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Abstract

Newton’s rotating bucket pours cold water on the naive relationalist by vividly
illustrating how certain rotational effects, particularly those due to non-zero angu-
lar momentum, can depend on more than just relations between material bodies.
Because of such effects, rotation has played a central role in the absolute-relational
debate and poses a particularly difficult challenge to the relationalist.

In this paper, we provide a qualified response to this challenge that significantly
weakens the absolutist position. We present a theory that, contrary to orthodoxy,
can account for all rotational effects without introducing, as the absolutist does,
a fixed standard of rotation. Instead, our theory posits a universal SO(3) charge
that plays the role of angular momentum and couples to inter-particle relations via
terms commonly seen in standard gauge theories such as electromagnetism and the
Standard Model of particle physics.

Our theory makes use of an enriched form of relationalism: it adds an SO(3)
structure to the traditional relational description. Our construction is made pos-
sible by the modern tools of gauge theory, which reveal a simple relational law
describing rotational effects. In this way, we can save the phenomena of Newtonian
mechanics using conserved charges and relationalism. In a second paper, we will
further explore the ontological and explanatory implications of the theory developed
here.
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1 Introduction

1.1 Rotation: the downfall of relationalism?

In the Scholium to the Definitions given in the Principia (Newton, 1999), Newton
introduces and defends his notion of absolute space in terms of real and imagined
experiments. The problem Newton set himself was the detection of motion with
respect to an immovable space not subject to direct observation:

It is indeed a matter of great difficulty to discover, and effectually to dis-
tinguish, the true motions of particular bodies from the apparent; because
the parts of that immovable space, in which those motions are performed,
do by no means come under the observation of our senses. [p.82]

Despite this “great difficulty,” Newton offers a concrete proposal in terms of “forces”
and “apparent motions”:
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Yet the thing is not altogether desperate; for we have some arguments to
guide us, partly from the apparent motions, which are the differences of
the true motions; partly from the forces, which are the causes and effects
of the true motions. [p.82]

Perhaps the most famous experiment used to illustrate the determination of such
absolute motion is ‘Newton’s bucket’. In this experiment, a bucket filled with
water is spun, and the water is seen to creep up the walls of the bucket as it
recedes from the axis of rotation. There is now general consensus among historians
(Rynasiewicz, 1995a,b) that the bucket experiment should be read as a reaction to
Descartes’ views of motion, and not in the terms of modern debates concerning the
nature of space-time. But regardless of the historical context, Newton’s rotating
bucket still provides a vivid illustration of how the receding water can be used to
determine rotational motion with respect to absolute space, and thereby threaten
a relationalist view.

That Newton focused attention on examples involving rotation is highly sugges-
tive, and foreshadows the focal point of the subsequent absolute-relational debate.
The subject of this debate is space-time itself, and concerns its status either as an
absolute entity in its own right — the absolutist position — or as an abstraction
inferred from the relations between material bodies — the relationalist position.
In World Enough and Space-time, John Earman (Earman, 1989) devotes an entire
chapter to the topic of rotation and its role in the absolute-relational debate. There
he describes and comments on several failed historical attempts to understand ro-
tation in relational terms:

Those who want to deny that the success of Newton’s theory supports
the absolute side of the absolute–relational controversy are obliged to
produce the details of a relational theory that does as well as Newton’s
in terms of explanation and prediction, or else they must fall back on
general instrumentalist arguments.[p.65]

He then laments that “there are features of rotation that make it an especially
difficult challenge for the relationalist.” To drive the point home, he comments
on the difficulty of providing a purely relational theory of rotation in the light of
several prominent inadequate attempts:

Newton, Huygens, Leibniz, Berkeley, Maxwell, Kant, Mach, Poincaré —
these are names to conjure with. The fact that not one of them was able
to provide a coherent theory of the phenomena of classical rotation is at
first blush astonishing.[p.89]

These failures, Earman contends, are a testament to “the difficulty of the prob-
lem” that highlight “the strengths of the preconceptions and confusions about the
absolute-relational debate.”

In a more recent review, Pooley (2013, Section §6.1.1) asks whether a relation-
alist can find dynamical laws in terms of relational quantities that can describe the
full set of phenomena of Newtonian mechanics. The answer is rather pessimistic:
“As far as I know, no one has seriously attempted to construct such laws. Even
so, one knows that any such laws will exhibit a particularly unattractive feature:
they will not be expressible as differential equations that admit an initial value for-
mulation.” Similarly, in an article directed at ‘rehabilitating relationalism,’ Belot
(1999) describes how the symplectic reduction methods of Marsden (1992)1 applied

1This work is expanded upon in Butterfield (2006) with a discussion of the philosophical implications. See
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to Newtonian mechanics in the presence of angular momentum “fails to lead to a
Hamiltonian theory on the relative phase space” because it can only be expressed
in terms of “two additional variables” that “have no transparent geometric inter-
pretation for relationalists.”2 He thus concludes that “Newtonian physics cannot
be reformulated as a Hamiltonian theory on relative phase space. Hence, there is,
after all, no strict relationalist interpretation of Newtonian theory —– rotation is
the downfall of relationalism.” [Emphasis added.]

This now-orthodox view would seem to put the relationalist in an impossible
position with regard to rotational effects due to angular momentum. Yet, to use
Newton’s words against him: the thing is not altogether desperate. In spite of the
prevailing pessimism in the philosophical literature, in this paper we will give a
fully coherent theory of classical rotation in relational terms. Our theory builds
upon the well-known work of Littlejohn & Reinsch (1997), which is more flexible
than the formulations based on symplectic reduction, and is used extensively in
molecular physics, chemistry and engineering for describing the rotation of rigid
bodies in terms of relational quantities. Contra Pooley (2013) and Belot (1999),
the theory we present is expressible in terms of well-posed differential equations
and makes use of geometric quantities that have a straightforward interpretation
for the relationalist.

To overcome the concerns expressed above, our theory makes use of an en-
riched form of relationalism.3 In particular, it adds an SO(3) charge that couples
to particle relations in ways commonly seen in standard gauge theories such as elec-
tromagnetism and the Standard Model of particle physics. Our proposal postulates
a new form of relational law involving universal coupling constants representing
the SO(3) charge that can be treated no differently from other constants of nature
such as Newton’s gravitation constant G.4 This new law can be expressed entirely
in terms of relational quantities using a curved gauge connection. In a second pa-
per, we will argue, in response to Earman’s challenge, that this theory can match
Newton’s in terms of explanation and prediction, without having to appeal to in-
strumentalist arguments. There we explore in greater detail the ontological and
explanatory implications of our new theory.

To understand the novel features of our theory, it is useful to compare it with
existing approaches. These approaches can be broadly classified by the way in
which they implement different classical space-time symmetries. This is done ei-
ther directly at the level of the space-time or at the level of the state-space in
terms of configuration space or phase space. The basic differences between these
approaches can be understood in terms of the amount of structure of the original
absolute Newtonian configuration space that is retained in the relational theory.
An accounting can be made in terms of the number and nature of the degrees of
freedom that are removed from the Newtonian theory. A simple way to do this is to
list the number of fixed standards that exist in a theory. For example, a particular
neo-Newtonian theory might retain a fixed standard for inertial frames but reject a

also Abraham et al. (1978); Marsden & Ratiu (1995) for more details.
2These two variables are directions on a 2-sphere that represent the changing orientation of the angular mo-

mentum vector in a frame co-rotating with a rigid body. See Butterfield (2006, Section §2.3.4) for a description
of these variables.

3This enriched relationalism, however, is not of the kind proposed in Sklar (1977, Section §III.F.2) or
Van Fraassen (1970, Ch.4,Section §1) (and discussed critically in Maudlin (1993) and Huggett (1999)), which
takes relational accelerations or inertial frames as primitives. See the discussion below.

4In this sense, our approach resembles a proposal along the lines of a ‘regularity account’ advocated by
Huggett (2006) but in terms of an explicit formulation of the relational law.
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fixed standard of position. Depending on whether a theory is based on space-time,
configuration-space or phase-space, it may be more or less natural to retain or reject
a particular standard.

A prominent configuration-space based approach that makes use of elementary
gauge theory methods is that of Barbour & Bertotti (1982). This theory is strongly
relationalist in that it rejects fixed global standards of position, velocity, orienta-
tion, rotation and duration. The theory is then expressed implicitly on a relative
configuration space, where all absolute standards have been removed. In order to
remove the fixed standard of rotation, the theory requires the angular momentum
of the universe to be zero. The phase-space-based methods of Marsden (1992) (cf.
also Abraham et al. (1978); Marsden & Ratiu (1995); Butterfield (2006)) suggest
that the restriction to zero angular momentum is the only possible way to imple-
ment a relational theory of rotation because, in the presence of angular momentum,
two additional degrees of freedom appear that do not have any obvious relational
interpretation within the phase-space formalism. As noted above, this point was
emphasised in Belot (1999). In Pooley & Brown (2002), vanishing angular momen-
tum was then touted as a prediction of relationalism highlighting the difficulty of
describing angular momentum effects in relational terms.

Similar conclusions have been reached from the point of view of space-time based
approaches. Recently, it has been argued by Saunders (2013) and Knox (2014) that
Newtonian mechanics should be expressed in terms of Maxwell–Huygens space-
times, which do not have a fixed standard of linear acceleration but do have a fixed
standard of rotation.5 These author’s retention of a standard of rotation (but not
orientation) is motivated by the desire to accommodate a universe with non-zero
angular momentum.

While we accept that it is possible to describe Newtonian mechanics without
introducing fixed standards of linear acceleration and orientation; we deny that,
independently of metaphysical considerations, a standard of rotation is strictly nec-
essary. We will defend our position by explicitly giving a theory that is independent
of any rotational standard but can nevertheless also account for universal angular
momentum. Such a formulation is made possible through the use of the modern ad-
vances of gauge theory that were not available to Earman’s list of grand “names to
conjure with.” Importantly, this machinery can accommodate non-zero curvature
effects and a more general class of dynamically defined relational frames that allow
for a straightforward geometric interpretation of the features of the symplectically
reduced theory that Belot (1999) deemed awkward.6

1.2 Saving the phenomena with conserved charges

Our theory is expressed in terms of two distinct relational force terms: a Lorentz-
like force, analogous to the one of electromagnetic theory, describing Coriolis effects;
and a force term due to a mass-like quadratic potential describing centrifugal effects.
Formally the novel force terms are represented on an SO(3) principal fibre bundle
over a base space corresponding to the relative configuration space of Barbour &

5The space-times in question are referred to as ‘Maxwellian space-times’ in Earman (1989) and ‘Newton-
Huygens space-times’ in Saunders (2013). We will use the term ‘Maxwell–Huygens space-time’ introduced in
Weatherall (2016). These differ from neo-Newtonian space-times in that they do not have a fixed global inertial
structure.

6Concretely, the time-dependence of the two orientation variables in a frame co-moving with a rigid body
can be understood in terms of the curvature of the rotational bundle resulting in the absence of a horizontal
section. See the discussions at the end of Section §5.3.
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Bertotti (1982). In describing Coriolis and centrifugal effects, our theory saves the
phenomena of Newtonian mechanics. In other words, all rotational phenomena
can be described solely in terms of a relational ontology with an additional SO(3)
charge. Our theory can thus be viewed as both a more explicit statement of the
theory presented in Barbour & Bertotti (1982), in that we perform an explicit
reduction to a relative configuration space, and a generalisation of it to the case of
non-zero angular momentum.

One of the most significant features of the new construction is that it provides
an enriched relational interpretation on the rotational bundle when the angular
momentum of the system is non-zero. Such an interpretation suggests a new kind
of enriched relational ontology that combines certain elements of a fully-reduced
description with additional elements inspired by the global structure of the bundle.
But because the additional elements correspond to a modification of a relational
dynamical law, no new accelerations or inertial frames must be included as prim-
itives in the ontology such as those proposed in Sklar (1977, Section §III.F.2) or
Van Fraassen (1970, Ch.4, Section §1). Instead, inertial frames can be defined dy-
namically in terms of relational quantities and the value of the SO(3) charge (see
Section §2.1 for a more detailed discussion of this point).

In our picture, we show that all inertial effects caused by rotational phenomena
can be described directly in terms of conserved quantities on relative configuration
space. This comes about because the motion along the fibres of a curved bundle
is conserved if the fibres have a ‘rigid’ geometry.7 This motion can be projected
directly onto the relative configuration space where it is described by the Lorentz-
like force and mass-like quadratic potential terms mentioned above.

The construction here is intimately linked to that of Littlejohn & Reinsch (1997),
where equivalent terms were obtained when working within particular choices of
rotational frame. The full principal fibre bundle picture presented here has certain
advantages, the most important of which is that it does not refer to frames at all.
This is particularly useful for eliminating the awkward frame effects that are seen
in attempts (Marsden, 1992) to symplectically reduce the rotations. Our formalism
can also be applied to any semi-simple Lie group, and can thus be directly compared
to the decompositions used in Kaluza–Klein theory to which we will return shortly.
In the special case where the angular momentum is equal to zero, the motion along
the fibres vanishes and is thus not required to describe the reduced theory.

