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Abstract

This paper investigates how the credit incentive to engage in ques-
tionable research practices (up to and including fraud) interacts with
cumulative advantage, the process whereby high-status academics more
easily increase their status than low-status academics. I use a math-
ematical model to highlight two dynamics that have not yet received
much attention. First, due to cumulative advantage, questionable re-
search practices may pay off over the course of an academic career even
if they do not appear attractive at the level of individual publications.
Second, because of the role of bottleneck moments in academic ca-
reers, questionable research practices may be selected for even if they
do not provide a benefit in expectation. I also observe that, within
the model, the most successful academics are the most likely to have
benefited from fraud.
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1 Introduction

Trust in academic science consists at least partially in trust in academics. It
is a cause of concern, then, when that trust appears to have been misplaced,
as happens when cases of fraud are revealed.

Cases of data fabrication, plagiarism, and other forms of outright fraud
attract a lot of attention when they are uncovered, but these are perceived
by many observers as being quite rare. In contrast, so-called questionable
research practices (e.g., p-hacking, salami publishing) are perceived as less
bad but also much more widespread.

Here I focus on what fraud and questionable research practices have in
common. Practices that fall under either of these labels are ways of enhancing
an individual academic’s productivity and prestige (which mutually reinforce
one another in a process known as cumulative advantage) at some epistemic
cost. As a result, the same sorts of reasons may attract academics to either
of them.

This paper investigates these reasons. I consider the consequences for
an academic’s productivity and her career of engaging in these epistemically
costly practices, focusing on the role of cumulative advantage and the trade-
off between short-term benefits in terms of productivity and prestige and
long-term costs. I highlight two dynamics in particular. First, even when
the chance of being caught and associated penalties are sufficiently high that
epistemically dubious research outputs do not individually confer a net ben-
efit, academics may gain a career advantage from them. Second, even when
these practices are not rewarded on average, they may spread in academic
communities. I will provide some tentative reasons to think that the most
successful members of an academic community are relatively more likely to
have benefited from fraud or questionable research practices.

The paper proceeds as follows. Section 2 provides a more careful intro-
duction to the key concepts of cumulative advantage, the credit economy,
fraud, and questionable research practice. In section 3 I develop a simplified
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model of cumulative advantage in which an academic’s productivity is repre-
sented as a non-homogeneous Poisson process. Section 4 adds a key downside
of questionable research practices to the model, namely the possibility of be-
ing exposed. Section 5 shows how the two dynamics mentioned above may
arise in the model, while section 6 considers more systematically when this
happens by varying the parameters of the model. Section 7 concludes.

2 Cumulative Advantage and Fraud

The academic world is strongly hierarchical (Cole and Cole 1973). There
is a small group of professors who seem to have it all: a chair at a pres-
tigious university, plenty of time and money for research, lots of graduate
students, publications that appear in highly regarded journals and are fre-
quently cited, prizes, media appearances, and so on. In contrast there is a
much larger group with few or none of these status markers, ranging from
lesser-known but tenured or tenurable professors to the large group of aca-
demics without secure employment (including postdocs, adjunct professors,
lab technicians, and graduate students). These differences in status are often
keenly felt, as revealed for example in the phenomenon of prestige bias in hir-
ing or publishing, where status markers such as one’s individual reputation,
institutional affiliation, or publishing track record influence one’s chances of
being hired (Clauset et al. 2015, de Cruz 2018) or navigating a paper through
peer review (Tomkins et al. 2017, Lee et al. 2013, p. 7).

Since the institution where one is hired and the journals one publishes in
are themselves status markers, prestige bias become a self-reinforcing effect.
Those who manage to obtain some of these markers of prestige, especially
early in their academic career, will then have an easier time being hired into
a prestigious job, acquiring research grants, and more generally increasing
their status. In contrast, those who struggle a bit more at the start of their
career and fall behind in the prestige hierarchy will find it that much more
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difficult to catch up. This general pattern, where early success begets more
success, is known as cumulative advantage (DiPrete and Eirich 2006). In the
academic context, it is known as the Matthew effect (Merton 1968).

Given the central importance of prestige, one might wonder what aca-
demics might be willing to do to acquire it. This amounts to asking about
the incentive structure of academic science, also known as the credit economy.
Academics receive credit first and foremost for making (and publishing) aca-
demic contributions, with originality being particularly prized (Merton 1957,
Strevens 2003). As indicated above, this form of credit (or prestige; I will
use these as synonyms) interacts in a mutually reinforcing way with other
forms, such as citations, prizes, and prestigious appointments and grants.

Of the various forms of credit, the only one that academics have significant
individual control over is the production of academic contributions and the
submission of papers describing these contributions to prestigious journals.
Given the importance of credit in establishing one’s place in the academic
hierarchy, this leads to an intense pressure to produce and publish research
output, the so-called publish or perish culture (Fanelli 2010, Brischoux and
Angelier 2015).

Academics facing this pressure might look to take shortcuts to increase
their productivity. I will use the term questionable research practices (QRPs)
for such shortcuts. For my purposes here I will regard all of the following
behaviors as QRPs (some of which aim to improve productivity directly, while
others aim to increase the impact of publications). Fabricating data and other
forms of outright fraud (Bright 2017). Using multiple model specifications
but only reporting those in which a result is statistically significant, i.e., p-
hacking (Simmons et al. 2011). Hypothesizing after the results are known
(Kerr 1998). Distributing findings from a single study over multiple papers,
i.e., salami publishing (Abraham 2000). General sloppiness due to the desire
to complete projects quickly, i.e., rushing into print (Heesen 2018). Being
named as author on work where one has made no substantial intellectual
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contribution, i.e., honorary coauthorship (Flanagin et al. 1998).
I do not mean to suggest that all QRPs are equally bad. Most would agree

that outright fraud is the worst one, and for some of the others the jury is still
out on whether they should be regarded as bad at all. But when it comes to
the incentive to engage in them provided by the credit economy, these QRPs
may be treated equally. That is, whenever this paper identifies scenarios in
which academics have an incentive to engage in QRPs, this applies to any
and all of the foregoing behaviors. In order to emphasize the worst-case
outcomes that my argument supports, I will at times summarize my findings
in terms of an incentive to commit fraud.

3 Modeling Cumulative Advantage

I will now construct a relatively simple model of the credit economy with
cumulative advantage built in at its core. I take the simplified nature of
the model to be a strength rather than a weakness, as it helps to focus the
attention on a small number of features of the credit economy and their con-
sequences. Combining this with what we know empirically about academics’
incentives and behaviors may yield a reasonable degree of confidence that
the patterns of incentives identified here also operate in the real world.

