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ABSTRACT: The purpose of this paper is to show that if one adopts conditional probabilities as the primitive concept of
probability, one must deal with the fact that even in very ordinary circumstances at least some probability values may be
imprecise, and that some probability questions may fail to have numerically precise answers.

1 Introduction

De Finetti famously declared “every probability is conditional” (de Finetti 1974, §4.1) and he is
not alone in maintaining that Kolmogorov’s axiomatization of probability, with its ratio definition
of conditional probability, ought to be replaced by a full conditional probability theory that takes
conditional probability as primitive.1 Many proponents of full conditional probabilities also endorse
strict Bayesianism as well, which is the thesis that imprecision in probability values may only arise
from the incomplete elicitation of all quantities necessary to specify a distribution. Strict Bayesianism
therefore operates on the assumption that no probabilities are indeterminate in value (Levi 1974), and
some go further to maintain that no probabilities should remain imprecise.2

In this paper we point to a difficulty for those who embrace both full conditional probabilities
and strict Bayesianism. In very ordinary circumstances, a full conditional probability that appears to
be completely specified through the usual methods employed in probability theory will nevertheless
leave some probability questions without a precise numerical answer. Even by fully specifying each
and every layer of a full conditional probability model one may fail to fully specify a joint probability
distribution.

After a brief review of full conditional probability theories and the introduction of our notation
in Section 2, we illustrate in Section 3 some surprising ways in which commonplace attempts of
specify full conditional probabilities lead to imprecision. In Section 4 we lay bare the problem this
imprecision presents to strict Bayesianism by highlighting features of our two examples that weigh
against treating them merely as models missing a few (albeit new) assessments. We then close in
Section 5 with some remarks about two techniques from the theory of imprecise probabilities for
dealing with conditioning on zero probability events, as there is a choice in imprecise probability
between methods that mimic the standard definition of conditional probability and methods based on
full conditional probabilities — reasons to favor full conditional probabilities, we argue, are reasons
to favor sets of full conditional measures, too.

2 Conditional probability as primitive: Full conditional probabilities

In this section we review some background material necessary for our argument. Readers acquainted
with Dubins’s concept of full conditional probability may prefer to skim this section or skip to the
next.

1In particular, see the axiomatizations of Renyi (1955) and Popper (1959), and Dubins’s extension of de Finetti (1975).
A sample of authors endorsing full conditional probabilities includes representatives from philosophy (van Fraassen 1976;
Levi 1980; McGee 1994; Hájek 2003; Sprenger and Hartmann 2017), statistics (Kadane, Schervish, and Seidenfeld 1999),
economics and game theory (Blume, Brandenburger, and Dekel 1991b; Myerson 1991; Hammond 1994; Battigalli and
Veronesi 1996; Kohlberg and Reny 1997), logic (Adams 1966; Coletti and Scozzafava 2002; Makinson 2011), psychology
(Pfeifer and Tulkki 2017), and computer science (Kraus, Lehmann, and Magidor 1990; Cowell, Dawid, Lauritzen, and
Spiegelhalter 1999; Gilio 2012).

2A sample of recent objections to imprecise probabilities include (White 2010; Elga 2010; Mahtani 2017). For a survey
of responses see (Walley 1991, §§5.6–5.9) and also (Joyce 2011; Pedersen and Wheeler 2014; Chandler 2014).
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Kolmogorov’s theory of probability assumes that one has a sample space Ω, a σ -algebra of events
A, and a probability measure P over those events. To define conditional distributions, Kolmogorov
first uses Lebesgue integrals to define expectation, then uses an integral equation based on the Radon-
Nikodym theorem (Pollard 2002). Naturally, if P(A)> 0, then P(B | A) = P(A∩B)/P(A); this is the
ratio definition of conditional probability (Hájek 2003). Thus, in Kolmogorov’s theory conditional
probability is merely defined from unconditional probability. But this account gives short shrift to the
observation that every probability is conditional on some background set of facts, which suggests that
probability ought to be instead a two-place function with unconditional probability as a special case.

Keynes (1921, Chapter XII) introduced a/h as a two-place relation of probability between a and
h, governed, among other things, by the axiom ab/h = a/bh · b/h. This approach is also adopted
early by de Finetti (1937, 1949), who held that conditional events are primitive objects used to de-
fine coherent conditional probabilities. Renyi (1955), seeking to make Kolmogorov’s theory more
flexible, published an elegant set of axioms that took conditional probability as primitive, and Popper
engineered a system of axioms based on conditional probabilities that allowed both the probability
of A given B and the probability of B given A to be defined—even if A or B have probability zero.
Popper called this property “symmetry” (Popper 1959, Appendix *iv).

Arguments in favor of axiomatizations for full conditional probabilities can be summarized as
follows. First, we ought to be able to specify a conditional probability given any possible event, re-
gardless of the probability of this conditioning event, and without necessarily thinking of conditioning
as a ratio of probabilities. In short, conditional probability should be bound by the normative con-
straints imposed over any probability and nothing else. This is the motivation for Popper’s symmetry
property.

Second, the Kolmogorovian approach faces technical difficulties when spaces are uncountable,
as it cannot directly handle probabilities conditioned on individual elements of the domain and must
depend on the machinery of σ -algebras to work. Furthermore, solutions to Kolmogorov’s integral
equation may fail to behave as probabilities (Seidenfeld, Schervish, and Kadane 2001; Hájek 2003).
Next, Kolmogorov’s approach appears unable to handle some problems involving relative frequencies
and proportions (van Fraassen 1976; Easwaran 2011), while economists have complained about diffi-
culties in handling games involving some probability-zero states that one must nevertheless condition
on and reason through (Hammond 1994; Battigalli and Veronesi 1996; Kohlberg and Reny 1997).

Finally, axiomatizations based on full conditional probabilities are very elegant. Sometimes one
finds the notion that “conditional probabilities are primitive” slipping into textbooks as diverse as
game theory (Myerson 1991) and Bayesian networks (Cowell, Dawid, Lauritzen, and Spiegelhalter
1999) simply for the sake of beauty.