While this picture matches the strong relationalism advocated in Barbour &
Bertotti (1982), there are notable differences between that work and ours. Their
framework cannot be applied to isolated subsystems of the universe because such
subsystems can have non-zero conserved angular momentum. The theory of Bar-
bour & Bertotti (1982) therefore applies only in a cosmological context, and cannot
satisfy the concept of subsystem-recursivity advocated in Wallace (2019a) accord-
ing to which “interpretative conclusions about a sector of a theory can be deduced
from considering subsystems of other models of the same theory.” Because our the-
ory can accommodate non-zero angular momentum, it has the advantage of being
equally applicable to subsystems as to the universe as a whole, and can be made
to satisfy subsystem-recursivity (see the end of Section §7.1).8 Thus, our theory is

7More precisely, by ‘conserved motion’ we mean rigid motion in the sense that the vertical velocities of the
dynamical trajectories are conserved between fibres, which lie along Killing directions of the kinematical metric
of the theory (see Theorem 1 of Section §5.3).

8Gluing back reduced systems however comes with its own complications (cf. Rovelli (2014); Gomes (2019)
and (Gomes, 2020, Sec. 3)).
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more flexible and fits a broader class of contexts for discussing symmetry9 regardless
of the status of the angular momentum of the universe.

Our construction further allows us to pinpoint the precise technical difference
between the mathematical representation of the dynamics of rotation and trans-
lation. This difference lies in the nature of the gauge-connection: it is necessarily
curved for rotations but flat for translations. This difference leads to many simpli-
fications in the translational case.

To better understand the flexibility of our enriched ontology, it is helpful to
consider the similarities and differences between our treatment of rotations and
the treatment of gauge symmetries in Kaluza–Klein theory. Standard Kaluza–
Klein theory makes use of the kind of enriched ontology introduced in this paper
by positing particles that move in a fixed, symmetric and extra-dimensional back-
ground geometry. The explanatory role played by this ontology in Kaluza–Klein
theory is, however, very different to the rotational case.

In Kaluza–Klein theory, the gauge orbits take on more ontological significance
than in Yang–Mills gauge theories because they are interpreted as extra space-time
dimensions. But the orbits do not have the full representational capacity of ordinary
directions in space-time because motion along these directions is rigidly constrained
to accommodate a projection of the motion onto the base space. Some argument
must then be supplied to specify the condition for projectability.

The justification in Kaluza–Klein theory for the projection is epistemic: the
projected directions are too small for motion along them to be empirically accessible.
The phenomena that we do have epistemic access to are then sufficiently well-
described by the projection of the constrained motion in the extra dimensions to
the familiar (3 + 1)-dimensional motion on the base space, where it is interpreted
as motion in space-time in the presence of background fields. The constraints on
the motion translate to conserved charges of the corresponding symmetry group.
Because of the epistemic interpretation of the projection, the extra dimensions play
a prominent role in the possible empirical implications of the theory.

This can be compared to the epistemic status of the orbits of spatial rotations
in Newtonian mechanics. In this case, rotated and translated representations of
the universe are empirically indiscernible even in principle.10 The argument for
the projection can then be made in terms of the Principle of the Identity of In-
discernibles. For translations this can be done without introducing an enriched
ontology following, for example, the arguments in Saunders (2013) or the explicit
reduction performed in Littlejohn & Reinsch (1997) that is summarised in Sec-
tion §2.3. But for rotations, a simple construction is not possible and an enriched
ontology is necessary. As we will see, there is a close formal analogy between this
and the Kaluza–Klein case, where the relevant conserved charge for the rotation
group is the angular momentum of the universe. The differences between the way
the projection is interpreted — in the rotational case as an ontological identifica-
tion and in the Kaluza–Klein case as an epistemic constraint — thus illustrates the
flexibility and generality of the new kind of enriched ontology introduced here.

In this paper we will focus mainly on the formal representations of our proposed
enriched relational ontologies. Questions surrounding the interpretation of the pro-
jection to base space, the ontological and explanatory implications of rigid motion,
and the comparison with Kaluza–Klein theory will be taken up in our second pa-

9Including many of the contexts discussed in Wallace (2019b).
10Here we are referring to ‘kinematical shifts’ of all the particles in the system and not the more cryptically

defined ‘dynamical shifts’ that, in this case, would involve changing the angular momentum of the system.
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per. The arguments of this paper will therefore necessarily be rather technical in
nature. That’s unsurprising. After all, the main advantage that this construction
has over the many previous failed attempts to produce a relational theory of ro-
tation is that it makes use of the modern mathematical advances in gauge theory.
But we hope these technicalities will not be seen as impediments to conceptual
clarity. Our mathematical labours will bear significant conceptual fruit: a compact
description of a relational theory of classical (i.e., non-relativistic) rotation in terms
of an enticing new proposal for formulating the ontology of such a theory.

1.3 Prospectus

In Section §2, we build intuition for our theory by comparing it to existing theories
in the literature. For convenience, the technical results of the paper are sum-
marised in Section §3. The principal fibre bundle formalism is then introduced
in Section §4, where we use it to define the horizontal projection of curves in a
fibre bundle in terms of the basic structures required for our construction: parallel
transport (via a connection-form) and curvature. We then develop our theory in
Section §5, Section §6 and Section §7. In Section §5 we review the standard formu-
lation of Kaluza–Klein theory for semi-simple Lie groups over space-time. Given a
background connection-form, a metric is defined on the bundle in Section §5.1 that
is natural and respects the bundle symmetries. Using this metric, it is possible to
derive the standard Lorentz force as the difference between the acceleration along
geodesics in space-time and the projection to space-time of geodesics in a higher-
dimensional bundle. The decomposition used in Section §5 then provides the tools
to build a formal analogy to the rotational case. In Section §6 we switch gears and
develop a principal fibre bundle formalism for configuration space. We turn around
the logic of Kaluza–Klein theory and use the kinematical metric and its symmetries
to uniquely select a connection-form (Section §6.1) and a bundle curvature form
(Section §6.2) on configuration space. Finally, in Section §7 we apply the general
construction of Section §6 to the case of translations and rotations in a Newtonian
N -particle system. In Section §7.1, the connection and curvature forms for this case
are explicitly constructed. This leads to the main result (Equation 7.23), derived
in Section §7.2, that gives a representation of the dynamics on the rotation-free
reduced space in terms of a Lorentz-like force and a mass-like quadratic potential.
Section §8 concludes. The appendices provide more detailed proofs of some of the
technical requirements of Sections §4 and §5.

2 The angular momentum of the universe

2.1 The (non-)issue with rotations

Let us first consider a universe with zero angular momentum. In this case, there is
general agreement (Belot, 1999; Pooley & Brown, 2002) that a relational theory of
rotation can be broadly constructed along the lines suggested by Barbour & Bertotti
(1982). Indeed, Pooley & Brown (2002) consider vanishing angular momentum to
be a real-world prediction of a fully relational theory. Zero angular momentum
is further claimed (Belot, 1999) to be a “contingent fact” supported by the best
available evidence from cosmology (e.g., due to the observed isotropy of the CMB).

Such claims are, in our opinion, implausible since they inappropriately extend
the analogies between Newtonian and general relativistic space-times. In general
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relativity there are inherent difficulties in defining the angular momentum of the
universe. In a spatially closed universe, there is not even any known way to define
global angular momentum. While definitions of angular momentum are available
for open universes, these definitions rely on fixed asymptotic boundary conditions,
and it is not clear how to construct covariant boundary conditions that would simul-
taneously: allow for universal angular momentum, be compatible with cosmological
observations, and agree with relationalist intuitions. There is therefore no rigorous
sense in which vanishing angular momentum has been established as a contingent
fact of our universe; and thus there is no good reason to reject the possibility of
universal angular momentum — particularly in a Newtonian setting.

In the presence of angular momentum, all parties to the absolute-relational de-
bate agree that the evolution of a system of point particles is underdetermined by
their initial relative positions and momenta. One extra vectorial datum, expressible
as the value of the total angular momentum, is required to determine the evolution
of the system. The need for such an extra vectorial datum was recognised long
ago by Tait (1884) and Lange (1885) in the context of the initial value problem
for force-free Newtonian point particles in three dimensions and was later empha-
sised by Poincaré (1902) and eventually by Barbour (e.g., 2010; 1982). Such a
requirement can plausibly be taken to motivate accounts of angular momentum in
terms of Maxwell–Huygens space-time (as in for example Earman (1989); Saun-
ders (2013); Knox (2014)), which retains a fixed standard of rotation; or in terms
of neo-Newtonian space-time, which further retains a fixed inertial structure. Al-
ternatively, the extra data can be taken to be primitive relational accelerations
along the lines of Sklar (1977, Section §III.F.2) or inertial frames along the lines of
Van Fraassen (1970, Ch.4, Section §1). The account we will present here, however,
illustrates that the retention of a standard of rotation or the positing of primi-
tive accelerations or inertial frames is not necessary in order to allow for non-zero
angular momentum.

Upon the symplectic reduction presented in Marsden (1992), the angular mo-
mentum of the original system decomposes into a constant magnitude and two
time-dependent orientations. The orientations represent the time varying direc-
tions of the relational angular momentum in a frame co-rotating with the system
(Butterfield, 2006, Section §2.3.4). These directions are said to “have no transparent
geometric interpretation for relationalists” (Belot, 1999); although their evolution
can be determined autonomously in terms of initial data on relative configuration
space and a specification of the value of the conserved angular momentum.

The difficulty of finding a co-rotating frame where the angular momentum is con-
served is related to a more general problem of working with frames that only make
use only of instantaneous configurations and no further dynamical information. The
lesson from the Scholium to Newton’s Principia and from the Lagrangian-based ap-
proach of Barbour & Bertotti (1982) is that dynamical considerations are necessary
to determine the privileged frames in which angular momentum is conserved. This
information cannot be extracted from the instantaneous configurations alone but
requires knowledge of the theory’s laws.

These facts are nicely encoded in the fibre bundle formalism. For rotations
there is in general no simple function of the instantaneous relative configurations
alone that can be used to define frames where angular momentum is conserved
because, as we will see, the rotational bundle is curved.11 This fact is exemplified,
both in Littlejohn & Reinsch (1997) and in the symplectic reduction formalism of

11Formally, this is because curvature prohibits the existence of a horizontal section on the fibre bundle.
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Marsden (1992), by the non-conservation of angular momentum in the frames used
in those papers. However, using the principal fibre bundle formalism, it is always
possible to find an anholonomic frame associated with the extremal curves (i.e.,
the dynamically possible models of the theory) on the bundle where the angular
momentum is indeed conserved. To determine such frames one requires knowledge
of the theory’s laws, which determine the extremal curves, and the value of the
SO(3) charge. Such a construction gives a dynamical definition of inertial frames
that is along the lines of Barbour & Bertotti (1982) but also works in the presence
of non-zero angular momentum.

The most interesting aspect of our new theory, therefore, is its ability to rep-
resent angular momentum directly on relative configuration space as a charge no
different from that of a classical electrically charged particle moving in a background
electromagnetic field. From a modern perspective, the motion of a charged particle
has two independent interpretations: one in which a charge needs to be posited
and another where it does not. In the former standard picture, the dynamical
evolution of the particle in space-time is only determined after adding one datum:
the charge of the particle which is to be acted on by the background field. In the
latter picture, a Kaluza–Klein interpretation of the same charged-particle dynamics
eschews this extra datum. In this picture’s enriched ontology, forced motion is en-
tirely geometrised as the observable “shadow” of free motion in a space-time with
one additional dimension. Here the charge datum is re-described as a conserved
momentum along the extra dimension. In this analogy, the account in terms of a
Maxwell–Huygens space-time is analogous to a Kaluza–Klein interpretation where
the extra dimension is taken to be real in light of its explanatory role in accounting
for charged motion. While such a realist view of the extra dimension is always
available, it is clearly not necessary and is even non-standard. The relative merits
of an absolutist versus an enriched relationalist account will be analysed in more
detail in our second paper.

2.2 The two-body system

In this section we attempt to build intuition for how an extra vectorial datum
can, on the one hand, be interpreted as a dynamical degree of freedom due to
angular momentum and, on the other hand, be interpreted in relational terms as a
charged coupling constant. To do this, we consider the simple example of a two-
body system rotating under some potential. Because this system can be confined
to a two dimensional plane, a projection of the rotational motion will leave a one-
dimensional system in which curvature must be equal to zero. Vanishing curvature
implies that the Lorentz-like force term of (7.23) that we will derive in Section §7.2
is zero. Nevertheless, the mass-like quadratic potential is non-zero, and so this
example will serve to illustrate this effect in an intuitive setting.