The model provided here differs in a number of ways from other models
of the credit economy in the literature. First of all, it is explicitly dynamic.
In this respect it differs from early models of the credit economy, which
were static in nature (Kitcher 1990, Dasgupta and David 1994, Strevens
2003, Zollman 2018), although by now plenty of dynamic models exist as
well (Smaldino and McElreath 2016, O’Connor and Bruner 2019, O’Connor
2019, Zollman 2019). Second, it uses continuous time rather than discrete
time units. Where the issue has come up at all, previous models have tended
to use discrete time (e.g., Boyer 2014, Zollman 2019). Third, rather than
assuming that academics maximize expected credit as is commonly done, I

5



take academics’ aim to be to satisfice relative to particular credit thresholds.
I will motivate this modeling choice below. To my knowledge, this makes
my model unique among those that look at academic incentives in a rational
choice model (as opposed to an evolutionary model, where an analogous move
has been made by Smaldino and McElreath 2016, O’Connor 2019).

As already noted, publications play a central role in the academic world
and in the way credit is distributed. The basis of the present model is a
stochastic counting process that keeps track of the publications of a given
academic over a period of time. The thought here is that an academic’s
productivity (both how many publications are produced and how they are
distributed over time) has both a random component and a systematic com-
ponent. The random component stands in for all factors affecting produc-
tivity that are not explicitly modeled, such as extraneous circumstances in
the academic’s life, the difficulty of the particular scientific problem she is
working on, etc. The systematic component consists of the academic’s talent
and skill, as well as the amount of time and resources she has available. This
includes in particular the cumulative advantage effect: a scientist who has
already been productive is more likely to be given time and resources that
help her become even more productive.

To model the random component I use a Poisson process (see any text-
book on stochastic models, e.g., Tijms 2003, Norris 1998). In a Poisson
process the time between two publications is assumed to be an exponentially
distributed random variable. Moreover, the time between any two publi-
cations is probabilistically independent of anything that happened in the
process before the first of these two publications, i.e., the ‘interarrival’ times
of publications are independent and identically distributed. Under these as-
sumptions, the total number of publications over a given time interval follows
a Poisson distribution.

Why do I model the random component in this way? The Poisson pro-
cess has the following important feature: looking backwards the publications
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generated by it will appear to be randomly scattered in time. More precisely,
if a Poisson process produced a specific number of publications over a given
time interval, without more specific information the conditional probability
distribution for when each of these publications arrived is the uniform distri-
bution (Tijms 2003, theorem 1.1.5). So there is a precise sense in which this
is a truly random model. As Norris (1998, p. 73) puts it, “a Poisson process
is the natural probabilistic model for any uncoordinated stream of discrete
events in continuous time”. That said, this feature will no longer hold once
I add the systematic component to the model.

A Poisson process has one parameter, usually denoted λ. It is interpreted
as the rate of publication, i.e., the expected number of publications per unit
time. This can be used to add a systematic component to the model. For
example, the publication output of two academics might be modeled using
two Poisson processes with parameters λ1 and λ2, with λ1 > λ2 to indicate
that the first academic has more time and resources and so is expected to be
more productive.

Using the parameter λ in this way allows me to model persistent pro-
ductivity differences between academics (cf. Heesen 2017b). However, I also
want to capture cumulative advantage, i.e., the effect of earlier publication
output on later productivity. This requires the systematic component to vary
dynamically and endogenously. For this purpose I use a non-homogeneous
Poisson process (also known as a non-stationary Poisson process, see Tijms
2003, section 1.3), which is like a regular Poisson process except that the rate
of publication λ(t) is a function of time.

To get the cumulative advantage effect going, I will assume that pub-
lications generate credit over time (it takes time for a new publication to
have its influence as word spreads, other academics start citing it, etc.). The
credit accumulated by an academic may be turned into time and resources
for research (Latour and Woolgar 1986, chapter 5). This is a complex and
multi-faceted process involving, among other things, higher chances of win-
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ning research grants, a job at a more prestigious university, or more graduate
students. Rather than attempt to model this explicitly, I assume that credit
buys time and resources directly.

Suppose that each publication generates cg units of credit per unit time
(the subscript g stands for ‘good’; a notion of ‘bad’ credit will be introduced
below). For an academic with pg publications this means she accumulates
credit at a rate of cg · pg per unit time. I will use c(t) to denote the credit
accumulation rate at a given time t and C(t) for the total amount of credit
accumulated, i.e.,

c(t) = cg · pg and C(t) =
∫ t

0
c(u) du. (1)

By turning this into time and resources the academic increases her rate of
publication. I will use the following formula to capture this effect:

d

dt
λ(t) = log(c(t) + 1). (2)

That is, the rate of publication increases (over time) proportionally to the
logarithm of the credit rate (the +1 makes sure that if c(t) = 0 then d

dt
λ(t) =

0). The logarithm reflects a type of decreasing marginal returns: if the credit
accumulation rate is already high then the effect (on the publication rate)
of increasing it further is smaller than if the credit accumulation rate is low.
The underlying idea is that large amounts of credit are harder to effectively
turn into resources than moderate amounts.

Note that the credit rate c(t) is a step function: it is constant between
publications and then jumps instantaneously from cg ·pg to cg(pg +1) when a
new publication appears. As a result the rate of publication changes linearly
between publications: if T0 and T1 are consecutive publication arrival times
then for T0 < t < T1 the rate of publication is

λ(t) = λ(T0) + log(c(t) + 1)(t− T0). (3)
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An example of how this may develop is shown in figure 1. The rate of pub-
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Figure 1: The rate of publication increases faster as more publications (indi-
cated by dots) come in (parameters: cg = 1 and λ(0) = 1).

lication stays flat until the first publication comes in just before t = 1, then
starts increasing in steepness as more publications arrive. Meanwhile, publi-
cations arrive closer and closer together as the rate of publication increases.
Thus publications and the rate of publication mutually reinforce one another,
producing the cumulative advantage effect.

In this example the academic accumulates C(5) = 22.74 units of credit
(one unit per publication from the moment of publication until the end of
the simulation at t = 5). This may vary due to the stochastic nature of the
process, but repeated simulation runs give a sense for the typical outcomes.
In this case average credit at t = 5 is E[C(5)] ≈ 27.93. There is signifi-
cant variation though: in my 10, 000 runs the minimum credit was 0, the

9



maximum 112.77, and the standard deviation 15.74.