There are several axiomatizations of conditional probability. We use here full conditional prob-
abilities as defined by Dubins (1975); these are the coherent probabilities advocated by de Finetti
(de Finetti 1974) once an algebra of events is fixed. The points we discuss in this paper could equally
well be raised, after setting up appropriate translations, with Renyi’s conditional probability spaces
(Renyi 1955) or with Popper functions (Popper 1959). However, full conditional probabilities are
better behaved and easier to manipulate than those alternatives.

Consider a Boolean algebra B and a two-place set-function P : B× (B\ /0)→ ℜ. Elements of B
are called events and let every H ∈ B be nonempty. Then, P is a full conditional probability just in
case the following conditions are satisfied (Dubins 1975):

1. P(H | H) = 1;

2. P(G | H)≥ 0, for every event G ∈B;

3. P(G1∪G2 | H) = P(G1 | H)+P(G2 | H), whenever G1∩G2 = /0;

4. P(G1∩G2 | H) = P(G1 | G2∩H)P(G2 | H), whenever G2∩H 6= /0.
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To simplify notation, we use P(G) to denote P(G |Ω) and refer to it as an unconditional probabil-
ity. Furthermore, we assume hereafter that Ω is finite and B is the powerset of Ω. Therefore, no
idiosyncrasies of uncountable spaces are used in our arguments.

It is not immediately clear how one could specify a unique full conditional probability by assess-
ing various conditional probability values. In the next section we discuss a well-known representation
for full conditional probabilities in terms of “layers” and associated (standard) probability measures;
we suspect that those interested in full conditional probabilities assume that by employing the as-
sessment procedures routinely applied to standard probability measures to such layered probability
measures one can fix a unique full conditional probability. Examples in the next section show that
this is not the case in general.

3 Full conditional probabilities and imprecise probability values

H
A

B

T

A

B

Figure 1: The first coin.

Our main point is simple and can be conveyed by a simple example. We
also use this first example to review the layer-based representation of full
conditional probabilities. A second, more interesting example follows after.

Example 1. Consider a fair coin with faces labeled heads and tails and
the edge of the coin painted half in amber and half in blue. A normal flip of
the coin may yield the outcome heads (H) or the outcome tails (T), each with
probability one-half, or the exceedingly improbable outcome where the coin
lands on its amber edge (A) or the equally improbably outcome where the
coin lands on its blue edge (B). Events A and B will serve as unconditional
probability-zero events. The features of this coin are depicted in Figure 1.

The coin is tossed. If the result is H, a second coin is flipped; this coin
is identical to the first coin except that only one-third of its edge is painted
amber and the remaining two-thirds is painted blue. If instead the first coin
yields T, a third coin is tossed, similar to the other two, but with two-thirds of
its edge painted amber and one-third painted blue. Finally, if the first coin lands on its edge, a fourth
coin is thrown that is exactly like the first coin: half amber, half blue.

We may express full conditional probabilities using layers of regular probabilities; because our
space Ω is finite, this representation is straightforward. To start, let L0 denote the event consisting
of all elements of Ω that have positive unconditional probability. For the first coin toss, the top
layer L0 assigns positive probability to the typical set of outcomes, heads and tails: L0 = {H,T}.

0 0 1/2 1/2
H T A B

1/2 1/2 0 0
H T A B

Table for L1 →

Table for L0 →

H T A B
1/2 1/2 1/2 1/2

Figure 2: Two equivalent representations of the full con-
ditional probability assignments for the first coin in Ex-
ample 1. Top: two probability tables, one per layer. Bot-
tom: one table, with layers distinguished by colors.

Next denote by L1 the set of elements of Ω\L0
that have positive conditional probability given
Ω\L0. Here, L1 = {A,B}. In general we say
that Li (for i > 0) is the set of elements of
Ω\∪i−1

j=0 L j that have positive probability con-
ditional on Ω\∪i−1

j=0 L j.
Any full conditional probability P can be

represented by a sequence of probability mea-
sures, P = 〈Pi〉, where Pi is strictly posi-
tive over layer Li (Spohn 1986). For any
nonempty event G, we then have P(G | H) =
P(G | H∩LH), where LH is the first layer such
that P(H | LH) > 0 (Battigalli and Veronesi
1996, Lemma 2.1a). The layer number of
event H with respect to full conditional prob-
ability P is the smallest index i such that H intersects layer Li, in symbols ◦(H) = i, which is ∞ by
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convention if H is empty (Coletti and Scozzafava 2002).
With this machinery on board, we can return to our discussion of coin tossing. How can we

translate the assessments in the description of the problem to obtain a full conditional probability? For
the first coin we have P(H) = 1/2 =P(T) and P(A) = 0=P(B), but P(A | A∪B) = 1/2 =P(B | A∪B)
and P(H | A∪B) = 0 = P(T | A∪B), which defines a (unique) full conditional probability over {H,
T, A, B}. Figure 2 presents two equivalent ways to visualize this representation of the probability
assessments for the first coin toss.

Because the same four possible outcomes may occur on the second toss, sixteen additional con-
ditional probabilities are seemingly necessary to model the outcomes of the second toss given the
first toss: in doing so we mimic the customary scheme where a joint distribution is built from its
“prior” and its “conditional” pieces. We use the subscript 1 to specify the outcome of the first toss
and the subscript 2 to indicate the result of the second. So, for example, P(H2 | H1) = 1/2 expresses
that the probability of the second coin toss landing heads given the first lands heads is one-half, and
P(A2 | A2∪B2,H1) = 1/3 expresses that the probability of the second coin toss landing on its amber
edge given that the second toss lands on its edge and the first toss lands heads is one-third. With this
convention, the following values specify all 16 possible outcomes of this experiment:

P(H1 |Ω) = P(T1 |Ω) = P(A1 | A1∪B1) = P(B1 | A1∪B1) = 1/2

P(H2 | H1) = P(T2 | H1) = 1/2

P(H2 | T1) = P(T2 | T1) = 1/2

P(H2 | A1) = P(T2 | A1) = 1/2

P(H2 | B1) = P(T2 | B1) = 1/2

P(A2 | A2∪B2,H1) = 1/3

P(A2 | A2∪B2,T1) = 2/3

P(A2 | A2∪B2,A1) = 1/2

P(A2 | A2∪B2,B1) = 1/2

P(B2 | A2∪B2,H1) = 2/3

P(B2 | A2∪B2,T1) = 1/3

P(B2 | A2∪B2,A1) = 1/2

P(B2 | A2∪B2,B1) = 1/2.

