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1 Abstract

The free energy principle (FEP) has seen extensive philosophical engagement—
both from a general philosophy of science perspective and from the perspective
of philosophies of specific sciences: cognitive science, neuroscience, and biology.
The literature on the FEP has attempted to draw out specific philosophical
commitments and entailments of the framework. But the most fundamental
questions, from the perspective of philosophy of science, remain open: To what
discipline(s) does the FEP belong? Does it make falsifiable claims? What sort
of scientific object is it? Is it to be taken as a representation of contingent
states of affairs in nature? Does it constitute knowledge? What role is it in-
tended to play in relation to empirical research? Does the FEP even properly
belong to the domain of science? To the extent that it has engaged with them
at all, the extant literature has begged, dodged, dismissed, and skirted around
these questions, without ever addressing them head-on. These questions must,
I urge, be answered satisfactorily before we can make any headway on the philo-
sophical consequences of the FEP. I take preliminary steps towards answering
these questions in this paper, first by examining closely key formal elements

of the framework and the implications they hold for its utility, and second, by



highlighting potential modes of interpreting the FEP in light of an abundant

philosophical literature on scientific modelling.

2 Introduction

With respect to the demarcation problem, I defend the position that the FEP
can be taken to belong properly to the domain of science. I survey a number
of philosophical accounts of various types of scientific models with similar use
and epistemic status to the FEP. I do not insist on interpreting the FEP as a
scientific model. It may be more aptly described as something like a modelling
framework, or else a principle, akin to Hamilton’s principle of least action.
No account of such objects exists, however, within the philosophy of science
literature, and I think the important takeaways from scientific models can easily
be extended to modelling frameworks and principles if, indeed, this is what the
FEP is. The FEP is certainly not anything like a theory, a law, a hypothesis, or
a research programme, as these have classically been understood in the history
and philosophy of science.

The only hint Friston himself has given us to go on with respect to the
metatheory or philosophy of science of the FEP is that he labels it a normative
theory or normative model, contrasting it with what he terms process models
(Hohwy, 2020a, 2020b; Schwartenbeck, FitzGerald, Dolan, & Friston, 2013).
Process models associated with the FEP include active inference, predictive
coding, and various models falling under the more general label of predictive
processing (Friston & Frith, 2015; Friston, FitzGerald, Rigoli, Schwartenbeck,
& Pezzulo, 2017). Three fundamental facts about the FEP follow from its status
as normative model: 1. The FEP is not falsifiable and does not lend itself to
the direct generation of predictions or hypotheses; 2. The FEP does not cut at
joints of nature—which is to say that it does not illuminate the boundaries be-
tween natural kinds; 3. The FEP does not deliver mechanisms. The normative
model-process model distinction is one drawn from mathematical psychology,
and is thus specific to mathematical or computational models of cognition and
action. Using this as a starting point, however, we can see how the FEP fits in
with some of the more domain-generic literature on scientific modelling.

The literature on scientific models in general has tended to emphasise their
practical utility as stand-ins or intermediaries for observation and manipulation
of real-world systems (Downes, 2020; Weisberg, 2013; Wimsatt, 1987). This



in itself makes the literature on modeling a good candidate for assessing the
FEP. However, a few visions of modeling in particular are especially well-suited
to the task. Thus I will briefly rehearse what has been written on normative
models (Luce, 1995), exploratory models (Frigg & Hartmann, 2020), targetless
models (Weisberg, 2013), and general and conceptual models (Barandiaran,
2008). These varieties of model are meant to serve as heuristics (Chemero,
2000, 2009), proofs of principle (Frigg & Hartmann, 2020; Gelfert, 2016), guides
to discovery (Barandiaran & Chemero 2009; Chemero, 2000, 2009), and even as
scaffolds for a kind of storytelling that should pave the way for fresh avenues of
investigation.

In order to see how the literature on scientific models accords with the FEP,
however, we will first need to establish a firm sense of what the FEP is—and
what it is not. This will require dispelling a number of false assumptions that
have been made about the framework. I accomplish this first by tracing out the
historical buildup to the FEP, illustrating where the formalism has been derived
from, and what it has come to signify. This serves the purpose primarily of
showing how much of the mechanics of the FEP had physical meaning in its
initial form, but has since come into a strictly formal use. Following this, I
will demonstrate that the formalism is empty of any sort of facts or assertions
about the state of nature that would allow it to draw taxonomical distinctions,
to differentiate classes of natural systems, to explain their behaviour in terms
of underlying mechanisms, or to bring forth testable hypotheses. In doing so, I

hope to resolve some of the uncertainty surrounding the FEP.

3 The Free Energy Principle

3.1 History of the Formalism

The questions most frequently—and most fervently—asked about the free en-
ergy principle are: Is it true? What is it true of? How do we know (empirically)
that it is true? These questions, I argue, rest on a category mistake. They
presume that the FEP is the sort of thing that makes assertions about how
things are, cuts at natural joints, and can be empirically verified or falsified.
A relevant contingent of people concerned with the FEP take it to be, in one
way or another, a physical description of natural systems. This has an obvious
form: taking notions such as energy, entropy, dissipation, equilibrium, heat, or

steady state, which play important roles in the free energy principle, in their



senses as originally developed in physics. There is a more subtle form of this
tendency, however, in which people begin with the assumption of an analogical
relationship to physics, or a mere formal equivalence, but conclude that the
formalism of the FEP nonetheless picks out real and measurable properties of
natural systems, albeit perhaps more loosely and abstractly than its physical

equivalents would.

3.1.1 The Epistemic Turn in Statistical Mechanics

An important precursor to the FEP that seldom comes up in the literature
is Jaynes’ maximum entropy principle. The classical interpretation of statis-
tical mechanics views the macroscopic variables of some physical system of
interest—say, heat, volume, and pressure—as physical constraints on the mi-
croscopic behaviour of the system. This is a decidedly physical interpretation
of the equations. Jaynes (1957) critical insight was that we could give this all
a subjectivist, epistemological reading, casting these macroscopic variables as
knowledge about the system, with the lower-order details to be inferred. The
principle of maximum entropy guarantees the maximum (information) entropy
of a probability distribution given known variables. Maximising the entropy
of the distribution guarantees that we are not building in any more assump-
tions than we have evidence for. This principle of maximum entropy took the
formalism of statistical mechanics and gave it an information-theoretic inter-
pretation, turning the second law of thermodynamics into a sort of Occam’s
razor for Bayesian inference. This is because the maximum entropy principle
brings us to adopt the probability density with the widest distribution, given
the known variables, just as entropy will be maximised with respect to macro-
scopic variables in statistical mechanics. These are formally identical. Given
the frequency with which the literature on the FEP makes reference to Jaynes,
one might think it a rather inconsequential piece of the puzzle. In order to un-
derstand the FEP, however—and why it is closer to a statistical technique than
it is to a falsifiable theory of biological self-organisation—it is important to see
that there is a clear precedent for leveraging the maths of statistical mechanics
as a method for Bayesian inference. Jaynes’ maximum entropy principle (of-
ten referred to as MaxEnt) has had tremendous success as a tool for scientific
modeling across the sciences. To select just one example, MaxEnt has been met
with particular appreciation amongst ecologists, in which it proves exceptionally

good at picking out and predicting patterns in biodiversity and its distribution.