4 Replications, Exposures, and Negative Credit

The model described above assumes that once a publication occurs it gen-
erates credit indefinitely. There are a number of respects in which this may
be unrealistic. First, the impact of most publications fades over time. Since
my aim is to model relatively short intervals of time, e.g., from being hired
to going up for tenure, or from starting graduate school to going on the job
market, I will ignore this factor (though the model I present here is an in-
stance of a more general model known as a Hawkes process or self-exciting
process which can incorporate this factor). Second, and more immediately
relevant, fraudulent or shoddy work may be exposed, and even research of
the highest standard may fail to replicate. As recent studies have shown,
significant proportions of published results in various empirical sciences fail
to replicate (Open Science Collaboration 2015, Nosek and Errington 2017,
Camerer et al. 2018). When this happens, it changes how the original work
and its author(s) are perceived, i.e., it changes the credit associated with
that publication.

To incorporate this in the model, assume that for each publication there
is a chance of it being ‘exposed’. This may mean a failure to replicate, a
discovery that the work was fraudulent, or any other event with significant
negative impact on the perception of the work. In particular, I introduce a
new parameter, the publication exposure rate µ, and assume that for each
publication the time between it being published and it being exposed is expo-
nentially distributed with rate µ. Note that the probability of a publication
never being exposed equals the probability that this exponential distribution
fails to trigger in the time window under consideration. As a result of these
assumptions the stochastic process that counts exposure events for a given
academic is a non-homogeneous Poisson process, with a total exposure rate
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at any given time of pg ·µ (the number of publications available to be exposed
times the publication exposure rate).

Once a publication is exposed it is removed from the set of publications
available to be exposed (pg is reduced by one) and stops generating cg units
of credit per unit time. Instead it is added to the set of exposed (‘bad’) pub-
lications (pb is increased by one) and starts losing cb units of credit per unit
time. The idea is that as news of the exposure spreads through the academic
community, credit is taken away from the academic whose paper has been
exposed, adjusting the total amount of credit generated by this publication
downwards. The function c that keeps track of the credit accumulation rate
is adjusted to reflect this:

c(t) = cg · pg − cb · pb. (4)

Unlike before, the credit accumulation rate may now decrease or even become
negative. This requires adjusting the formula for changes in the rate of
publication as well, since the logarithm is not defined for negative numbers:

d

dt
λ(t) =

log(c(t) + 1) if c(t) ≥ 0,

c(t) otherwise.
(5)

Figure 2 illustrates this increased range of possibilities. Shown is the
development of the rate of publication over time for two simulation runs.
In the former the occasional exposure can be seen to slow down the rate of
publication, but on the whole publications come in fast enough so the rate of
publication continues to increase. In the latter there are fewer publications
and more exposures, with the publication rate eventually dropping down to
zero. In the former the academic accumulates C(5) = 19.21 units of credit,
whereas in the latter the academic ends up with negative credit (C(5) =
−2.11). With these parameters the former outcome is more typical: after
10, 000 runs average credit is E[C(5)] ≈ 14.65 (standard deviation 10.50),

11



0 1 2 3 4 5

0
2

4
6

time

ra
te

 o
f p

ub
lic

at
io

n

Figure 2: Two simulation runs (one in which publications outrun exposures
and one in which they do not) with parameters cg = 1, cb = 1/2, λ(0) = 1,
and µ = 1/4. Publication events are marked as open dots and exposure
events as closed dots.

with only 6.16 % of runs accumulating zero credit or less.

5 What are Academics’ Incentives?

So far, questionable research practices have not taken center stage. As men-
tioned, such practices allow the academic to work more quickly and will lead
to higher impact publications as the academic is able to achieve flashier,
more surprising, or more newsworthy results. Under what circumstances
might academics have an incentive to engage in QRPs?

Suppose an early-career academic faces the choice between either engag-
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ing in fraud or QRPs or not doing so. Regular (non-fraudulent or ‘honest’)
publications tend to yield credit at a rate of c∗g = 1 whereas publications ob-
tained using fraud or QRPs tend to yield more: c†g = 1.25. This captures the
fact that the latter tend to have higher impact. Indirectly, it also captures
the fact that QRPs allow the academic to work more quickly, as the higher
credit obtained is converted into an increased rate of publication as described
above.

The use of QRPs comes at a cost, however. Publications acquired in
this way are more likely to be exposed, i.e., µ will be higher. Once they
are exposed, they are also punished more harshly as it will be recognized
not only that the published result was wrong, but that bad methods were
used to obtain it, i.e., cb will be higher. There are important nuances here:
sometimes academics are falsely accused of fraud (e.g., Fisher’s accusations
against Mendel, or Newton’s accusations against Leibniz) and sometimes
fraudulent work is recognized as irreproducible but not as fraud. Moreover,
the increasing prevalence of large collaborations makes it harder both to
detect fraud and to adjust individual credit in response (Huebner and Bright
2020, p. 364, see also Wray 2017, p. 129). Still, an academic is more likely
to be exposed as fraudulent if they are in fact fraudulent, so the assumption
that cb will be higher if QRPs are used seems apt. To capture this with
(fairly arbitrary) numbers, suppose µ∗ = 1/6 whereas µ† = 1/4, and c∗b = 0
whereas c†b = 1/2.

These choices of parameter values look like they favor honest academic
work over using QRPs: a relatively modest (25 %) increase in the credit
gained from publications would seem to be more than offset by the increased
exposure rate and the negative credit associated with exposed publications.
To substantiate this, I have worked out the credit that is expected to accrue
to a single publication up to a given time t1 (I will continue to use t1 = 5 in
all examples). For an academic with only a single publication at time t0 (i.e.,
the first publication arrives at T0 = t0 and the second publication arrival
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time T1 is after t1) it is not hard to show that

E[C(t1) | T0 = t0, T1 > t1] = cg + cb
µ

(
1− e−µ(t1−t0)

)
− cb(t1 − t0). (6)

With the parameters as chosen above and a publication at time t0 = 0 the
honest academic expects to get more credit than the fraudulent one:

E[C∗(5) | T0 = 0, T1 > 5] ≈ 3.39 > 2.49 ≈ E[C†(5) | T0 = 0, T1 > 5].

Similarly, if the publication arrives at t0 = 1 the honest academic expects
2.92 units of credit from it and the fraudulent one merely 2.42. So from
the perspective of expected credit per publication it appears to be better to
be honest (although this result eventually flips when the publication arrives
closer to t1 as such publications are less likely to be exposed in the remaining
time; on the other hand such publications contribute less overall as they are
around less long).