(a)

H2 T2 A2 B2

H1 1/4 1/4 1/6 1/3

T1 1/4 1/4 1/3 1/6

A1 1/4 1/4 1/4 1/4

B1 1/4 1/4 1/4 1/4

Layers of (a)

0 2

1 3

(b)

H2 T2 A2 B2

H1 1/4 1/4 1/3 2/3

T1 1/4 1/4 2/3 1/3

A1 1/4 1/4 1/4 1/4

B1 1/4 1/4 1/4 1/4

Layers of (b)

1
0

2

3 4

(c)

H2 T2 A2 B2

H1 1/4 1/4 α/6 α/3

T1 1/4 1/4 α/3 α/6

A1 (1−α)/4 (1−α)/4 1/4 1/4

B1 (1−α)/4 (1−α)/4 1/4 1/4

Table 3: Two different conditional probabilities, (a) and
(b), that satisfy all assessments in Example 1, and a family
of full conditional probabilities (c) that satisfy satisfy all
assessments in Example 1, for α ∈ [0,1). Cells that refer
to layer 0 have a white background; layers 1, 2, 3, and 4
have gradually darker backgrounds.

Now a question: What is the probability that
the first toss yields heads and the second toss
yields blue, given that exactly one of the two
tosses landed on its edge? Because it appears
all relevant marginal and conditional proba-
bilities are specified, one might think that the
answer to this question ought to be a precise
number. Yet, P(H1∩B2 | C) ∈ [0, 2/3] is the
answer, where C is the event that either the
first coin toss landed on its edge or the sec-
ond coin toss landed on its edge but not both.
�

To see that this result is correct, con-
sider two possible full conditional probabil-
ities that satisfy all assessments in Exam-
ple 1, shown in Tables 3a and 3b. Ta-
ble 3a specifies a full conditional probabil-
ity that yields P(H1∩B2 | C) = 0, whereas 3b
specifies a full conditional probability which
yields P(H1∩B2|C) = 2/3. In both tables the
first layer such that P(C | LH) > 0 is L1, but
each has a different sequence of possible out-
comes for the pair of coin flips. To see that
P(H1∩B2 | C) = 0 according to Table 3a, ob-
serve that L1 specifies probabilities only for
the first toss landing on edge and the second
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landing on a face, and assigns zero to the remaining possible pairs, including the possibility that the
first toss lands heads and the second coin toss lands on its blue edge. By contrast, P(H1∩B2 | C) = 2/3

according to Table 3b, since L1 in this probability table specifies probabilities for the first toss landing
on a face and the second landing on an edge. However, notice that Table 3b does not merely permute
the order of layers. For instance, according to Table 3b, P(T1,A2∪B2 | C) = 0. Finally, Table 3c
shows that we do not even need four layers to satisfy all assessments: a three layer model will do,
yielding P(H1∩B2 | C) = 2α

3 for α ∈ [0,1].
Example 1 reveals there are many full conditional probabilities that satisfy the apparently com-

plete set of assessments for Example 1. Put differently, although assigning regular, non-zero values
to these sixteen outcomes would yield a complete model in which P(T1,A2∪B2 | C) has a precise
numerical answer, numerical determinacy is lost in Example 1 by the introduction of zero-probability
events and switch to full conditional probabilities. Although it is possible to fix a determinate prob-
ability value for P(T1,A2∪B2 | C) by requiring additional assessments, maintaining that one can
and should always do so comes at a cost. First, requiring additional assessments sacrifices the com-
monplace notion of what a complete probability model specification amounts to. For these new as-
sessments concern quantities that are calculable consequences of a standard probability model, when
defined, not premises we are expected to assign a value to. Second, these new assessments can be
saddled with surprisingly strong constraints—a point that will come out in our next example.

P F

A B C

Figure 4: The Bayesian network for the GNS
theory reduction model.

P(P) P(F)
P(A | P) P(C | F)
P(A | ¬P) P(C | ¬F)
P(B | P,F) P(B | P,¬F)
P(B | ¬P,F) P(B | ¬P,¬F)

Table 5: The conditional probability table for
the Bayesian network in Figure 4.

P(P) = 1
2 P(F) = 1

2
P(A | P) = 1 P(C | F) = 1
P(A | ¬P) = 0 P(C | ¬F) = 0
P(B | P,F) = 1 P(B | P,¬F) = 0
P(B | ¬P,F) = 0 P(B | ¬P,¬F) = 0

Table 6: Values for the supremely confident
experts in Example 2.

So far we have worked only with “marginal” and
conditional probabilities, bearing in mind our remarks
at the end of Section 2 about our use of this terminol-
ogy since here all probabilities are conditional. In addi-
tion to probability assessments one may also have struc-
tural independence relations, which raises two questions.
First, would the inclusion of explicit independence con-
ditions ward off imprecision in full conditional probabil-
ities? The reason to ask is that it is known that a similar
phenomenon, dilating sets of probabilities (Seidenfeld
and Wasserman 1993), is due to possible deviations from
independence that imprecision does not explicitly rule
out (Pedersen and Wheeler 2015; Pedersen and Wheeler
2019) and Example 1 involves dependent outcomes. The
short answer is, no, but this is a complicated issue. For
there are several different concepts of independence for
full conditional probabilities. Even so, it may come as
a surprise that no known independence concept can en-
sure a unique joint conditional probability.3 This raises a
second question: Does adding independence conditions
to the mix expose a new problem for strict Bayesian-
ism that we haven’t seen already? The answer is, yes.
Demanding additional assessments to secure precision is
not always reasonable. Let’s see why.

For our next example we consider a proposal from
the philosophy of science to model the successful re-
duction of one scientific theory to another, such as the reduction of chemistry to atomic physics.

3This type of difficulty has been noted earlier by Kohlberg and Reny in connection with their definition of strong
independence (Kohlberg and Reny 1997, Remark 7) and by Cozman with respect to the specification of Bayesian networks
(Cozman 2013). Our aim here is to show that imprecision in probability values is a fundamental feature of full conditional
probability, not a narrow technical issue that appears in some accounts of full conditional probability but not others, nor a
property that appears only under some notions of independence but not others.
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The Generalized Nagel-Schaffner (GNS) model of theory reduction (Dizadji-Bahmani, Frigg, and
Hartmann 2011) aims to connect theory reduction to theory confirmation through a particular

(P |= F,C)
(F |= P,A)
(A |= B,C,F | P)
(B |= A,C | F,P)
(C |= A,B,P | F)

Table 7: Independence conditions encoded by the
Bayesian network in Figure 4.

