All causes of an event propagate via some continuous physical processes.

Technically this is established by the build-in causal light cone structure of modern field

theories. The structure of Lagrangians in field theory and indeed the very idea of the field

itself—as a quantity with values at spacetime points—give rise to point-like interaction14

as a second important locality concept:

Point-like interaction

Interacting entities can be defined within arbitrarily small spacetime regions

(usually idealized as spacetime points), couple to each other in that regions

and are non-zero in overlapping regions.

Now, the paradigm for a violation of locality in physics is of course the case of quan-

tum entanglement. There is widespread belief that this particular sort of non-locality

is perhaps best captured as a failure of the separability of quantum systems, which can

mathematically be traced back to the particular tensor product structure of the Hilbert

14The term “point-like” may be misleading here, since (quantum) fields are distributions over spacetime
and realistically therefore only properly defined over some dense domain. So point-like interaction may
equally well be read as interaction within arbitrarily small spacetime regions (and in this sense local).
This—still informal—definition is sufficient for our needs.
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state space: in quantum theory, the state vector of a compound system can in general

not be factorized into a product of state vectors of the subsystems, but must rather be

described as a superposition state.

On the assumption that the state of a system specifies the system’s properties, one may

grasp the idea of separability equally well in saying that it must be possible to gain the

properties of the compound system from the properties of the parts. In more philosophical

terms separability is often explained in recourse to the notion of supervenience: properties

of the compound system should supervene on the properties of the parts. Different notions

of separability can then be gained by considering either relational or intrinsic properties

or both in the supervenience basis (cf. Howard 1985, Teller 1986, Healey 1991, Esfeld

2001). An appropriate definition of separability for our aims—without reference to the

notion of supervenience—is the following:

Separability

Given a physical system S and its exhaustive, disjoint decomposition into spa-

tiotemporally divided subsystems, it is possible to retrieve the properties of S

from the properties of these subsystems.

Once again, quantum theory violates this concept of separability by the existence of

EPR-Bell correlations in entangled states, where the properties of these states cannot be

retrieved from the properties of the spacelike separated subsystems.

A further notion, closely related to the failure of separability and sometimes even

identified with non-separability is holism: properties of the whole do not supervene on

properties of the parts. A fruitful distinction between the two concepts might perhaps be

gained by giving up the particular restriction to spatiotemporally defined domains of the

system and to generalize to all kinds of—perhaps abstract—domains. In such a way we

obtain the following broader definition:

Holism

Given a physical system S and its exhaustive, disjoint decomposition into sub-

systems, it is impossible to retrieve the properties of S from the properties of

these subsystems.

In this sense non-separability can be understood as a special case of holism tied to

spatiotemporal domains, and there are cases in quantum theory where no question of a

spatiotemporal separation of the systems is concerned, e.g. cases of spin entanglement of

electrons in atoms, where the electrons are not individually localized, or superposition

cases of different configurations of certain molecules, or cases of quantum parallelism in

quantum computers. Quantum theory does therefore, in this terminology, not only exhibit

non-separability, i.e. spatiotemporal holism, but holism in general.

In the following we shall see whether and which of the above notions apply to the

AB effect. As a result of our further discussion it will turn out that it is possible to

shift the ontological costs back and forth between different possible interpretations of the
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AB effect—and this will include different combinations of confirmation and violation of

the three locality notions, so that no general judgement about the precise form of non-

locality in the AB effect can be given. From this perspective the question about the origin

of non-locality of the AB effect becomes an interpretation-dependent issue.

2.2 From AB to ABC: Three Interpretations of the AB effect

With the above conceptual machinery of different notions of locality, I will now turn to

the primary ontological concern of this section: What are the basic entities involved in

the AB effect? As we shall see shortly, the answer to this question depends strongly on

our metaphysical premisses about locality.

Looking from pure classical electrodynamics, the issue in question seems to have a

straightforward answer: only the the field-strengths count as observable entities, the

potentials merely play the role of auxiliary functions and are thus to be considered as

elements of redundant mathematical surplus structure. One may seek to interpret the

AB effect in the same spirit. What would then be the further consequences of such an

interpretation, which only takes the ~B-field as real and which might therefore be dubbed

the B-interpretation? Obviously, since the ψ-field (outside the solenoid) and the ~B-

field (inside the solenoid) do not exist in overlapping regions, the B-interpretation violates

point-like interaction. Moreover, since no continuous physical transmission process from

the change of ~B to the shift of the interference pattern exists, it also violates local action,

that is, we have a case of action-at-a-distance. The condition of separability, however, is

satisfied within the B-interpretation.