3.1.2 The Mean Field Approximation

Independently, a method known as mean field theory emerged in statistical
mechanics at the beginning of the twentieth century that enabled physicists to
study high-dimensional, stochastic systems by means of an idealised model of
the system that would average out, rather than summing over, the interactions
of elements within the system. Feynman (1972) introduced what are known as
variational methods within the path-integral formulation of mean field theory.
By exploitation of the Gibbs-Bogoliubov-Feynman inequality, one is able to
achieve a highly accurate approximation of the energetics of a target system
under a range of conditions. This is accomplished via minimisation of the free
energy parameter by variations on a simplified candidate Hamiltonian to bring

! What is important to understand

it into accord with the true Hamiltonian.
about Feynman’s original formulation of the free energy minimisation technique
is that it is 1. a formal trick for approximating otherwise intractable physical
systems, and 2. that the free energy involved nonetheless refers to a physical

quantity: Helmholtz free energy.

3.1.3 Free Energy in Machine Learning

The method of variational free energy minimisation was adapted for statistics
and machine learning towards the end of the twentieth century as ensemble
learning or learning with noisy weights (Hinton & van Camp, 1993; Hinton &
Zemel, 1993; MacKay, 2001). Thus free energy minimisation in statistics is a
variational method for approximate inference where intractable integrals are in-
volved. A quantity, termed variational free energy, is minimised by successive
iterations of a model, thus bringing the ensemble density or variational density—
the approximate posterior probability density, on a Bayesian interpretation—
into approximate conformity with the true target density (Friston, Mattout,
Trujillo-Barreto, Ashburner, & Penny, 2006; Hinton & van Camp, 1993; MacKay
1995a, 1995b, 1995¢; Neal & Hinton, 1998). The ensemble density or approxi-
mate posterior density is the statistical equivalent of the mean field approxima-
tion (Friston et al., 2006). We can see that both the free energy parameter and
the construct it is being leveraged to approximate referred to energetic proper-
ties of the physical systems under study—Helmholtz free energy, and the sys-

tem’s Hamiltonian—as the method was originally purposed by Feynman (1972).

I Think of the Hamiltonian of a physical system as the net kinetic and potential energies
of all of the particles in the system.



The variational free energy and the variational or posterior probability density
involved in the variational free energy minimisation technique as employed by

Hinton and van Camp (1993), however, are purely statistical constructs.

3.1.4 Variational Bayes

The finer points of the formulation of variational Bayes in use today were worked
out by Beal (2003) and Attias (2000). Beal (2003) illustrates how conceiving
of approximate Bayesian inference in terms of conditional probabilities can be
facilitated via graphical models, such as Markov random networks, highlight-
ing the import of the set of nodes that form the Markov blanket of the set of
interest. An exact deployment of Bayes’ theorem almost always leads to in-
tractable integrals—the sort of calculus it would take an adept mathematician
years to solve. Computing technology enabled approximate Bayesian inference
via Monte Carlo pairwise sampling methods. Instead of arriving at the target
posterior density by manual marginalising, we iteratively hone in on the poste-
rior by sampling it many thousands of times, which is possible using computers.
By contrast, variational Bayesian methods toss out candidate probability distri-
butions and acquires the Kullback-Leibler (K-L) divergence between candidate
and target distributions. In many contexts, variational Bayes has the advantage

over Monte Carlo methods in both accuracy and efficiency.

3.1.5 Innovations in Friston’s Free Energy Minimisation

Karl Friston took the method of variational free energy minimisation and gave it
a dynamical-systems interpretation, specifying the free energy minimisation dy-
namic in terms of the Fokker-Planck equation and, in particular, the solenoidal
and irrotational flows that fall out of the Helmholtz decomposition thereof, of
which the irrotational flow can be conceptualised as a gradient-ascent on an at-
tracting set (Friston, 2009, 2010, 2012, 2019; Friston & Stephan, 2007; Friston,
Trujillo-Barreto, & Daunizeau, 2008). This allows us to think of free energy
minimisation simultaneously as a method of approximate Bayesian inference

and as a flow.

3.2 Fundamentals of the FEP

The Fokker-Planck, or Kolmogorov Forward equation describes the time evolu-

tion of a probability density function. The Fokker-Planck equation originated



in statistical mechanics, in which it described the evolution of the probability
density function of the velocity of some particle, or its position, in which case
it was known as the Smoluchowski equation. In the context of the free energy
principle, the Fokker-Planck equation describes the evolution of the probability
density function of the state of a system. As such it can be thought of as a tra-
jectory through one abstract state space which is a probabilistic representation
of some lower-order abstract state space representing what state a given system
is in over some definite time window. A three dimensional vector field that sat-
isfies the appropriate conditions for smoothness and decay can be broken down
into solenoidal (curl) and irrotational (divergence) components. This is known
as the Helmholtz decomposition; the fact that we can perform the Helmholtz
decomposition is then known as the fundamental theorem of vector calculus.

The static solution to the Fokker-Planck equation is a probability density
termed the Nonequilibrium Steady State density, or NESS density (Friston,
2019; Friston and Ao, 2012). The notion of nonequilibrium steady state is na-
tive to statistical mechanics, wherein it describes a particular energetic dynamic
between a system and its surrounding heatbath. NESS is best understood as
the breaking of detailed balance. Detailed balance is a condition in which the
temporal evolution of any variable is the same forwards as it is backwards (the
system’s dynamics are fully time-reversible). Detailed balance holds only at
thermodynamic equilibrium. In nonequilibrium steady state, balance holds in
that none of the variables that define the system will undergo change on average
over time, but there is entropy production, and there are flows in and out of the
system. Jiang, Qian, and Qian (2004) and Zhang, Qian, and Qian (2012) have
demonstrated that nonequilibrium steady state can be represented as a station-
ary, irreversible Markov process. This development paved the way towards a
purely statistical rendering of the notion of NESS.

Under the free energy principle, a system of interest is represented as being
subject to random perturbations, which would induce dissipation were it not for
some flow countering this dissipation. The Fokker-Planck equation encapsulates
these random perturbations as w—the Wiener process, or Brownian motion.
The curl-free (irrotational) dimension of the flow described by the Fokker-Planck
under the Helmholtz decomposition will be seen to counter this flux, maintaining
the integrity of the NESS density, which is the system’s pullback, or random
global attractor (Friston, 2019). All this means is that, statistically speaking,
the system likes this region of its phase space—the way a cat likes a laptop

computer or a ball likes to roll down hill. The NESS density can also be cast



as a generative model, as the highest probability region of the system’s phase
space will be a joint distribution over all of the system’s variables. For this
reason, we can conceptualise the behaviours of the systems treated under the
FEP as (latent) statistical models of the causes impinging upon them from their
environments.

