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Abstract

This paper argues that a notion of statistical explanation, based on Salmon’s
statistical relevance model, can help us better understand deep neural networks. It
is proved that homogeneous partitions, the core notion of Salmon’s model, are equiv-
alent to minimal sufficient statistics, an important notion from statistical inference.
This establishes a link to deep neural networks via the so-called Information Bottle-
neck method, an information-theoretic framework, according to which deep neural
networks implicitly solve an optimization problem that generalizes minimal sufficient
statistics. The resulting notion of statistical explanation is general, mathematical,
and sub-causal.
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1 Introduction
The present paper has two goals. The first goal is to formulate a notion of statistical
explanation, based on the statistical relevance (SR) model proposed by Salmon (1971a).
The centerpiece of Salmon’s SR model is the concept of homogeneous partition. I will prove
that homogeneous partitions are mathematically equivalent to minimal sufficient statistics,
an important concept from statistics. This result is interesting because it establishes a
conceptual bridge between philosophical discussions of explanation and understanding on
the one hand, and a well-established method of statistical inference on the other. After
establishing this conceptual bridge, I will explore its consequences.

The main upshot of the first part of the paper is an account of statistical explanation
that is underpinned by both philosophy and statistics. It is a non-causal, general, and
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mathematical kind of explanation, according to which providing explanatory information
amounts to providing a statistical analogue of necessary and sufficient conditions for pre-
diction. From an information-theoretic perspective, the account can be interpreted as
information compression without loss.

The second goal of the paper is to use the notion of statistical explanation proposed in
the first part to explore the so-called Information Bottleneck (IB) method (Schwartz-Ziv
and Tishby, 2017). The IB method is a recent proposal from deep learning theory that
aims to explain some puzzling aspects of deep learning (DL) models, and in particular
of deep neural networks (DNNs). Deep learning is a powerful technology with many
successful applications, both in science and elsewhere. However, the reasons for this
success are not very well understood. Why are DL models so successful, and how do
they work? The IB method provides a partial answer to these questions. The IB method
is a generalization of minimal sufficient statistics; this establishes a connection between
the project of understanding DL models and the SR model of explanation.

The main upshot of the second part is that according to the IB method, DNNs implic-
itly solve an optimization problem that is a generalization of minimal sufficient statistics.
The optimization is a tradeoff between the sufficiency and the necessity of minimal suffi-
cient statistics. The kind of explanatory information we can gain on the basis of DNNs is
weaker than the information we can gain according to the SR model.

The overall upshot of the present paper is that the core concept of Salmon’s SR model,
homogeneous partitions, capture what kind of understanding DNNs can provide on a very
general level. The formal relation between statistical relevance and minimal sufficient
statistics establishes that the kind of insight that DNNs provide is quite limited.

In order to facilitate orientation for the reader, the relations between the most impor-
tant concepts of the paper are exhibited in figure 1. In the first part of the paper, the
focus will be on the (horizontal) relations between homogeneous partitions and minimal
sufficient statistics. In the second part, the focus will be on the (vertical) relations between
minimal sufficient statistics and deep learning.
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Figure 1: Concept map of Part I and Part II of the paper.

Part I

Statistical Relevance Revisited
2 Homogeneous Partitions are Equivalent to Minimal

Sufficient Statistics
In this section, I provide an informal exposition of homogeneous partitions and minimal
sufficient statistics, and I state the equivalence of these two concepts. I then discuss a third
formulation of minimal sufficient statistics in information-theoretic terms. See appendix
A for formal statements and proofs.

Assume that we have a dataset A, and we want to predict a property B from A. For
example, A could be a set of medical records, and B could be the presence or absence
of some medical condition we want to predict. Assume that we know the conditional
probability of B given A, that is, the probability with which a patient in dataset A
develops condition B. Now, two elements x and y of A, that is, different medical records,
can have the same conditional probability, i.e., even though x and y are different elements
of A, x and y can be equivalent as far as the prediction of condition B is concerned. We
can divide A into subsets such that two elements of A are in the same subset if and only
if they have the same conditional probability. This means that we have grouped together
all and only those elements of A that have the same “probabilistic behavior” with respect
to B. Such a division of A into subsets is a homogeneous partition of A with respect to B.
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The notion of homogeneous partition is the centerpiece of Salmon’s statistical relevance
model, first introduced in Salmon (1971a). Even without discussing Salmon’s philosophical
motivations, we can already guess why a homogeneous partition might be interesting from
the perspective of statistical explanations: A homogeneous partition draws a distinction
between elements of A exactly if this distinction makes a difference for the probabilistic
prediction of B.

Now we turn from philosophy to statistics. A statistic of a random variable X is a
function T (X). A statistic of X induces a partition on X: members of X are in the
same subset of the partition if they are sent to the same value by T (X). In this sense, a
statistic provides a summary of X. A sufficient statistic T (X) of X for a variable Y is
a summary of X such that, if you know the value of T (X), this is all you need to know
about X to predict Y – it is a “sufficient summary” of X for the purpose of predicting Y .
Now, a sufficient statistic can give you too much information, in that the summary of X
it provides is too fine grained. A minimal sufficient statistic T (X) is a summary of X for
Y that gives you all the information in X for the prediction of Y , but not more. It is as
coarse-grained as possible, while still being sufficient.1

Having read the above accounts of homogeneous partitions and minimal sufficient
statistics, the reader may already have guessed that these two concepts are very similar.
In fact, one can prove the following proposition:

Proposition 1. Let X, Y be random variables. A partition of X, represented by the
statistic T (X), is homogeneous with respect to Y if and only if T (X) is a minimal sufficient
statistic for Y .

What is interesting about this proposition is that Salmon’s philosophically-motivated
notion of homogeneous partition has a counterpart in statistics, which opens up novel
connections between philosophy and statistics. This formal relation between Salmon’s
work and statistics has gone unnoticed in the philosophical literature until now. In the
present paper, I will explore the consequences of this formal relation. Note that, technically
speaking, the formal characterization of minimal sufficient statistics in proposition 1 is not
new; it is similar to a well-known characterization of minimal sufficient statistics due to
Lehmann and Scheffé; see appendix A.