P,F P,F P,F P,F

A,B,C 0 1 4 7
A,B,C 1 0 5 6
A,B,C 2 3 6 5
A,B,C 3 2 7 4
A,B,C 4 5 0 3
A,B,C 5 4 1 2
A,B,C 6 7 2 1
A,B,C 7 6 3 0

Table 8: A full conditional probability that satisfies
all assessments and assertions in Example 2. Each
row refers to a configuration of truth assignments
of (A,B,C), and the cell number refers to the layer
number of each configuration of (P,F,A,B,C). For
each variable V , V codes ¬V.

F F

P,A 0 0
P,A 1 1
P,A 1 1
P,A 0 0

B B

A,C 0 2
A,C 1 3
A,C 4 6
A,C 5 7

Table 9: Left: The full conditional probability for
(P,F,A), obtained by marginalization of the full con-
ditional probability in Table 8. Right: The full
conditional probability for (A,B,C) given {¬P,¬F},
obtained by conditioning of the full conditional
probability specified in Table 8. For each table, cell
numbers refer to the layer number of the configura-
tion of that table’s variables.

Bayesian network, displayed in Figure 4. The de-
tails of the GNS model will not concern us except
for one assumption, which is that all probabilities in
the model “lie in the open interval (0,1)” in order
to “avoid technical complications” (2011, p. 326).
Our next example can be viewed as an explanation
of the technical complications that arise when prob-
ability values are extreme and couched within full
conditional probabilities. This is a particularly in-
teresting point since elsewhere Hartmann has force-
fully argued for conditional probability as a primi-
tive concept in such settings (Sprenger and Hart-
mann 2017).

Example 2. The GNS model (Dizadji-Bahmani,
Frigg, and Hartmann 2011) has five propositional
variables, P, F , A, B, C. A variable V can take two
values, written V and ¬V, expressing that the vari-
able V is true or false, respectively. Proposition P
is an empirical proposition of a phenomenological
theory TP and proposition F is an empirical propo-
sition of a fundamental theory TF . Suppose A con-
firms P and C confirms F, while B confirms both P
and F. This situation is modeled by the Bayesian
network in Figure 4,4 and Table 5 gives a complete
list of the probability values required to parameter-
ize the graphical model in Figure 4.

Dizadji-Bahmani, Frigg, and Hartmann tinker
with the probability values in Table 5, exploring
their effect on the reduction of TP to TF . As noted
already, they only consider non-extreme probabil-
ity values. But now imagine we consult a group
of supremely confident experts on the probabilities
attached to A, B, and C. One expert, responsible
for A, tells us that A reproduces P, P(A | P) = 1
and P(A | ¬P) = 0, and another expert, responsible
for C, reports that P(C | F) = 1 and P(C | ¬F) =
0. Finally, a third expert responsible for B tells
us that B reproduces F and P together, that is
P(B | F,P) = 1 and, P(B | F,¬P) = P(B | ¬F,P) =
P(E | ¬F,¬P) = 0. To complete the example, sup-
pose for simplicity that P(F) = P(P) = 1/2. Table 6 summarizes this assessment.

4Briefly, a Bayesian network is a pair consisting of a directed acyclic graph and a probability distribution (Pearl 1988).
The graph consists of nodes and edges, and each node is a random variable. The graph and the distribution are related by
the following Markov condition: a random variable V is independent of its nondescendants given its parents (a parent of V
is a node U such that there is an edge from U to V ; a descendant of V is a node U such that there is a directed path from
U to V ). Consequently, the joint distribution over all random variables factorizes into local conditional distributions: each
node/variable V is associated with the probability values P(V = v|pa(V ) = π), for each value v of V and each value π of
pa(V ), the parents of V .
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Now suppose we observe A and ¬B and C, and we are interested in the probability of P given this
observation. If all we have is the Bayesian network in Figure 4 and the probability values of Table 6,
Kolmogorovian-style conditioning leaves P(P | A,¬B,C) undefined.

However, suppose we are committed to full conditional probabilities and are interested in the
“joint” full conditional probability that complies with our supremely confident experts and satisfies the
independence conditions of the GNS model—that is, we are interested in a full conditional probability
that satisfies the values in Table 6 and the independence conditions in Table 7, where (X |= Y | Z)
expresses that X and Y are independent given Z.

Turn again to P(P | A,¬B,C). Is there a unique full conditional probability that satisfies these
assessments and independence conditions? For all existing concepts of independence in the literature,
the answer is no. In fact, P(P | A,¬B,C)∈ [0,1]. Thus, the “technical complication” that is avoided by
the GNS model restriction to non-extreme probabilities is that otherwise the value of P(P | A,¬B,C)
is maximally imprecise. �

There are many different independence concepts on offer, but there are four basic types of inde-
pendence, we maintain, that canvas the options available in the literature. As we will see over the
following subsections, for all four types, full conditional probabilities plus independence do not fix a
unique conditional probability in Example 2.

3.1 Epistemic Independence

P,F P,F P,F P,F

A,B,C 0 2 1 7
A,B,C 2 0 3 5
A,B,C 4 6 5 3
A,B,C 6 4 7 1
A,B,C 1 3 0 6
A,B,C 3 1 2 4
A,B,C 5 7 4 2
A,B,C 7 5 6 0

P,F P,F P,F P,F

A,B,C 0 1 1 4
A,B,C 1 0 2 3
A,B,C 2 3 3 2
A,B,C 3 2 4 1
A,B,C 1 2 0 3
A,B,C 2 1 1 2
A,B,C 3 4 2 1
A,B,C 4 3 3 0

Table 10: Two additional full conditional proba-
bilities that satisfies all assessments and assertions
in Example 2. Both tables present only layer num-
bers. For example, the first layer in the top ta-
ble that has a positive probability distribution for
the event ¬A,B,C,P,¬F is layer 7, whereas in the
bottom table it is layer 4.