To define the model, we use a coordinate system in the plane of rotation and set
the origin of the coordinate system to be the location of one of the particles. If r is
the distance between the particles and θ is an angle parametrising the orientation
of the system in absolute space, then the Lagrangian for the system is

L =
m

2

(
ṙ2 + r2θ̇2

)
− V (r) , (2.1)

where m is the mass of the second particle.12 Because θ is a cyclic variable, it
can be eliminated via a Routhian reduction by integrating out its Euler–Lagrange

12The kinetic energy of the first particle is zero in these coordinates.
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equations. This introduces the constant of motion L = mr2θ̇, which is the angular
momentum of the coplanar system. In terms of this constant, the reduced theory
can be shown to have the reduced Lagrangian

Lred =
mṙ2

2
− L2

2mr2
− V (r) . (2.2)

Removing the angular variable θ thus introduces the well-known centrifugal poten-
tial Veff = L2

2mr2 . This potential is the two-dimensional analogue of the mass-like
term of our main result (7.23), which is quadratic in the angular momentum L.

The reduced theory is empirically equivalent to the original theory defined in
absolute space. Because it is expressible entirely in terms of r, no standard of
rotation need be introduced. The theory is also explanatory: all rotational effects
are accounted for by a central repulsive 1/r3 force with a coupling that can be
determined empirically. Any apparent underdetermination in the system can be
resolved by specifying the value of this coupling in a manner no different to the
specification of Newton’s constant G in a gravitational system.

The simplicity of this two dimensional example, however, masks the complexities
of the three dimensional theory. In three dimensions, the curvature of the rotational
bundle is no longer zero, and an understanding of these effects requires the tools of
modern gauge theory. We now turn attention to these.

2.3 The rotational bundle

In their groundbreaking work, Littlejohn & Reinsch (1997) carry out the explicit
elimination of those degrees of freedom that can be eliminated on the basis of trans-
lational and rotational invariance by working with particular standards of rotation;
i.e., particular choices of frame. The bundle construction for the translations is
largely uninteresting and can be rather explicitly reduced. After doing this, they
construct a rotational bundle over relative configuration space. They relate the
properties of the gauge-potential (i.e. the connection-form in a particular choice of
frame) and of the gauge curvature to the classical dynamics of point particles. These
gauge fields have a simple physical interpretation, which can be understood in terms
of elementary ideas about conservation of angular momentum, and the rotations
generated by deformable bodies with changing moments of inertia.13 Littlejohn &
Reinsch (1997, p.215) write: “What is particularly remarkable about these devel-
opments is the manner in which the entire structure of nontrivial connections on
non-Abelian fibre bundles emerges from elementary mechanical considerations.”

The theory that emerges is not only mathematically elegant, but has also been
shown to be immensely useful in the study of molecular dynamics, where one is
mostly interested in the properties of the reduced dynamics. At the time of writ-
ing of (Littlejohn & Reinsch, 1997), the notion that the internal dynamics of N -
body systems is a gauge theory was a new one in the literature of applied physics,
chemistry, and engineering. But it has since been proven to have wide-ranging
implications for the understanding of such systems.

Most importantly for us, the work of Littlejohn & Reinsch (1997) unifies the
treatment of rotations with that of other symmetries in the Newtonian framework.

13This was the approach taken by Guichardet (1984), who dealt with the kinematics of deformable bodies
such as molecules and falling cats. The same discovery was made independently by Shapere and Wilczek (1989;
1989b), evidently as a by-product of their more substantial work on the gauge theory of the locomotion of
objects such as microorganisms in a viscosity-dominated medium (Shapere & Wilczek, 1987, 1989c,a).
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In so doing, it clarifies the distinctions between the previous historical treatments of
the translation group and those of the rotation group. The most significant way in
which the current work differs from the formulation of Littlejohn & Reinsch (1997)
is that they specialise to specific choices of rotational frames. In our formalism,
which recasts the reduction in the language of principal fibre bundles, such choices
are never necessary. The geometric picture we obtain is both technically slender
and conceptually insightful since it emphasises the construction is independent of
any choice of rotational standard. Moreover, it enables us to articulate the formal
analogy to electromagnetism and Yang–Mills theory using the Kaluza–Klein for-
malism. These differences will play a central role in the explanatory considerations
of the second paper. For a more technically detailed commentary on the differences
between these approaches, see Section §7.

3 Summary of the technical results of this work

In this section, we summarise for convenience the technical results of the theory
developed in Section §5, Section §6 and Section §7. To begin, consider that the
standard Lagrangian for a conservative central force system is invariant only under
time-independent changes of orientation. One of the primary technical achievements
of this paper is to show that the gauge formalism is powerful enough to extend this
symmetry and thereby project the dynamics, given one added choice of constant
vector, to a reduced configuration space of inter-particle relations conforming to
the intuitions reported in Section §2.

Consider the case where the potential energy function is velocity-independent
and the kinetic and the potential terms are each invariant under some time-independent
transformation. Moreover, the kinetic term is given by the norm squared of the ve-
locity, and this norm is induced by a symmetry-invariant inner product, which we
will call the kinematical metric. Using these properties of the kinematical metric
and the known symmetry orbit induced by the action of the gauge group on con-
figuration space, it is possible to treat the configuration space as a principal fibre
bundle for this symmetry group and to construct a dynamical connection 1-form
on this bundle known as an Ehresmann connection.14

Using the notion of orthogonality implied by the kinematical metric, we obtain
a kinetic term in the Lagrangian that decomposes into one term that admits only
velocities orthogonal to the orbit and another that admits only velocities parallel to
the orbit. The orthogonal part, by the properties of an Ehresmann connection, is
fully invariant. The lack of invariance of the theory is therefore entirely contained
in the contribution parallel to the orbit. Because the orbits are by assumption
Killing directions of the kinematical metric, the parallel velocities will be conserved
along dynamical trajectories (see Theorem 1 of Section §5.3 below). In the case of
rotations, such velocities map to the angular momentum of the system: the extra
vectorial datum, discussed in Section §2.1, needed to define a complete projection
of the theory to the reduced space.

A second technical achievement of this paper requires us to review the Kaluza–
Klein construction for non-Abelian Yang-Mills theories. A comparison with that
framework shows precisely how inertial motion on the full bundle, when projected to
the base space, differs from inertial motion on the base space. Most interestingly, the

14This is formally similar to the best-matching construction of Barbour (cf. Barbour & Bertotti (1982) and
Mercati (2017, Ch. II.5) and references therein). See also section 7.1.
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new structures admit a compelling geometric interpretation in terms of a Lorentz-
like force term with the Ehresmann connection generating the relevant curvature
contribution. Using this approach, we will be able to offer a geometric interpretation
and a classification of the symmetry reductions of different systems. In particular,
our interpretation classifies the differences between quotienting with respect to: (i)
translations, (ii) rotations, and more generally (iii) any semi-simple Lie group.

One final point that our formalism will help to clarify is the representational
difference between rotation and translation. As we will see, reduction by rotations
is more involved than reduction by translations. It is also slightly more involved
than the reduction process in the standard Kaluza–Klein formulation of electro-
magnetism.

Translations, it turns out, are remarkably simple to represent owing to three
independent mathematical facts. The first two facts are that the group action of
translations on configuration space and the relevant kinematical metric along the or-
bits are both independent of the configuration itself. The third relevant fact is that
the bundle curvature vanishes for translations. In the Kaluza–Klein construction for
electromagnetism, the group action and the kinematical metric along the group or-
bit are both configuration-independent but the bundle curvature is non-zero. In the
Kaluza–Klein construction for general semi-simple Lie-groups, only the kinematical
metric along the orbit is configuration-independent: the curvature of the relevant
bundle is non-zero and the action of the group is not configuration-independent.
And in the case of rotations, none of these three conditions are satisfied. In partic-
ular, the dependence on configurations of the kinematical metric along the orbits of
the configuration space induces the additional mass-like quadratic potential term of
main result, equation (7.23) of Section §7.2, in the reduced description in addition
to the one due to the Lorentz-like force.

4 A brief introduction to fibre bundles

The modern mathematical formalism of gauge theories relies on the theory of prin-
cipal (and associated) fibre bundles. We will not give a comprehensive account
here (e.g. Kobayashi & Nomizu (1963)), but only introduce the necessary ideas
and objects. In Section §4.1, after giving the definition of a principal fibre bundle,
we derive a fully gauge-covariant formula, (4.7), for the horizontal projection of
curves in such a bundle. This projection defines a notion of parallel transport in
terms of a connection-form and its curvature (4.6), which we will make extensive
use of in subsequent sections.

A simple example of a principal fibre bundle is as follows. Given an n-dimensional
manifold M , thought of as representing space-time (though we will not explicitly
need any non-trivial metric structure of space-time), the space of linear frames over
M is a principal fibre bundle with structure group GL(n) taking M as the base
space. Each element of the “fibre” over each point of the base space M consists of a
linear frame, i.e. a basis, of the tangent space to M at that point. In this example,
it is clear that there is no “zero” or identity element on each fibre. But there is a
one-to-one map between the group GL(n) and the fibre: we can use the group to
go from any frame over that point to any other.

The main idea underlying the physical significance of the internal space in a
fibre bundle is perhaps best summarized in the groundbreaking original paper by
(Yang & Mills, 1954). They write:
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The conservation of isotopic spin is identical with the requirement of in-
variance of all interactions under isotopic spin rotation. This means that
when electromagnetic interactions can be neglected, as we shall hereafter
assume to be the case, the orientation of the isotopic spin is of no physical
significance. The differentiation between a neutron and a proton is then
a purely arbitrary process.

The limitations on how to identify “a proton” at two different points of space-
time are imposed by a connection-form: which is another structure on the bundle.
That is, a connection-form ω allows us to define which points of neighbouring fibres
are taken as equivalent to an arbitrary starting-off point in an initial fibre. In the
example of linear frames, it gives us a notion of “parallel transport” of the basis as
we go from an initial choice over one point of M , to a neighbouring fibre. Curvature
then acquires meaning as non-holonomicity. That is, starting from a given element
of a given fibre and following such an identification of frames along different paths
in the base space M , and arriving back at the same fibre, the points at which
one arrives—i.e. the final elements on the bundle obtained by this process—may
still differ by a gauge transformation, i.e. a transformation along the fibers like an
element of GL(n) in the frame bundle. In most physical applications of principal
fiber bundles, it is this disagreement that carries physical consequences. In the
Yang and Mills quote, if you and I started with protons at point x, and you stayed
put with yours while I parallel transport mine around a loop within spacetime M ,
I might come back with what you would call a ‘neutron’.

There are two consistency conditions that a connection-form must satisfy in
order to provide such a standard of identity. First, the parallel transport to a
neighbouring fibre should commute with the group action; i.e. there is a sense in
which it does not really depend on what we choose as the starting point. Equiva-
lently, there is an equivariance property that ω must satisfy. Secondly, there must
be exactly one choice of parallel transported frame per direction of M . All the
relevant properties of gauge transformations can be derived from these two.

We are now going to formalize this intuitive description.

4.1 Principal fibre bundles

A principal fibre bundle is a smooth manifold P that admits a smooth action of a
(path-connected, semisimple) Lie group, G; i.e., G× P → P with (g, p) 7→ g · p for
some action · and such that for each p ∈ P , the isotropy group is the identity (i.e.,
Gp := {g ∈ G | g · p = p} = {e}). Naturally, we construct a projection π : P →M ,
from P to the set M of equivalence classes given by p ∼ q ⇔ p = g · q for some
g ∈ G. So the base space M is the orbit space of P , M = P/G, with the quotient
topology; i.e., characterized by an open and continuous π. By definition, G acts
transitively on each fibre.

Locally over M , it must be possible to choose a smooth embedding of the group
identity into the fibres. That is, for U ⊂ M , there is a smooth map σ : U → P
such that P is locally of the form U × G, U ⊂ M ; i.e., there is a diffeomorphism
U ×G→ π−1(U) given by (x, g) 7→ g · σ(x).15 The maps σ are called local sections
of P .

On P , we consider an Ehresmann connection ω, which is a 1-form on P , valued
in the Lie algebra g and satisfying appropriate compatibility properties with respect

15Given p, the inverse map is a bit more complicated because we must find g′ such that g′ · p = σ(x), for
some x. It will depend on the form of σ.
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to the fibre structure and the group action of G on P . The Ehresmann connection is
the basic object defining a generalized version of parallel transport; i.e., horizontal
projection.

Given the Lie-algebra g, we define the vertical space Vp at a point p ∈ P , as the
linear span of vectors of the form ιp(ξ) for ξ ∈ g and ιp : g→ TpP defined as:

ιp(ξ) :=
d

dt
|t=0(exp(tξ) · p) . (4.1)

Thus ιp(ξ) is the tangent vector of the curve through p generated by ξ. After
defining vertical spaces, ιp is then seen as a linear operator g→ Vp. And then the
conditions on ω are:

ω(ι(ξ)) = ξ and g∗ω = g−1ωg = Adgω, (4.2)

where, for a vector v ∈ TpP , the pull-back is defined by g∗ωp(v) := ωg·p(g∗v).
Furthermove, g∗ is the push-forward of the tangent space by, or the linearization
of, the map g· : P → P : p 7→ g · p, and Ad : G× g→ g : (g, ξ) 7→ g−1ξg.