So far, we have seen two different characterizations of minimal sufficient statistics; now
we turn to a third characterization of the same concept, the so-called information-theoretic

1The concept of sufficient statistic is due to Fisher; the theory of minimal sufficient statistic was
initiated by Lehmann, Scheffé and Dynkin; see Lehmann and Casella (1998, p. 78). Traditionally,
sufficient statistics serve as a principle of data reduction. Usually, X is interpreted as data, that is,
X = (X1, ..., Xn), where the Xi are i.i.d., and Y is a vector of unknown parameters we wish to estimate.
The concept of sufficiency is particularly useful if we make additional assumptions about the distribution
of the data, e.g., that Xi have a Normal distribution; see Casella and Berger (2002, Ch. 6) for examples.
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formulation.2 The information-theoretic formulation allows us to conceptualize minimal
sufficient statistics in terms of statistical information: A sufficient statistic preserves all
the information in variable X for the prediction of variable Y , and a minimal sufficient
statistic preserves all and only the information in variable X for the prediction of variable
Y . To make this idea precise, we need the notion of mutual information I(X;Y ) of random
variables X, Y .3 Mutual information quantifies how much we know about the behavior
of one variable if we know about the behavior of the other. The notion of sufficient
statistic can be formulated as follows: S(X) is a sufficient statistic if and only if I(Y ;X) =
I(Y ;S(X)), that is, a sufficient statistic of X for Y loses no mutual information about
Y in comparison to X. Finally, a minimal sufficient statistic is a sufficient statistic that
contains the least amount of mutual information about X among all sufficient statistics.
We get the following, well-known4 proposition:

Proposition 2. Let X, Y be random variables. A function T (X) of X is a minimal
sufficient statistic for Y if we have:

T (X) = arg min
S(X)

I(S(X);X), (1)

where S(X) runs over all sufficient statistics for Y .

The information-theoretic formulation of minimal sufficient statistics is important for
our purposes because, first, it opens up further interpretations of the concept of ho-
mogeneous partition, which will be useful in the philosophical discussion. Second, the
information-theoretic formulation is important for the second part of the paper, because
it will make it easier to understand the relation between minimal sufficient statistics and
the IB method.

3 Salmon’s SR Model Revisited
In this section, I revisit Salmon’s Statistical Relevance (SR) model of explanation, and I
recapitulate the main objections against the SR model from the philosophical discussion.5
The revised account of statistical explanation formulated in the next section will be based
on those aspects of the SR model that are not affected by these objections.

2Information theory goes back to Shannon; the information-theoretic formulation of sufficient statistics
is due to Kullback and Leibler; see Cover and Thomas (2006, pp. 54).

3Mutual information I(X;Y ) of a pair of discrete random variables (X,Y ) is defined as I(X;Y ) =∑
x,y P (X = x, Y = y) log P (X=x,Y=y)

P (X=x)p(Y=y) . Note that I(X;Y ) is non-negative and symmetric.
4The proof of the proposition can be found in Shamir et al. (2011); see Cover and Thomas (2006) and

Schwartz-Ziv and Tishby (2017) for background.
5See Salmon (1971a, Sec. 13) and the reconstruction and discussion in Woodward (2019, Sec. 3), on

which the following account is based.
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3.1 Salmon’s SR Model

Salmon’s SR model is a theory of singular explanation, that is, Salmon analyzes explananda
of the form: Why does x, which is a member of A, have attribute B? For example, the
question could be why a patient with medical record x ∈ A developed medical condition
B. Salmon proposes the following definition:

Definition 3. A Statistical Relevance (SR) Explanation of why an instance x of A has
attribute B consists of the following information:

1. A homogeneous partition {Ci}i∈I of A with respect to B,

2. the probabilities of the cells Ci of the partition with respect to B, P (B|A∧Ci) =: pi
for i ∈ I,

3. the cell Ci to which the instance x belongs.

Note that the only substantive requirement of this definition is a homogeneous partition
of A with respect to B. The probabilities in the second condition need to be known to make
sure that a partition is homogeneous; there are no further constraints on these probabilities.
The third requirement does not come with additional constraints either; simply knowing
the cell Ci suffices. However, knowing the cell Ci has no particular significance. We might
as well require that x ∈ A, which implies that x is in some Ci by definition. But the fact
that x is in A, i.e., that x is part of the data, is a presupposition of the question we ask,
not an additional constraint on the answers.

In what sense does the information required by the SR model constitute an explana-
tion? Salmon writes:

“When an explanation [of this form] has been provided, we know exactly
how to regard any A with respect to the property B. We know which ones
to bet on, which to bet against, and at what odds. We know precisely what
degree of expectation is rational. We know how to face uncertainty about an
A’s being a B in the most reasonable, practical, and efficient way. We know
every factor that is relevant to an A having property B. We know exactly the
weight that should have been attached to the prediction that this A will be a
B. We know all of the regularities (universal or statistical) that are relevant to
our original question. What more could one ask of an explanation?” (Salmon,
1971a, p. 78)

In these remarks on the explanatory nature of the SR model, Salmon only mentions
relations between variables; instances of variables appear to play no role.
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3.2 Objections Against SR as Singular Statistical Explanation

As we have seen, Salmon’s SR model is an account of singular explanations, that is, why an
x, which is an A, is also a B. We will now revisit objections against Salmon’s model that
are based on the fact that it is a singular statistical explanation. In particular, Salmon’s
model has consequences that disagree with intuitions about singular explanations; see
Woodward (2019, Sec. 3.2. and 3.3.).

The first problem is that the SR model places no restrictions on probabilities other
than that they form a homogeneous partition. In particular, if x belongs to Ci, there is
no requirement that the probability P (B|A ∧ Ci) is high, or higher than P (B|A). This is
counterintuitive if we subscribe to Hempel’s idea that to explain x means to show that x
was to be expected, that is, that x did occur with necessity or with high probability. Note
that Salmon explicitly rejected Hempel’s idea.

The second problem is that the SR model allows for the possibility that the same
explanation applies to different instances x, y which are classified differently. For example,
if we ask for an explanation of why patient p with medical record x is predicted to develop
some medical condition B, while patient q with medical record y is predicted to not develop
medical condition B, then, according to the SR model, it can be adequate to provide the
same information to answer both of these questions, given that they belong to the same
cell Ci in the homogeneous partition. This seems counterintuitive.

Thus, Salmon’s model does not conform to some intuitions about singular explanation,
and this speaks against using the SR model as an adequate account of singular statistical
explanation. However, it does not speak against the idea that homogeneous partitions
might provide a kind of general statistical explanation concerning probabilities, where
general means that the explananda are not singular outcomes, but probabilistic relations
between random variables. From here on, SR will be viewed as providing a kind of general
statistical explanation in this sense.

3.3 Objection Against SR as Causal Explanation

A further objection against the SR model is that it is not causal. There is a consensus in
the philosophical literature that statistical relations between variables are not sufficient to
infer unique causal relations between these variables; see Woodward (2019, Sec. 3.4.) and
Spirtes et al. (2000). Whatever statistical relevance is, we cannot infer causal relations
from it, and homogeneous partitions cannot be explanatory in virtue of identifying causal
relations.