Suppose that we take (X |= Y | Z) to mean that, for any
possible values x,y and z, both

P(X = x | Y = y,Z = z) = P(X = x | Z = z)
whenever {Y = y,Z = z} 6= /0;

and

P(Y = y | X = x,Z = z) = P(Y = y | Z = z)
whenever {X = x,Z = z} 6= /0.

We then say that X and Y are epistemically indepen-
dent given Z (Walley 1991). Informally, X is epis-
temically independent of Y just when, conditional on
Z, X is irrelevant to Y and Y is irrelevant to X .

Now consider the full conditional probability de-
picted in Table 8. In contrast to previous tables,
the cells of this table contain only the layer num-
bers for all possible configurations of (P,F,A,B,C).
For instance, the layer number of the truth-value
assignment {P,F,¬A,¬B,C} is 6. Each layer re-
ceives a uniform distribution; for instance, we have
P(¬P,¬F,¬A,¬B,¬C) = 1/4. It can be verified that
this full conditional probability satisfies all assess-
ments and assertions in Example 2. To illustrate the
necessary calculations, consider showing that P and
(F,C) are epistemically independent. Table 9 (left)
shows the full conditional probability obtained by
marginalizing the joint full conditional probability.
Again, only layer numbers are presented and each
layer is given a uniform distribution.
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The epistemic independence of P and (F,C) can be easily verified. Similarly, Table 9 (right) can
be used to verify that B and (A,C) are epistemically independent given {¬P,¬F}.

Table 10 shows two additional full conditional probabilities that also satisfy the probability as-
sessments in Table 6 and the epistemic independence assertions in Table 7. In both cases assume that
the probability measure associated with each layer is a uniform distribution. Although many other
full conditional probabilities could be constructed, the point to notice is that P(P | A,¬B,C) = 1
with respect to the full conditional probability in Table 8, and P(P | A,¬B,C) = 0 with respect to
the full conditional probability in Table 10 (top). These two full conditional probabilities are max-
imally disagreeing on the probability of interest. The full conditional probability on Table 10 (bot-
tom), on the other hand, does not produce an extreme value for P(P | A,¬B,C); rather, we obtain
P(P | A,¬B,C) = 1/2.

Therefore, if we have assessments as in Table 6 and assertions of epistemic independence as
in Table 7, the “technical complication” the GNS model faces is that P(P | A,¬B,C) is maximally
imprecise.

3.2 Hammond Independence

H2 T2 A2 B2

H1 1/4 1/4 1/4 1/4

T1 1/4 1/4 1/4 1/4

A1 1/4 1/4 1/9 2/9

B1 1/4 1/4 5/9 1/9

Table 11: A full conditional probability for two
epistemically independent tosses of the first coin
from Example 1.

Perhaps the problem is that epistemic independence
is too weak. To see why, return to the first coin in Ex-
ample 1 and imagine two epistemically independent
tosses of that coin. A possible full conditional prob-
ability is shown in Table 11: even though the first
three layers seem perfectly appropriate, the last layer
does not impose any sort of independence between
the tosses.

To address pathological cases like the one de-
picted in Table 11, Hammond proposed a stronger
concept of independence (1994). His concept has
reappeared in other studies (Battigalli and Veronesi 1996; Blume, Brandenburger, and Dekel 1991a;
Swinkels 1993), and the corresponding concept of conditional independence has been studied by
Cozman and Seidenfeld (2009). Hammond’s concept of independence amounts to requiring equality
amongst full conditional probabilities rather than amongst probability values. We say that X and Y
are h-independent given Z iff

• for any possible x, any possible y, any possible z, and any possible event X consisting of values
of X ,

P(X = x|X,Y = y,Z = z) = P(X = x|X,Z = z) whenever {X,Y = y,Z = z} 6= /0,

• for any possible x, any possible y, any possible z, and any possible event Y consisting of values
of Y ,

P(Y = y|Y,X = x,Z = z) = P(Y = y|Y,Z = z) whenever {Y,X = x,Z = z} 6= /0.

Unlike epistemic independence, the full conditional probability of the two coin tosses in Table 11
does not satisfy h-independence. Note the effect of the additional conditioning events in the definition,
as compared to epistemic independence: X lets us “look into” each layer of the distribution of X , and
Y lets us “look into” each layer of the distribution of Y . Thus in Table 11 we see that h-independence
fails when we choose X to refer to layer {A1∪B1}.

However, the three full conditional probabilities in Tables 8 and 10 do satisfy all probability
assertions of our supremely confident experts in Table 6 and assertions of h-independence in Table 7.
So, h-independence is not strong enough to guarantee a unique full conditional probability. Still we
obtain P(P | A,¬B,C) ∈ [0,1].
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3.3 Layer Independence

Y Y

X 0 1
X 1 2

◦(X = 0,Y = 0) = 0 = 0+0 = ◦(X = 0)+◦(Y = 0)
◦(X = 0,Y = 1) = 1 = 0+1 = ◦(X = 0)+◦(Y = 1)
◦(X = 1,Y = 0) = 1 = 1+0 = ◦(X = 1)+◦(Y = 0)
◦(X = 1,Y = 1) = 2 = 1+1 = ◦(X = 1)+◦(Y = 1)

Table 12: A full conditional probability distribution for two
variables, X and Y (with Z = Ω), satisfying the conditional
layer condition.

Coletti and Scozzafava have argued that
concepts of independence must pay atten-
tion to the “depth” of various layers in the
underlying full conditional probability (Co-
letti and Scozzafava 2002). Vantaggi has
examined this proposal in detail (Vantaggi
2001), and has introduced concepts of in-
dependence that take into account the layer
number of each event.