One reason why looking at the expected credit for a single publication is
misleading, however, is that this credit is not evenly distributed over time.
Whereas the honest academic expects a steady stream of credit that lasts for
a while, the fraudulent academic expects a bigger stream of credit initially,
but also for a shorter period, followed by a period of negative credit. While
the fraudulent academic ends up with less credit at time t1, there is an initial
period where she gets more than the honest academic, and since she can use
this early credit to increase her rate of publication she might be able to offset
the later negative effects by producing (many) more publications overall. In
this sense, the pattern of credit accumulation by the fraudulent academic
resembles a Ponzi scheme (Zollman 2019).

So by taking into account the cumulative advantage effect, it might be
that QRPs pay off when the expected credit of all publications is considered,
even though honesty is better from the perspective of credit per publication.
Once again I estimate expected credit by simulating the process 10, 000 times.
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In the running example this yields

E[C∗(5)] ≈ 21.52 and E[C†(5)] ≈ 21.28.

So despite the cumulative advantage effect, with these parameters it is still
slightly better to be an honest academic from the perspective of maximizing
expected credit.

In models like this one it is typically assumed that academics’ goal is
to maximize expected credit. This makes a certain amount of sense, given
the close analogy between credit (in motivating academics) and utility (in
motivating arbitrary rational agents), and the role of expected utility theory
as the conventional model of rational choice. But for most academics it
will arguably be more important to meet specific credit thresholds. The
competitive aspects of academic life are felt most keenly at a few pivotal
moments in an academic’s career, such as when she is on the job market or
going up for tenure.

On the job market, the credit the academic has accumulated is likely to
play an important role in her prospects. At such a time, what matters is
whether the academic has accumulated enough credit: enough to be compet-
itive, enough to land that dream job, enough to achieve whatever goal the
academic has set for herself. Simplifying significantly (and ignoring many
other factors such as teaching competence, personality, or how fashionable
her research area is), the academic’s goal may be formulated as a target
amount of credit, such that meeting or exceeding this target is considered
success, and falling short failure.

Going up for tenure is similar. This process is typically not competitive.
Rather, the academic is given a set of (possibly vague) criteria she is expected
to meet. At least as far as the research component of these criteria goes,
the most important factor, if not the only one, will be the reputation the
academic has built based on her publications, i.e., her accumulated credit. So
in order to get tenure she needs to meet or exceed a certain credit threshold.
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If getting a job or tenure is far more important to the academic than
any other aspects of her career that depend on credit, then it would be
rational for such an academic to aim to maximize the probability of meeting
whatever credit threshold is relevant for her. Moreover, note that the job
market and the tenure process are important points at which it is decided
who stays in academia and who leaves (other points may be just as important
in determining one’s place in the academic hierarchy, but having any such
place at all is only possible if one stays in academia). If those who meet
credit thresholds stay and those who fail to meet them leave, then academia
as a whole selects those academics who maximize their chances of meeting
thresholds (cf. Smaldino and McElreath 2016, O’Connor 2019).

The strategy that maximizes the probability of meeting a threshold need
not be the same as the strategy that maximizes expected credit. In the
present model an academic who chooses to use QRPs introduces more random
variation in the amount of credit she accumulates as compared to doing
honest academic work. With the particular parameter values used above,
using QRPs decreases expected credit over five time units, but it increases
the variance. In these circumstances, it is possible that using QRPs increases
the probability of meeting the threshold (despite the lower mean), provided
the threshold is relatively high.

And this is exactly what happens. If the threshold the academic aims to
meet is, say, 25, then it is better to use QRPs:

Pr(C∗(5) ≥ 25) ≈ 0.3655 and Pr(C†(5) ≥ 25) ≈ 0.3708,

i.e., doing honest academic work gives her a chance of meeting the threshold
of about 36.5 %, but using QRPs her chances are just over 37 %. The differ-
ence increases if the threshold is raised: with a threshold of 30 the honest
academic’s chances are 24.2 %, but using QRPs raises this to 26.6 %. With
a threshold of 50 the respective chances are 2.1 % and 3.5 %.

A high threshold corresponds to a low probability of success. This may
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be a feature of the competitive process (a job market where only a fraction
of academics gets a job, or a tenure process in which less than half of the
candidates are given tenure) or a feature of the specific academic (given her
own dispositions, background, and training, she is from the outset relatively
unlikely to get a job or get tenure), or both.

6 How Common is the Incentive to Commit
Fraud?

Above I considered a single academic facing the choice to commit fraud (or
more generally use QRPs) or do honest research. I highlighted two phe-
nomena. First, the possibility that choosing fraud may be rational for the
academic even when the expected credit of individual honest publications is
higher, due to cumulative advantage and the way credit accumulates over
time. Second, the possibility that choosing fraud may be rational when the
expected credit of honest research is higher (even after taking cumulative
advantage into account), if the academic’s goals require beating a relatively
high credit threshold. The previous section may be interpreted as a proof of
possibility: it suggests these phenomena may occur, but says nothing about
how often they do.

In order to say something a bit stronger, I will now investigate these
phenomena a little more systematically as they arise or fail to arise in my
model under different parameter settings. If they turn out to arise robustly
in the model, this is not sufficient evidence to conclude they commonly arise
outside of the model as well, but it is suggestive, especially if one has been
persuaded by the preceding sections that the model captures important qual-
itative features of the incentive structure of academic science.

The parameter settings considered in this section are as follows. First
I fix the time scale by ending all simulations at t = 5. For the intended
interpretation of a graduate school education or a tenure clock, this suggests

17



that one time unit is roughly equal to a year. This is a harmless assumption,
as I could set the simulations to end, e.g., at t = 60, interpret time units
as months, rescale the other parameters appropriately, and get exactly the
same results. Then I pick a range for the other variables. For the initial
publication rate λ(0) this runs from 0.5 to 2 in increments of 0.5 (which can be
interpreted as assuming academics vary in their initial average productivity
between half a paper and two papers per year). For honest academics, the
credit accumulation rate for non-exposed papers c∗g is set to either 1 or 2, the
exposure rate µ∗ ranges from 0 to 0.25, and the negative credit for exposed
papers c∗b from 0 to 0.2.

As in the previous section, the fraudulent academic expects to get more
credit from her papers in the short run, but they are more likely to be
exposed and accrue more negative credit when this happens. The former is
implemented by increasing the credit accumulation rate c†g by a percentage
(ranging from 10 % to 60 %) relative to the honest academic’s rate c∗g. The
exposure rate µ† is set to be between 0.05 and 0.25 higher than that of
the honest academic. And the negative credit for exposed papers c†b varies
from 0.3 to 0.5 (this is not set relative to the corresponding parameter for
the honest academic c∗b , but all possible values for the fraudulent academic
are higher than all possible values for the honest academic). All of this is
summarized in table 1.