Some, but not many in the physics community would take up the B-stance (cf. DeWitt

1962 as an early supporter). Much more common is the view Richard Feynman holds in

his famous lectures (1963):

“In our sense then, the A-field is ‘real.’ You may say: ‘But there was a

magnetic field.’ There was, but remember our original idea–that a field is

‘real’ if it is what must be specified at the position of the particle in order

to get the motion. The B-field in the whisker acts at a distance. If we want

to describe its influence not as action-at-a-distance, we must use the vector

potential.”

In sticking to the ~A-field as the genuine real entity in gauge theories, the AB effect

gets an A-interpretation instead of the B-interpretation above (giving the acronym AB

an entirely new meaning...). The clear advantage of this view, as Feynman has pointed

out, is the restored local interaction between ψ and the gauge potential ~A, which more

precisely means that the A-interpretation conforms to point-like interaction as well as to

local action. This advantage, however, comes at a high price: since gauge potentials are

gauge-dependent quantities, the values of ~A associated to space regions of any partition are

no observable properties. This in turn means that the “real” entities become dependent

on our conventional choice of gauge—on, as we saw, mere generalized coordinates!
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Furthermore, one may wonder whether the A-interpretation is separable and can

therefore—at least—render the AB effect as local. But even this is not the case: be-

cause of the gauge freedom still inherent in the potentials, a partition into observable

properties fails. This is equivalent to the fact that no preferred gauge can be given for

the total configuration space of the electron. Therefore, the A-interpretation violates

separability.

Remarkably, the AB effect also allows for a third interpretational option. This C-

interpretation considers holonomies (i.e. closed curves C) as basic entities. Technically

speaking, holonomies are elements of the structure group due to a loop lift: Let C : [0, 1] →
M be a parametrized curve in base space, then, generally, the horizontal lift of a closed

curve with C(0) = C(1) does not guarantee that the horizontal lift C̄ in bundle space is

a closed loop as well, but rather C̄(1) = C̄(0) g with g ∈ G. As we already saw from

(8), the AB phase shift is given by a U(1)-holonomy S(C) =
∮
C Aµdxµ. Since the phase

χ is no single-valued function, one rather uses the Dirac-Wu-Yang phase factor H(C) =

eiqS(C). Holonomies are U(1)-gauge invariant quantities, they do, however, transform

homogeneously under U(n) for n > 1. The most appropriate, generally gauge invariant

formalism takes Wilson loops trH(C) as basic entities. It can be shown that, at least on the

classical level, the connection and loop formulation are equivalent, and strong indicators

exist that all relevant gauge-invariant content of a gauge theory can be reconstructed from

the Wilson loops (cf. Loll 1994). Gambini and Pullin (1996) have presented a worked-out

and genuine approach for gauge theories within the loop representation.

Besides the advantage of leading directly to gauge invariant and, hence, observable

quantities such as the magnetic flux, the C-interpretation also conforms to local action,

though it should be noted that the dynamics of loops takes place in an appropriate state

space, the loop space, and that its detailed mathematical structure is still a matter of

ongoing research (cf. again Loll 1994, and Gambini and Pullin 1996). While, on the one

hand, the C-interpretation conforms to observability and local action, it does, on the other

hand, violate point-like interaction (in quantum gravity programs the loop approach gives

rise to even transcend the traditional picture of spacetime as the basic arena of physics

altogether).

Finally we must ask how things stand with the C-interpretation and separability.

Indeed the answer depends on how we apply the expression “spatiotemporal support R”

in the definition given in section 2.1. As a matter of fact the gauge field strength at a

point p can be represented by considering the limit of tinier and tinier loop holonomies

around p. Due to this equivalence of gauge field strengths and infinitesimal holonomies

the holonomy properties of a finite loop enclosing a certain surface S supervene on the

collection of infinitesimal loops around points on that very surface (just because such a

collection of infinitesimal holonomies encodes the same physical information as the total

collection of field strengths at any point on S). This is what Healey (2001) calls the “loop

supervenience of holonomy properties” and which would speak in favor of the demand of

separability in the C-interpretation by identifying S with R. But in effect this amounts to

reducing the C-interpretation to the B-interpretation. It is therefore necessary to consider
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— interpretation —

A B C

point-like interaction yes no no

local action yes no yes

separability no yes no

measurability no yes yes

Table 1: “Ontological costs” of the three rivaling interpretations

of gauge theories in terms of potentials (A), field strengths (B),

or holonomies (C) as their basic entities.

all and only the points as sets R which constitute the particular holonomy loops. On this

view the thesis of separability is clearly violated, since now the holonomy properties must

be seen as global properties of loops which cannot be retrieved from the intrinsic local

properties of any partition of the loops (Healey 2001 comes to the same conclusion). In this

sense we must speak of a failure of separability within the context of the C-interpretation.