Recall that ◦(V ) = i denotes the small-
est index i such that V intersects layer Li.
One condition introduced by Vantaggi is
that

◦(X = x | Y = y,Z = z) = ◦(X = x | Y 6= y,Z = z) whenever {Y = y,Z = z} 6= /0 6= {Y 6= y,Z = z}

and

◦(X 6= x | Y = y,Z = z) = ◦(X 6= x | Y 6= y,Z = z) whenever {Y = y,Z = z} 6= /0 6= {Y 6= y,Z = z},

P(P) = 1
2 P(F) = 1

2
P(A | P) = 1− ε4 P(C | F) = 1− ε

P(A | ¬P) = ε4 P(C | ¬F) = ε

P(B | P,F) = 1− ε2 P(B | P,¬F) = ε2

P(B | ¬P,F) = ε2 P(B | ¬P,¬F) = ε2

P(P) = 1
2 P(F) = 1

2
P(A | P) = 1− ε P(C | F) = 1− ε2

P(A | ¬P) = ε P(C | ¬F) = ε2

P(B | P,F) = 1− ε4 P(B | P,¬F) = ε4

P(B | ¬P,F) = ε4 P(B | ¬P,¬F) = ε4

P(P) = 1
2 P(F) = 1

2
P(A | P) = 1− ε P(C | F) = 1− ε

P(A | ¬P) = ε P(C | ¬F) = ε

P(B | P,F) = 1− ε2 P(B | P,¬F) = ε2

P(B | ¬P,F) = ε2 P(B | ¬P,¬F) = ε2

Table 13: Alternative probability tables that in-
duce imprecision under kr-independence.

where ◦(H | G) is defined by ◦(G∩H)−◦(G), for
non-empty event G (Coletti and Scozzafava 2002).
Vantaggi takes this condition to be necessary for X
to be independent of Y given Z (Vantaggi 2001, Def-
inition 9.3). Note that there is an implicit universal
quantification over possible x, y, and z in these equal-
ities, which run over all possible values of the ran-
dom variables. Obviously, each equality requires the
computation of various layer numbers with respect to
the same full conditional probability, even though the
notation does not insist on indicating this full con-
ditional probability explicitly. A similar condition,
referred to as the conditional layer condition by Coz-
man and Seidenfeld (2009), is that, again with im-
plicit universal quantification over possible x, y, z:
◦(X = x,Y = y | Z = z) = ◦(X = x | Z = z)+ ◦(Y =
y | Z = z), whenever {Z = z} 6= /0. Table 12 gives an
example of a full conditional probability for two bi-
nary variables, X and Y , that satisfies the conditional
layer condition.

However, neither Vantaggi’s condition nor the
conditional layer condition helps to rule out any of the three full conditional probabilities in Tables 8
and 10 demonstrating that P(P | A,¬B,C)∈ [0,1]. In fact, for any independence assertion of the form
(X |= Y | Z) in Table 7, these full conditional probabilities satisfy Vantaggi’s condition, as expressed
above, and additionally in reverse form:

◦(Y = y | X = x,Z = z) = ◦(Y = y | X 6= x,Z = z) whenever {X = x,Z = z} 6= /0 6= {X 6= x,Z = z}

and
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◦(Y 6= y | X = x,Z = z) = ◦(Y 6= y | X 6= x,Z = z) whenever {X = x,Z = z} 6= /0 6= {X 6= x,Z = z}.

Another concept of independence that employs layer numbers is layer independence (Cozman
2013): X and Y are layer independent given Z when the conditional layer condition is satisfied and
moreover, for each layer Li,

P(X = x,Y = y | Lz
i ) = P(X = x | Lz

i )P(Y = y | Lz
i )

whenever Lz
i 6= /0, where Lz

i denotes the event {Z = z}∩ Li. The full conditional probability in Ta-
ble 8 satisfies all independence assertions in Table 7 when these assertions are interpreted as layer
independence. Similarly, the full conditional probability in Table 10 (top) satisfies the same layer in-
dependence assertions. But we are finally able to eliminate the full conditional probability in Table 10
(bottom), as this full conditional probability fails several layer independence assertions. For instance,
P(A,¬B,C | {¬P,¬F}∩L2) = 1/2, but P(A,C | {¬P,¬F}∩L2)P(¬B | {¬P,¬F}∩L2) = 1/4.

In any case, even if layer independence may succeed in eliminating this full conditional probabil-
ity, it still leaves P(P | A,¬B,C) without a unique value.

3.4 Kohlberg-Reny Independence

We now consider a concept of independence that is rather different from the previous notions. This
independence concept was proposed by Kohlberg and Reny in the context of relative probabilities, but
it can be adapted to our context as follows. First, consider a full conditional probability P over sample
space Ω, and say that a sequence 〈Pn〉 of positive standard probability measures over Ω approaches P
iff whenever P(H | G∪H)> 0, then P(G | G∪H)/P(H | G∪H) = limn→∞Pn(G)/Pn(H), and when-
ever P(H | G∪H) = 0 and H is nonempty, then limn→∞Pn(G)/Pn(H) = ∞. Then Kohlberg and Reny
define X and Y to be (strongly) independent iff there is 〈Pn〉 approaching P such that X and Y are
stochastically independent with respect to each Pn. The extension of this definition to conditional
independence is natural (Cozman 2013): Say that X and Y are kr-independent given Z iff there is 〈Pn〉
approaching P such that X and Y are stochastically independent given Z with respect to each Pn. Note
that this definition is a little loose when it comes to dealing with several independence assertions si-
multaneously, because we must only find an approaching sequence separately for each assertion, and
this may seem rather weak. In any case, in our present example we can find approaching sequences
for each one of the three full conditional probabilities we have been contemplating, such that each
one of these sequences simultaneously satisfies all independence assertions in Table 7.

Consider first the full conditional probability in Table 9. We build an approaching sequence for
it by taking the graph in Figure 4 and the assessments in Table 13 (top). Note that these assessments
are parameterized by some ε ∈ (0,1). The joint distribution is presented in Table 14. Now take εn =
1/(2n); we obtain a sequence of Bayesian networks whose associated joint probability distributions
approach the full conditional probability in Table 8. Similarly, we create an approaching sequence for
the full conditional probability in Table 10 (top) by adopting the values listed in Table 13 (middle).
Finally, we create an approaching sequence for the full conditional probability in Table 10 (bottom)
by adopting the values in Table 13 (bottom).