What does this mean for the explanatory significance of SR? It depends on how we
see the relation between explanation and causality. Some philosophers believe that we can
only explain by providing causal (or nomological) information. For example, Woodward
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(1987, Sec. 3) argues that SR is explanatorily irrelevant because it does not provide causal
information. In the following quote, Woodward writes about the SR model: “[F]or the
purpose of explanation, what matters is not just any information about (the frequency of
occurrence of) the explanandum-phenomenon, but rather information that is causally or
nomologically relevant.” (p. 39) Thus, according to Woodward, the difference between sta-
tistical relevance and explanatory relevance is “between explaining and providing grounds
for expecting or betting” (p. 39). SR does not capture causal relations, and cannot provide
causal explanations.

This means that if one wants to defend homogeneous partitions as providing a kind
of explanation, it needs to be a non-causal kind. I will argue in the next section that we
can view homogeneous partitions as providing a kind of mathematical explanation. This
also means that I do not subscribe to the view, advocated by Woodward, that the only
acceptable model of explanation is causal; see Lange (2016) for more on this. Note that I
do not wish to downplay the importance of causal explanations. Rather, I work under the
assumption of explanatory pluralism, viz. that there is not just one model of explanation,
but many; see, e.g., Reutlinger and Saatsi (2018, Ch. 3).

4 Explanation and Understanding from Statistical Rel-
evance

In this section, I articulate statistical relevance as an account of mathematical explanation.
I tackle the following questions: Can we interpret homogeneous partitions as explanatory,
or as providing understanding? What kind of explanatory information or understanding
does it provide? And: What are the limitations of this account? Importantly, I will not
defend the SR model in its original form, but only those aspects not threatened by the
objections discussed in the last section. I will refer to the revised account as statistical
relevance in order to emphasize the continuity with Salmon’s work.

4.1 Characterizing Statistical Relevance

The model of statistical relevance I propose comprises homogeneous partitions. Why does
a homogeneous partition provide explanatory insights about the variables involved? One
way of seeing the explanatory nature of SR is by comparing it to a recent account of
mathematical explanations articulated by Pincock (2015). The defining feature of Pin-
cock’s abstract explanations is that, in order to explain some property, we have to provide
necessary and sufficient conditions for that property; see also Räz (2017, 2018). SR is anal-
ogous to abstract explanations in also requiring necessary and sufficient information with
respect to probabilistic prediction. It is, however, disanalogous in not requiring logically
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necessary and sufficient conditions. Note that Salmon himself conceptualized SR in this
way; in Salmon (1971a, p. 61), he describes the construction of a homogeneous partition
as the “statistical analogue of the discovery of necessary and sufficient conditions”. This
characterization is also supported by statistics.6 Thus, statistical relevance is explanatory
in virtue of providing an analogue to necessary and sufficient conditions for probabilistic
prediction.

What kind of explanation does statistical relevance provide? Building on the remarks
above, statistical relevance is a variety of mathematical explanation (Mancosu, 2018), dis-
tinct from, but analogous to abstract explanations as proposed by Pincock. Furthermore,
it is a kind of non-causal explanation, because the information it provides is not sufficient
for the identification of causal structures. It is, nevertheless, worthwhile to articulate
such a sub-causal notion of understanding, simply because in some cases, the kind of
information captured by SR might be all that we can get.7

The information-theoretic formulation of minimal sufficient statistics provides us with
further insights into the idea that statistical relevance provides all and only predictively
relevant information; at the same time, this formulation provides a coherent information-
theoretic model of explanation, a project that was started in the 1970s.8 Information
theory tells us that statistical relevance is data compression without loss: Finding a ho-
mogeneous partition amounts to finding a function T (X) of the data X that retains all
the information from X that is relevant for predicting Y , while discarding all information
from X that is irrelevant for predicting Y . In this sense, a homogeneous partition is an
optimal systematization of the data X for the purpose of predicting a variable Y .9

6A minimal sufficient statistic is equivalent to a statistic that is necessary and sufficient for prediction.
Statisticians use these exact terms; see, e.g., Casella and Berger (2002, p. 308). In the context of statistics,
a necessary statistic is defined as a statistic that is a function of every other statistic; thus a statistic that
is sufficient and necessary is minimal sufficient.

7In the present paper, I restrict attention to explanatory understanding, i.e., understanding provided
by explanations as opposed to, say, objectual understanding; cf. Baumberger et al. (2017).

8It is instructive to compare the information-theoretic formulation of minimal sufficient statistics with
an information-theoretic model of explanatory power proposed by Greeno (1970). Salmon (1971b, Preface)
writes that his proposal and Greeno’s presumably agree. However, a comparison of Greeno’s notion with
SR as codified in equation (1) shows that this is not so. In a nutshell, Greeno’s proposal is that if S is
the explanans variable and M the explanandum variable, then the mutual information I(S;M) is a useful
measure of the explanatory power of S with respect to M . Greeno thinks that, with certain caveats,
higher values of mutual information are correlated with higher explanatory power. The main difference
between the two proposals is that the idea of sufficiency is missing from Greeno’s proposal. The reason
for this omission might be that Greeno begins his investigation with an arbitrary partition of X, i.e., a
statistic, and not with a variable X representing all the data. Consequently, he does not consider the
question whether it is possible to construct a sufficient statistic that retains all relevant information from
X.

9This characterization of SR suggests similarities with explanation as unification; see Kitcher (1989).
Unification is also a best systematization account, but the optimization criteria of unification are different
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However, the information-theoretic characterization also suggests an objection to the
idea that statistical relevance is explanatorily relevant. It could be argued that data
compression is not what we are after when we are looking for an explanation. Compression
only yields a summary of whatever information is given: If the dataset X is uninformative
or not representative with respect to Y , then compressingX will not make it better. To put
it bluntly, if X is trash, then T (X) is a waste press. Now, I agree that the SR model will
not tell us about causes, but only about correlations, which is the kind of understanding
that statistical relevance can provide. Put differently, the SR model does not meet the
standard of truth appropriate for causal explanations, it is not a veridical explanation in
the causal sense. It is, however, veridical in always providing maximal compression of
information without loss. By doing this, the SR model provides understanding in two
ways. First, if the data X is, in some relevant sense, informative about Y , then we can
expect the systematization T (X) to provide us with with a more concise picture of this
information, and it can play at least a heuristic role in constructing a causal explanation.
Second, if X is not informative with respect to Y , constructing a summary in the form
of a homogeneous partition might help us recognize a lack of informativeness in the first
place, which is also valuable.