All of the above amounts to saying that the AB effect in terms of its rivaling A-, B-,

C-interpretations seems to provide an intriguing example of theory underdetermination

by empirical evidence, since the three interpretations are on the one hand empirically

equivalent while on the other hand manifestly different as far as their underlying ontology

is concerned. A compact overview can quite neatly be given in the form of table 1. It

shows that, prima facie, the ontological costs of the three interpretations are balanced.

At this stage it solely depends on our metaphysical premisses concerning locality and the

measurability of the primary entities in our physics whether we prefer one over the other

interpretations.

Two further remarks should be made: Firstly, within the philosophical literature the

C-interpretation—not only in view of the AB effect but within the context of gauge

theories in general—has attracted some interest. Belot (1998) indeed distinguishes the

same three interpretations as we do, but as interpretations of classical electromagnetism

already, and he considers two notions of locality, synchronic and diachronic, which are

related but not identical with our notions of separability and local action. Belot then tries

to show that the B-interpretation does not hold in the face of the AB effect and he finally

favors the C-interpretation—because of the failure of determinism in the A-interpretation

when one considers the dynamics of gauge-transformed gauge potentials in Hamiltonian

phase space (i.e. a version of the well-known hole argument (cf. Earman and Norton 1987

and also Belot 2003). Healey (2001), on the other hand, argues for holonomies as the

genuine entities in gauge theories simply because of Ockham’s razor: due to its gauge

invariance the C-interpretation has no problem with questions about supposed privileged



Holism and Structuralism in U(1) Gauge Theory 17

but empirically inaccessible gauges.

Secondly, there is an attempt by Nounou (2003) to give a fourth explanation of the

AB effect which heavily leans on the fiber bundle formalism. This rich mathematical

structure in its entirety is indispensable, Nounou claims, for a satisfactory explanation of

the AB and, more generally, the topological effects in gauge theories. One may, however,

ask what the real merit of this fourth explanation over the C-interpretation is. At the

end of the day, holonomies are closely connected with the fiber bundle formalism—why

should it be of more explanatory power then to “globally” point to the whole formalism

instead of pointing to precisely the feature of that formalism—holonomies—which encode

the crucial physical information? As far as our further considerations are concerned, this

fourth explanation may rather be seen as intimately connected to the C-interpretation or

as too vague to judge about its various locality constraints.

A further drawback of such a fourth explanation, in fact a general problem of an

exaggerated emphasis of structures in physical theories, is to fall all to easy into a myste-

rious Platonism, where apparent “surplus structure,” as Michael Redhead calls it, enters

the stage of physical explanation. Redhead (2002) has discussed this within the con-

text of a general analysis of gauge theories as one of the possible implications of the

A-interpretation (cf. also the comment on Redhead by Drieschner, Eynck, Lyre 2002).

2.3 Holonomies, non-separability and holism in gauge theories

Particular attention should now be paid on the failure of separability as it occurs in

the A- and C-interpretation, for their violation of separability seems to be of genuine

gauge theoretic origin: in these two interpretations gauge theoretic entities as either the

gauge potential or holonomies come into play, whereas the ontological furniture of the B-

interpretation—field strengths—is still compatible with classical electromagnetism. What

exactly is the reason for the non-separability in the A- and C-interpretation? As men-

tioned in the beginning of this section, the AB effect is only the prelude to a variety of

topological effects in gauge theories as manifested by monopole or instanton solutions (cf.

Fine and Fine 1997 for a philosophical discussion of gauge theoretic anomalies). But why

call it a “prelude”?

The question which arises here is whether the AB effect is of geometrical or of topo-

logical origin. Note first that the holonomy is a non-integrable quantity,15 i.e. it does

not only depend on the trajectory’s starting and ending point, but is path dependent. A

familiar example is the parallel transport of a vector in Riemannian spacetime along a

closed curve. In the general case there will be a difference in angle between the initial and

final vectors. Call this a geometrical holonomy. The quantum mechanical analogue is the

well-known Berry or, more general, Aharonov-Anandan phase, where a quantum system

acquires a phase shift merely because of its evolution through the Hamiltonian parameter

15Strictly speaking one must use the term anholonomy here, but the distinction between holonomic,
integrable constraints and anholonomic, non-integrable ones in classical mechanics has not been taken
over into the practice of differential geometry.
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space around some loop. Since this effect does depend on the particular path, Berry or

Aharonov-Anandan phases are quite aptly characterized as geometric phases (cf. Shapere

and Wilczek 1989 and Anandan 1992).