The literature on the free energy principle also rests centrally on the notion
of a Markov blanket (Kirchhoff, Parr, Palacios, Friston, & Kiverstein, 2018).
A Markov blanket essentially partitions the world into a thing which can be
conceived of as, in its very existence and dynamics, performing a kind of infer-
ence, and a thing it is inferring—on a yet more basic level, the Markov blanket
allows us to partition the world into a system of interest, and all that lies out-
side of that system of interest. Recall that systems are represented under the
FEP as being subject to random fluctuations, which are responsible for their
stochasticity. These fluctuations would result in the dissolution of the systems
of interest, were it not for some balancing flow. In the absence of a counteract-
ing flow, the system, as defined by its Markov blanket, would cease to exist as
such. If the set of states considered to be the system (internal states and their
Markov blanket) are to resist this dissipative tendency, they must counteract
it. This counteracting flow can be conceptualised in a number of ways. As we
have already discussed, we can think of the perturbations as causing the NESS
density to disperse, and the irrotational flow under the Fokker-Planck equation
as countering these fluctuations. We can also think of it as ascending the gradi-
ents induced by the logarithm of the NESS density. The system is hillclimbing
on a landscape of probability. It wants to ascend peaks of maximum likelihood
and escape from improbable valleys. In fact, the FEP is a form of dynamic
expectation maximisation, which is itself a maximum likelihood function (Fris-
ton, Trujillo-Barreto, & Daunizeau, 2008). The flow of the system must also,
moment by moment, minimise surprisal or self-information by gradient descent.
Variational free energy constrains this activity by placing an upper bound on
surprisal.

This brings us back to the inferential interpretation of the dynamic described
by the FEP. When we apply Bayes theorem to a problem of inference or belief
updating, we want to maximise marginal likelihood. Marginal likelihood is
the likelihood of some observation given our model; it is also termed Bayesian
model evidence, or simply evidence. Surprise and evidence are inverse functions.
When we minimise surprisal, we are maximising model evidence. Thus, systems
under the FEP are said to be ‘self-evidencing’ (Hohwy, 2016). Over time and



on average, the minimisation of surprisal minimises information entropy. This
effectively prevents the system’s states from dispersing in a statistical sense—
it keeps the values of certain key variables within certain existential (that is,
definitive of the system) bounds.

We think of a system. We define the system by delineating certain variables
and certain ranges of values for these variables. For nearly any system we
could choose, there are values of, e.g., temperature and pressure at which the
system would no longer be the system we had originally envisioned. Unless the
system exists in a vacuum—and nature abhors a vacuum—it will be subjected
to stochastic external influences. In order to remain the system that it is, the
system will have to act so as to counteract these influences—at least in some
very deflationary sense of the notion of action. This action can be conceived
of as anticipatory.? Thus, representing a system under the FEP allows us to
consider it as enacting a statistical model of its environment. The notion of
model at play here is that of a generative model, of the kind familiar in machine
learning contexts (Ramstead, Kirchhoff, & Friston, 2019). The fact that the
NESS density—the high-probability region of the system’s phase space—is a
joint distribution over all of the system’s variables licenses interpreting it as
a generative model. The generative model is a formal expression of the good
regulator theorem of cybernetics, which states that any subsystem capable of
effectively controlling the system at large in which it is embedded must be
isomorphic to the system at large (Conant & Ashby, 1970; Friston, Thornton, &
Clark, 2012; Ramstead, Kirchhoff, & Friston, 2012). In other words, it must be
a model, or a representation, of all of the variables of the system. As I suspect
readers may have an inkling for at this point, applying this formalism to some
unoccupied region of spacetime, or to a brick, is not going to get us much
leverage to speak of on these systems. It is much more meaningfully applied
to systems that take up a more active role in safeguarding their own identities:
organisms, sub-organismal systems (cells, tissues, organs), and superorganismal

systems (societies, social networks, ecosystems).

2 The notion that the organisation of living systems, down to their very molecular makeup,
is fundamentally prospective—that is, biological organisation is a manifestation of statistical
structure absorbed from past experience towards the ends of future self-maintenance, is not
unique to the FEP. For parallel accounts, see Baluska and Levin (2016), Bickhard (2001,
2016), Deacon (2011), and Pezzulo (2008).
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4 Markov Blankets, Free Energy, & Generative
Models

We have seen in the previous section where the various formal elements of the
free energy principle come from. My hope in reviewing the history of the for-
malism is that this might have helped in building towards the intuition that
the principle does not provide an account of how biological systems work, but
merely a means by which to model them. In this next section, we will turn to
the implementational details of the FEP, where it will be demonstrated that the

formalism does not latch onto any features of the real world systems of interest.

4.1 Markov Blankets

For any chain or network of interactions, if the value of any given node is strictly
determined by the value of its immediate predecessor or parents, the chain or
network is said to exhibit the Markov property. The Markov property captures
what is known, in probability theory and statistics, as conditional independence.
Two events (or nodes) z and y are conditionally independent if and only if the
probability of z given y is equal to the probability of z without knowledge of .

A Markov chain is a chain of nodes that exhibit the Markov property. A
Markov random network or Markov random field (MRF) is an undirected graph-
ical model exhibiting the Markov property. If a Markov chain represents the
temporal evolution of a system, there can be no causal interaction between past
and future timesteps that bypass the current timestep. In a Markov random
field, there can be no non-local interaction: only nearest-neighbors affect one
another. The Ising model of ferromagnetism in statistical mechanics is the pro-
totypical Markov random model. Bayesian networks are directed acyclic graphs
(DAGs) in which the nodes or vertices can take on one or more numeric values.
The most thorough exposition on graphical models of this type, and the text
that introduced the Markov blanket and Markov boundary formalism, is Judea
Pearl’s (1988) Probabilistic Reasoning in Intelligent Systems.

A Markov blanket defined on a node (or set of nodes) within a Markov
random field will be composed of the nearest neighbors of the node or set of
nodes in question. However, on a Bayesian network, or directed acyclic graph,
the Markov blanket for any node or set of nodes x are the parents, daughters,
and parents of daughters of z. The Markov blanket of x encompasses all of the

nodes whose states must be known in order to know the states of z and all of
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z’s daughters. A Markov boundary consists in the minimal Markov blanket of
x; formally, it is the Markov blanket m of x for which no proper subset of m is
also a Markov blanket of z. It is useful to differentiate Markov boundaries and
Markov blankets because the Markov boundary is the minimal Markov blanket
for any node z in question, while any Markov blanket can be expanded to form
a greater Markov blanket, so long as some set z can be delineated such that z
and x’s daughters are conditionally independent of z, given the existence of the
Markov blanket, ad infinitum.

Any real-world system or process can be represented as a node in Markov
random networks. This says nothing, on the face of it, about the fidelity of
representation in a Markov random network. If any real-world system can be
represented as a node in a Markov random network, then any real-world system
can be represented as possessing or instantiating at least a minimal Markov
blanket. Marking the startling inclusivity of Pearl’s original (1988) definition,
we come to the conclusion that within any non-trivial network, any node ought
to have a multitude of Markov blankets. Friston’s employment of the Markov
blanket construct differs from Pearl’s original (1988) construction in the sub-
division of the blanket into sensory states—modes whose influence is directed
towards the blanketed node z—and active states—nodes influenced by z. Fris-
ton’s use of the construct also assumes sensory states to be shielded from any
influence beyond internal states (our blanketed node, z). The FEP deals in
Markov blanketed systems for which internal and active states parameterise a
model of environmental states as indicated by sensory states. Beal (2003) in-
vokes the Markov blanket and Markov boundary constructs within the context
of Bayesian networks (directed, acyclic graphs). In a Markov random network,
the Markov boundary of a node is just its nearest neighbors. Within a Bayesian
network, a Markov blanket will include the parents, daughters, and parents of
daughters of any nodes. On a directed graphical model, it also makes sense
to speak of the influx and efflux of statistical influence. Influence can be di-
rected inward towards a node shielded by a Markov blanket or boundary, or
outwards from the node to the rest of the network, since the vertices or connec-
tions between nodes, on a Bayesian network, flow in a pre-specified direction.
The directedness of a Bayesian network enables the subdivision of the Markov
blanket into what Friston terms sensory and active states. Sensory states are
influenced only by external states, while active states are influenced only by in-
ternal states. The FEP literature also shifts the Markov blanket from something
which applies to only a single node in a graphical model to something which

12



applies to sets of nodes. When the Markov blanket is invoked under the FEP, it
is referring to the minimal Markov blanket for any node or set of nodes—what
Pearl originally termed the Markov boundary.