I focus on the effect of the (extra) credit for non-exposed fraudulent pa-
pers, as captured in the parameter c†g. The first result is that even when this
parameter is at its lowest setting (c†g = 1.1 · c∗g, i.e., a 10 % credit premium
for fraud), there is a non-negligible range of values of the other parameters
for which fraud is a better strategy than honesty in expectation. To state
this a bit more precisely, note that if we fix c†g = 1.1 · c∗g there are 864 possi-
ble combinations of values of the other parameters listed in table 1 (though
this does involve some double counting because when µ∗ = 0 the value of c∗b
has no effect). Of these combinations there are 147 (about 17 %) for which
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parameter values

λ(0) {0.5, 1, 1.5, 2}
c∗g {1, 2}
c∗b {0, 0.1, 0.2}
µ∗ {0, 0.05, 0.15, 0.25}
c†g c∗g · {1.1, 1.2, 1.3, 1.4, 1.5, 1.6}
c†b {0.3, 0.4, 0.5}
µ† µ∗ + {0.05, 0.15, 0.25}

Table 1: Parameter values used in this section.

E[C†(5)] > E[C∗(5)], i.e., fraud is the best strategy in expectation. In the
remaining 717 cases, the honest strategy is better in expectation when c†g is
at its lowest value.

As we increase the value of c†g, fraud becomes more attractive: the number
of parameter settings for which the fraudulent academic expects higher credit
than the honest academic gradually increases from 17 % when c†g = 1.1 · c∗g
to over 99 % (857 out of 864 cases) when c†g = 1.6 · c∗g. This is shown by the
solid lines and black dots in figure 3. Similarly, the number of parameter
settings where the fraudulent strategy has a greater probability of exceeding
a credit threshold of 30 increases as c†g increases (dashed lines and gray dots
in figure 3), as it does when the credit threshold is 50 (dot-dashed lines and
white dots in figure 3). In particular, when the credit threshold is 50 and
c†g = 1.6 · c∗g, the fraudulent strategy has a greater probability of exceeding
the threshold than the honest strategy in all 864 cases.

This idea can be shown to generalize. That is, regardless of the value
of the other parameters, if the credit premium for non-exposed fraudulent
papers is large enough, the fraudulent academic is better off than the honest
academic. This holds regardless of whether ‘better off’ is cashed out in terms
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Figure 3: Percentage of parameter settings for which the fraudulent strat-
egy is preferred over the honest strategy, as a function of the ratio
c†g/c

∗
g. Solid lines and black dots indicate the percentage of cases where

E[C†(5)] > E[C∗(5)]; dashed lines and gray dots indicate the percentage
where Pr(C†(5) ≥ 30) > Pr(C∗(5) ≥ 30); dot-dashed lines and white dots
indicate the percentage where Pr(C†(5) ≥ 50) > Pr(C∗(5) ≥ 50).

of expected credit or in terms of the probability of meeting a credit threshold.

Theorem 1. Let λ(0) > 0 and t1 > 0. For all values of c∗g, c∗b , µ∗, c
†
b,

and µ†, there exist values of c†g large enough such that E[C†(t1)] > E[C∗(t1)].
Moreover, for any credit threshold θ > 0 there exist values of c†g large enough
such that Pr(C†(t1) ≥ θ) > Pr(C∗(t1) ≥ θ).

I take these simulation results and the theorem to be quite suggestive.
They show that, at least within this particular model, the credit incentive for
fraud is not an isolated phenomenon. Rather, such an incentive arises system-
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atically whenever the credit premium for non-exposed fraudulent papers is
large enough (with the theorem showing this in principle, and the simulation
results showing that the values of c†g required are not always unrealistically
high).

The second phenomenon I highlighted was the possibility that fraud can
be incentivized even when the expected credit of honest research is higher,
as career success may require beating a credit threshold. While the theorem
does not speak to this directly, the simulation results provide some support
for this idea. In particular, across 5184 combinations of parameter settings
studied, there were 233 instances (about 4.5 %) where Pr(C†(5) ≥ 50) >
Pr(C∗(5) ≥ 50) even though E[C∗(5)] > E[C†(5)].

What does this tell us outside the model? There is first the general
question whether the model captures the right sort of dynamics to have any
relevance to real academics. I have attempted to motivate this throughout
the construction of the model and will not say more on this general question
here. But there is a second, more specific question to be asked: what should
we make of the condition that the credit premium for non-exposed fraudulent
papers is ‘large enough’?

My claim is that in a given community, there will be at least some aca-
demics for whom there is a credit incentive to use QRPs or fraud, because
the parameters of the model will be different for each academic. While some
relevant factors are largely fixed within an academic community (e.g., the
chance that a fraudulent paper is exposed, the amount of credit one needs to
accumulate to have a chance at a job or tenure), others depend on the skills,
dispositions, and luck of specific academics (e.g., an academic’s productivity
with a fixed level of resources, as captured in the initial publication rate).
Importantly, the credit premium for non-exposed fraudulent papers has as-
pects of both. It partially depends on the academic community (e.g., how
much value this community assigns to ‘surprisingness’ or ‘flashiness’), but
it also depends on the academic’s ability to dress up shoddy work, adver-
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tise its virtues, hide its weaknesses, and quickly convert this into productive
resources.

If there is variety in the parameter values experienced by different mem-
bers of the academic community, there will be some academics within the
community for whom the credit premium for non-exposed fraudulent papers
is relatively high. The simulation results and the theorem suggest that these
academics in particular may have an incentive to use QRPs or fraud.

Whereas the previous section provided (merely) a proof of possibility, this
section provides some tentative evidence for a stronger claim. The claim is
that in most (if not all) academic communities, there will be some academics
who have an incentive to use QRPs or fraud as a direct result of the need to
accumulate credit to get a job or tenure.

As noted in the previous section, using QRPs tends to increase the vari-
ance in how much credit a given academic accumulates. Speaking somewhat
loosely, this means that academics using QRPs are more likely to do either
very well or very poorly. This suggests that, in those communities where at
least some academics have an incentive to use QRPs, academics using QRPs
will be overrepresented at the bottom and at the top of the credit distribu-
tion. So in these types of communities, the most famous academics are likely
to be the ones using QRPs.

The simulation results discussed in this section illustrate this phenomenon.
Suppose that the parameter ranges given in table 1 describe the variety
among individual members of a given academic community. Then the most
famous academics in that community will be those who accumulate the
largest amount of credit. We can get a sense for who this might be by
looking at the highest credit totals realized across all simulation runs (since
there are 5184 parameter settings with 10, 000 simulation runs for the fraud-
ulent strategy and 10, 000 runs for the honest strategy this involves more
than a hundred million data points).