By way of contrast, a topological effect depends, in one way or the other, on the topol-

ogy of the contributing space(s), i.e. the question whether one or more of the parameter,

group or configuration spaces, which are involved in the effect, are non-simply connected.

This is the case for genuine topological objects in gauge theories such as monopoles or

instantons. These effects can be traced back to non-homotopic and, hence, non-trivial

mappings X → G of the configuration space onto the gauge group. E.g. in the case of

SU(2) instantons one considers S3 → SU(2) and, thus, the non-triviality of the homotopy

group π3(S3) = Z (cf. Ryder 1996, chap. 10).

Insofar as holonomic effects of quantum phases are concerned, it is therefore, by anal-

ogy, useful to distinguish between geometric and topological phases (as Batterman 2003

has also pointed out). Now, in the AB case the holonomy is path dependent only in

the sense that the solenoid has to be enclosed, but the particular shape of the curve is

not essential. Moreover, since the electron can for all practical purposes be considered

as perfectly shielded from the interior region of the solenoid, the configuration space of

the electron can be modelled as S1 and is insofar doubly connected (all paths homotopic

to S1 fall into the same topological equivalence class). Ryder (1996, p. 104) analyses

the AB effect in this spirit as a genuine topological effect based on non-trivial mappings

S1 → U(1).

However, as Brown and Pooley (2001) have recently pointed out, there is a proper

classical analogue of the AB effect in Weylian spacetime known as the “second clock

effect.” In an experimental setting analogous to the AB setting one considers the transport

of a measure of length in Weylian spacetime around the solenoid and will in general

observe a length shift (Einstein in his early objection against Weyl’s theory considered

an analogous clock transport and pointed out that we do not observe such a supposed

dependence of clock rates from their history). The classical Weylian AB effect does not

fall under Ryder’s topological analysis—for in this case the gauge group is just R. And

so, although the AB effect does not depend on the particular path, it still is a geometric

effect, since only the fact counts that the curvature is non-vanishing in some (confined)

region.16

What is, however, common to both genuine topological effects in gauge theories and

the AB effect is their failure of separability. In all of these cases a non-separability results

in the sense that the properties of the underlying loop holonomies do not supervene on

the intrinsic properties of partitions of the loops. For instance, in the case of the AB

16In this sense the notion of “topological non-separability,” as introduced in Eynck, Lyre and Rummell
(forthcoming), should be dismissed. Nevertheless one must be careful with analogies to the original AB
effect: As, for instance, Anandan (1993) and also Healey (this volume) point out, a decisive difference
between phases in gravitational gauge theories (where one has to integrate over the connection of a
suitable spacetime group such as SO(1, 3) or R1,3) and phases in quantum gauge theories such as the
Dirac-Maxwell theory and Yang-Mill is that in the former cases the phase also has a value on open curves
and not only as a holonomy.
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effect, the phase ∆χ = q
∮
C

~A d~r cannot be derived from intrinsic properties either of the

spacetime points or little pieces of the loop C.

Moreover, we may very well distinguish this generic non-separability of the C-

interpretation from the well-known quantum theoretical cases. This becomes clear if

we recall the above definitions of the two related notions of non-separability and holism.

Quantum theory exhibits a general form of holism where no restriction of the domain of

the system to its spatial or spatiotemporal support exists. By way of contrast, the failure

of separability in gauge theories corresponds to spatiotemporal holism only as a particu-

lar variant or sub-concept of holism in general. Whether or not of course this distinction

between non-separability and holism holds, remains at first a mere matter of terminology,

nevertheless a fruitful distinction between cases of holism in quantum theory as opposed

to gauge theories can be made.

3 Structuralism in gauge theories

“... realist about what? Is it the entities, the abstract structural

relations, the fundamental laws or what? My own view is that the

best candidate for what is ‘true’ about a physical theory is the ab-

stract structural aspect. The main reason for this is that there is

significantly greater continuity in structural aspects than there is

in ontology, and one of the principal arguments against realism is

the abrupt about-turns in ontological commitment even in the de-

velopment of classical physics. Of course the structural aspects also

change, but there is a more obvious sense in which one structure

grows out of another in a natural development or generalization,

so that a cumulative model of scientific progress is much easier to

maintain.”

Michael Redhead (1999)

3.1 Why Structural Realism?

Scientific realism is the view that our best current scientific theories are true and that their

theoretical terms genuinely refer. Structural realism—a particular version of scientific

realism—is further on the view that we ought to believe in the structural content of our

best scientific theories only and that such structures refer. Why should one adopt such a

view?