4.2 Limitations

A first limitation of statistical relevance has its origin in philosophical worries about ho-
mogeneous partitions. One problem, already mentioned above, is that a dataset X may
not capture those phenomena that are relevant for the prediction of Y . This problem
is related to the notion of objective homogeneity, the requirement that a homogeneous
partition captures all factors that affect the prediction of the phenomenon described by
Y ; see Woodward (2019). This is a strong requirement, because it is not relativized to
a particular dataset, but requires that our variable X is maximally representative of the
factors relevant for Y . Thus, we are typically dealing with epistemically homogeneous
partitions, that is, we usually do not know whether there are further factors or variables
that affect the prediction of Y .10

A second limitation of SR is statistical. Sufficient statistics are useful when the data
has a fixed distribution of a certain kind; for example, X = (X1, ..., Xn), where Xi are
drawn from a fixed normal distribution with unknown mean and variance Y = (µ, σ2).

from those of SR. It is plausible that SR, as an account of explanation, shares some difficulties with
Kitcher’s model.

10Woodward considers only quantum mechanics to provide objectively homogeneous partitions: Ac-
cording to some interpretations of quantum mechanics, the probabilistic relations between the theory X
and phenomena Y that can be deduced from it are complete such that no hidden variable T can screen
off X and Y .
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In this case, we can construct sufficient statistics of X for the unknown parameters Y
of this normal distribution, the sample mean and variance. These statistics provide a
useful summary of X because they are smaller than X. However, this is only the case
if the Xi follow a particular kind of distribution. Casella and Berger (2002, p. 275)
explain the problem as follows: “It turns out that outside of the exponential family of
distributions, it is rare to have a sufficient statistic of smaller dimension than the size
of the sample [...]”. This means that outside of this family, a sufficient statistic will not
yield an interesting amount of compression, i.e., T (X) is not much smaller than X. This
is the Pitman–Koopman–Darmois theorem.11 Intuitively, it is plausible that if we do not
understand an explanandum because of its sheer size, and the explanans T (X) is not much
smaller than the explanandum, then the explanation is not useful.

Unfortunately, many datasets we care about, in particular in the context of deep learn-
ing, do not have a distribution from the exponential family. Thus, statistical relevance per
se is not of much help in understanding deep learning. However, there is hope – in the
form of a generalization of minimal sufficient statistics. This brings us to the second part
of the paper.

Part II

Understanding Deep Learning via
Information Bottleneck
5 Deep Learning
In this part of the paper, I explain how minimal sufficient statistics are related to deep
learning via the Information Bottleneck (IB) method. The IB method is an information-
theoretic framework that explains important features of deep learning models, in particular
certain aspects of their learning and generalization behavior. In this section, I will reca-
pitulate relevant aspects of deep learning, restricting attention to supervised learning in
feedforward deep neural networks (DNNs).12

11The exponential family is a set of probability distributions which can be written in a particular
parametric form. They have many nice mathematical properties, among them the fact that they allow
for interesting minimal sufficient statistics; see Casella and Berger (2002); Lehmann and Casella (1998)
for details.

12See Nielsen (2015) for an accessible introduction, LeCun et al. (2015) for an overview, Goodfellow
et al. (2016) for a book-length discussion of deep learning. The account given here is based on these
sources.
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Abstractly speaking, a trained DNN for classification is a function f̂ : X → Y , which
takes inputs x ∈ X and assigns one of finitely many values y ∈ Y to that input. For
example, X could be a set of medical records, and Y a set of medical conditions, in which
case f̂ provides medical diagnoses. The function f̂ is computed by a DNN, a directed
graph with several hidden layers between the input and the output; the network is called
deep if there is a large number of hidden layers. If the network is fully connected, then the
values are computed as follows: For each node, first compute a weighted sum of the values
of all the nodes in the previous layer, plus a bias term. Then send the result through a
(nonlinear) activation function. This is the value of the node, which is sent to the next
layer.

A DNN will learn how to classify by adapting its parameters, the weights and biases.
Assume we want an image classifier. For this, we need a training set of labeled pictures;
abstractly speaking, this is a set X = {(xi, yi), i = 1...n}, with n pairs of pictures xi and
labels yi, indicating the correct classification of the image. The parameters of the DNN f̂
are initiated randomly. Now, the network is given a small, random subset of the training
set, called a batch. The DNN computes the values f̂(xi) = ŷi for this batch. Now we use
a cost function to measure the distance between the predicted values f̂(xi) = ŷi (which
may be inaccurate), and the label yi (what is actually depicted). From the cost function,
which is a measure of error, we can calculate how to modify the parameters such that the
error becomes a little smaller, and we can propagate this error correction back through the
network. This procedure is repeated until we have exhausted the training set. A training
epoch can be repeated several times. The local optimization procedure is called stochastic
gradient descent. It is stochastic because it depends on the random choice of batches, and
it uses the gradient to make a descent in the error landscape, decreasing the error. In this
way, the parameters of the DNN are gradually adapted, and the DNN “learns” to classify
more accurately over time.

One of the most important metrics for evaluating a model is how well it generalizes.
This is measured using a test set X ′ = {(x′i, y′i), i = 1...m}, with data of the same kind as
X, but disjoint from it. A model generalizes well if the classification error on the test set
is small, that is, if the model is able to classify data that it has not seen before. DNNs
are known to generalize very well for a variety of tasks, ranging from handwritten digits,
over images of animals, to medical data.

However, there are a lot of open questions about DNNs. For one, we do not really
understand why DNNs generalize so well; see, e.g., Zhang et al. (2017). The fact that
DNNs perform well on test sets is just an empirical fact, which is surprising because
DNNs have a lot of parameters, and prima facie, one would expect them to overfit to
the training data, and thus not perform particularly well on test sets. There are also
many open questions about the learning process, that is, high-level properties of the local
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optimization procedure.13

6 The IB Tradeoff as a Generalization of MSS
In this section, I explain what the IB tradeoff is and how it generalizes minimal sufficient
statistics; in the concept map of part II of the paper (figure 1), this corresponds to the
upper arrow. As we have seen above, the concept of minimal sufficient statistic cannot be
straightforwardly applied to the kinds of random variables relevant to DL models, because
these do not follow a nice distribution. Therefore, we cannot interpret DL models as
constructing minimal sufficient statistics for these variables. This is where the IB method
comes in.14 The IB method partially answers the question why deep learning models
generalize well by providing insights into the learning behavior of these models, and the
explanation it provides is related to minimal sufficient statistics (MSS). Note that the
generalization of MSS to the IB tradeoff can be formulated in information-theoretic terms
and is, in principle, independent of the application of the IB tradeoff to DL models; the
application of the IB tradeoff to DL models will be discussed in the next section.