A choice of connection is equivalent to a choice of covariant ‘horizontal’ comple-
ment to the vertical space; i.e., Hp ⊕ Vp = TpP , with H compatible with the group
action: g∗Hp = Hg·p. Given a direct sum decomposition, the connection-form is:

ω(·) = ι−1(V̂ (·)) (4.3)

where V̂ is the linear projection onto the vertical spaces, V̂ : TpP → Vp and
ker(ω) = Hp. It is easy to see that (4.3) satisfies (4.2) (cf. appendix A).

A connection therefore allows us to locally define “horizontal complements” to
the fibres in P . Through such complements one can horizontally lift paths γ lying
in M to P . These horizontally lifted paths are commonly referred to as “parallel
transports” in P along γ with respect to (horizontality as defined by) ω. As in the
example above of linear frames, when you go around a closed curve in M , parallel
transport upstairs in P may land you at a different point on the initial fibre from
where you started; e.g., assuming you started from p, you may end at p′ = g · p.
The relation between p and p′ (i.e., g) is called the holonomy of ω along the closed
path γ. Its infinitesimal analogue is the curvature of ω,

Ω = dPω + ω ∧P ω , (4.4)

where dP is the exterior derivative on the smooth manifold P , and ∧P is the exterior
product on Λ(P ) (it gives anti-symmetrized tensor products of differential forms).
We can also write the curvature 2-form as (cf. Kobayashi & Nomizu (1963)):

Ω = dPω ◦ Ĥ (4.5)

or even as:
Ω(·, ·) = ι−1V̂ (JĤ(·), Ĥ(·)K) , (4.6)

where the double-square bracket is the commutator of vector fields in P . The
domain of the differential calculus will be mostly clear from context, and we will
therefore only reinsert the subscript, P or M when necessary.

Most important for us will be the covariance properties of the horizontal pro-
jection. To get to these, we start by using the two properties (4.2) to show that for
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a 1-parameter group of transformations gt = g0 exp(tξ), and for a curve γt : I → P ,
we have:

$(
d(gt · γt)

dt t=0
) = $(g0∗

(
d(exp(tξ)γ0)

dt
+ γ̇

)
) = Adg0($(γ̇)+$(ι(ξ))) = Adg0($(γ̇)+ξ),

and therefore, defining a horizontal projection Ĥ := 1 − V̂ , we have, from (4.2)
(and by the properties of the ι map, which imply ι(Adg0ξ) = g0∗ι(ξ), see (A.1)):

Ĥg0·p(
d(gt · γt)

dt |t=0
) = g0∗ (ι(ξ) + γ̇)− ι(Adg0($(γ̇) + ξ)),

= g0∗(γ̇ − ι($(γ̇))) = g0∗Ĥp(γ̇) = Ĥg0·p(g0∗(γ̇)) . (4.7)

This shows that the horizontal projection of the velocities is fully gauge-covariant;
i.e., even under time-dependent gauge-transformations the time derivative of the
transformation, ξ, does not appear in the final result. The gauge-covariance of this
projection will play an integral role in the analysis to follow. It will be the gauge-
connection that will determine a standard of rotation along the curve; a standard
that exists whether the angular momentum, or equivalently the vertical motion,
vanishes or not.

5 Kaluza–Klein for space-time

By 1919, Maxwell’s electromagnetic theory was well established. Einstein had only
recently formulated general relativity and it was natural to seek an account of elec-
tromagnetism within the theoretical framework of his new theory; that is, through
the geometry of space-time. Theodor Kaluza achieved this unification by postulat-
ing an extra dimension. Although attractive, Kaluza’s idea had two serious defects:
the dependence on the fifth coordinate was suppressed for no apparent reason, and
a fifth dimension had never been observed. These two criticisms were addressed by
Oscar Klein, who postulated a circular topology and a rigid, homogeneous geometry
for the fifth dimension. He showed that if the radius was small enough it was possi-
ble to keep the dependence on the fifth coordinate, and still justify unobservability
and preserve Kaluza’s results.

Our present understanding of gauge theory is fully field-theoretic, unlike the
particle-field picture used here. In the fully field-theoretic version, there is no
particle trajectory, and the field content of the theory, including its Lagrangian, is
fully gauge-invariant.16 Nonetheless, the particle-field idealisation is sufficient for
establishing the formal analogy we make use of in this paper.

In the remainder of this section, we review the basic mathematical constructions
of standard Kaluza–Klein theory. We begin in Section §5.1 by defining the relevant
fibre bundle and equipping it with a metric structure that respects the bundle sym-
metries. In Section §5.2, we compute and compare two importantly distinct notions
of curvature: the bundle curvature defined in §4 using (4.5) and the Levi–Civita
connection of the metric we define in Section §5.1. The relationship between these
two quantities is absolutely crucial to the Kaluza–Klein analysis because it allows us
to compute the difference between the projection of geodesic curves on the bundle
and geodesics on the base space. This difference, as illustrated by equation 5.27, is
precisely encoded in the usual Lorentz-force term of electromagnetism.

16Discussions on other uses of Kaluza–Klein theory and reduction, e.g. in string theory, go well beyond the
scope of this paper.
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5.1 The bundle metric

Throughout this section, P will be a G-bundle over the smooth (pseudo)riemannian
m-dimensional manifold M . {Xi}mi=1 will be an orthonormal reference frame over
the open set U ⊂ M ; i.e., each X is a vector field in U such that, at each x ∈ M ,
{Xi(x)}mi=1 is an orthonormal basis of TxM and {λi}mi=1 is the associated co-frame
such that λi ∗Xj = δij.

G is a k-dimensional Lie group, with g its Lie-algebra, endowed with an Ad-
invariant inner product K.17 This inner product induces an inner product on the
vertical spaces via:

〈ιp(ξ), ιp(ξ′)〉p := K(ξ, ξ′) . (5.1)

Due to the covariance properties of the ι map (see (A.1)), this inner product is
G-invariant:

〈ιg·p(ξ), ιg·p(ξ′)〉g·p = K(Adgξ,Adgξ
′) = K(ξ, ξ′) = 〈ιp(ξ), ιp(ξ′)〉p. (5.2)

Writing the dimension of P as n, the Lie-algebra basis is given by {ẽσ}nσ=m+1,
where dim(g) = k = n −m, and the dual basis, for g∗, is {eσ}nσ=m+1. In general,
Roman indices will vary from 1 to m, and Greek indices from m+ 1 to n. We will
also denote Cγ

σβ as the structure constants of g:

[ẽσ, ẽβ] = Cγ
σβ ẽγ ,

where Cγ
σβ = −Cγ

β σ
and Cγ

σβ = −Cβ
σ γ.

Finally, given a metric h in M and a connection ω — or the equivalent choice
of horizontal space H — we obtain a unique G-invariant metric, G, on P such that:
the decomposition TP = H⊕ V is orthogonal, π∗|H is an isometry, and the vertical
inner product is induced by K; i.e.,

G := π∗h+K ◦ ω . (5.3)

For u, v ∈ Vp, we have:

Gp(u, v) = K(ι−1
p (u), ι−1

p (v)) = 〈u, v〉p (5.4)

because πp∗(v) = πp∗(u) = 0. For u, v ∈ Hp we have

Gp(u, v) = hπ(p)(πp∗(u), πp∗(v)) (5.5)

since ωp(u) = ωp(v) = 0, and, finally, if u ∈ Hp and v ∈ Vp then Gp(u, v) = 0
since ωp(u) = 0 and πp∗(u) = 0. Because both π∗h and K ◦ ω are G-invariant
(cf. appendix A), G is G-invariant. In other words: vertical directions are Killing
directions for G.

For ease of notation and using {Xi(x)}mi=1 and {λi}mi=1 the set of dual orthonor-
mal frames and co-frames defined above, we let ei be some 1-form over TP such
that ei(u) = λi(π∗(u)). We can then find a basis of vertical one-forms by ẽβ ◦ω = eβ

and obtain a 1-form in P . Allowing capital Roman indices to run over all types of
indices, we then have the co-reference frame {eA}nA=1 on P . We can use the metric
G to dualize the frame and obtain {eA}mA=1. Using the metric in this way, one can

17This inner product always exist for semi-simple Lie groups, usually it is just written as the trace, more
generally, it is known as the Killing form.
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see that π∗(ei) = Xi and, moreover, that {eA}nA=1 becomes an orthogonal co-frame
that splits horizontal and vertical spaces orthogonally. That is,

eσ(ei) = ei(eσ) = λi(π∗(eσ)) = 0 = G(ei, eσ) . (5.6)

And since H is a vector bundle orthogonal to V,

span
[
{eσ}nσ=m+1

]
= V|θ e span [{ei}mi=1] = H|θ .

The horizontal and vertical projections can then be written as:

Ĥ = ei ⊗ ei, V̂ = eσ ⊗ eσ .

It is important to note that these (co)frames need not be integrable; i.e., not tangent
to any foliation of the bundle, and thus they only define a projection of tangent
vectors and not of scalar functions on the bundle.

In the standard Kaluza–Klein construction, the derivations above illustrate that
requiring a G-invariant inner product implies that the vertical directions are Killing
once a connection ω and a group G are specified. Later in Section §6, this logic
will be turned around: the group fibres of the kinematical metric of the theory
will be assumed to be Killing. Defining these directions to be vertical and using
orthogonality with respect to the kinematical metric to define horizontality will
uniquely fix the connection-form ω.

5.2 Kaluza–Klein curvature

We now use the metric defined in the previous section to compute the Levi–Civita
connection in P ; i.e., the only torsionless one compatible with our metric. These
computations require us to picture P as a standard Riemannian manifold rather
than a bundle. The purpose of doing this will be to compare the geodesic structure
of the base space M with the projection of geodesic curves in the bundle P . Our
first task will therefore be to compute the components of the bundle curvature
defined by (4.5) so that we may compare this to the curvature of the Levi–Civita
connection.

Let Ω ∈ Γ(Λ2(TP ∗) ⊗ g) be the curvature-form in P , given in (4.5), and the
connection-form ω be the vertical projection followed by the isomorphism between
V and g. As we have a local reference frame in V, we can define the real-valued
two-forms, Ωσ ∈ Γ(Λ2(H∗)), as:

Ωσ ⊗ ẽσ := Ω .

We can further dismember this relation to obtain the real-valued components of the
two-form. Since the form components of Ω are horizontal, as per (4.6), we define
F σ
ij as

(
1

2
F σ
ije

j ∧ ei)⊗ ẽσ := (Ωσ)⊗ ẽσ . (5.7)

We now turn attention to the Riemannian structure of P andM because we want
to relate these to the bundle structure. Given the reference frame eA, the easiest
manner to capture the Levi–Civita connection is through the spin connection. That
is:

deA = PΓAB ∧ eB .
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The torsionless condition implies PΓAB = − PΓBA. Writing ω = eσ ⊗ ẽσ, we obtain

dω = d(eσ)⊗ ẽσ = PΓσB ∧ eB ⊗ ẽσ. (5.8)

Note that the derivative only acts on eσ because ẽσ is here a fixed element of the
Lie-algebra.

Using (4.5), which ensures the curvature is purely horizontal as a differential
form, we have:

Ω = PΓσi (ej)e
j ∧ ei ⊗ ẽσ . (5.9)

Comparing (5.9) and (5.7) we obtain a first relation between the Riemman curvature
of the bundle and gauge curvature of the bundle:

PΓσi (ej)e
j ∧ ei =

1

2
F σ
ije

j ∧ ei , (5.10)

and thus:
PΓσi (ej) =

1

2
F σ
ij . (5.11)

Let MΓ be the Levi-Civita connection-form in M relative to Xi = π∗(ei) and the
metric h. We then have:

dλi = MΓij ∧ λj . (5.12)

Applying the pull-back π∗ (which commutes with d, acting on the appropriate
spaces) on both sides, we get:

d(ei) = d(π∗λi) = π∗d(λi) = π∗(MΓij ∧ λj)
= Γ

i

j ∧ ej
d(ei) = PΓiB ∧ eB = PΓij ∧ ej + PΓiσ ∧ eσ ,

(5.13)

where Γ
i

j := π∗MΓij. Because Γ
i

j(u) = MΓij(π∗(u)), it contains the representation of
the base curvature only. To fully display all the relations, we can write down the
Christoffel symbols as

PΓABC := PΓAB(eC) =⇒ PΓAB = PΓABCe
C .

Now we apply (5.13) to (eα, ek), and since π∗(eα) = 0, we obtain PΓij(eσ) = PΓiσ(ej).

Applying (5.13) to (ei, ej) we obtain: Γ
i

j(ek) = PΓij(ek); and to (eα, eβ) we get:
PΓiσ(eβ) = 0 (and therefore PΓσi (eβ) = 0).