This maximum of 458.0 units of credit is realized under the fraudulent
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strategy, with λ(0) = 2, c†g = 3.2, c†b = 0.5, and µ† = 0.05. In contrast, the
highest credit achieved across all simulation runs using the honest strategy
is 302.1 units. This is arguably not surprising given that the fraudulent
strategy tends to do better than the honest strategy by most measures when
c†g = 1.6 · c∗g. But the following is a bit more surprising: even if we restrict
ourselves to parameter settings where c†g = 1.1 · c∗g, we can find a simulation
run that achieves 327.9 units of credit.

So, with these parameter ranges, even if the credit premium for non-
exposed fraudulent publications is restricted to 10 %, we should expect the
most famous academics to be fraudulent. And these extremely successful
academics will be exactly those who have gotten lucky in that few or none of
their papers have been exposed (Heesen 2017a reaches a similar conclusion
in a different model with a different notion of luck).

7 Conclusion

I have highlighted two phenomena that favor the use of QRPs that become
apparent in a dynamic model of the credit economy. First, cumulative ad-
vantage may allow a fraudulent academic to be successful even if the fraud
does not appear to be paying off at the level of individual publications (cf.
Zollman 2019). Second, selection events at particular times in an academic’s
career may lead fraudulent academics to be successful even when fraud does
not pay off in expectation.

The two lessons I want to emphasize in this conclusion are the following.
First, the two highlighted phenomena suggest that the incentive to engage
in QRPs or fraud may be a bit stronger than it appeared based on previous
models of the credit economy (e.g., Bruner 2013, Bright 2017, Heesen 2018).

Second, within my model the most successful academics tend to be the
most unscrupulous ones: those who are willing to gamble on fraud and man-
age to get away with it. If the model accurately captures the dynamics and
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incentives related to cumulative advantage and fraud, it raises the worry that
those academics who are praised as being the best actually work according
to worse than average epistemic standards.

A Proof of Theorem 1

Let C(t) denote the credit directly associated with a single publication, i.e.,
the credit that would be accrued up to time t if we assumed that the publi-
cation rate λ drops to zero and stays there immediately after the first pub-
lication arrives. Let T ∼ Exp(λ(0)) be the arrival time for that publication.
Let X ∼ Exp(µ) be the waiting time until the publication is exposed (so
that exposure occurs at time T +X).

We first consider the expected credit conditional on T = t < t1. The
density function of X is given by fX(x) = µe−µx. If X ≥ t1 − t the credit
accrued is cg(t1 − t), otherwise it is cgX − cb(t1 − t−X). So

E[C(t1) | T = t] =
∫ ∞

0
(cg min{t1 − t, x} − cb max{t1 − t− x, 0})fX(x) dx

= cg + cb
µ

(
1− e−µ(t1−t)

)
− cb(t1 − t).

A few observations. First, this justifies equation (6). Second, E[C(t1) | T = t]
is a linearly increasing function of cg. Consequently we can guarantee that
the expectation is positive by choosing cg large enough:

E[C(t1) | T = t] > 0 if and only if cg > cb
µ(t1 − t)

1− e−µ(t1−t)
− cb. (7)

Third, if E[C(t1) | T = t0] > 0 then for all t ∈ (t0, t1) also E[C(t1) | T =
t] > 0. This can be seen from (7) by noting that x/(1 − e−x) is a strictly
increasing function for all x.

Now we consider E[C(t1)]. The density function of T is given by fT (t) =
λ(0)e−λ(0)t. If T ≥ t1 the credit accrued is zero, otherwise the expected credit
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is E[C(t1) | T ]. So

E[C(t1)] =
∫ t1

0
E[C(t1) | T = t]fT (t) dt

= µ(cgλ(0) + cbµ)(1− e−λ(0)t1)− λ(0)2(cg + cb)(1− e−µt1)
λ(0)µ(µ− λ(0)) − cbt1.

We are particularly interested in how E[C(t1)] varies with cg:

d

dcg
E[C(t1)] = µ(1− e−λ(0)t1)− λ(0)(1− e−µt1)

µ(µ− λ(0)) .

So E[C(t1)] is also a linear function of cg. To see that it is an increasing
function of cg it suffices to show that the derivative is positive. One way to
see this is by interchanging the derivative and the integral (which is legitimate
because the functions involved are differentiable and bounded):

d

dcg
E[C(t1)] =

∫ t1

0

d

dcg
E[C(t1) | T = t]fT (t) dt

=
∫ t1

0

1
µ

(
1− e−µ(t1−t)

)
λ(0)e−λ(0)t dt > 0

because the integrand is strictly positive for all 0 ≤ t < t1.
How does E[C(t1)] relate to E[C(t1)]? Recall that C(t) only counts the

credit associated with a single publication, whereas C(t) tracks the credit
for all publications combined. The probability distribution for the arrival
time of each subsequent publication is (by design) quite complicated, as it
depends on the number of previous publications, the number of previous
exposures, and the precise arrival times of each of these. But conditional on
its arrival time t, we know that the contribution each publication makes to
the expected credit is equal to E[C(t1) | T = t]. Moreover we know from the
third observation above that if E[C(t1) | T = 0] > 0 then E[C(t1) | T = t] > 0
for all t < t1. So it follows that if E[C(t1) | T = 0] > 0 (which we can make
sure is true by choosing cg sufficiently high) then the contribution to the
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expected credit of each publication beyond the first is positive, and therefore
E[C(t1)] > E[C(t1)].

Since E[C(t1)] increases linearly with cg, we can make E[C(t1)] arbitrarily
high by setting cg sufficiently high. In particular, if λ(0), c∗g, c∗b , and µ∗ are
fixed then E[C∗(t1)] is thereby fixed as well. For arbitrary (fixed) values of c†b
and µ† we can then choose c†g high enough such that E[C†(t1)] > E[C∗(t1)]. If
we also choose c†g high enough so the inequality from the previous paragraph
obtains, we get the desired result regarding expectation:

E[C†(t1)] > E[C†(t1)] > E[C∗(t1)].

Next we consider the probability of exceeding a credit threshold θ > 0.
We proceed similarly by investigating C(t1). We know that

Pr(C(t1) = 0) = Pr(T > t1) = e−λ(0)t1 .