How, then, does this Markov blanket (or boundary) get operationalised un-
der the FEP? If we project—or map—some system within a vector space, and
this mapping undergoes a linear transformation, the eigenvector of that trans-
formation is a vector that does not change dimensions, but only scales by some
scalar A\. It may be helpful to consider that in the mechanics of rigid bodies,
the eigenvectors of some transformation (motion of the body) are its principal
axes of rotation. Matrices, thus, can be thought of as representing transforma-
tions that systems undergo. An adjacency matrix is a matrix representation
of a graph, specifying the positioning and relation of the vertices. If we take
the time evolution of some system, we can construct an adjacency matrix—call
this A—representing the connection weights, interactions, or dependencies of
the system for various components or variables over the course of the time for
which we have data. We can construct a secondary matrix, B, from this first
matrix, B = A+ AT + AT A (Friston, 2013; 2019). This is the Markov blanket
matrix which encodes the parents, daughters, and parents of daughters. Note
that the superscripted T is the transpose operation, such that A7 is the trans-
pose of the adjacency matrix. If the node or set of nodes of interest to us is
encoded by a binary vector x; € 0,1, we determine those nodes belonging to the
Markov blanket of x; by multiplying x; by our Markov blanket matrix B (Fris-
ton, 2013; 2019). The principal eigenvector of this new matrix [B - x;] specifies
the connectivity of each element of the vector. From there, we can select an
arbitrary threshold of connection or interaction strength which separates states
into blanket states, blanketed states, and blanket-external states.

This is how the Markov blanket construct is operationalised. The upshot
is that the power to select systemic boundaries rests, at least in part, on the
researcher’s intuition. If the Markov blanket formalism were to independently
track natural joints, we would need to equip it, at the outset, with some thresh-
old value which would determine precisely the degree of conditional indepen-
dence that would count—across the board—for the possession of a Markov
blanket. If such a threshold existed, and were baked in to the Markov blan-
ket formalism, then we could consider Markov blankets to be in some sense real
features of real-world systems. We might discover them, measure them, and
count them. We might meaningfully ask whether some existing system does

or does not possess a Markov blanket. The threshold for conditional indepen-
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dence, however, is necessarily a post-hoc ascription, and an intuitively guided
one, at that. If we can conceive of some thing as a discrete thing—as a coher-
ent system—then it is possible to formally represent it as possessing a Markov
blanket. There are no Markov blankets to be discovered in nature, and they are

not in the business of illuminating natural joints.

4.2 Free Energy, Entropy

As we have seen, in order for a thing, or system, in question to remain a thing,
it must continue to possess a Markov blanket. If it is to continue to possess
a Markov blanket, then the states of its Markov blanket must minimise a sta-
tistical quantity termed variational free energy. This free-energy minimisation
dynamic can also be interpreted as organisation to non-equilibrium steady state
(NESS). In this sense, variational free energy, like the Markov blanket, tracks
thingness—systemic cohesion. Critically, though, it only does this relative to
the thing as we have already defined it. We have imbued the model with our
intuitive grasp on what it means for a system to be the sort of system that
it is—under what conditions the system continues to be that system, and the
thresholds over which variables have gone out of bounds so that the system no
longer exists as such.

In the mean field approximation, variational free energy was genuinely an ap-
proximation of the free energy of a system, viewed from a statistical-mechanical
perspective. There is an unfortunate—though understandable—tendency for
those first acquainting themselves with the FEP to interpret ‘free energy,” and
other, similarly confounding terminology from the framework, in physical terms.
When we speak of heat, energetics, and entropy it can be difficult to shake the
feeling that we are talking about some objective, measurable feature of a ma-
terial system—particle motion, for example. I took the time at the outset of
this paper to trace the history of the framework in Jaynes, Feynman, Hinton,
and Beal because having a handle on this history is necessary in order to grasp
the subtle turn away from statistical approximations of physical properties of
physical systems to a pure, substrate-neutral method of statistical inference.
When we speak of annealing a model in statistical mechanics, ratcheting the
temperature of the system up and down in the hopes of bumping it out of local
minima, this does not refer to an act of literally injecting energy into a physical
system to increase the speed of particle motion. It is a statistical analogue of a

physical process. Likewise, the energy and entropy of the FEP are formal ana-
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logues of concepts defined in thermodynamics and statistical mechanics with
a long history of use in information theory, statistics, and machine learning,
in which they have lost their correspondence to any measurable properties of
physical systems.

Finally, thermodynamic entropy and Shannon entropy are only equivalent
under the generalised Boltzmann distribution, which, it has been argued, ap-
plies only at thermal equilibrium (Gao, Gallicchio, & Roitberg, 2019). Thus,
in general, information entropy and physical entropy are distinct (Kondepudi,
2013).3 Living systems are, by definition, far from equilibrium systems. Thus
information entropy and thermodynamic entropy do not converge in the regimes

of interest to us.

4.3 Generative Models

Early instantiations of the FEP had the FEP as a gradient flow on an er-
godic density. Updated expressions of the framework reformulate in terms of a
Nonequilibrium Steady State (NESS) density. The interpretation of a system—
and its dynamics over time—as entailing a generative model rests on a dual in-
terpretation of the NESS density. This is possible because the high-probability
region of the system’s phase space (the system’s attracting set, or NESS density)
is a joint distribution over all the system’s variables, rendering it simultaneously
a generative model. Under the FEP, the internal states of the system encode
what is known as a recognition density, while the system’s behaviour, over time,
entails a generative model. How complex, how lifelike, and how cognitive a sys-
tem appears will depend on the timescales of the trajectories that the generative
model is implicitly solving (Corcoran, Pezzulo, & Hohwy, 2020). In predictive
processing, this quality of the system is referred to as its temporal depth, or
its counterfactual depth. It might, then, seem, that the FEP could perhaps be
thrown at real world systems, and the degree of biological or cognitive com-
plexity can be read off of features of the systems generative model. The FEP,
however, does not dictate what we should write down for a given system’s gen-
erative model. And once we have written down the generative model of the
system under investigation, we have switched from the purview of the FEP to
that of a process theory. Like the Markov blanket, the system’s implicit gen-

erative model is a formal structure that the modeler constructs for the system;

3 My thanks to Carlo Rovelli for alerting me to this point, and to P. Adrian Frazier for
follow-up discussion.
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the structure is not somehow emergent from (simulated) data. In some sense,
the generative model will intuitively track joints of nature. But it neither finds
them, by revealing structure from raw data or simulation, nor defines them, by
pre-analytically revealing conceptual boundaries or transition points between

classes of systems.