In the debate about scientific realism mainly two prominent arguments give rise to

a sceptic and anti-realistic attitude: the pessimistic meta-induction and the underdeter-

mination argument. The pessimistic meta-induction, as most forcefully argued by Larry
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Laudan (1981), and, similar in kind, the whole strand of Kuhnian incommensurability

worries remind us of the fact that in earlier times there had been many empirically suc-

cessful theories whose theoretical terms are not referring by our modern standards and

that, today, we have no reason to believe that we are in any better situation. Thus, by

induction over the history of science the prospects of realism are poor. Besides such his-

torical arguments, theory underdetermination threatens the realist’s supposed belief in a

distinguished ontology with a systematic attack: Because of the seemingly surplus of the

theoretical parts in our theories over the pure observational parts, there is no warrant,

the underdetermination argument tells us, for the belief that a given body of empirical

evidence can be satisfied by only one theory (and, hence, ontology)—even in the ultimate

case of having all observational data at one’s disposal.

On the other hand there is a forceful argument in favor of a realistic attitude—the well-

known no-miracles argument, which states the obvious: only realism offers an explanation

for the remarkable success of science, which otherwise turns out as a sheer miracle. In the

tension of these pros and cons, structural realism—a position already fashionable among

neo-empiricists such as Russell and Carnap as well as the late Quine, among neo-Kantians

like Cassirer, a whole strand of early 20th century physicists such as Poincaré, Eddington,

Weyl and Wigner and philosophers of physics like Weizscker–was revived by John Worrall

(1989) to avoid, on the one hand, the anti-realistic force of the pessimistic meta-induction

and of theory underdetermination without making the success of science a miracle. The

impossible becomes possible because structural realists do not commit themselves to an

ontology of spatiotemporally fixed and object-like entities, such that worries about the

empirical underdetermination of the object content of our best theories as well as about

discontinuous shifts in theoretical entities in the course of scientific progress do not apply.

What does, however, remain invariant or shows much more historical continuity, structural

realists assert, is the structural content of scientific theories. In Worrall’s words: structural

realism offers “the best of both worlds.”

Structural realism, as James Ladyman (1998) has pointed out, comes in two variants:

an epistemic and an ontic form. And many if not most of the traditional structuralists

should perhaps rather be considered as advocates of the more modest, epistemic variant—

for they do not altogether dismiss the object-like entities, but merely consider them as

epistemically inaccessible. By way of contrast, the radical ontic form of structural realism

states that structure is all there is to the world. I shall not worry about the question what

the ambiguous term “structure” could possibly all mean, since here we focus on physics

and may therefore interpret the notion structure mainly in a mathematical sense (problems

may arise if we ask for structural realism in cases of less mathematically formalized sciences

such as biology, geology or the like). Examples for structural content in physical theories

are state spaces, algebras of observables, the light-cone structure, fiber bundles and, last

but not least, symmetry groups.

Within recent years now, the debate about structural realism, which before was pre-

occupied by arguments from the philosophy of science, receives reflourished interest from

the philosophy of physics (cf. Redhead above and Cao, French, Ladyman and Saunders in
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a recent issue of Synthese, Vol. 136, 2003). French and Ladyman (2003) see direct support

for structural realism—in their view even in its ontic form—in the metaphysical struggles

about individuality in quantum theory as well as general relativity. Steven French (1998)

particularly has stressed the point that in quantum theory we have the choice either to

give up the notion of individual objects—the standard view about permutation symmetry

of many particle states—or to introduce transcendental thisness or something similar to

retain the metaphysical concept of individuality. The analogue of this problem in gen-

eral relativity can be seen in the debate about the individuality of spacetime-points and

connected questions about general covariance and the notorious hole argument (cf. most

recently Stachel 2002). This underdetermination of metaphysics itself by physics, French

argues, lends strong support to an ontic view of structural realism.

I shall not deal with this last, perhaps controversial issue, but rather my aim in the

remaining part of this paper is to offer a third support leg for structural realism from the

ontology of gauge theories and, particularly, U(1) gauge theory—over and above the so

far in the literature considered arguments from quantum and relativity theory. This shall

now be laid out.

3.2 Gauge Theoretic Structural Realism

Four central arguments may be invoked for supporting structural realism from our gauge

theoretic analysis. They follow from (i) the group-theoretic constitution of objects, (ii) the

historical origin of U(1) gauge theory, (iii) the ontological underdetermination of gauge

theories, and (iv) the gauge theoretic holism. Let’s consider them one after the other.