If T < t1 then C(t1) = min{cgX − cb(t1 − T − X), cg(t1 − T )}. Therefore
Pr(C(t1) > θ | T > t1−θ/cg) = 0. Whereas if t < t1−θ/cg then cg(t1−t) > θ

and hence

Pr(C(t1) > θ | T = t) = Pr (cgX − cb(t1 − t−X) > θ)

= Pr
(
X >

θ + cb(t1 − t)
cg + cb

)

= exp
{
−µθ + cb(t1 − t)

cg + cb

}
,

where exp{x} = ex. We can now find an expression for the probability that
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C(t1) exceeds θ:

Pr(C(t1) > θ) =
∫ t1−θ/cg

0
Pr (C(t1) > θ | T = t) fT (t) dt

= 1
1− µ

λ(0)
cb

cg+cb

(
exp

{
−µθ + cbt1

cg + cb

}
− e−λ(0)t1−(µ−λ(0))θ/cg

)
.

We see that this probability is increasing with cg by inspecting the integral:
(1) the integrand is positive for all relevant values of t, (2) the range of
integration increases with cg because d

dcg
(t1 − θ/cg) = θ/c2

g > 0, and (3) the
integrand increases with cg:

d

dcg
Pr(C(t1) > θ | T = t) = µ

θ + cb(t1 − t)
(cg + cb)2 exp

{
−µθ + cb(t1 − t)

cg + cb

}
> 0.

Moreover, we see that as cg increases, the probability that C(t1) exceeds θ
approaches the probability of any arrivals at all. Since for any constant a,
the fraction a/(cg + cb) vanishes as cg gets large, we have

lim
cg→∞

1
1− µ

λ(0)
cb

cg+cb

= 1,

lim
cg→∞

exp
{
−µθ + cbt1

cg + cb

}
= 1,

lim
cg→∞

e−λ(0)t1−(µ−λ(0))θ/cg = e−λ(0)t1 , and therefore

lim
cg→∞

Pr(C(t1) > θ) = 1− e−λ(0)t1 = Pr(T < t1).

We now want to show that Pr(C(t1) > θ) ≥ Pr(C(t1) > θ) for sufficiently
large values of cg.

LetN (a random variable) be the total number of publications that occurs
in the time interval [0, t1]. The event N = 0 occurs just in case T > t1 (which
entails C(t1) = C(t1) = 0), so we can restrict attention to cases where N ≥ 1.
We now claim that if N ≥ 1, then we can choose cg high enough that (with

27



arbitrarily high probability) N is “large”.
In fact, the claim we will prove is a little bit stronger. Let S denote the

sum over all publications of the time interval from publication until t1 (so
ignoring whether they are exposed). That is, if T0, T1, . . . , TN−1 are the pub-
lication times, then S = ∑N−1

i=0 (t1 − Ti). We show that, with an appropriate
choice of cg, we can make S arbitrarily large with arbitrarily high probability
(conditional on N ≥ 1). That is, not only are there arbitrarily many publi-
cations, but they do not all occur so close to t1 that the combined time they
are in existence remains small.

Let ε > 0. We want to show for some arbitrary (large) constant k that

Pr(S ≥ k | N ≥ 1) = Pr(S ≥ k,N ≥ 1)
Pr(N ≥ 1) = Pr(S ≥ k, T < t1)

Pr(T < t1) > 1− ε.

Let

t∗ = min
{

1
λ(0) log

(
1 + ε

3(eλ(0)t1 − 1)
)
,

1
µ

log
(

1
1− ε/3

)}
> 0.

Then

Pr(S ≥ k | N ≥ 1) ≥ Pr(S ≥ k, T < t1 − t∗)
Pr(T < t1)

= Pr(S ≥ k | T < t1 − t∗)
1− e−λ(0)(t1−t∗)

1− e−λ(0)t1

≥ (1− ε/3) Pr(S ≥ k | T < t1 − t∗).

Let N∗ denote the number of publications that occur in the time interval
[T, T + 1

2t
∗]. Conditional on T < t1 − t∗, we know that T + t∗/2 < t1 − t∗/2,

i.e., we have N∗ publications occurring before t1 − t∗/2, so S ≥ N∗ · t∗/2.
Thus if we let n = 2k/t∗ we have

Pr(S ≥ k | T < t1 − t∗) ≥ Pr(N∗ ≥ n | T < t1 − t∗).
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Let G2 denote the event that the first 2 publications fail to be exposed during
the first t∗/2 time units after their publication (assuming these publications
occur at all). Note that

Pr(G2) ≥ e−µt
∗ ≥ 1− ε/3.

Putting this together, so far we have

Pr(S ≥ k | N ≥ 1) ≥ (1− ε/3) Pr(S ≥ k | T < t1 − t∗)

≥ (1− ε/3) Pr(N∗ ≥ n | T < t1 − t∗)

≥ (1− ε/3) Pr(N∗ ≥ n,G2 | T < t1 − t∗)

≥ (1− ε/3)2 Pr(N∗ ≥ n, | G2, T < t1 − t∗).

We now consider the probability in the last line above, i.e., the probability of
at least n publications in the time interval [T, T + 1

2t
∗] conditional on the first

2 publications not being exposed during that same time interval. Choose

cg = max
{
n · cb, exp

{
16n
(t∗)2 + 24

ε(t∗)2

}}
.

For the purpose of determining the probability that N∗ ≥ n, we may assume
that c(t) ≥ cg for all t ∈ [T, T + 1

2t
∗]. This is because (a) after the first

publication at time T , pg = 1 and pb = 0 so cgpg − cbpb = cg, (b) due to the
conditionG2, the second publication occurs before the first exposure, (c) after
the second publication but before the n-th publication, due to condition G2,
pg ≥ 2 and pb ≤ n− 2 and hence cgpg − cbpb ≥ cg + ncb − (n− 2)cb ≥ cg.

It follows from (3) that the rate of publication is

λ(t) ≥ λ(0) + log(cg + 1)(t− T )

for all t ∈ [T, T + 1
2t
∗]. This means that (at least as long as N∗ < n) the
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so-called average intensity during the time interval is

Λ
(
T, T + 1

2t
∗
)

=
∫ T+t∗/2

T
λ(t) dt ≥ 1

2λ(0)t∗ + 1
8 log(cg + 1)(t∗)2.

Let Y be a Poisson-distributed random variable with rate parameter Λ̄ =
λ(0)t∗/2+log(cg+1)(t∗)2/8. Then Pr(N∗ ≥ n, | G2, T < t1−t∗) ≥ Pr(Y ≥ n).
Note that

Λ̄ ≥ 1
8 log(cg)(t∗)2 ≥ 2n+ 3/ε.