4.4 Recapitulation

To summarise, in this section we have run through a brief history of the key
formal elements of the framework, and then examined its machinery to see
whether we could pull any mind-independent truths from it. We could not. We
found that the framework accommodated certain things very well: the Markov
blanket does a very nice job of representing systemic boundaries, the temporal
depth of the trajectories being solved by the latent generative models postulated
under the FEP is a very elegant and informative representation of something
like cognitive complexity, and the free energy parameter itself maps onto a
system’s attunement with its environmental context, its cohesion and internal
consistency (among other things). We also found, however, that the FEP does
not ‘pick out’ or ‘discover’ these aspects of natural systems—even in silico—but

only provides a useful model of them.

5 Reinterpreting the FEP

There are many places throughout the literature on the FEP in which the lan-
guage used to describe the formalism can easily give rise to the misconception
that the framework is a literal—perhaps physical-—description of some measur-
able feature of natural systems, or cuts at natural joints. Looking at a few
quotes and clarifying how—and how not—to interpret them may help to drive
the point home.

Friston (2013) writes that “biological systems must minimise free energy”
(p-2), and that “if systems are ergodic and possess a Markov blanket, they will—
almost surely—show lifelike behaviour” (p. 11). These sorts of statements could
easily lend the impression that free energy minimisation is an objective feature
of natural systems and, further, that the framework might cut at some natural
joint between more and less ‘lifelike’ natural systems. However, as we have seen
in the previous section, none of the formal elements within the FEP map onto

known features of natural systems, and none have the capacity to cut at natural
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joints.

Ramstead, Badcock, & Friston (2017) write that “systems are alive if, and
only if, there[sic] active inference entails a generative model” (p.33). Under
the perspective of the FEP—that is, once we have elected to model biological
systems using the formal tools the FEP provides us—any system we choose
to model in this way will behave as the model dictates it must. Under the
FEP, in order to be a system, certain mathematical assumptions must hold.
In particular, we assume a weakly-mixing random dynamical system, a Markov
blanket, and either ergodicity or nonequilibrium steady state (NESS). If we take
the systems attracting set to be a NESS density, then its existence will entail
a generative model. Thus in selecting to model a system under the FEP, we
have presumed its dynamics to entail a generative model. This says nothing,
however, about any empirically-ascertainable properties of living systems.

Friston, Da Costa, and Parr (2020) write that “the free energy principle as-
serts that any ‘thing’ that attains nonequilibrium steady-state can be construed
as performing an elemental sort of Bayesian inference” (p.2). This could be
read in one of two ways: It could, quite naturally, be read as an assertion that
the free energy principle applies only to systems that fall within the physical
regime of nonequilibrium steady-state. This would not, however, be a correct
interpretation. For one thing, the notion of NESS at play here is a statistical
one. For another, we can take this to mean that the FEP is usefully applied to
systems in the physical regime of nonequilibrium steady state.

Physical systems that exist at thermodynamic equilibrium with their exter-
nal milieus, systems that unresistingly dissipate to equilibrium, and systems
that only fleetingly pass through a nonequilibrium state, are not well-captured
by the framework. That is to say that it does not make sense to apply the for-
malism of the FEP to these systems, either because it is trivial or uninformative,
or because doing so would prove intractable. A single hydrogen atom at rest in
a vacuum is not meaningfully interpreted as performing approximate Bayesian
inference over its environmental states. A timeseries of a mere (abiotic) self-
organising system, say, a whirlpool, or a candle flame, would show it throwing
off its Markov blanket and establishing a new one at every time step (Friston,
2013, 2019). Critically, this does not entail that the FEP cannot, in principle,
apply to such systems. It means only that we have no reason to apply it to
such systems; we have nothing to gain, epistemically, from applying it to such
systems. If the FEP were unable, in principle, to apply to systems outside of

NESS, we might expect it to articulate something of the essence of what it is to
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be a NESS physical system—of what it is to be alive. There has been a strong
temptation in the literature to interpret the FEP in this way, as though knowl-
edge about the phenomena of life or cognition could simply be read off from
the framework. The math is not an expression of facts about biology, though,
but a tool with which to investigate biology. The FEP may function as an aid
to scientific work, if only indirectly, by inspiring novel hypotheses and via its
process theories. In this way, if successful, the FEP should ultimately serve to
reveal features of the systems it was constructed to accommodate. This knowl-
edge, however, is not to be distilled from the framework antecedent to empirical
work.

In fact, this precise argument has been made elsewhere, in an analysis of
likewise heavily-idealised, normative models in ethology and evolutionary bi-
ology. Birch (2017) provides what I take to be the best existing assessment
of the status of optimality models in biology and their relation to empirical
work. His claim is that optimality models in biology were established to simu-
late real-world evolutionary dynamics and to generate testable hypotheses. The
empirical results of the hypotheses that these mathematical models generate
constitute knowledge of the systems in question. The models themselves do
not, however, express knowledge about the natural world.

Much of the literature on optimality modelling in biology has been preoccu-
pied with whether or not researchers have sufficient “theoretical justification”
for the assumption that organisms maximise Darwinian fitness. Birch (2017)
rightfully diagnoses this as a red herring. Theoretical justification only comes
into play if we are bent on assessing such models in terms of truth value. As
Birch shows, their value to science is not as expressions of truths about the
world, but as inspiration for new avenues of empirical research. This is a job
that they do quite well, in spite of the obviously false or nonsensical assump-
tions they rest on. The literature that takes a critical approach to the FEP has
likewise fallen for red herrings, under the assumption that the FEP is an artic-
ulation of knowledge about the world. Optimality models are “among the most
drastic simplifications tolerated anywhere in biology, and they are sometimes
criticised for this reason” (Seger & Stubblefield, 1996, p.118). Yet this simplifi-
cation “elicits questions that might otherwise go unasked” (Seger & Stubblefield,
1996, p.118). The purpose of the FEP is likewise to elicit questions that might
otherwise go unasked. Fortunately, there is a rich literature in the philosophy

of science to draw upon in characterising exactly these sorts of models.
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6 Models

[A]ll models are wrong, but some are useful. — George Box, 1987, p. 424

6.1 The FEP as Scientific Model

The modelling literature lends us a number of plausible interpretations of what
the FEP is and does. It may be that the FEP cannot be understood to represent
a target system or systems at all, and that it is best leveraged as an analytic
tool or studied on its own right as a formal system. If this is the case, then
the epistemic value of the FEP cannot be derived from its representational
properties, for it would not be understood to have any. Indeed, a unique asset
of the modelling literature is that it offers an interpretation of the scientific
method that prioritises utility over truth. This comes in two forms: first, the
literature on scientific modelling has increasingly come to acknowledge the status
of nonrepresentational (Downes, 2011) and non target-directed (Weisberg, 2007)
models, and second, even under the presumption that all models represent target
systems, the utility of a model is generally understood to stem from idealising,
black-boxing, or coarse-graining away from inessential or distracting details of
a target system (Wimsatt, 1987). In other words, deliberate misrepresentations
or omissions make a good model, not fidelity.