The IB method generalizes MSS by making weaker assumptions: Instead of requiring
that T (X) is a function of X, the IB method only requires that there exists a conditional
probability P (T |X) of random variables X and T . Recall that X can be interpreted as
the data, T a representation of the data, and Y as a property we want to predict. The IB
tradeoff, an optimization problem, can be formulated as follows:

LIB[P (T |X)] = argmin
P (T |X)

I(X;T )− βI(T ;Y ), (2)

where we require that Y and T are conditionally independent given X. The idea
behind this so-called IB Lagrangian is that we are looking for the distribution P (T |X)
that minimizes the expression on the right hand side, which depends on P (T |X) through
the definition of mutual information. β is the Lagrange multiplier, a positive real number,
which controls the tradeoff on the r.h.s. between I(X;T ), the amount of information that
the variable T contains about X (compression), and I(T ;Y ), the amount of information
in the variable T for predicting Y (retaining information). The conditional probability

13Recently, a lot of work in computer science has engaged with the problem of formulating a theoretical
framework for deep learning and the challenges raised in Zhang et al. (2017); the Information Bottleneck
is just one of the proposed answers. See, e.g., Vidal et al. (2017) for an overview of open theoretical
problems, and Achille and Soatto (2018) for a practical approach to the IB framework.

14The IB method was introduced in Tishby et al. (1999); a detailed discussion of the relation between
the IB method and minimal sufficient statistics can be found in Shamir et al. (2011); the relation between
the IB method, minimal sufficient statistics and deep learning is discussed in Schwartz-Ziv and Tishby
(2017). The account of the IB method given here is based on these papers.
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P (T |X) provides a “soft partition” of X, analogous to the partition provided by a MSS
T (X).

The relation between the IB tradeoff and minimal sufficient statistics can be made
formally precise. Compare equation (2) with the information-theoretic formulation of MSS
in equation (1). The IB tradeoff combines two optimization problems, one for minimality,
and one for sufficiency, both implicit in the MSS equation (1). The IB tradeoff lets us
choose a relative weight for these two objectives through the value of β. If we increase β,
we force T to retain more information about Y (sufficiency), and we relax the compression
of X by T (minimality). If we let β → ∞, T converges to a minimal sufficient statistic,
formulated in equation (1). If we decrease β, we get coarser approximations of minimal
sufficient statistics. In this sense, the IB tradeoff is a formal generalization of MSS, and
the latter is a limit case of the former.

We have formulated the IB tradeoff in terms of probability distributions, independently
of DL models. Eventually, we want to compare the behavior of DL models during and
after training with the IB tradeoff. In order to do this, we have to calculate the tradeoff
for different values of β. However, the conditional probabilities necessary to do so are
generally not known, and estimating them is challenging. Describing how to estimate the
IB tradeoff is beyond the scope of the present paper; see Schwartz-Ziv and Tishby (2017,
Sec. 2.5) for references and Alemi et al. (2017) for an important recent method.

7 The IB Method and Deep Learning

7.1 What the IB Method Tells Us about Deep Learning

We are now in a position to understand how the IB method applies to DL models; in
the concept map of part II of the paper (figure 1), this corresponds to the lower arrow.
There are several aspects of DL models that can be elucidated with the IB method; see
Schwartz-Ziv and Tishby (2017). Here we will focus on the (partial) explanation of the fact
that DL models generalize well. This phenomenon requires an explanation because DNNs
were not designed to have this property. It makes sense that DNNs minimize prediction
error; this goal is given by the objective function. However, minimizing prediction error
on the training set does not prevent overfitting.

To explain the generalization properties, we first have to establish a relation between
the IB method and DL models. We interpret the random variables of the IB tradeoff
as follows: X is the input of the DNN, the Ti are the hidden layers i = 1...k, and Ŷ
is the DNN’s output. We can view the layers of a DNN abstractly as a Markov chain,
X → T1 → ... → Tk → Ŷ . This is a Markov chain because each layer only sends and
receives information from its neighboring layers. The IB tradeoff can be calculated for
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each layer separately. Note that we have access to Y , the true label, for training and test
data.

Now, to better understand why DNNs do not overfit, Schwartz-Ziv and Tishby (2017)
examined how DNNs learn by tracking the quantities from the IB tradeoff during training.
Specifically, they analyzed the evolution of I(Ti, X), the information of a layer Ti about
the input X, and I(Ti, Y ), the information of layers about the desired output. They found
that the learning process of DNNs has two phases. In the first phase, called empirical
error minimization, the network learns to classify as accurately as possible. This phase is
characterized by a growth of I(Ti;Y ), that is, mutual information contained in the layers
Ti about the label Y grows. In the second phase, called representation compression, the
network compresses information in the layers Ti about the input variable X. This phase
is characterized by a decrease in I(X;Ti), the mutual information contained in the hidden
layers about the input. Note that these relations hold for all layers Ti. At the end of
training, the empirical values of each layer come close to the theoretical solutions of the
IB tradeoff for appropriate values of β.

The first learning phase corresponds to error minimization; we expect this phase due
to the objective function. It is the second learning phase that is surprising and that
partially explains the fact that DNNs generalize well. In the second phase, the DNN
“forgets” without losing information about the output – the available information in the
layers is compressed. Schwartz-Ziv and Tishby (2017) write: “This compression occurs [..]
without any other explicit regularization [..], and – we believe – is largely responsible for
the absence of overfitting in DL” (Ibid., Introduction). The learning phase, which gets rid
of irrelevant information, explains the absence of overfitting in DNNs.

Of course, we can ask further (explanatory) questions about the learning process and
the two learning phases. In particular, it would be interesting to have a deeper, theoretical
understanding of these phenomena. Such a theoretical understanding is still missing at
this point – what we have so far is only a partial explanation. Schwartz-Ziv and Tishby
(2017) provide more empirical findings, two of which should be mentioned here. First,
the two distinct phases can be observed by plotting the evolution of the mean and the
standard deviation of the weight gradients in the layers. In the first phase, the mean is
larger, i.e., the DNN learns, while in the second phase, the standard deviation is larger,
i.e., the DNN shows noisy behavior. Thus, the two objectives in the IB tradeoff each
dominate one of the two learning phases. Second, most of the training time is spent in the
second phase, i.e., the DNN spends most of the time compressing, or forgetting irrelevant
information.
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7.2 The IB Method Illustrated

In this section, I illustrate some aspects of the approximation of minimal sufficient statis-
tics by the IB method, using an analogy with a simple regression problem; see figure 2.
In a regression problem, the output variable is continuous, as opposed to discrete in a
classification problem. Training a model essentially amounts to curve fitting. I use a very
simple problem where both the input and the output is one-dimensional. The problem is
as follows: Given a set of points (blue dots), drawn from a cosine function (green line)
with a bit of noise, find a good approximation of the set of points with a polynomial.15

Figure 2: Image adapted from online version of Pedregosa et al. (2011).