To obtain the full set of relations between the gauge and the Riemann curvatures,
we must collect more results. Using (4.4); i.e., dω = Ω− ω ∧ ω, and (5.8), we get:

( PΓσB ∧ eB)⊗ ẽσ = ((1
2
F σ
ije

j + PΓσi (eβ)eβ) ∧ ei)⊗ ẽσ − 1
2
eβ ∧ eν [ẽβ, ẽν ]

∴ PΓσB ∧ eB = 1
2
F σ
ije

j ∧ ei + 1
2
Cσ
βνe

β ∧ eν

= PΓσβ ∧ eβ + PΓσi ∧ ei ,

(5.14)

and therefore, by (5.10) we have

PΓσβ = −1

2
Cσ
νβe

ν (5.15)

PΓσi = −1

2
F σ
ije

j . (5.16)
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Finally, replacing (5.16) in (5.13) we get:

PΓij ∧ ej = Γ
i

j ∧ ej −
1

2
F σ
ije

σ ∧ ej , (5.17)

and therefore (since Γ
i

j(eσ) = 0):

PΓij(ek) = Γ
i

j(ek), and PΓij(eσ) = −1

2
F σ
ij .

Collecting all the results, we have:

PΓij = Γ
i

j − 1
2

∑
σ

F σ
ije

σ

PΓσi = 1
2
F σ
ije

j

PΓσβ = −1
2
Cσ
νβe

ν

(5.18)

The decomposition above is central to the Kaluza–Klein analysis and underlies
the decomposition that we make use of in our own analysis. The first of these
equations is the most important. PΓijσ 6= 0 tells us that a horizontal vector, parallel
transported along a vertical direction, will have its horizontal component rotated.
Moreover, this rotation is precisely given by the gauge curvature.

The second equation tells us that a vertical direction does not rotate into a
horizontal direction when transported along another vertical direction, but it does
when transported along a horizontal direction. The amount of rotation is again
given by the curvature.

The third equation tells us that the purely horizontal part of this transport
reproduces the base-space transport. That is, the way a horizontal vector rotates in
the horizontal direction, when transported along a horizontal direction, is identical
to the analogous rotation on the base space.

The decomposition (5.18) is the main result necessary to express the Lorentz
force in geometric terms. We will see in the next section that, for the trajectories
of charged particles, the Lorentz force is manifested by the difference between the
projection of the geodesics in P and the geodesics in M .

5.3 The generalized Lorentz force

In the relativistic case, the Lorentz force acquires a temporal component on top of
the standard spatial one. The resulting force is simply proportional to the action of
the curvature field F over a given particle; i.e., qF (v) for the (dual)-force exerted
on the particle with 4-velocity v and charge q. Apart from the standard spatial
component, qF (v) also contains a temporal term qEiv

i, which is the work done by
the field on the particle.

Now, let γ : I → P be a geodesic and γ = π(γ) be its projection to M . To
compute the generalized Lorentz force, we first write the tangent to the geodesic
curve as:

γ′ = uiei + qσeσ , (5.19)

where π∗(γ
′) = γ′ = uiXi. Suggestively, we will call the function q : I → g given by

q(t) = ω(γ′(t)) = qσ(t)ẽσ (5.20)
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the curve’s specific charge. Note that in the space-time case, we will use a prime,
as in γ′, to denote the derivative along the curve.

In the general case, we will expect the Lorentz force to be of the form:

Fj := Fiju
iqσ . (5.21)

To find the corresponding Lorentz-force deviation in the direction of the projected
geodesic, we compare the projection of the acceleration along geodesics in P with
the acceleration along intrinsic geodesics in M :

π∗(
DPγ′

dt
) = π∗(∇P

γ′γ
′) and

DMγ′

dt
= ∇M

γ′γ
′ , (5.22)

and then take the difference.
We begin by proving a useful theorem.

Theorem 1. Let X be a Killing field in a Riemannian manifold N and γ a geodesic
in N , then the inner product between X and the tangent γ′(t) is time-independent.

Proof.
d

dt
〈X, γ′(t)〉 = 〈∇γ′X, γ

′(t)〉 = −〈∇γ′X, γ
′(t)〉 = 0

where we used the geodesic equation in the first equality and the Killing condition
in the second (i.e. 〈∇ZX, Y 〉 = −〈∇YX,Z〉).

As a result of Theorem 1, a geodesic will maintain a constant angle with respect
to a smooth Killing vector field. We therefore have:

∇P
γ′q

σ = ∇P
γ′G(eσ, γ′) = 0 .

Thus,
D

dt
γ′ := ∇P

γ′γ
′ = ∇P

γ′(u
iei) + qσ∇P

γ′eσ , (5.23)

and therefore:

∇P
γ′γ
′ = u′

i
ei + ui(uj∇P

ej + qβ∇P
eβ)(ei) + qσ(uj∇P

ej + qβ∇P
eβ)eσ

= u′
i
ei + ui(uj PΓAi (ej) + qβ PΓAi (eβ))eA + qσ(uj PΓAσ (ej) + qβ PΓAσ (eβ))eA .

(5.24)

We project this onto the horizontal components:

ek(∇P
γ′γ
′) = u′

k
+ ui(uj PΓki (ej) + qβ PΓki (eβ)) + qσ(uj PΓkσ(ej) + qβ PΓkσ(eβ))

= u′
k

+ uiujΓ
k

i (ej)− uiqβF k
iβ , (5.25)

where we used (5.18) in the last line. We are interested in π∗(∇P
γ′γ
′), as per

(5.22). Moreover, the projection will only have components along Xi, which we
can extract by contracting with λi. That is, we use ei = π∗λi, and therefore
ei(∇P

γ′γ
′) = λi(π∗∇P

γ′γ
′)), to rewrite (5.25) as:

π∗(∇P
γ′γ
′) = (u′

k
+ uiuj MΓki (Xj)− uiqβF k

iβ)Xk . (5.26)

But we also have,

DMγ′

dt
= ∇M

γ′γ
′ = (u′

k
+ uiuj MΓki (Xj))Xk ,
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Figure 1: The difference between the projection of a curve with vanishing and non-zero vertical
velocity qσ can be accounted for by a Lorentz force effect sourced by the bundle curvature
according to (5.27).

and therefore the deviation between the geodesics is precisely given by the generalized
Lorentz force:

π∗(∇P
γ′γ
′)−∇M

γ′γ
′ = −uiqβF k

iβXk (5.27)

as advertised. Figure 1 gives an illustration of this effect.
Although the original intent of Kaluza–Klein theory was to geometrize elec-

tromagnetism, it also serves to illustrate a different point: one can find a rep-
resentation of the dynamics of the charged particle in a background field on a
higher-dimensional space with no charge and no electromagnetic forces. However,
the geometrical structures of the bundle are not faithfully represented by the intrin-
sic geometrical structures of the base space, and one must add information. This
information is contained in the connection-form, through the curvature, and the
vertical velocity, through the charge.

The emergence of the Lorentz force in the manner described above is a con-
sequence of the difference between a Kaluza–Klein formalism and the standard
principal fibre bundle formalism, with fibers interpreted as internal spaces. In the
Kaluza–Klein picture, the particles are embedded in the extra dimensions; but,
apart from being topologically and geometrically constrained, the extra dimensions
are no different from macroscopic space-time dimensions. In the Kaluza–Klein for-
malism, the horizontal lift of the curve on the base space to the bundle does not
necessarily correspond to the motion that is projected. More concretely, consider a
geodesic γ in the fibre bundle and its projection γ onto the base space. In general,
the unique horizontal lift, γh, of the projected curve γ will not be equal to γ (and
therefore not be geodesic). The only situation in which equality does hold; i.e.,
when γh = γ, is when the charge q is zero.

6 Kaluza–Klein for configuration space

In the previous section, we reviewed the standard Kaluza–Klein construction that
treats a higher-dimensional space-time as a principal fibre bundle. In that picture,
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the fibres represented extra dimensions and the base space was 3 + 1 dimensional
space-time. The logic assumed that the bundle connection was fixed because the
extra dimensions, while required to be homogeneous and epistemically inaccessible,
are otherwise assumed to be no different from the other known spatial dimensions.
The goal in that case was to derive the Lorentz-force law on the base space from
knowledge of the connection-form and the symmetries of the extra dimensions.

In this section we will flip this logic around. We will take the principal fibre
bundle to be the Newtonian configuration space and the base space to be relative
configuration space. In this construction, it is the kinematical metric rather than
the bundle connection-form that is assumed to be given. The kinematical metric
is assumed to have Killing directions along the symmetry group because that is
precisely what it means for that group to be a time-independent symmetry of the
Lagrangian. These Killing directions are then used to fix the vertical directions on
the bundle. The horizontal directions are specified by orthogonality to the Killing
directions according to the kinematical metric. This uniquely fixes the bundle
connection. The connection defined in this way has been studied in the context of
field-theories, where it was called the relational connection-form.18

The goal now will be to organize the terms in the force law on the base space
in a geometrical way; i.e., as arising partly from the dynamics intrinsic to base
space and partly as descending from dynamics of the bundle. What we find in this
new set-up is that, in addition to the expected Lorentz-force term, there is a new
term due to the base-space dependence of the bundle metric along the fibres. This
term generalises the Kaluza–Klein construction, where the bundle connection is
fixed in a way that respects more closely the properties of the bundle metric. Our
construction, while inspired by the Kaluza–Klein formalism, is therefore distinct
from it and more general.

In Section §6.1, we will start with an overview of the principal fibre bundle
construction in the context of general configuration spaces. We invert the results
of Section §5.3 and derive a connection-form, equation (6.4), from the kinematical
metric. Finally, in Section §6.2, we will derive the induced bundle curvature, (6.6).

6.1 The connection-form defined by orthogonality

The purpose of this section will be to demonstrate that for any configuration that
has a metric that is invariant under the action of some group, we can induce a
connection by orthogonality with respect to that metric and the vertical spaces,
which are canonical in the sense that they depend only on the group action. In the
more general setting introduced in this section, configuration space can even be a
field-space. For example, a natural gauge-invariant metric exists in the configura-
tion space of Yang-Mills theory and that induces a connection (cf. (Gomes et al.,
2019, Sec. 4), and references therein). To accommodate this amount of generality
and to highlight the differences between the configuration-space approach used here
and the space-time-based approach of Kaluza–Klein theory, we will now introduce
some notation to distinguish the basic mathematical structures.

The space-time-based fibre bundle, which we previously called P , will now be
given by a configuration space that we denote by Q. To denote those quantities

18The construction can in principle be applied to any (even infinite-dimensional) configuration space with a
Lie group symmetry action that preserves the kinetic term. This was fully described for Yang-Mills theories,
also within the symplectic framework, in a series of papers Gomes & Riello (2017, 2018); Gomes et al. (2019);
Gomes & Riello (2019); Gomes (2019), where it was dubbed the Singer–deWitt connection-form.
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that now belong to configuration space and not to space-time we will employ the
double-struck notation of (Gomes et al., 2019). For instance, X ∈ X1(Q) is a once
continuously (functionally) differentiable vector field in configuration space, and
LX is a Lie-derivative along X in configuration space, dF is an exterior functional
derivative in configuration space, and so on. To further distinguish the configuration
space case from the space-time one, we denote the connection-form not by ω (given
in (4.3)), but by $, and the curvature 2-form not by Ω (given in (4.5) or (4.6)),
but by F. Lastly, in the configuration space context, since we will be using it more
often, it is useful to replace the ι map, inducing a bijection between the Lie-algebra
and the vertical spaces (ι is defined by the action of the group on the configuration
space, as in (4.1)), by a more direct notation: ι(ξ) ≡ ξ].

A configuration-space metric and a vertical direction supply enough ingredients
to define a connection if and only if the directions along the orbit are Killing; i.e.,
the fundamental vector fields ξ] must be Killing. Given a group of transformations,
G (possibly infinite-dimensional),

Lξ]G = 0 for all ξ ∈ Lie(G) . (6.1)

For a field-space metric G, we define the associated connection $ by demanding
the following orthogonality relation:19

G(ξ], Ĥ(X)) ≡ G(ξ],X−$(X)]) = 0, (6.2)

for all ξ ∈ Lie(G) and all X ∈ X1(Q). As before, Ĥ stands for the horizontal

projection induced by G and, writing $(·)] = V̂ (·), the equation becomes trivial.
Formally, equation (6.2) can be solved for $ as follows. Let Qab be the pullback

to Lie(G) under ·] of the metric induced from G on the fibres as expressed in the
{τa} basis of the Lie-algebra:

Qab = G(τ ]a, τ
]
b ), (6.3)

and Qab its inverse. Note that Qab does not in general coincide with the (point-wise
extensions of the) Killing form in g (the natural inner product of the Lie-algebra).

Expanding $ = $aτa, equation 6.2 can be written as G(τ ]a,X) = QabiX$b, which
is readily inverted as

$ = QabG(τ ]b , ·)τa . (6.4)

This is the main result of this section. Note that G(ξ], ·) accepts field-space vectors
and hence defines a one-form in field-space.