If the FEP can be taken to represent real-world systems, it only does so
at such a high level of abstraction as to be unfalsifiable. The elements of
the framework do not map onto any known features of real world systems—
at least not with any more granularity or specificity than the causal dynamics
of such systems. The FEP may offer a proof of principle. It may illustrate
conceptual relations between theoretical objects—Ilife and mind, for example.
The FEP might be understood not as modelling a specific target system, but
as a generic model of a whole class of systems. As such, its usefulness may
be in facilitating the unification of several phenomena under a single formal
framework. Compare to Newton’s work on gravitation: Newton’s revolutionary
contribution was not in detailing the mechanism underpinning the phenomena
associated with gravitation—he remained perfectly agnostic as to the “physical
seat” of gravity—but in showing that a range of distinct phenomena—celestial
mechanics, the trajectory of a projectile launched from earth’s surface, tidal

patterns—could all be treated under a single mathematical framework.
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While I remain agnostic as to the representational status of the FEP, I follow
Birch’s (2017) analysis of optimality models in evolutionary biology in arguing
that the FEP ought not to be mistaken as constituting knowledge of natural
systems.

Yet another role played by highly idealised models such as the FEP is that of
a generator for more specific models, either by filling in details or by leveraging
tradeoffs between generality and specificity. The FEP is also understood to
place demands on the sorts of process theories consistent with it.

The organisation and dynamics of the living organism, the functional ar-
chitecture of the brain, the structure of human social systems—these are the
most complex systems known to exist. The sciences that study these systems
are comparatively very young—and may never reach the maturity of the sci-
ences oriented towards far more simple systems. The life, cognitive, neuro, and
formal social sciences are still, in many respects, at a stage of trying to get
a methodological foot in the door. Highly idealised models, such as norma-
tive or optimality models, assist in getting us traction on otherwise intractable

phenomena.

6.2 Normative & Process Models

The FEP is introduced by Friston and colleagues as a normative model or nor-
mative theory, and contrasted with process models (Allen, 2018; Allen & Fris-
ton, 2018; Hohwy, 2020a, 2020b; Schwartenbeck, FitzGerald, Dolan, & Friston,
2013). Active inference, predictive coding, and specific instances of predictive
processing are considered to be process models. The role of the FEP is to aid
in the generation of such process models, as well as to place constraints on their

viability.

6.3 Origins of the Distinction in Mathematical Psychol-
ogy

Luce (1995) introduces four distinctions to the mathematical modelling of cog-
nitive processes. Process models are contrasted to phenomenological mod-
els, normative models differentiated from descriptive models, dynamic models
compared to static models, and a distinction drawn between noise and struc-
ture. Phenomenological models are similar to phenomenological approaches

in physics; they capture gross behaviours and attributes without specification
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of internal structure or speculation into underlying causes or mechanisms. A
process model, on the other hand, opens the black box of the mind. It at-
tempts to understand some cognitive process in terms of the flow of information
in the brain—though such information processing models come in greater and
lesser degrees of neurobiological realism. Luce notes that “most mathematical
modelers, although sometimes inspired by neural data, postulate mechanisms
far more abstract and functionally defined than are found at the neural level”
(1995, p.10). Under a normative model, it is presumed that reasoning should
accord with formal logic, induction and beliefs with, e.g., Bayesian dictates for
inference and credence, or decision-making with the results of optimising a util-
ity function. A descriptive model, in contrast, represents the cognitive process
of making choices, reasoning through problems, and drawing inferences as it is
observed to happen—messy, sub-optimal, and irrational though it may be.
What, then, is the significance of taking the FEP to be a normative model,
in Luce’s sense? Friston and colleagues stress that the FEP, as process theory,
is not falsifiable (Allen & Friston, 2018). It will not be possible to articulate
a version of the FEP that can be held up against some real world process in
such a way as to undermine or legitimate the model. The FEP will not directly
generate predictions, tests, or hypotheses. Allen and Friston pose an intriguing
question “if the FEP is unfalsifiable...is it uninformative?” (2018, p.2476). The
answer they provide is that “[t|he FEP is uninformative” inasmuch as it can nei-
ther explain nor predict specific observations (Allen & Friston, 2018, p.2476).
However, they emphasise that the FEP informs ”"the viability and sufficiency
of...process theories” (Allen & Friston, 2018, p.2476). Allen (2018) also alludes
to the role of the FEP in generating such process theories. On Allen’s (2018)
articulation, such process theories will fill in the mechanistic details that are
lacking in the FEP. Not everyone, though, has so readily accepted that the
FEP will prove useful in producing or weeding out process theories in this way.
Friston, FitzGerald, Rigoli, Schwartenbeck, and Pezzulo (2017) note that “the
enthusiasm for Bayesian theories of brain function is accompanied by an under-
standable skepticism about their usefulness, particularly in furnishing testable
process theories” (Friston, FitzGerald, Rigoli, Schwartenbeck, & Pezzulo, 2017,
p-2). In the section that follows, the philosophical literature on adjacent sorts
of models will be reviewed, in the hopes that this will lend a sense of how it is
that a highly-abstracted, unfalsifiable formal model such as the FEP can have
scientific utility. Ultimately, of course, whether the FEP turns out to be useful

in this way will be an empirical matter—in both senses.
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In characterising the free energy principle, Friston draws a distinction be-
tween normative models and process models (Schwartenbeck, FitzGerald, Dolan,
& Friston, 2013). The FEP, as Friston presents it, is a normative model; ac-
tive inference, predictive processing, and predictive coding are process models.
Friston’s is an adaptation of a quadripartite distinction introduced by Luce
in 1995, for the purpose of characterising the aims and scope of mathemati-
cal models in cognitive psychology. Per Luce’s description, normative models
characterise psychological processes in such a way as to render them in confor-
mity with logical or rational norms. This is in contrast to descriptive models,
which faithfully represent the messiness of human cognition. Phenomenological
models provide an outward behavioural description, without ‘opening the black
box,” so to speak. Process models, on the other hand, provide specification of
internal structure, mechanism, and information flow. Friston’s employment of
the distinction between normative and process models goes further than this,
however. It implies a relationship of something like methodological superve-
nience between normative models and process models. The FEP is thus an
umbrella-framework out of which predictive processing, predictive coding, and
a version of active inference, its process models, fall with decreasing abstraction
and increasing granularity. As a normative model, the FEP is intended to aid
in the generation of process models, and to furnish constraints on viable process
models. The FEP is, itself, however, not beholden to empirical data. Its virtues

are not in its verisimilitude.