According to the IB method, deep learning models go through two learning phases.
The first phase is empirical error minimization, i.e., the goal of this phase is to approximate
the data as well as possible. In terms of curve fitting, the objective is to find a curve (a
model) that is as close to all the points as possible. A model that has completed the first
phase looks like the blue curve in the figure on the right: the model comes reasonably
close to the points, i.e., the data to which it is fit, without this fit being particularly nice
where there are no points. This stage of learning corresponds to sufficiency: The model
tries to capture as much information about the data as possible.

The second phase is compression, i.e., the model tries to get rid of irrelevant informa-
tion. In terms of curve fitting, the objective is to make the curve (the model) smoother, or

15It should be stressed that this is an illustration by analogy; only some properties of this example
carry over to DNNs. Note the following differences between this toy problem and a genuine deep learning
problem: In DL problems, the dimension of the input is much higher and more data is available; DL
models have more free parameters and are not nearly as “nice” as polynomials; the notion of “simplicity”
is not as clear cut in DL models; finally, in DL, we do not have access to the true data generating function
(green), we only have the dots.
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less wiggly, while retaining the information from the first phase. A model resulting from
the compression phase looks like the blue curve in the figure on the left. The model still
comes reasonably close to the dots, but it also does not wiggle unnecessarily in regions
where there is no “reason” to wiggle. This stage of learning corresponds to minimal suf-
ficiency: The model tries to forget as much irrelevant information (minimality) as it can
while retaining the relevant information (sufficiency). So, retaining all and only relevant
information has a natural counterpart in curve fitting. According to the IB method, the
hard part of curve fitting is minimization, or compression, or getting rid of unnecessary
wiggles in the curve.

The key difference between the l.h.s and the r.h.s. of figure 2 is that the model on the
left generalizes well, while the model on the right does not. The model on the right overfits
the data – if we were to add new data points to the picture on the right by sampling from
the green curve, the model’s predictions would be off in regions where the model deviates
from the green curve. The model on the left predicts points that it has not “seen” much
better. Thus, it is the transition from the situation on the right to the situation on the
left, which we can empirically observe during the second learning phase, that is responsible
for good generalization behavior.

In practice, people often use regularization techniques to obtain models that do not
overfit. Regularization enforces the choice of simple models. One way of implementing
regularization is to add a term to the loss function which, intuitively speaking, punishes
the choice of complex models. In the case of polynomials, this means that polynomials
with a high degree, such as the one on the right, are punished more than polynomials
with a lower degree. Now, the crux is that even if DL models are not regularized, we still
observe that DL models compress in the second learning phase, which is surprising. DL
models seem to perform regularization automatically – they are “implicit regularizers”.

The discussion in this section can be rephrased as saying that DNNs perform well in
terms of the bias-variance tradeoff. Intuitively, one would expect DNNs to be in the low
bias, high variance regime due to the high number of parameters (Hastie et al., 2009, Sec.
2.9). The IB method provides a story as to why this is not the case. Note that, in the
present paper, we have only considered the IB method as a descriptive framework, i.e.,
it is used to understand properties of DNNs, not a prescriptive or heuristic framework to
improve DNNs, as, say, in model selection. However, the IB framework has also been used
in this prescriptive sense to improve DL models through explicit regularization; see, e.g.,
Achille and Soatto (2018).

7.3 Open Questions

The IB method is a relatively recent proposal; as such, it faces difficulties and objections.
One of the main difficulties of applying the IB method to deep learning is that the quan-
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tities in the IB tradeoff are theoretical, and we do not usually know them. Specifically,
the two mutual information terms in the IB tradeoff depend on (conditional) probability
distributions of the variables X,T and Y ; however, we usually do not have direct access
to these distributions. Thus, the true components of the IB tradeoff are unknown as well
and have to be estimated; in general, this is a hard problem, as was noted above. In
response to this problem, Schwartz-Ziv and Tishby (2017) write that a) they observe in
simple cases that after training, the layers Ti of the network approximate their (estimated)
optima according to the IB tradeoff and b) they expect this to be true for “real-life” cases
as well.

The IB method is not universally accepted as an adequate answer to the questions
it raises. For one, the method is not yet empirically supported by real-life examples.
Additionally, the IB method’s generality has been called into question. For example,
Saxe et al. (2018) claim that the different learning phases and the connection between
compression and generalization described in Schwartz-Ziv and Tishby (2017) cannot be
reproduced for some relevant kinds of DNNs; in particular, they claim that the IB results
only hold for activation functions that saturate, but not for other kinds of frequently used
activation functions such as ReLUs. These claims have, in turn, been contested by Tishby
et al. Thus, the jury is still out on the IB method.16

8 Explanation and Understanding from Deep Learning
In this section, I put everything together and tackle the question of what kind of expla-
nation the IB method provides from a philosophical perspective, how this translates to
understanding aspects of DL models, and what this tells us about the philosophical issues
of explanation and understanding.

What kind of explanatory insights does the IB method provide? To answer this ques-
tion, let us compare the IB method with the SR model. Recall that the SR model provides
insights about the prediction of the random variable Y from the random variable X by
constructing a minimal sufficient statistic of X for Y , which is a partition of X. Sufficiency
means retaining information that is relevant for prediction, while minimality means getting
rid of information that is irrelevant for prediction. From the perspective of information
theory, the construction of a minimal sufficient statistic amounts to achieving compression
of X without loss of information about Y .

Analogously, the IB method provides insights about the (imperfect) prediction of a
random variable Y from a random variable X by specifying conditional probabilities that

16It would be desirable to say more about the criticism of the IB method at a later point, and also to
contrast it with other proposed explanations of the generalization properties of DNNs, in order to better
understand the mode of explanation at play here.

19



constitute a tradeoff between minimality and sufficiency. In particular, the conditional
probability P (T |X) provides a soft partition of X. From the perspective of information
theory, the IB method provides insights about the prediction of Y from X at a given
level of loss of information about Y by specifying conditional probabilities that achieve,
at that level, the best compression of X. The existence of conditions for minimality and
sufficiency, albeit in the limited form of a tradeoff, is the main feature that the IB method
inherits from statistical relevance.

Importantly, it is an empirical fact that the IB tradeoff is implicitly achieved by DNNs.
If we examine conditional probabilities that DNNs approximate, we see that these prob-
abilities correspond to theoretical optima given by the IB tradeoff. This suggests that
the IB method provides insights about the implicit goal achieved by DNNs, viz., lossy
compression. The existence of a compression phase in DNNs is a partial explanation of
the generalization properties of DNNs. Compression, in turn, corresponds to minimality
in minimal sufficient statistics.