Consequently, all three full conditional probabilities in Tables 8 and 10 satisfy kr-independence
assertions in Table 7. In fact it should be clear that by changing exponents of ε in these approaching
sequences, we can build many other full conditional probabilities that satisfy all assertions. In partic-
ular, by choosing every exponent of ε to be just 1, we can produce a full conditional probability with
just four layers.
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P,F P,F P,F P,F

A,B,C (1−ε)(1−ε2)(1−ε4)
4

ε(1−ε2)(1−ε4)
4

(1−ε)(1−ε2)ε4

4
ε7

4

A,B,C ε(1−ε2)(1−ε4)
4

(1−ε)(1−ε2)(1−ε4)
4

ε5(1−ε2)
4

ε6(1−ε)
4

A,B,C (1−ε)ε2(1−ε4)
4

ε3(1−ε4)
4

ε6(1−ε)
4

ε5(1−ε2)
4

A,B,C ε3(1−ε4)
4

(1−ε)ε2(1−ε4)
4

ε7

4
(1−ε)(1−ε2)ε4

4

A,B,C (1−ε)(1−ε2)ε4

4
ε5(1−ε2)

4
(1−ε)(1−ε2)(1−ε4)

4
ε3(1−ε4)

4

A,B,C ε5(1−ε2)
4

(1−ε)(1−ε2)ε4

4
ε(1−ε2)(1−ε4)

4
(1−ε)ε2(1−ε4)

4

A,B,C ε6(1−ε)
4

ε7

4
(1−ε)ε2(1−ε4)

4
ε(1−ε2)(1−ε4)

4

A,B,C ε7

4
ε6(1−ε)

4
ε3(1−ε4)

4
(1−ε)(1−ε2)(1−ε4)

4

Table 14: Positive joint conditional distribution used to approach the full conditional probability in Table 8.
For each configuration of (P,F,A,B,C), the corresponding cell contains its probability value.

4 Incompleteness or indeterminacy?

Let’s review. A full conditional probability can always be represented by a sequence of standard
probability distributions. One would think that it would be enough to apply the well-known speci-
fication schemes to each layer in the sequence. Yet, we presented two examples demonstrating that
this strategy is insufficient to fully specify a conditional probability distribution. In fact, one can
face maximal imprecision. We considered whether augmenting probability assessments with explicit
assertions of independence can avoid this imprecision, but found that none of the available concepts
of independence for full conditional probabilities guarantees that a parameterized Bayesian network
will factorize a unique probability. The upshot is that, even in very ordinary circumstances, situations
that would seem to fix a unique full conditional probability measure fail to do so.

Before drawing some consequences for strict Bayesianism, a brief aside on terminology is due.
Unfortunately, the use of the terms ‘imprecision’ and ‘indeterminacy’ is not yet standardized. Follow-
ing (Walley 1991, §5.1), ‘precision’ refers to particular mathematical properties of subjective proba-
bility and its application to decision making, namely uniqueness in probability value, completeness
of a preference ordering, additivity of the measure, or linearity of previsions (expectations). The term
‘imprecision’ then refers to non-uniqueness in value, incomplete preference orderings, non-additivity
of the lower/upper probabilities, or non-linearity of lower/upper previsions. The terms ‘determinacy’
and ‘indeterminacy’, by contrast, refer to two different types of uncertainty (Knight 1921), thus are
properties of beliefs, not mathematics. Indeterminacy therefore is a reason, but not the only reason, to
use imprecise probabilities to represent your commitments. To illustrate, suppose you do not strictly
prefer one of a pair of options over the other yet refuse to judge the two equivalent in value because
you are uncertain how to compare their value. Your indeterminate uncertainty in your judgment about
the two options will have different behavioral consequences for you than if you were to instead abide
by the strict Bayesian mandate to render all uncertainty as determinate uncertainty. You might then
turn to an imprecise probability model to draw out those consequences. In such cases the phrase ‘in-
determinate probabilities’ is sometimes used as shorthand to refer to an imprecise probability model
that stems from indeterminate uncertainty.

Another use of ‘imprecision’ and ‘indeterminacy’, due to Isaac Levi (1974, 2002), describes two
different ways to respond, rationally, to a probability interval. An imprecise probability interval for
Levi describes a decision maker’s uncertainty about an event along with a mandate to resolve this
uncertainty with a coherent, precise probability before the agent makes a choice. An indeterminate
probability interval, by contrast, describes a decision maker who is not committed to resolving her
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uncertainty with a precise probability before choice (Vicig and Seidenfeld 2012).
These two different conventions can cause confusion. For example, on Walley’s terms, a strict

Bayesian can have imprecise probability values but cannot endorse imprecise (i.e., non-additive)
probabilities, whereas according to Levi’s nomenclature a strict Bayesian may endorse imprecise
probabilities but rejects indeterminate probabilities. Levi’s notion of imprecision describes a situa-
tion in which the decision maker believes there is a determinate probability but does not know it, a
situation that Walley describes as invoking a sensitivity analysis interpretation of imprecise probabil-
ity values. Both Walley and Levi refer to Knightian uncertainty as indeterminacy, although Levi’s
focus on the probability interval representation of Knightian uncertainty in the context of decision
making prompts him to add that there is no mandate to compel a decision maker with indeterminate
probabilities to select a precise probability before choice.

For our purposes, it is enough to observe that a strict Bayesian will not accept indeterminate
probabilities in either guise for the simple reason that rejecting Knightian uncertainty is a sine qua
non of strict Bayesianism. As de Finetti and Savage put it,

“the vagueness seemingly intrinsic in certain probability assessments should not be re-
garded as something qualitatively different from uncertainty in any quantities, numbers
and data one works with in applied mathematics” (de Finetti and Savage 1962, p. 95).

A strict Bayesian thus may acknowledge that additional probability assessments are necessary to com-
pletely specify a full conditional probability model and may even concede that these new assessments
will make specifying a complete model far more demanding than previously believed. The strict
Bayesian nevertheless will not grant that our examples license indeterminacy in probability values,
since doing so would be to renounce strict Bayesianism.

That said, there are two considerations that, together, weigh in favor of indeterminate full condi-
tional probabilities. The first concerns the surprising complications that arise in the models for our
simple examples, complications that thwart efforts to construct rules for selecting a unique value that
apply to the measures in the model. Even in our first and simplest example, Table 3 shows varia-
tion in the admissible probability models along two dimensions, namely in the number of layers of
a model and the order of those layers, rather than a single dimension, thwarting attempts to “objec-
tively” pick determinate probability values through a symmetry principle devised to operate on layers
of the model. Indeed, as Table 3c demonstrates, permuting the order of layers is not even necessary
for the argument in Example 1 to go through. For this reason, we are doubtful there is a suitable
mechanical method operating on the elements of a full conditional probability model to pin down a
single, complete specification of probability values in practical settings. Instead, numerical precision
will be secured, if it is to be secured at all, by requiring additional assessments of probability values.