6.4 Models in Philosophy of Science

Very little can be said about the totality of scientific models, or the practice of
scientific modeling as a whole. Perhaps the only uncontroversial generalisation
that can be made is that models are scientific tools that are useful precisely
because they are inaccurate or outright false (Wimsatt, 1987). Many scientists
and philosophers of science interested in modeling practice have chosen to pro-
ceed by carving up the space of scientific modeling along multiple dimensions
before attempting to pin down the relationship of models to theory, explanation,
knowledge, data, and ultimately, real-world systems. In this section, I will draw
from literature in the philosophy of science on varieties of scientific model that

share informative resemblances with the FEP.
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6.5 Exploratory Models

There is an obvious resemblance between the FEP, conceived of as a normative
model, and what Frigg and Hartmann (2020) call textitexploratory modelling.
They characterise exploratory models as “models which are not proposed in
the first place to learn something about a specific target system or a particular
experimentally established phenomenon” (Frigg & Hartmann, 2020). Frigg and
Hartmann draw on Gelfert’s (2016) depiction of exploratory modeling. Gelfert
(2016) claims that exploratory modelling can serve four distinct epistemic aims.
These include, in the first place, assessing the suitability of a target system,
when the specific nature of the target system—and how to delineate it from
other potential systems of study—is obscure. A second aim of exploratory mod-
elling is proof-of-principle demonstration, which can involve either a conceptual
demonstration of some mapping relation between model and target system or
between phenomenon and underlying mechanism. An exploratory model might
also generate a potential—in contrast to a necessary—account of some system
of interest. This is dubbed a ‘how-possibly’ form of explanation. Lastly, ex-
ploratory models can further research aims in painting a picture of some class
of natural phenomena in exceedingly broad brushstrokes, which will serve as a
taking-off point for later investigation, often by way of more fine-grained models.
An exploratory model, in Gelfert’s words, is able to provide “conceptual clarity”
while “staying largely clear of substantive ontological commitments with respect
to the precise nature of the model’s constituents” (Gelfert, 2016, p.88). Frigg
and Hartmann’s conception of an exploratory model is also informed by Mas-
simi’s (2019) work. Massimi (2019) argues for two kinds of exploratory model:
models in which the target system is hypothetical, and models in which the tar-
get system is nonexistent. The chief epistemic virtue of exploratory modeling,

on Massimi’s account, is that it provides modal knowledge.

6.6 Modelling with and without Specific Targets

Weisberg (2013) has likewise laid out a useful taxonomy for scientific models:
he differentiates concrete, mathematical, and computational models. Cutting
across this tripartite distinction is a division between what he calls target-
directed modeling and modeling without a specific target. In this latter cat-
egory, we find generalised modeling, minimal modeling, hypothetical modeling,
and targetless modeling. A target-directed model is one built for the purpose of

predicting, controlling, or explaining the behaviour of a specific system under
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specific conditions. For example, we might have data pertaining to the foraging
behaviour of a particular species of ant across a number of colonies observed
in the amazon rainforest, and we might construct a model for the purpose of
discovering something about the ethology and ecology of this particular ant
species. Then again, we might want to think about foraging behaviour much
more broadly and abstractly—divorced from the minutiae of particular popu-
lations of particular species in particular ecological settings. Considering the
problems posed by foraging in a patchy habitat as faced by organisms in ab-
stract terms, we might perceive a resonance between foraging and economic
models that deal with optimising decisions in scenarios in which we face di-
minishing returns. We might come up with a heavily-idealised, organism and
context-generic model of foraging. This latter approach is what Weisberg dubs

modeling a generalised target.

6.7 Targetless Models

Targetless modeling is another form of modeling without a specific target. The
one distinguishing feature of targetless modeling, as Weisberg portrays it, is
that the model is never brought in direct contact with the results of empiri-
cal science: “[t]he only object of study is the model itself, without regard to
what it tells us about any specific real-world system” (Weisberg, 2013, p.129).
The targetless model is itself never used in the generation of hypotheses or pre-
dictions, and never fitted to data. The construction and analysis of targetless
models is “most akin to pure mathematical analysis” (Weisberg, 2013, p.129).
Frequently, such models are used to scaffold explanations of a very general form
of natural phenomena at a very high level of abstraction. If successful, these
models often give rise to corollaries, which themselves will interface with data.
But the power of the targetless model lies in the fact that it is untethered from
real-world systems. It still, like the generalised model, represents some broad
class of natural phenomena. Unlike the generalised model, though, the target-
less model is intended to be studied as an object of scientific intrigue in its
own right, independently from empirical results. Weisberg presents a class of
computational models known as cellular automata as exemplary of targetless
models. In particular, he focuses on a model of cellular automata known as

Conway’s game of life.
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6.8 Models & Simulations

Barandiaran’s work is especially well tailored to our needs in assessing the FEP
because Barandiaran has focused his career—and his analysis of the science
of simulations—on theories and models falling under the umbrella of what are
called life-mind continuity approaches: that is, approaches that seek to discover,
represent, or evaluate dynamical principles common to the simplest of biological
organisation and complex cognitive systems. Life-mind continuity approaches
exist on the fringes of both theory and empirical investigation. They occupy
something of an uncomfortable territory, being at once both highly specific and
extremely abstract. Developing an explanation of colour vision in mantis shrimp
or a model of locomotion in motor proteins proceeds relatively straightforwardly,
and can be evaluated relatively straightforwardly. There is often a clear and di-
rect connection between the theories and models scientists come up with and the
data they collect. Life-mind continuity approaches, however, being high-level
and existing, as they do, in empirically uncharted waters, rely heavily on sim-
ulation work. These approaches—and the technologies that enable them—are
also relatively new. For this reason, philosophers seeking to critically evalu-
ate the nature and results of work in this area—Ilike Barandiaran—have had to

construct their own accounts of how this work proceeds.

6.9 Generic & Conceptual Models

Barandiaran (2008; Barandiaran & Chemero 2009) has developed an in-depth
analysis of computer simulation in the life and cognitive sciences—in particular,
artificial life, or alife models. He offers us a taxonomy for these, which includes
functional models, mechanistic-empirical models, generic models, and concep-
tual models. These models are classified, in part, by what they are meant to
represent, and how they are meant to be evaluated. The first two—mechanistic-
empirical and functional models—are empirically evaluated, that is, evaluated
against some data collected from some real-world system. The second two—generic
and conceptual models—are evaluated theoretically, meaning that they are eval-
uated against theory or formalism. Generic models “serve to discover or classify
generic properties of complex systems” (Barandiaran, 2008, p.53). Conceptual
models, on the other hand, explain by means of their resonance with theoretical
concepts. “Abstract conceptual models,” writes Barandiaran “are used to for-
malise or compare definitions of generic concepts (such as emergence, complexity

or hierarchy) while domain specific conceptual models are used to explore the
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role and interaction between more specific concepts (such as learning, plasticity,
evolvability, etc.)” (Barandiaran, 2008, p.54). I propose that we can develop
insights for evaluating the FEP from both conceptual and generic models.

6.10 Generic Models

Barandiaran refers to generic models as “computational constructions or tem-
plate[s]” which make “no particular reference to any specific object of study,
but whose formal structure has been selected in virtue of their resemblance
with a wide range of natural phenomena” (Barandiaran, 2008, p.58). Deploy-
ment of generic models stands to benefit research in revealing “generic abstract
properties of complex systems” (Barandiaran, 2008, p.58). Examples of generic
models include cellular automata, neural networks, dynamical systems models,
and domain-general models of self-organisation. Usually a generic model will
have started its life as a domain-specific empirical model. When some feature
of the model is seen to generalise beyond its original domain of application, the
model is rinsed of its target-specific details and rendered generic. We have seen
that this is the case for many of the formal elements of the FEP: they origi-
nated in empirical domains with specific usage, and were rendered general by
the transition to a purely statistical or information-theoretic usage. The FEP,
however, is a model sewn-together from many such elements. In this respect, it

differs from Barandiaran’s characterisation of generic models.