From the last equation, we immediately obtain the first fundamental property
required of a connection-form: $(ξ]) = ξ. See (Gomes et al., 2019, Sec. 4.1,
equations 4.7 and 4.8) for a proof that an $ defined by the procedure above will also
transform correctly under gauge transformations if ξ] is a Killing vector of G. As we
saw in (4.7), these properties combine to ensure that Ĥ(X) has the correct “vertical
corrections” that render it invariant also under time-dependent (or, more generally,
field-dependent) gauge transformations. They also ensure that for any one-form
in configuration space, λ, the covariant exterior differential d$λ = dλ − $ ∧ λ is
covariant.

To summarize, a field-space metric determines a vertical projector by providing
a notion of orthogonality. If gauge transformations preserve orthogonality to the
fibres, then the vertical projector gives a connection.

19The following equation holds pointwise on Q, where the vector field X identifies, for each configuration
ϕ ∈ Q, a tangent vector Xϕ ∈ TϕQ. In the main text we have omitted the subscripts.
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6.2 The curvature of the connection-form

A natural question to ask is how the properties of a field-space connection are linked
to the properties of the field-space metric that determines it. In particular, one may
ask if the curvature of the field-space connection can be calculated directly from
the field-space metric in a useful way. The answer is affirmative, as was shown in
Gomes et al. (2019).

The intuition is the following: $ contains information about the horizontal
planes, which are the planes orthogonal to the gauge orbits. If those planes can
be integrated in the sense of Frobenius’ theorem to (infinite-dimensional) hyper-
surfaces, then $ is flat. The curvature F of $ corresponds to the anholonomicity,
or non-integrability, of the planes orthogonal to the gauge orbits. Thus it is possible
to obtain the curvature directly from the metric.

The resulting relationship between a field-space-metric G and the curvature F
of the associated $ is:

G
(
F(X,Y)], ξ]

)
= d(G(ξ]))(Ĥ(Y), Ĥ(X)) for all ξ ∈ Lie(G), dξ = 0, (6.5)

and any X,Y ∈ X1(Φ). On the right hand side, G(ξ]) ≡ G(ξ], ·) is a one-form on
field-space, so dG(ξ]) is a two-form. By horizontally projecting the dummy vector
fields X,Y on the right hand side, we are taking the horizontal-horizontal part of
that two-form. Formally solving for F, we get

F = Qab
(
dG(τ ]b )

)
HH

τa , (6.6)

which is the main result of this section. Note that, in these formulas, d acts on the
one-form G(ξ]). Even if ξ is taken to be configuration-independent; i.e., dξ = 0, the
operator ·] generically introduces configuration-dependence. As we will see, this a
feature of the hash operator for rotations — but not for translations. For a proof
of (6.5) (and thus the origin of (6.6)) see (Gomes et al., 2019, Sec. 4.2, equation
4.12).

We have now developed the technical machinery required to pinpoint the kinds
of modifications to the force law on the base space that can be expected from the
projection of the dynamics on the bundle. Firstly the Lie algebra can act in a
field-space dependent way. This is not the case in Abelian gauge theories, but it
is the case for non-Abelian ones.20 For rotations, δξr = ξrα, where rα ∈ R3 with
α = {1, · · · , N} and ξ ∈ so(3). This dependence will in general produce curvature
of the connection constructed by orthogonality with respect to the gauge orbits,
that is, it implies F 6= 0. Secondly, the inner product along the orbits may be
base-space dependent, which will create a potential force for the motion on base
space. This is neither the case for translations nor for Kaluza–Klein in space-time,
where the vertical kinetic energy is rigidly fixed by the Lie algebra. In those cases,
the orbits are metrically the same everywhere. These two effects are important
because they are directly linked to the two terms of the main result of this paper:
the modified force law, (7.23), derived for rotations in the next section.

7 Charging the relationalist for angular momentum

In this section, we take the general formalism of the previous section and apply it
in the context of translations and rotations in Newtonian mechanics. The goal is

20In Yang–Mills, δξA = dξ + [A, ξ] involves the gauge potential A, while in general relativity, δξg = £ξg
involves the metric g (where now ξ ∈ X1(M) and £ξ is the space-time Lie derivative along ξ).
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to project the dynamics of the system onto relative configuration space. We obtain
a generalised deviation equation analogous to the Lorentz force law of (5.27). In
the case of translations, the group action is field-independent, and so are the orbit
metrics, and thus the bundle curvature is exactly zero and there are no potential
terms on base space, and therefore the bundle projection is trivial. In the case
of rotation, the bundle curvature is non-zero and the orbit metric depends on the
point on base space, thus we find two independent terms that couple to a conserved
SO(3)-charge. This charge is the cost of expressing effects due to the total angular
momentum in a Newtonian system directly in relational terms.

In our construction, we take the principal fibre bundle to be the configuration
space Q ' R3N of N point particle positions in 3 dimensions. In line with the
assumption of Section §6, this space is endowed with a canonical inner product that
is invariant under the action of both translations and rotations. This canonical inner
product is precisely the kinematical inner product used to construct the Newtonian
kinetic energy, and the potential energy function is usually assumed to reflect these
kinematical symmetries.

We can therefore take the structure group for Q to consist of either translations
and/or rotations, and in each case we can find a connection-form through the
introduction of an equivariant horizontal sub-bundle of TQ, as per Section §6.1.
Given these choices, the group orbits define vertical spaces as the tangent to these
orbits. The fixed kinematical metric of Newtonian mechanics then defines the
orthogonal spaces to the orbits as the horizontal complement of V ⊂ TQ. This then
leads to a fixed connection-form and curvature, which we compute in Section §7.1
following the procedure of Section §6.1 and Section §6.2 . The bundle curvature we
obtain enters the desired deviation relation: equation 7.23.

7.1 The rotation bundle

While many elements of this construction have been beautifully laid out in Little-
john & Reinsch (1997), one of the great advantages of the present construction is
that it does away with ‘rotational frames’ for the motion. We have now developed
enough mathematical machinery to explain some of these advantages in more detail.

The construction of Littlejohn & Reinsch (1997) employs specific frames with
which to measure the rotation. Transformations of these frames are seen as ‘passive’;
i.e., they are gauge transformations taking one section of the bundle to another. In
the principal fibre bundle formalism, we do away with the definition of frames and
concentrate on the active definition of symmetry transformations. This immensely
simplifies the treatment while still capturing the relevant effects in the base space.

In the principal fibre bundle picture, a choice of frame of the kind used in the
bulk of Littlejohn & Reinsch (1997) provides a section of the bundle s : Q/G → Q.21

Explicitly constructing such a section is non-trivial work, which we will not require
in this paper. Without a section, we are only able to talk about a total change
in orientation of a system for closed curves in configuration space. For an open
curve, one must establish an orientation convention to describe the overall change
between the start- and end-points of the curve. This structure is enough to describe
the infinitesimal change of orientation (i.e., the rotation) along a curve. It is also
sufficient to describe curvature and the covariant divergence of the potential.

21When pulling back the constructions of Section §4 on the principal fibre bundle to this section, one deals
with objects on the associated bundle such as the connection A = s∗ω and curvature B = s∗Ω.
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When we let the group of rotations act on a given configuration, we assume
an active view: we are not changing the orientation convention for the relation
between the inertial space frame and the body frame. Instead, we are rotating the
configuration. Thus, if a Newtonian configuration represents an inertial frame, the
rotated configuration will represent a rotated inertial frame.22

We start with N particles on R3, with coordinates in a given inertial frame rα,
α = 1, · · ·N , and masses mα. The Lagrangian will be of the form

L = K(r, ṙ)− V (r). (7.1)

The total kinetic energy of the system, which will determine our configuration space
metric, is

K(ṙ) =
1

2

∑
α

mα|ṙα|2 =
1

2

∑
α

mα(ṙα · ṙα) , (7.2)

where · is the Euclidean inner product in R3. The kinetic term K is equivalent to
a choice of inner product:

G(ṙ, ṙ′) =
1

2

∑
α

mαṙα · ṙ′α. (7.3)

Note that, in the relativistic Kaluza–Klein case, we used primes to denote deriva-
tives along the curve. Here, in the non-relativistic configuration space ofN particles,
we will revert to the standard dot notation; i.e., ṙα.

Equation (7.3) is clearly invariant under the time-independent transformations:

rα 7→ rα + v (7.4a)

rα 7→ rαR . (7.4b)

Infinitesimally, the group actions of R3 and SO(3) correspond to, respectively (for
v ∈ R3 and ξ ∈ so(3)):

δvrα = v (7.5a)

δξrα = rαξ . (7.5b)

In terms of the Lie derivative (where δξr =: ξ]),

Lξ]G(v, v′) =
1

t
lim
t→0

(G(v, v′)− G(vξ, v′ξ)) = 0 .

In other words: the metric has Killing directions along ξ].
By constructing a connection-form in configuration space, we can extend the in-

variance of the horizontal part of the metric to one under time-dependent transfor-
mations. A separate question exists about the physical meaning of such connection-
forms.

For now, it suffices to note that a connection-form as defined by orthogonality
to the orbits, as in section 6.1, is dynamically preferred because the metric in con-
figuration space defines the kinetic energy. To find what the horizontality condition

22Although the difference may seem inconsequential, it in fact implies a right action of R ∈ SO(3) on the rα,
not a left one (cf. (Littlejohn & Reinsch, 1997, p. 244)).
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implies, we consider purely vertical directions; i.e., tangent vectors along the orbit.
Orthogonality with respect to the translation orbits gives:

G(ṙ, δv) =
1

2

∑
α

mαṙα · v = 0, ∀v ∈ R3 (7.6)

This implies horizontal velocities rα = cα must obey the constraint:∑
α

mαċα = 0 ;

i.e., the vanishing of the total linear momentum. By fixing the integration constant
to zero, we quotient out translations by going to a centre of mass frame, cα, which
obeys: ∑

α

mαcα = 0.

A rotation R ∈ SO(3) acts on this translationally reduced system, but the
horizontality condition is a little more complicated. If Q(ϕ,n) denotes a coun-
terclockwise rotation with angle ϕ about the axis specified by the unit vector n,
then

d

dϕ

∣∣∣∣
ϕ=0

Q(ϕ,n)x = n× x

for every vector x ∈ R3. This can be used to show that the Lie algebra so(3) (with
commutator) is isomorphic to the Lie algebra R3 (with cross product). If we take
Ja as a basis of the so(3) Lie-algebra,23 we have

J ](a) = ea × cα , (7.7)

where ea is the unit vector along the direction a.
Thus, the analogous condition to (7.6) for rotations becomes:

G(ċ, δnc) =
1

2

∑
α

mαċα · (n× cα) = 0, (7.8)

for n a unit vector. Equation (7.8) gives the following condition for velocities
orthogonal to the fiber:24

L =
∑
α

mαċα × cα = 0. (7.9)

where L is of course the angular momentum vector. In short, a motion on the
(translationally-reduced) configuration space R3N−3 is orthogonal to the rotation
orbits if and only if the associated angular momentum of this motion vanishes.

23In more detail, a most often suitable basis for so(3) as a 3-dimensional vector space is

Jx =

0 0 0
0 0 −1
0 1 0

, Jy =

 0 0 1
0 0 0
−1 0 0

, Jz =

0 −1 0
1 0 0
0 0 0

.
The commutation relations of these basis elements are,

[Jx, Jy] = Jz, [Jz, Jx] = Jy, [Jy, Jz] = Jx

which agree with the relations of the three standard unit vectors of R3 under the cross product.
24This identity is trivial if written in components (i.e. using the totally-antisymmetric tensor in three-

dimensions: (εijkn
icj)ċk = −(εijk ċ

icj)nk.
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The horizontal and vertical projections In order to use our formalism to obtain the
connection-form and curvature, (6.4) and (6.6) respectively, we need the vertical
metric Qab, where a, b are the indices parametrizing the basis of infinitesimal ro-
tations (a, b = x, y, z). For translations, Q is trivial: G(δv, δ

′
v) = v · v′, which is

completely independent of the translationally-reduced configuration.
For rotations on the other hand, we obtain:

G(δnc, δn′c) =
1

2

∑
α

mα(n× cα) · (n′ × cα) (7.10)

=
1

2

∑
α

mα

(
|cα|2δij − cαicαj

)
nin′

j
. (7.11)

This yields a vertical metric, which is just the moment of inertia tensor:

Qab = Mab =
1

2

∑
α

mα

(
|cα|2δab − cαacαb

)
. (7.12)

Because

G(·, J ]b) =
1

2

∑
α

mαdciαc
k
αεibk), (7.13)

where dciα is a basic configuration space 1-form (like dx would be in space-time),
we obtain the following expression for the connection-form from (6.4):

$(ċ) = (M−1)ab

(
1

2

∑
α

mαεbijc
i
αċ
j
α

)
J(a) . (7.14)

Given an infinitesimal change of configuration, (7.14) provides the necessary ro-
tation for that change to carry no angular momentum. By the properties of the
connection-form — arising from orthogonality to the fibre with respect to a G-
invariant metric, discussed in section 6.1 — this adjustment is gauge-covariant; i.e.,
it does not depend on the orientation of the configuration we started from. The
connection-form defines a standard of orientation infinitesimally along a curve.