(i) Group-theoretic constitution of objects. In modern physics, objects are most

generally defined as representations of symmetry groups, where the symmetries reflect

spatiotemporal, i.e. external, and internal degrees of freedom as well as permutation

invariance. Wigner’s seminal analysis bears early witness of this circumstance. For the

particular case of our Standard Model’s elementary particles the relevant groups are the

Poincaré group and the electroweak and chromodynamic gauge groups SU(2)L × U(1)Y

and SU(3)C . The group-theoretic constitution of objects is therefore not a peculiar feature

of gauge theories alone, it certainly belongs to the overall tenor of modern physics (cf.

Mittelstaedt 1994 and Castellani 1998). Since, however, internal degrees of freedom are

described by gauge theories, we may list it as an argument here as well.

Technically speaking the set of states of an object forms its state space, which can be

described as the representation space of a symmetry group. Hence, states transform into

each other according to the action of the group on the specific representation. Elementary

systems are described as irreducible representations where no further decomposition into

invariant subspaces is possible. In SU(n) gauge theories with principal bundle structure

P(M, SU(n)) the matter field Dirac spinors are described as sections in associated vector

bundlesE(M,Cn) such that they constitute fundamental spinor representations of SU(n).
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All this supports structural realism mainly because of two reasons. Firstly, a group

theoretic definition of an object takes the group structure as primarily given, group repre-

sentations are then construed from this structure and have a mere derivative status. Sec-

ondly, and more importantly, the group theoretic definition leads to object classes only,

not to individual entities. Objects are merely defined as members of equivalence classes

under symmetry transformations which leave certain object properties invariant. These

properties, reflected by the Casimir operators of the group, are the remaining permanent

or intrinsic properties of modern physics such as mass, spin and the various charges of the

gauge interactions. It is, however, not possible to individuate objects from those, as we

might also say, “structural” properties and this already undermines the traditional idea

of objects as individuals.

Of course, this group-theoretic argument does not mean that we may dispense with

the notion of objects as per se existing entities altogether, let alone the question, what

kind of individuality those objects may have. In fact, a group-theoretic account of objects

applies both to classical and quantum theory (we may, for instance, consider particles in

classical mechanics as representations of the Galilean group). Therefore, and as already

mentioned, structural realists like French expand on the issue of permutation symmetry

in quantum theory and its impact on the (non-) individuality of quantum objects (French

1998, cf. also French and Rickles 2003). Moreover, John Stachel (2002) concluded that

there is a close analogy between permutation invariance in quantum theory and the dif-

feomorphism invariance in general relativity by considering both cases within the general

class of permutable theories, where the entities of such theories are only defined by the

relational predicate structures of those theories, which must therefore be regarded as

metaphysically primary.

While the group-theoretic constitution of objects in non-permutable theories might be

considered as only an alternative to an account based on individual objects, in permutable

theories such a description becomes mandatory. For there we only have access to the

objects as members of equivalence classes under those symmetry transformations which

leave the physical properties invariant. This is the situation in modern quantum gauge

theories with regard to the field quanta of the fundamental matter and gauge fields and

in gravitational gauge theories with regard to spacetime points.

(ii) Historical origin of gauge theories. Structural realism asserts the retention of

mathematical structure through theory change. Worrall, and before him Poincaré already,

have noticed that in the development from Fresnel’s optics to Maxwell’s electrodynam-

ics the structure of the central equations remains invariant. Let us consider the next

historical step: We already mentioned the gauge freedom present in Maxwell’s theory

and as expressed in the transformations (3). These gauge transformations form a group

isomorphic to R. When combined with Dirac’s matter field theory, Maxwell’s theory

becomes embedded into the wider framework of the Dirac-Maxwell gauge theory or, once

quantized fields are considered, into quantum electrodynamics. Within the larger math-

ematical fiber bundle structure of QED, the original gauge group of Maxwell’s theory
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isomorphic to R turns out as the Lie algebra (in which the gauge connection takes its

values) to the corresponding Lie gauge group U(1).

Whereas, from the viewpoint of an ontology of objects, many of the entities in the

transition of Maxwell’s theory to QED have changed (Maxwell himself, for instance, still

had the picture of an ether and neither potentials nor holonomies play a physical role in

classical electrodynamics), there is a considerable element of retention of group structure

and its embedding into a larger framework which makes the scientific progress much less

discontinuous as it looks on the level of objects. Furthermore, the generalization from

gauge group U(1) to higher unitary groups or even gauge groups of gravity is—from a

mathematical point of view—simply achieved by retaining the entire fiber bundle structure

of a gauge theory and merely changing the particular groups. This simple recipe has led

to the most powerful development in the history of physics: the advent of the Standard

Model.