This brings us to our next consideration. Sometimes the additional assessments required to secure
numerically precise full conditional probabilities will impose unreasonable constraints on admissible
values for those assessments. Return once more to Example 2. Although no notion of indepen-
dence fixes a unique probability, layer independence eliminates one of our three admissible proba-
bility models. Specifically, layer independence rules out assigning the value 1/2 to P(P | A,¬B,C).
Thus, finishing the assessment of P(P | A,¬B,C) under layer independence comes at the price of
prohibiting the strict Bayesian from expressing complete uncertainty about P(P | A,¬B,C). Instead,
the strict Bayesianism is forced to be opinionated about P given A,¬B,C, assigning some probabil-
ity P(P | A,¬B,C) that is strictly greater than or strictly less than even-odds. By contrast, we might
instead view the elicited probabilities in Table 6 as a complete model of our (partially) indeterminate
judgments, including a maximally indeterminate judgment about P(P | A,¬B,C). Finally, as a final
remark, probability values are sometimes surprisingly under-constrained, too. For as Table 3b shows,
an admissible model that pins down a non-zero probability for the first toss landing heads given the
event C may still fail to pin down a non-zero probability for the first toss landing tails given C.
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5 Indeterminate Probabilities and Conditioning

In closing, we turn to briefly examine the opposite route; that is, whether a desire to model indeter-
minacy in probability values may prompt one to favor sets of full conditional probabilities.

The path from indeterminate probabilities to full conditional probabilities is complicated by
choice, for there are many different options available to formalize indeterminate probability assess-
ments. One very popular representation, and in many respects the simplest, conceptually, is through
a (closed and convex) set of probability measures, K, called a credal set (Levi 1980); for any event
A, an agent entertaining an indeterminate probability estimate of A can compute its lower probability
P(A) = infP∈KP(A). Even though there are alternatives (Walley 2000), some of which offer more
expressive power than credal sets (Williams 1975; Quaeghebeur 2014; Wheeler 2021), credal sets
remain both a powerful and widespread framework for working with imprecise probabilities, partic-
ularly in philosophy, computer science, and statistics. It is natural then to consider whether a credal
set ought to consist of Kolmogorovian probabilities or full conditional probabilities.

Suppose an agent is interested in computing the lower probability of some event A given some
other event B. Can conditioning on events of zero lower probability be handled in the same manner
as the Kolmogorovian theory treats conditioning on events of zero probability? Recall that in the
Kolmogorovian setting, events of zero probability are ignored for all practical purposes. However,
when some probabilities are indeterminate, we may find ourselves tasked with conditioning on an
event that may have probability zero, yet may also have a non-zero probability that is, possibly,
very large. The upshot is that conditioning on probability-zero events is a commonplace issue for
indeterminate probabilities. Yet we cannot simply leave conditional lower probability undefined when
the conditioning event has zero lower probability,5 as the next example illustrates.

Example 3. A fair coin is tossed; if heads, then a ball is taken from urn U1; if tails, then a ball is
taken from urn U2. Each urn contains red, green, and blue balls, and the possible proportions of balls
leave us with the three possible probability distributions in Table 15. Suppose the coin was flipped,
a ball was taken, yet we are only informed of the color of the ball. Now we are asked, What is the
probability of heads given that announced color? Notice that the lower probability of every color is
zero. So, if we refuse to define lower conditional probability when the conditioning event has zero
lower probability, we are left with no lower conditional probability at all! �

red green blue

U1 0 1/6 1/3
U2 0 1/3 1/6

red green blue

U1 1/6 0 1/3
U2 1/3 0 1/6

red green blue

U1 1/6 1/3 0
U2 1/3 1/6 0

Table 15: The possible probability dis-
tributions for Example 3. Note that
P(red) = P(green) = P(blue) = 0.

There are two ways to define lower conditional probabili-
ties with respect to a credal set, and these two options resem-
ble the choice between Kolmogorovian probabilities and full
conditional probabilities.

A strategy akin to Kolmogorov’s ratio definition of con-
ditional probability is to define lower conditional probabil-
ity as P(A | B) = infP∈K:P(B)>0P(A | B) whenever there is at
least one element of K such that P(B) > 0; otherwise the
lower conditional probability is left undefined. Similarly,
the upper conditional probability is defined as P(A | B) =
supP∈K:P(B)>0P(A | B) whenever there is at least an element
of K such that P(B)> 0. In short, according to this strategy,
elements of K that assign probability zero to the condition-
ing event are discarded. Yet, owing to K being a closed con-
vex set, K without these measures is itself a closed-open set
whose infimum is nevertheless zero. This is sometimes re-
ferred to as regular conditioning, as it resembles Walley’s concept of regular extension (Walley 1991,

5As Giron and Rios do, for example, as their preferences are undefined when conditioned on events of zero probabilities
(Giron and Rios 1980).
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Appendix J). Regular conditioning is adopted for instance in Weichselberger’s theory of interval prob-
abilities (Weichselberger 2000). Regular conditioning eliminates exactly those probability measures
that are denied conditioning in the Kolmogorovian approach.

The arguments against Kolmogorovian-style conditioning reviewed in Section 2 can be mounted
against regular conditioning. In essence, regular conditioning presents lower conditional probability
as merely derived from unconditional probabilities; this is questionable as conditional probabilities do
make sense in many circumstances regardless of the probability of the conditioning event. Moreover,
one motivation for credal set representations is that the set of measures provide the basis for the
indeterminate judgment, and of particular importance are the specific measures in K that determine
the span of values that events can take. The information destroyed by eliminating those measures is
not necessarily recoverable from lower and upper conditional probabilities.

Moving away from regular conditioning, the other possible strategy is to assume that a credal
set is always a set of full conditional probabilities. In this case we can define the lower conditional
probability P(A | B) directly as infP∈KP(A | B) whenever B 6= /0. If one adopts this set of full con-
ditional probabilities strategy, then the circle is closed: natural assessment strategies applied to full
conditional probabilities lead to indeterminacy in probability values, and conditioning in the pres-
ence of indeterminacy in probability values resorts to element-wise manipulation of full conditional
probabilities.
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