The compromise between the two objectives of sufficiency and minimality is inevitable
for the sorts of random variables we investigate with DNNs, because actual minimal suf-
ficient statistics cannot be found, but only approximated, for these kinds of variables. It
is the tradeoff between sufficiency and minimality which connects the IB method to the
debate on mathematical explanation, because the tradeoff is a generalization of the well-
known requirement of sufficiency and necessity for mathematical explanations; see section
4 above.

Taking a step back, what kind of explanatory insight does the IB method provide? If we
look back at the philosophical discussion of the SR model in sections 3 and 4, we see that
statistical relevance has traditionally been considered to be a relatively weak notion, which
only provides limited insights about matters of explanation and understanding. Salmon
himself suggested that statistical relevance is not sufficient for an account of (causal) ex-
planation; see Salmon (1984). The IB method provides an even weaker kind of explanatory
insight, because it generalizes the SR model. In particular, just as the SR model, it does
not provide a veridical causal explanation. Whatever modest understanding we may gain
on the basis of minimal sufficient statistics, cannot, in general, be had with the IB method.
Finally, if the IB method correctly explains the implicit goal of DNNs, then the insights
provided by DNNs are strictly weaker than those provided by the SR model, probabilistic
necessity and sufficiency. Thus, one of the main lessons we can learn from the IB method
is that we have to be modest about what DNNs can tell us if we approach them on the
level of generality of the IB method.

Explanations provided by the IB method belong to the same general type as statistical
relevance. Indeed, they generalize statistical relevance: they are non-causal, general, and
mathematical explanations. In view of this classification, the IB method contributes to
the debate on interpretability in machine learning. The focus of this debate has been
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to clarify what it means to understand machine learning models in general, and deep
learning models in particular, and to find methods to facilitate understanding; see, e.g.,
Lipton (2016). In this debate, it has been pointed out that the concept of interpretability
is heterogeneous, and that it has to be spelled out what interpretability aims at. The IB
method is an example of an answer to a clearly delineated problem of interpretability, viz.,
why DL models generalize well.17

What are the consequences of these insights? First, we should think about the ethical
consequences of the IB tradeoff. The tradeoff tells us that if we want a substantive degree of
compression, as provided by DNNs, the predictions of these models will necessarily discard
some predictively relevant information. Maybe this is a consequence that is acceptable
in some field of application, but not in others. Maybe a model that discards information
should not be applied in cases where the stakes are very high.

Then, how can we make further progress towards a better understanding of what deep
learning models can and cannot tell us? Progress can be made in two directions. First,
we can modify DNNs such that they provide the kind of information that we require for
stronger notions of explanation and understanding, be it information that is physically
consistent, or nomological, or relevant to causal inference, or what have you. Second, we
can gain a better understanding of what DNNs in their current form can achieve. This
would mean to further pursue the program started by Tishby et al. . Clearly, there are
still many open questions regarding the generalization and learning behavior of DNNs.
The more theoretical insights into deep learning we have, the better our understanding of
deep learning will be.

9 Conclusion
It is encouraging that philosophers and statisticians have come up with similar notions
of statistical relevance. Salmon presumably proposed homogeneous partitions without
knowing of minimal sufficient statistics.18 This suggests that the underlying idea is robust
and tracks a philosophically relevant feature of understanding how random variables are
related. The equivalence also establishes a direct link between the debate on statistical
explanation in philosophy and the project of understanding deep learning in computer sci-
ence. Statistical relevance does provide a kind of explanatory insight that is strictly weaker
than causal or nomological explanation. The link to statistics and deep learning theory

17In a recent contribution to this debate, Krishnan (2020) has questioned whether the philosophical
debate on scientific explanation has any bearing on interpretability. The connection between statistical
relevance and the IB method shows that there is a close relation between the classical debate on scientific
explanation and questions of interpretability, via minimal sufficient statistics.

18Of course, there is no question of priority here: Fisher discovered the concept of sufficient statistics
in 1922, while Salmon proposed his concept of homogeneous partition around 1970.
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provides an opportunity for philosophers to articulate a notion of statistical explanation
that is descriptively adequate and philosophically deep. The present paper constitutes the
first step of this project.

A Proof that HP are equivalent to MSS
In the appendix, I show that the concepts of homogeneous partition and minimal sufficient
statistic are equivalent. Note that only discrete random variables are considered.

A.1 Homogeneous Partitions

The notion of homogeneous partition (HP) was introduced in Salmon (1971a); here I
draw on the formulation in Woodward (2019). I first state the definitions using the same
notation and terminology as Salmon and Woodward; a reformulation in more common
statistical terms follows in the next section.

Definition 4. A partition {Ci}i∈I of a set A is a division of A into non-empty sets or
cells Ci such that Ci ∩Cj = ∅ for i 6= j, i.e., different cells do not intersect, and such that⋃

i∈I Ci = A, i.e., the cells exhaust A.

Definition 5. (HP): Let A be a population, and B an attribute of members of that
population. A partition {Ci}i∈I of A is homogeneous with respect to B if the following
two conditions hold:

P (B|A ∧ Ci) 6= P (B|A ∧ Cj) (3)

for all i, j ∈ I such that i 6= j; and

P (B|A ∧ Ci ∧D) = P (B|A ∧ Ci) (4)

for all i ∈ I and all D, where D is an attribute of the members of A.

The notion of homogeneous partition (HP) forms the core of Salmon’s notion of sta-
tistical explanation. In Salmon’s notation, both the random variable A and a subset Ci

of values of A are part of the expression P (B|A ∧Ci). Below, the random variable A will
be omitted, because the Ci are represented by a function of A.

A.2 Homogeneous Partitions and Statistics

Here I explain how a function of a random variable encodes the notion of a partition; see
Casella and Berger (2002, Ch. 6) for background, and I reformulate Salmon’s definition
in more common statistical terms.
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Definition 6. Let X be a random variable. A statistic of X, denoted T (X), is a function
of X.

T (X) is a function of X, which takes a value x of the random variable X and outputs
the function value T (x) in a deterministic manner. The range of T is not restricted, but
it can be useful to take the real numbers as range.

Lemma 7. A partition {Ci}i∈I of X can be represented by a statistic T (X) of X.