Certainly, however, the Standard Model is neither experimentally entirely vindicated

(we have no evidence about the Higgs field), nor would one expect it to be the last

word in physics (given the ad hoc-character of many of its conceptual premisses and

the missing reason for the values of about 19 of its parameters). The above historical

remarks do therefore shed only some light into the direction of the structural realist’s

conception of historical change in science, but do of course stand or fall with future

scientific developments. However, developments in quantum gravity do already quite

heavily lean on gauge theoretic concepts—and this may further endorse the structuralist’s

view (cf. also footnote 17 and Dorato 2000 for a discussion of quantum gravity in the light

of structural realism).

(iii) Ontological underdetermination of gauge theories. As the analysis in section

2 shows, the object content of gauge theories, i.e. its ontology in terms of object-like

entities, seems indeed to be strongly underdetermined. The interpretability of gauge

theories either in terms of field strengths, potentials or holonomies clearly undermines a

classical entity realism, whereas by the same time the structural content—the symmetry

group and fiber bundle structure—remains the same in all three rivaling interpretations.

One may stress the fact that indeed the general issue of theory underdetermination is

controversial within the philosophy of science. This is not to a slight extent due to the

fact that there exist only a few, if at all, remarkable examples—even more remarkably,

only a few authors seem to be really worried about this and try to come up with more

convincing case studies. From this perspective the gauge theoretic ABC-example may at

least be counted as a “more convincing” and “remarkable” case, but a generally critical

stance on theory underdetermination leads us to the last point in the list of arguments.

(iv) Gauge theoretic holism. Among the three rivaling interpretations of gauge the-

ories the C-interpretation is perhaps the one with the least ontological costs (cf. Belot

1998, 2003, Healey 2001 and Lyre 2001 for views in favor of holonomies as genuine enti-

ties). Reasons for this simply are that, first, realists can hardly be satisfied by the gauge



Holism and Structuralism in U(1) Gauge Theory 24

dependence of entities as imminent in the A-interpretation and that, second, for the en-

terprise of physics in toto, it might perhaps be easier to cope with non-separability than

with action-at-a-distance. Doesn’t this undermine the underdetermination claim in the

preceding point (iii) then? One might, on the one hand, still insist that our metaphys-

ical premisses about locality cannot themselves be tested empirically—and this is what

is at stake in the above underdetermination scenario. It is, on the other hand, most cer-

tainly true that our preference for an interpretation of a piece of physics over the other is

guided by a variety of meta-criteria such as coherence, simplicity, scientific unity and the

like. And it is the C-interpretation which seems to bear the biggest potential for further

developments of physics.17

Put in a nutshell: on the basis of our present physical knowledge the above under-

determination scenario seems to stand firm—although meta-criteria already point into

the direction of the C-interpretation. Future evidence may however more and more favor

one over the other interpretations and let the claimed underdetermination become far

less plausible and convincing.18 And of course, such further evidence will also imply the

strengthening or weakening of the different meta-criteria involved. Whether developments

like this may lead to further scepticism against the idea of underdetermination in general,

cannot and must not be decided here, since, interestingly, in the case at hand structural

realists may take advantage of both scenarios: either in the usual way that underdeter-

mination undermines entity realism or in the sense of the spatiotemporal holism involved

in the (A- and) C-interpretation.

This latter point means that, on the supposition that the C-interpretation is the

one with the least ontological costs (i.e. the most consistent and coherent with the rest

of physics in the future), our empirical world on its bottom level appears deeply non-

separable or spatiotemporally holistic. Admittedly, we may still consider holonomies as

object-like entities, but to such an extent that our notion of an object becomes highly

abstract. Traditional ontology, which thinks of objects as being spatiotemporally fixed,

is clearly undermined.

4 Concluding remarks

A—perhaps necessary—repetition first: Our critical remarks in section 1 concerning the

gauge principle and its much restricted physical meaning could perhaps give some reader

the impression—though clearly wrong—that gauge theories are in total physically void.

Instead, what has been tried to show in section 1 was that, first, gauge transformations

17 The so-called loop approach is chiefly studied because of its supposed prospects in solving problems
of quantum gravity (cf. Gambini and Pullin 1996).