It is also easy to write the vertical projection. From (6.4), we have V̂ =
QabG(J ]b , ·)J ]a.25 If use equation (7.12) and insert (7.7) into (7.14) we obtain:

V̂ (ċ) = $(ċ)] =
∑
α

mαċα × cα = L , (7.15)

which is the angular momentum. The horizontal projection is just its complement:
Ĥ = 1−V̂ . Given a generic centre-of-mass configurational velocity ċα, the corrected
velocity ċα − V̂ (ċ) has vanishing angular momentum.

Curvature implies that, for a closed loop in the base space, the orientation
may change even for motion with zero angular momentum. We can now write the
curvature using (6.6). First, from (7.13):

dG(·, J ]b) =
1

2

∑
α

mαεibk dciα f dckα,

where f is the exterior differential for forms in configuration space. From this
equation it is apparent that if the group action on configuration space did not

25By writing the basis J]a = |`a〉 and G(J]b , ·) = 〈`b| to match Littlejohn & Reinsch (1997)’s notation, we
obtain their equation 5.42: ΠV = |`a〉(M−1)ab〈`b|.
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depend on the configuration, the exterior derivative d would have nothing to act
non-trivially on. We would then obtain dG(·, J ]b) = 0, and vanishing curvature as a
consequence. This is what occurs for translations. As it stands, the curvature for
the rotational bundle can be written as:

F(ċ, ċ′) = (M−1)ab

(
1

2

∑
α

mαεbijĤ(ċα)iĤ(ċ′α)j

)
J(a) , (7.16)

which only depends on the base space through the moment of inertia tensor and
the horizontal projections.26

Translations For translations, the generators of the algebra R3 can be taken to be
the unit vectors, τa = ea, given by {ex, ey, ez}. The vertical metric Qab = δab, and
therefore

$trans(ṙ) = (
∑
α

mαṙα · ea)ea =
∑
α

mαṙα,

since
∑
|ea〉〈ea| is the identity operator.

Analogously to the rotational case, the connection-form defines, infinitesimally
along the trajectory of the system, the standard of linear translations. The trans-
lational connection therefore yields the linear momentum of the configurational
velocity. Horizontal motion, in analogy to the rotational case, coincides with a
choice of coordinate system for which the total linear momentum vanishes. In
other words, for an arbitrary velocity ṙα, the corrected velocity ṙα − $trans(ṙ) has
vanishing linear momentum. From (6.6), the curvature clearly vanishes, since nei-
ther G nor τ ]a depend on the configuration. This is the main difference compared
with the rotational case.

Relation to Barbour-Bertotti theory First, we establish the relation between $ and
best-matching. The G-induced connection-form $, here illustrated for point par-
ticles under rotations and translations (but also available more generally for field-
theory), performs, through horizontal projection, precisely what is generally rec-
ognized in the philosophical literature as the job of best-matching (cf. Barbour
& Bertotti (1982), Mercati (2017, Ch. II.5) and references therein, and Gomes
(2011) for the original expression of best-matching in terms of a connection-form).
The idea there is the same one as here: given neighboring orbits, a best-matched
infinitesimal trajectory between them is one that extremizes some norm on the dif-
ference. For the standard, equivariant version, the norm must be G-invariant, and
is in fact the one induced by G. Given some representative of a velocity between
neighboring fibres; e.g., ċα, the best-matched velocity is

Ĥ(ċ) ≡ cα −$(ċ)] ,

which, by (4.7), is gauge-covariant. By itself it is not gauge-invariant: it only
renders a horizontal kinetic term that is already invariant under time-independent
transformations completely gauge-invariant, as we will see below.

26Two other facts that are not important for us here, but deserve mention: by construction, F obeys the
Bianchi identity, i.e. for the gauge-covariant exterior derivative, d$F := dF+[F, $] = 0. Moreover, the covariant
base space divergence of F, which would, in the space-time context, give rise to the sourced Yang-Mills equation,
d†$F = ρ, where d†$ is the adjoint of d$ under the base space projection of G, here can be shown to always
vanish for the rotations (cf. (Littlejohn & Reinsch, 1997, Eq. 5.2)).
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In Barbour–Bertotti theory, the motion of the universe must be describable by
a best-matched trajectory in the above sense so that the total angular momentum
of the universe is constrained to be zero. A non-zero angular momentum cannot
be accommodated because the vertical metric depends on it, and therefore a non-
trivial vertical velocity (i.e., an angular momentum) can influence the dynamics
on the bundle. This constraint is problematic: isolated subsystems of the universe
clearly can have non-zero angular momentum, and thus lie outside the scope of
the theory. Barbour–Bertotti theory is, in this sense cosmological. In particular,
it does not satisfy subsystem-recursivity as advocated in Wallace (2019a) because
subsystems can have angular momentum while the universe cannot.

Here we have removed these limitations. Indeed, from the perspective of the
bundle, the kinematic term in the action determines a standard of rotation at each
infinitesimal step or change along a curve. This standard is established for both
zero and non-zero angular momentum.

From the above, let the set of particles indexed by α split into two sets: αI ∈ ΛI

and αII ∈ ΛII . Starting with the cα coordinates of the entire system, we define the
individual centres-of-mass of systems I and II, qI and qII , and new coordinates cIα
and cIIα such that:

cα =

{
cIα + qI for α ∈ ΛI

cIIα + qII for α ∈ ΛII ,
(7.17)

where e.g. qI := − 1∑
α∈ΛI

mα

∑
α∈ΛI

mαcα. This formalism applies if and only if

there are no external torques acting on the system. This occurs if ‖qI − qII‖ >>
‖cI,IIα ‖, ∀α. More colloquially, this condition will hold if the distance between the
clusters of particles is much greater than the distance between the particles of the
same cluster.27

7.2 The projected dynamics

In this section we will project the dynamics in the absolute Newtonian configu-
ration space to relative configuration space. We will compare the projection of
geodesic curves in the bundle with different vertical velocities to geodesic curves
on the base space. The difference in the acceleration of these curves will give a
deviation equation analogous to the Lorentz force seen in standard Kaluza–Klein
theory (Equation 5.27). But before doing this, let us consider some of the general
properties of the dynamics under this decomposition.

Using the vertical and horizontal projection of the motion, and assuming the
potential term depends only on the relative configuration space, we can rewrite the
Lagrangian from (7.1) as:

L = K(Ĥ(ċ)) +K(V̂ (ċ))− V ([c]) = KV +KH − V , (7.18)

where the potential term should only depend on the orbit and not on the particular
configuration (i.e., the potential does not depend on the orientation or absolute
position of the configuration).

Note that, by the properties of $, KH is fully covariant — even under transfor-
mations of the type gt := g0 exp(tξ) (cf. (4.7)). Since the kinetic term involves only

27Under these conditions, for radial potentials, it will generally be the case that V ≈ VI(c
I
α) + VII(c

II
α ) +

V (qI , qII) where qI and qII are the centres of mass of the two systems.
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a G-invariant metric, KH is fully gauge-invariant. The potential term is invariant
under both time-dependent and time-independent symmetry transformations.

The vertical term could be problematic. But as we saw in Theorem 1, the
vertical velocity is conserved along geodesic motion (and it is a small step to show
that it is also invariant if one adds a gauge-invariant potential). Thus, even if KV is
not gauge-invariant; i.e., not purely determined by the relations, it will only require
dim(g) extra constants of motion along the base space trajectories. Each component
of the angular and linear momenta will therefore be conserved. Nonetheless, going
beyond a mere accounting of degrees of freedom, the vertical kinetic term can have
a non-trivial influence on the projected dynamics, and this is the second sort of
effect we need to account for.

Usually the vertical inner product of the configurational metric Q is quite differ-
ent from the one present in the standard space-time Kaluza–Klein theory, which is
induced by the Killing form in (5.1). Likewise, the horizontal metric is the space-
time metric in standard Kaluza–Klein, but for configuration space it is equivalent
to G ◦ Ĥ.

Taking these possibilities into account, we possess all the ingredients to turn
the crank of Section §5. In particular, we can compute the equations of motion for
the full configuration space, relating them to the Ehresmann bundle curvature and
conserved quantities. To do this, we compute the equations of motion for the base
space Lagrangian:

LH := KH − V ,
and then we can compare, as we did in (5.22), the equations of motion leading to
the acceleration:

π∗(
DQT γ̇

dt
) to

DS γ̇

dt
(7.19)

in both the translationally reduced configuration space, QT ' R3N−3 ' Q/R3, and
the relative configuration space, S ' QT/SO(3).

We arrived at (5.24) using precisely the same considerations. The only difference
here is the meaning of the vertical and the horizontal directions. Note that in
neither case we are working within a section, or a choice of frames, etc. Instead,
we are working with a choice of an anholonomic basis for the tangent bundle to
configuration space, which we are splitting into horizontal and vertical directions.

Our notation will differ from that of space-time Kaluza–Klein theory: we use
capital Roman letters, I, J , spanning 3N − 6 horizontal directions (which are to
be projected to base space), and we will maintain early Roman letters; a, b; for the
vertical directions spanning three vertical directions. We thus replace the eσ used
in space-time Kaluza–Klein by

ea := J ](a) = n(a) × cα

(to be understood as the n-tuple). We need not specify a basis for the horizontal
vectors, which, according to (7.15), are of the form: ċα −

∑
αmαċα × cα . Instead,

we will label them eI .
The fundamental vertical vectors are not normalized. For a geodesic, instead of

(5.19) we will therefore obtain:

γ̇ = uIeI + qaea . (7.20)

Here,
qa = (M−1)abG(ea, γ

′) = (M−1)abLb ,
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where La is the angular momentum component of the motion. According to The-
orem 1, it is only G(ea, γ

′) =: La that is conserved along the geodesic; i.e., is such
that ∇γ′G(ea, γ

′) = 0 for γ a geodesic. Therefore, in the geodesic equation, this
difference will create another purely vertical term of the form (∇γ′q

a)ea. This gets
projected out when we contract with eI .

There are additional differences in the computation of the geodesic motion be-
cause the Christoffel symbols will differ from those of (5.18). More precisely, we
obtain the Christoffel symbols analogous to (5.18), but the base-space dependence
of the vertical metric gives us new ones as well. The computations are laborious but
straightforward (see e.g. (Littlejohn & Reinsch, 1997, eq. 5.59)). We will explicitly
need only two of them: {

PΓIab = −1
2
Mab

;I

PΓIJa = PΓIaJ = −1
2
MabF

bI
J ,

(7.21)

where we used a semi-colon to denote the covariant derivative with respect to
$; i.e., Mab

;I = G−1(d$M, ·). d$ is the gauge-covariant exterior derivative; i.e.,
d$M = dM − [M,$], and M is the moment of inertia tensor given in (7.12).

Putting it all together, we obtain the analogue of (5.25):

eI(∇P
γ̇ γ̇) = u̇I + uJ(uK PΓIKJ + qa PΓIaJ) + qb(uK PΓIKb + qa PΓIab)

= (u̇I + uJuKΓ
I

KJ)− uJqaMabF
bI
J −

1

2
qaqbMab

;I

= (u̇I + uJuKΓ
I

KJ)− uJLbF bI
J −

1

2
LaLb(M−1);I

ab , (7.22)

where the term inside the parenthesis in the last two lines is just the intrinsic
geodesic of the base space. Adding a gauge-invariant potential term V — e.g. a
potential term that depends only on inter-particle separations — would only add a
gradient V;I to the equations of motion.

In abridged notation, and in analogy to (5.27), we obtain:

G(π∗(
DQT γ̇

dt
)− DS γ̇

dt
, ·) = L · F(ċ, ·)− 1

2
L · d$M−1 · L ,

where the square brackets are matrix commutators, F is the bundle curvature, given
in (7.16), and L is the angular momentum. For convenience, the equation was been
written as a 1-form in configuration space (i.e. with 〈v| = G(|v〉, ·)). Since F is
horizontal, we can rewrite this difference more clearly in terms of the deviation ∆I

using · to indicate the Euclidean inner product in R3:

∆I = L · FIJ γ̇J −
1

2
L · ∇IM

−1 · L , (7.23)

which is our main result.
The first term on the right hand side of (7.23) arises from the curvature of the

bundle, and is clearly identifiable as a ‘Lorentz-like’ force. The second term arises
from the base space dependence of the vertical kinetic term, and is a generalized
centrifugal force28 coming from the mass-like potential, L ·M−1 · L, quadratic in

28We call this term the centrifugal force because, in the two-body case, it is just d
dr ( |L|

2

2mr2 ), which is the
centrifugal force for the radial equation of motion as derived in Section §2.2.
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L.29

The Lorentz-like force term of (7.23) seems at first somewhat surprising: what
is usually labelled a fictitious force — the Coriolis effects is dependent on the frame
chosen — makes an appearance on the base space. But this is precisely what
“falling cat experiments” — showing a possible change of orientation even for a
motion with vanishing angular momentum — implies. For bodies with non-zero
angular momentum, such a force will appear in any frame. The kinetic connection-
form in the rotational bundle has curvature, and when we couple that to a motion
with non-vanishing angular momentum, we obtain a generalized Coriolis force.