Proof: Given a partition {Ci}i∈I of X, choose one element xi from each Ci. First we
define T (X) for each xi such that T (xi) 6= T (xj) for i 6= j, i.e., such that different elements
are sent to different values. Now we define T (X) as: T (x) := T (xi) for x ∈ Ci. T (X)
is defined on all of X because {Ci}i∈I is a partition. The statistic T (X) represents the
partition {Ci}i∈I in that elements of X are in the same cell Ci if and only if they are sent
to the same value by T (X). �

Note that the representation of a partition by a statistic is not unique. On the basis of
this representation, we can express conditions (3) and (4) of (HP) using a statistic T (X).
A partition {Ci}i∈I of X, represented by T (X), is homogeneous with respect to a variable
Y if two conditions hold. First, reformulating condition (3), we require that for all i, j ∈ I
such that i 6= j, there exists a y ∈ Y such that:19

P (Y = y|T (X) = T (xi)) 6= P (Y = y|T (X) = T (xj)) (5)

Second, reformulating condition (4), we require that for all y ∈ Y , it holds that:

P (Y = y|T (X) = T (xi), U(X)) = P (Y = y|T (X) = T (xi)) (6)

for all partitions U(X) of X and all i ∈ I.20

A.3 Sufficient Statistics, Minimal Sufficient Statistics

Now we define the notions of sufficient statistic and minimal sufficient statistic.21

19Note that the variable Y is existentially quantified: condition (5) is true if for all i, j with i 6= j,
there is a value of Y such that the probabilities are different. This is one of two possible interpretations
of Salmon’s condition (3), the other being a universal quantification of y. I have chosen the existential
quantification because it yields the desired equivalence in the end.

20Note that the partition of U may be finer than {Ci}i∈I ; this is the case if U takes different values in
cells where T is constant – the extreme case being U(X) = X.

21See Casella and Berger (2002, Ch. 6) for an extensive treatment of sufficiency in a parametric setting,
and Shamir et al. (2011) for a discussion of sufficiency in the context of the IB framework.
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Definition 8. Let X, Y be random variables, and T (X) a statistic of X. T (X) is called
sufficient for Y if X and Y are conditionally independent given T (X), i.e., if

P (Y |X,T (X)) = P (Y |T (X)). (7)

Definition 9. A statistic T (X) that is sufficient for Y is called minimal sufficient for Y
if for any other sufficient statistic U(X), there exists a function f such that:

T (X) = f(U(X)). (8)

This means that T (X) is a function of any other sufficient statistic U(X). An equivalent
formulation is that for any other statistic U(X) that is sufficient for Y , we have that: if
U(x) = U(y), then T (x) = T (y) for x, y ∈ X.

A.4 Homogeneous Partitions are MSS

I prove proposition 1, taking the two directions of the equivalence in turn.22

Proposition 10. If a statistic T (X) represents a homogeneous partition {Ci}i∈I of X for
Y , then T (X) is a minimal sufficient statistic of X for Y .

Proof: Given the homogeneous partition {Ci}i∈I of X for Y and the statistic T (X)
representing it, we have to show that T (X) is minimal sufficient. First, we show that
T (X) is a sufficient statistic. T (X) represents a homogeneous partition, it thus satisfies
equation (6), that is, for all y, we have:

P (Y = y|T (X) = T (xi), U(X)) = P (Y = y|T (X) = T (xi))

for all partitions U(X) of X and all i ∈ I. This means, in particular, that we can
choose U(X) = X, i.e., the identity function, which represents the finest partition of X.
We thus get:

P (Y |T (X) = T (xi), X) = P (Y |T (X) = T (xi))

for all i ∈ I. This condition, in turn, implies equation (7), the condition for T (X) to
be sufficient.

Second, we show that T (X) is minimal sufficient, i.e., we show that if U(X) is any other
sufficient statistic, we have: if U(x) = U(x′), then T (x) = T (x′) for x, x′ ∈ X. Assume,

22In 1950, Lehmann and Scheffé proved a characterization of minimal sufficient statistics which extends
to continuous variables, and which is very similar to the result proved here; see Casella and Berger (2002,
Theorem 6.2.13). In fact, I believe that the result given here is a special case of the result by Lehmann
and Scheffé. I will not prove this here.
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towards a contradiction, that for some sufficient statistic U(X) and some x, x′ ∈ X, we
have U(x) = U(x′), but T (x) 6= T (x′). From T (x) 6= T (x′), and from the representation
T (X) of the partition {Ci}i∈I in Lemma 7, we can deduce that x ∈ Ci, x′ ∈ Cj, for some
i, j ∈ I, where i 6= j, which means that T (x) = T (xi) and T (x′) = T (xj), where i 6= j.
This, together with condition (5), which holds because T (X) represents a homogeneous
partition, implies that there is a y such that:

P (Y = y|T (X) = T (x)) 6= P (Y = y|T (X) = T (x′)). (9)

From the l.h.s., we can deduce:

P (Y = y|T (X) = T (x)) = P (Y = y|X = x, T (X) = T (x))

= P (Y = y|X = x)

= P (Y = y|X = x, U(X) = U(x))

= P (Y = y|U(X) = U(x)) (10)

where we use that T (X), U(X) and X are sufficient statistics. Similarly, we can deduce
from the r.h.s. of equation (9) that:

P (Y = y|T (X) = T (x′)) = P (Y = y|U(X) = U(x′)) (11)

Putting these results from both sides of equation (9) together, we get:

P (Y = y|U(X) = U(x)) 6= P (Y = y|U(X) = U(x′)). (12)

This, however, is a contradiction with U(x) = U(x′). �

Proposition 11. Every minimal sufficient statistic T (X) of X for Y represents a homo-
geneous partition {Ci}i∈I of X for Y .

Proof: We establish that a minimal sufficient statistic T (X) representing a partition
{Ci}i∈I satisfies conditions (5) and (6). First, condition (5). Assume, towards a contra-
diction, that the condition is violated, i.e., assume that for all y,

P (Y = y|T (X) = T (xi)) = P (Y = y|T (X) = T (xj)) (13)

for some i, j ∈ I with i 6= j. Define a function U(X) such that U(x) = T (xi) for all
x ∈ Ci ∪ Cj, and such that U(X) agrees with T (X) everywhere else. U(X) is a statistic
that agrees with T (X) everywhere, except in the cells Ci and Cj, where it takes one value,
viz. T (xi). U(X) is a sufficient statistic, because it agrees with the sufficient statistic
T (X) outside Ci ∪Cj, and because within Ci ∪Cj, all values of X for the prediction of Y
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are the same according to equation (13), that is, the prediction of Y does not depend on
X. At the same time, we have U(xi) = U(xj). However, it also holds that T (xi) 6= T (xj),
in virtue of how we chose to represent partitions in Lemma 7, which means that T (X) is
not minimal sufficient, a contradiction.

Second, condition (6). Starting from the l.h.s., we can deduce, for any i and any
statistic U(X):

P (Y |T (X) = T (xi), U(X)) = P (Y |T (X) = T (xi), U(X), X) (14)
= P (Y |T (X) = T (xi), X) (15)
= P (Y |T (X) = T (xi)), (16)

where we used that T is sufficient and that X contains as much information as any
statistic of X.
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