6.11 Conceptual Models

Conceptual models are “a tool to question and reorganise theoretical assump-
tions and concepts” (Barandiaran, 2008, p.59). They further scientific under-
standing by allowing us to explore the relationships between the notions at play
in our theories. The FEP allows us to do this with notions such as life, identity,
health, prediction, cognition, perception, and the like. The relevant relation-
ship of similarity in conceptual modeling is not between the formal structure
of the model and some target system, but between the formal structure of the
model and a conceptual structure. Conceptual models are an aid to theory con-
struction, to definition building, and to establishing proofs of principle. But, as
Barandiaran notes, prominent evolutionary biologist John Maynard Smith de-
cried A-life models, referring to the approach as “science without facts” (Quoted
in Horgan (1995)). This gets at another aspect of this array of models: scien-
tists and philosophers are often loath to acknowledge their scientific merit until
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they have allowed us to make headway in some domain. For example, Hohwy
(2020) argues that the FEP is best understood as offering “a conceptual and
mathematical analysis of the concept of existence of self-organising systems”
(p-1).

6.12 Alternative Epistemic Virtues

What these various models of modeling share in common is the understand-
ing that certain types of models are useful not in virtue of accurate—or even
inaccurate—representation of features of some real-world system, but in virtue
of epistemic virtues seemingly orthogonal to truth. We have seen that such mod-
els can proceed by offering proofs of principle. Such models can also provide
knowledge of counterfactual scenarios—means of exploring the results of manip-
ulating certain systems in ways that we are unable to manipulate such systems
in real life, or in-principle explanations of phenomena whose mechanisms are
unknown. Models of this sort can also serve as an abstract or analogical touch-
stone, or an entry point, into an unexplored domain. This will serve as the basis
for more targeted, more fine-grained modelling work, or empirical investigation,
later on. Models in this genre also aid in the process of theory construction, by
allowing exploration of the nature and interrelation of conceptual objects, and
by inspiring theorists to draw connections and to ask questions that would oth-
erwise go undrawn or unasked. Such models offer leverage where other scientific
methods stop short: systems and dynamics far too complex, or too new, to be

treated under standard approaches.

6.13 Guides to Discovery

One way of encapsulating the diverse functionality of this genre of modelling,
as outlined above, is by thinking of these models as guides to discovery. This
is a notion developed in Chemero (2000, 2009), though phrased perhaps most
succinctly and articulately in Barandiaran and Chemero (2009): “A guide to
discovery is some means for a scientific research program to advance by making
predictions for future experimentation, or extending the reach of the program to
new phenomena, or solving conceptual problems within the program, or casting
empirical findings in a new light, and so forth” (Barandiaran & Chemero, 2009,
p.288). This is a function that models like the FEP are uniquely equipped to

perform.
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6.14 Takeaways from the Modelling Literature

We have seen in this section that, at least according to prominent contemporary
work in philosophy of science, there are many ways for the FEP to serve as an
aid to scientific work without constituting falsifiable assertions about the state
of nature. It is capable of serving as a proof of principle demonstration, as a tool
for conceptual analysis—for example, of the notions of organismality, of systemic
identity, or of cognition—it is capable of unifying a number of phenomena that
have hitherto been investigated separately under a single formal framework,
which may pave the way for future empirical investigation of commonalities
that run between the phenomena involved. The FEP can play an essential a
role in generating more concrete models, and as a means for evaluating their
viability.

A very important question, however, remains unsettled: is the FEP merely
a mathematical truism, or does it make assertions about nature, albeit at a very
high level? The modelling literature I have included above, and my discussion
of it, has been deliberately agnostic with respect to this issue. I would like to
draw again from a parallel discussion on formal models in evolutionary biol-
ogy. Mathematical biologist Martin Nowak has been arguing for decades that a
mathematical model known as Hamilton’s rule does not describe a synthetic, bi-
ological truth, but rather an analytic, mathematical truth; one that would hold
true of any dataset due to the nature of regression coefficients (Nowak, McAvoy,
Allen, & Wilson, 2017). In a 2018 lecture on the topic, Nowak analogised use
of Hamilton’s rule with standing over the shoulder of a laboratory scientist and
repeating over and over again that two plus two equals four.

Apart from their entertainment value, Nowak’s comments pose an intriguing
puzzle for philosophers and scientists concerned with the menagerie of math-
ematical models employed by scientists, and the exceptional diversity among
them. How do we distinguish models that make assertions about nature from
those with no empirical strings attached? What makes a model a scientific
model, and what sets it apart from ‘mere math?’ Plenty of mathematical mod-
els used by scientists are representative of states of affairs in the world which
are, at least in principle, open to empirical verification or falsification—although
models, insomuch as they rest on facts or assumptions about the natural world,
are in general not in the game of falsification. Some of these representational
models express only facts that have already been empirically verified; others

rest on gambits, speculations, useful fictions, or idealisations. Then there are
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mathematical models which, like ‘2 + 2 = 4,” express only mathematical truths.
The power law, T%, most famously detailed in Newton’s Principia, was clearly
derived, and several times over, at that, from calculations based on astronomical
observations. But from the perspective of modern physics, it seems as though
this formula might be mathematically necessary.

Our understanding of the status of scientific models shifts over historical
time. And there are a plethora of models that exist in a sort of superposition
between mathematical truism and contingent fact or gambit. Hamilton’s prin-
ciple of least action—Friston often compares the status of the FEP with the
LAP—is neither a mathematical truism nor a statement of fact. It makes refer-
ence to worldly systems, yet is unfalsifiable because it holds necessarily for all
systems—possible and actual.

In this paper, I have remained agnostic with respect to the issue of whether
the FEP is merely a mathematical truism or a representation of contingent
states of affairs in nature in the first place because I think that the results
are not yet in. More work needs to be done on the framework before it can
be known whether it applies universally and necessarily, or only under certain
conditions. In the second place, I avoid coming down on this issue because 1
believe it to be wholly within the range of possibility that we should, in the
end, discover that the FEP is something of an intermediary between pure math
and contingent representation of nature. In this respect, the existence of the
FEP may well come to push the boundaries of what the literature on scientific

models has heretofore dealt with.

7 Conclusion

I believe that the FEP can provide a powerful framework for modelling liv-
ing systems across scales. It can do this in demonstrating proofs of principle,
by placing demands on the sufficiency of process theories, and by serving as a
structure or template from which narratives are woven—the sort of narratives
that enable entrance into hitherto empirically uncharted territories. Already the
FEP has been leveraged in the construction of more granular models of specific
phenomena: from the behavioural profile of autism spectrum disorders (Per-
rykkad & Hohwy, 2020a, 2020b) to morphogenesis and regeneration in amphib-
ians (Friston, Levin, Sengupta, & Pezzulo, 2015; Kuchling, Friston, Georgiev,
& Levin, 2019) to the phenomenal experience of selfhood under the action of
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psychedelic drugs (Carhart-Harris & Friston, 2019; Deane, 2020). The FEP
has also enabled important conceptual work on the nature of life (Ramstead,
Badcock, & Friston, 2018), cognition (Corcoran, Pezzulo, & Hohwy, 2019), and
the continuities between them (Kirchhoff & Froese, 2017).

Figuring out what the FEP is, and what use it holds for scientists, is a
worthwhile project in and of itself. How we come down on the matter—and
what route we take in getting there—will have important implications for phi-
losophy of biology, philosophy of cognitive science, and the philosophy of science
in general. The dialogue unfolding in the literature on the FEP raises impor-
tant questions about the relationship between science and philosophy of science,
between theory, model, and data, about the scientific method and the aims of
science, and even—perhaps most especially—about what counts as science in

the first place.
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