Following the method in the proof to Theorem 1 — which shows that the vertical
velocity is conserved by geodesic motion — it is easy to show that vertical velocity
must also be conserved here. As mentioned, the second term on the right hand side
of (7.23) goes beyond an analogue of the original Lorentz-force deviation in space-
time-based Kaluza–Klein; it comes from the configuration space dependence of the
kinematical metric along the orbits. For comparison, in the space-time case, the
vertical inner product is induced by the Killing form on the Lie-algebra (cf. (5.1)),
as it is for the translations (Qab = δab), and thus in both these cases the vertical
energy is independent of the base space point. For the rotations, the moment of
inertia tensor Qab = Mab, which is not independent of the relative configurations.
The vertical kinetic term, L ·M−1 · L then plays a role of a potential on relative
configuration space.

In sum: because the rotational invariance of the Lagrangian is only broken by
time-dependent transformations, we are able to find a suitable bundle structure
under which to study the projection of its dynamics. But the dynamics can only be
fully represented in the quotient space with the introduction of more structure: the
curvature-form and the angular momentum. Nonetheless, as we saw in (7.16), the
only quantity required for the representation of the projected dynamics that is not
intrinsic to relative configuration space is the angular momentum, which is easily
shown to be a constant of motion. For translations, since F = 0 and Qab = δab, the
analogue to (7.23) vanishes.

On base space points for which the moment of inertia, Mab is the identity, the
centrifugal potential becomes a Casimir invariant, which does not affect the equa-
tions of motion. For zero angular momentum, the difference between the projected
dynamics and the intrinsic dynamics also vanishes: there are no charges on which
the effective potential and the Lorentz force act.

More generally, we conjecture that two terms of (7.23) are the most general
form of terms that can arise from the reduction of a theory whose Lagrangian is G-
invariant separately in its potential and kinetic energy terms when the connection-
form is defined by orthogonality. Specifically, we conjecture that the possible terms
that can be obtained through such a reduction include one extra term coming from
the curvature of the bundle and another coming from the base-space variance of

29Equation (7.23) is only concerned with the difference between geodesic motion intrinsic to relative con-
figuration space and the projection of geodesic motion on the bundle. The intrinsic geodesic equation is the
projected one for zero angular momentum, i.e., (cf. Littlejohn & Reinsch (1997, Eq. 4.77)):

DS γ̇I
dt

= γ̈I + ΓJIK γ̇
K γ̇J −∇IV ,

where ΓIJK are the Christoffel symbols of the horizontally projected metric Littlejohn & Reinsch (1997, 5.59),
and, again, I, J,K parametrize coordinates qI in relative configuration space, S. These are the explicit equations
of motion on the reduced space with zero angular momentum as advocated in Barbour & Bertotti (1982).
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the vertical inner product.

8 Conclusions

8.1 Technical summary

Let us take a moment to summarise the key technical achievements of the paper.
At the representational level, if a time-independent Lagrangian symmetry is spec-
ified, it is possible to produce a time-dependent generalisation of the symmetry
by introducing a connection-form following the procedure outlined in Section §6.
Such a connection-form is singled out in that it allows an efficient organization and
interpretation of the reduced equations of motion.

When the configuration space is endowed with a group-invariant metric, impos-
ing orthogonality with respect to the orbits of the group action provides a canonical
notion of horizontality — or parallel transport — between representatives of the
system in the different orbits. Moreover, the identification of the kinetic term in the
Lagrangian with the norm of the velocities under this inner-product, when conjoined
to a fully-invariant potential term, ensures: (1) that the horizontal contribution to
the dynamics is fully gauge-invariant (following the arguments at the beginning of
Section §7.2) and (2) that the vertical velocities are dynamically conserved (fol-
lowing Theorem 1 of Section §5.3 and its caveats). Using the connection-form
constructed in this way, it follows that the projection of the full configuration-space
dynamics onto the base space requires only one additional constant of motion for
each conserved charge generated by the symmetry group.

The natural physical interpretation of the geometrical quantities introduced here
is illuminating. Conserved charges are naturally represented by vertical velocities in
the bundle. Zero total angular and linear momentum are represented by horizontal
motion along rotational or translational fibres respectively. The Lorentz-like force
is represented by the first term of (7.23), which arises in this picture from the
bundle curvature (6.6). Centrifugal force is represented by the extra mass-like term
(quadratic in L) of (7.23), which arises from the base-space dependence of the
vertical metric (7.12).

Notably, both these novel terms act on the angular momentum charge and
vanish when L = 0. In the case of translations, the analogous charge (i.e., the total
linear momentum) can always be set to zero without consequence. In the standard
Kaluza–Klein treatment for semi-simple Lie groups over space-time, the fibre inner
product is rigid, and the second potential term does not appear. These two terms
therefore capture all the novel representational features of rotation.

8.2 Conclusions and prospectus

Our analysis has identified the formal differences between translation and rotation
that have made rotation such a difficult problem for the relationalist. We can
understand these differences by considering that under translations there is no
difference between the intrinsic dynamics in the reduced space and the projected
dynamics from the configuration space. One obtains conserved charges but there
is no curvature or extra potential to act upon them. Motion on the reduced space
does not carry any information about the (constant) vertical velocity in the full
configuration space and is therefore easily expressed in relational terms.
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In contrast, under rotations one acquires two non-trivial terms: a Lorentz-force-
like term due to curvature and another mass-like quadratic potential term mediated
by the moment of inertia (see footnote 28). It should be emphasised that both
these terms have a simple dependence on the natural geometric structures defined
entirely on the relative configuration space and the straightforward coupling of these
structures to an SO(3) charge. What the simple and elegant form of these terms
illustrates is that an account of Coriolis and centrifugal effects due to rotation in
absolute space, while always available, is certainly not necessary and may not even
be the most appealing account available.

The construction we have given in terms of principal fibres bundles can help to
clarify some of the limitations of the symplectic reduction of Marsden (1992) and
the frame-based approach of Littlejohn & Reinsch (1997). These approaches make
use of frames defined in terms of the instantaneous configurations of the system.
But because the rotational bundle is curved, no frame of this kind can be found that
will conserve angular momentum when it is non-zero. In the fibre bundle picture
however one can always employ an anholonomic frame along the geodesics of the
kinematical metric, so that angular momentum is guaranteed to be conserved by
Theorem 1. This gives a dynamically defined inertial frame in terms of relational
quantities.

The analysis of Section §7 not only gives us the tools required to identify the
novel features that distinguish rotation from translation or standard Kaluza–Klein
theories; it also gives us the tools required to write down and assess a theory of
rotation in relational terms. Three important considerations arise immediately from
the current work.

First, the formal analogies between translation and rotation symmetry in New-
tonian mechanics and U(1) symmetry in electromagnetism suggest two different
perspectives on conserved charges: that of the reduced space where the conserved
charge — i.e., linear momentum, angular momentum, and electric charge respec-
tively — is additional structure that must be specified; and that of the relevant
bundle where they are completely geometrized. Using these analogies, it is possible
to fruitfully compare the relational versus absolute positions of Newtonian mechan-
ics to their electromagnetic counterparts in a way that was not possible before the
construction presented here.

Second, in Kaluza–Klein theory, the motion of a charged particle in an electro-
magnetic field can be geometrically described without invoking either the charge
or the electromagnetic force. One says that charged particle motion arises merely
from geometrical properties of the (higher-dimensional) space in which the particle
lives. Be that as it may be, most physicists today reject the geometrized origin
in favour of postulating one more field — the electromagnetic field — alongside
its charge. While a U(1) fibre bundle is sometimes used to model electromagnetic
effects, the fibres are interpreted as ‘internal’ directions of a very different char-
acter than the extra space-time dimenions of Kaluza–Klein theory. The situation
seems entirely analogous for rotations and angular momentum: one can have a de-
scription that geometrizes the motion in absolute space or one can use an enriched
relational ontology that postulates new fields and corresponding conserved charges
with remarkably simple interaction terms.

Third, the appearance of charge-dependent terms in the base-space dynamics
suggests that the most appropriate ontology for describing rotations, and indeed
any phenomena that can be modelled with the Kaluza–Klein-inspired construction
presented here, is an enriched ontology that adds extra conserved charges to a purely
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relational theory. It is precisely the conservation of these charges that permits
the use of such an enriched structure. If the phenomena could not be modelled
using conserved charges but could be modelled using time-varying charges, then
the entire projection procedure would be invalidated. Clearly, the justification for
this projection is different in standard Kaluza–Klein theory — where it was the
epistemic (“too small to see”) argument we rehearsed in the Introduction — and
in Newtonian mechanics. But if the phenomena could not be saved with conserved
charges alone, or if the equations of motion on the reduced space were uninformative
and practically useless, there would be a compelling case against the relationalist.

Similarly, the absolutist must justify why the relevant charge is observed to be
conserved in time or, equivalently, why a rotational symmetry should be imposed
at the level of the action. The absolutist must say why the world appears to
accommodate significantly less possibilities than those that are allowed by their
ontology. A full analysis of these compelling considerations will have to wait for
the more complete treatment we will give in our second paper.
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A Auxiliary computations for the connection-form of a bundle

P

A connection in P is a sub-bundle H of TP such that g∗(Hp) = Hg·p and Hp⊕Vp =
TpP . We call H the horizontal bundle.

First, since the vertical space is defined by the span of ι, as defined in (4.1):

ιp
(
Ad(g−1)ξ

)
=

d

dt
|t=0(exp(t

(
Ad(g−1)ξ

)
) · p) =

d

dt
|t=0(g−1exp(tξ)g · p)

∴ g∗(ιp
(
Ad(g−1)ξ

)
) =

d

dt
|t=0(exp(tξ)g · p) = ιg·p(ξ) (A.1)

Thus g∗(Vp) = Vg·p. Therefore the decomposition TpP = Hp ⊕ Vp is G-invariant.
As in the main text, we denote the smooth projections from TP to the horizontal

bundle as Ĥ and mutatis mutandis for the vertical bundle V̂ . Clearly, from G-
invariance of the decomposition, Ĥg·p ◦ g∗ = g∗ ◦ Ĥp, and mutatis mutandis for the

vertical projection. Explicitly, if w ∈ TpP then, since w = wh +wv = Ĥ(w) + V̂ (w)
and, since G∗ is linear, and g∗(wv) ∈ Vg·p, we automatically obtain g∗(wh) ∈ Hg·p.

In other words, Ĥg·pg∗(w) = g∗(Ĥ(w)). We find:

37



Theorem 2. If H is a connection on P , then for all p ∈ P : πp∗ : TpP → Tπ(p)M
restricts to a linear isomorphism hp : Hp → Tπ(p)M such that hg·p ◦ g∗|Hp = hp.

Proof. In finite dimensions, it is easy to show that the projection restricts to a
linear isomorphism (for infinite-dimensions cf. (Ebin, 1970; Wilkins, 1989)), since
the vertical space is in the kernel of the projection, which is of maximal rank, i.e.
surjective. Moreover, hg·p ◦ Ĥg·p = π∗g·p, therefore:

hg·p ◦ Ĥg·p ◦ π∗ = π∗g·p ◦ π∗ = π∗p = hp ◦ Ĥp

∴ hp ◦ Ĥp = hg·p ◦ π∗ ◦ Ĥp

and since Ĥp is surjective, we obtain the theorem.

For a given H, we define the connection-form as ω := ι−1 ◦ V̂ . That is:

ωp : TpP → g

u 7→ ι−1
p ◦ V̂p(u)

Of course, for v ∈ Vp then ω(v) = ι−1(v). Moreover:

(g∗ω)p = ωg·p ◦ π∗ = ι−1
g·p ◦ V̂g·p ◦ π∗

= ι−1
g·p ◦ π∗ ◦ V̂p = (g∗ι−1)p ◦ V̂p = Ad(g) ◦ ι−1

p ◦ V̂p = Ad(g)ωp

and therefore
g∗ω = Ad(g)ω (A.2)

That shows ω is a connection-form.
Conversely, given a connection-form, we can find the corresponding (equivariant)

horizontal space through its kernel. That is, since ιp is a linear isomorphism over Vp ,
clearly Ker(ωp) complements Vp . Moreover, if u ∈ Ker(ωp) then g∗(u) ∈ Ker(ωg·p)
since

ωg·p ◦ π∗(u) = Ad(g)ωp(u) = 0.

Therefore, since g∗ is a linear isomorphism, Ker(ω) is a G-invariant sub-bundle of
TP , complementing V. That is, we can define the horizontal space as Hp = Kerωp.
Indeed, there is a bijective correspondence: H↔ ω.
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