18Most recently, John Norton (2003) has argued that theory underdetermination should perhaps rather
be seen as a variant of the induction problem—and the foregoing formulation indicates this as well. But
despite such skeptical views on the issue of underdetermination, supposed cases of underdetermination
might then have their practical value as indicators of incomplete scientific knowledge and the need to
focus our scientific efforts on them (cf. Lyre and Eynck 2003).
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are not observable and that, in turn, the introduction of an interaction cannot be en-

forced by the gauge principle’s postulate of local gauge invariance. But of course, and as

already pointed out at the end of section 1, the characterization of, for instance, quantum

electrodynamics as a U(1) gauge theory is a physically meaningful statement. Prima

facie it means that the curvature tensor of U(1) can be given a physical interpretation in

terms of an empirically vindicated interaction field strength. In the light of our former

analysis this raises two points now: First, since our ontological analysis sheds doubt on

the interpretation of gauge theories in terms of specific entities such as the field strengths

(giving them a structurally derived and, thus, at most secondary status), we should rather

rephrase the statement about the physical content of a gauge theory such that it is the

group structure—as mathematically expressed in terms of the invariance under local U(1)

of the full dynamics represented by Lagrangian (6)—which is the holder of the physical

meaning. Second, the deeper understanding of gauge theories in terms of their under-

lying principle(s) is—at least in my view—still an open issue. This issue, however, has

no bearing on the discussion about the prospects of structural realism and may thus be

skipped here.19

Now: do gauge theories—and in particular the U(1) gauge theory—support structural

realism? We have seen that the traditional picture of spatiotemporally fixed object-

like entities is undermined by the ontology of gauge theories in various ways and that

main problems with traditional scientific realism—pessimistic meta-induction and theory

underdetermination—can be softened by a commitment to the structural content of gauge

theories, in particular to the gauge symmetry groups. We are obviously on much safer

ground if we restrict ourselves to an ontology of gauge structures only, and from this

perspective structural realism most certainly gains further credence from the framework

of modern gauge theories.

On the other hand: from the tension between the third (iii) and fourth (iv) argument

in the preceding section one may get the idea that the notions of object and structure do

represent only extremal points of a whole continuum. More abstract and holistic notions

of entities such as non-separable holonomies lie somewhere in-between. But this then

looks like a return of usual entity realism just with more abstract means—and one must

indeed admit that such an option cannot yet be dismissed on the basis of our gauge

theoretic analysis so far.

However, putting more emphasis on the appearance of rather abstract entities instead

of arguing in favor of structural realism on the basis of rejecting the pessimistic meta-

induction and the thread of underdetermination shouldn’t necessarily be considered a

disadvantage. On the contrary, a philosophical view such as structural realism gains by far

more credence if supported by arguments from science directly than by mere indirect and

notoriously debatable considerations of the philosophy of science. This is the difference in

style between the Worrall-type of arguments in favor of structural realism and the French-

type of arguments—on the basis of the ontology of quantum theory—or the Stachel-type—

19An, admittedly controversial, attempt has been made to capture the main physical content of gauge
theories in terms of a gauge theoretic generalization of the equivalence principle (Lyre 2000).
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on the basis of general relativity.

When we stick to more abstract and non-local entities we do not dismiss the notion

of objects altogether. This may help to understand an otherwise troublesome objection

against structural realism: What exactly is it that we measure in our laboratories at CERN

or elsewhere when all there is in the world, fundamentally, is just “group structure?”

What kind of measurability could we assign to this asserted structure if not by means of

ever so abstract objects? The epistemic structural realist might have an answer at hand:

objects exist but we don’t have a firm epistemic grip on them. That’s why we get lost in

underdetermination scenarios and the like. Nevertheless the “real” objects are still the

vehicles of our access to the bottom level structures.

For the radical ontic structural realist, on the other hand, the question seems to provide

a serious problem. And even more so: the main problem with the notion of structure itself

and our very metaphysical understanding of it is that it seems impossible to grasp the

idea of relations without relata—but this is where the radical ontic version apparently

leads us to.

A third “intermediate” possibility would be to stick with more abstract but still mea-

surable or, as some authors like to phrase it, “structural” objects—and here non-separable

holonomies turn out a suitable case at hand. Thus the question is indeed not so much

whether we should dismiss the objects or relata altogether but whether they finally will

be defined any other than in mere relational or structural terms.

Of course, the drawback of this option seems to be that if we still believe in—ever

so abstract—objects the problems imposed by the pessimistic meta-induction or under-

determination are still not overcome. But again: underdetermination is a controversial

issue in itself and might perhaps not be considered such a strong anti-realistic argument

anyhow. And secondly: arguing against the pessimistic meta-induction on the basis of a

still open theory—the Standard Model—can hardly lead to a line of argument which is

full-proof. So even if the analysis of gauge theories given in this paper might in parts—

points (ii) and (iii) in 3.2—be read as a Worrall-type support of structural realism, a

more sustained conclusion should perhaps rather be seen in the development of modern

physics into more abstract—here spatiotemporally holistic—entities in accordance with

an intermediate version of structural realism—less radical than the ontic version but more

directly supported from science than the epistemic one.
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