Since Y follows a Poisson distribution, E[Y ] = Var(Y ) = Λ̄. Since E[Y ] =
Λ̄ > n, we can apply Cantelli’s inequality (a one-sided version of the Cheby-
shev inequality) to get

Pr(Y ≥ n) = Pr(Y − E[Y ] ≥ n− E[Y ]) ≥ 1− Var(Y )
Var(Y ) + (n− E[Y ])2 .

Thus

Pr(Y ≥ n) ≥ 1− Var(Y )
Var(Y ) + (n− E[Y ])2 = 1− 1

Λ̄ + 1− 2n+ n2/Λ̄

≥ 1− 1
Λ̄− 2n

≥ 1− ε/3.

But now we are done:

Pr(S ≥ k | N ≥ 1) ≥ (1− ε/3)2 Pr(N∗ ≥ n, | G2, T < t1 − t∗)

≥ (1− ε/3)2 Pr(Y ≥ n) ≥ (1− ε/3)3

> 1− ε.

Returning to the big picture, recall that we are aiming to show that, for large
cg,

Pr(C(t1) > θ | N ≥ 1) ≥ Pr(C(t1) > θ | N ≥ 1).
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It suffices to show, for some δ > 0, that

lim
cg→∞

Pr(C(t1)− C(t1) ≥ δ | N ≥ 1) = 1,

where C(t1)−C(t1) is the credit accrued to all publications except the first.
For each of these publications i = 1, . . . , N − 1, consider t1 − Ti, i.e., the
amount of time between publication and the cutoff time t1. Suppose we form
groups of publications such that for each group b, the sum of these amounts
of time is at least t1 and at most 2t1, i.e.,

t1 ≤
∑
i∈b

(t1 − Ti) ≤ 2t1.

Because t1−Ti ≤ t1 for each i, we can be sure that we can form such groups
without this sum exceeding 2t1 for any of them. Moreover, since we have
just shown that S = ∑N−1

i=0 (t1 − Ti) becomes large for large values of cg, we
can guarantee that the number of such groups M will be large.

We now place the following lower bound on the amount of credit accrued
by the combined publications in each group: if at least one of the publications
in the group is exposed at any time, we assume all the publications in the
group are exposed the entire time. Thus, for each group, the probability of at
least one exposure is at most q = e−2µt1 , and the credit associated with each
group in which at least one exposure occurs is at least −2cbt1. Conversely,
the probability of no exposures for a given group is at least 1 − q, and the
credit associated with such a group is at least cgt1.

Let Z be a random variable following a binomial distribution with pa-
rameters M (the number of trials) and 1− q (the success probability), i.e., Z
denotes the number of groups in which no exposures occur. Then according
to the conservative way of estimating the accrued credit explained above,

C(t1)− C(t1) ≥ cgt1Z − 2cbt1(M − Z).
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It follows that

Pr(C(t1)− C(t1) ≥ δ | N ≥ 1) ≥ Pr(cgt1Z − 2cbt1(M − Z) ≥ δ | N ≥ 1)

= Pr
(
Z ≥ 2cbM + δ

cg + 2cb
| N ≥ 1

)

=
∞∑
m=0

Pr
(
Z ≥ 2cbm+ δ

cg + 2cb
|M = m

)
Pr(M = m | N ≥ 1).

Let ε > 0. Choose cg larger than 2cb+δ
(1−q)2 but also large enough such that

Pr
(
S ≥ 4t1

q(1− q)ε | N ≥ 1
)
≥ 1− ε/2

(which we have previously shown is possible). Since Z is binomial, we know
its mean is E[Z | M = m] = (1 − q)m and its variance Var(Z | M = m) =
q(1− q)m. From cg ≥ 2cb+δ

(1−q)2 it follows that for all m ≥ 1,

cg(1− q)2m ≥ (2cb + δ)m ≥ 2cb(1− (1− q)2)m+ δ.

Hence, for all m ≥ 1, (cg + 2cb)(1− q)2m ≥ 2cbm+ δ which entails 2cbm+δ
cg+2cb

≤
(1 − q)2m = (1 − q)m − q(1 − q)m. It follows that 2cbm+δ

cg+2cb
− (1 − q)m <

−q(1− q)m < 0. So we can again use Cantelli’s inequality to get

Pr
(
Z ≥ 2cbm+ δ

cg + 2cb
|M = m

)
≥ 1− q(1− q)m

q(1− q)m+ (2cbm+δ
cg+2cb

− (1− q)m)2

≥ 1− q(1− q)m
q(1− q)m+ (−q(1− q)m)2

= 1− 1
q(1− q)m+ 1 .

From the above we get that whenever m ≥ 2
q(1−q)ε ,

Pr
(
Z ≥ 2cbm+ δ

cg + 2cb
|M = m

)
≥ 1− ε/2.
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Thus

Pr(C(t1)− C(t1) ≥ δ | N ≥ 1)

≥
∞∑

m= 2
q(1−q)ε

Pr
(
Z ≥ 2cbm+ δ

cg + 2cb
|M = m

)
Pr(M = m | N ≥ 1)

≥ (1− ε/2) Pr
(
M ≥ 2

q(1− q)ε | N ≥ 1
)

≥ (1− ε/2) Pr
(
S ≥ 4t1

q(1− q)ε | N ≥ 1
)

≥ (1− ε/2)2 > 1− ε.

Putting everything together, we have now shown that

lim
cg→∞

Pr(C(t1) > θ) = Pr(N ≥ 1) = 1− e−λ(0)t1 ,

lim
cg→∞

Pr(C(t1)− C(t1) ≥ δ | N ≥ 1) = 1.

From this it follows that

lim
cg→∞

Pr(C(t1) > θ) = Pr(N ≥ 1) = 1− e−λ(0)t1 .

The desired claim follows straightforwardly from this. In particular, if λ(0),
c∗g, c∗b , and µ∗ are fixed then Pr(C∗(t1) > θ) is thereby fixed as well. Moreover,
we know that Pr(C∗(t1) > θ) < 1 − e−λ(0)t1 since θ > 0 and Pr(C∗(t1) =
0) = eλ(0)t1 and Pr(0 < C∗(t1) < θ) > 0. Thus Pr(C∗(t1) > θ) is less
than the limiting value by some positive amount. For arbitrary fixed values
of c†b and µ†, the limiting result established above guarantees that we can
choose c†g large enough such that Pr(C†(t1) > θ) is closer to 1− e−λ(0)t1 than
Pr(C∗(t1) > θ). Thus, in particular,

Pr(C†(t1) > θ) > Pr(C∗(t1) > θ).
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