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Abstract

The Borel-Kolmogorov paradox is often presented as an obscure problem that cer-

tain mathematical accounts of conditional probability must face. In this paper, we

point out that the paradox arises in the physical sciences, for physical probability or

chance. By carefully formulating the paradox in this setting, we show that it is a

puzzle for everyone, regardless of one’s preferred probability formalism. We propose a

treatment which is inspired by the approach that scientists took when confronted with

these cases.

1 Introduction

A projectile is about to be launched at an obstacle. Suppose the collision is a chancy process,

such that X, the speed of the projectile right after impact, might range anywhere from zero
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to one meters per second, with each value equally likely. For instance, the probability of

fast, the event that X exceeds half a meter per second, is 1/2. At the same time, a second

projectile is to be launched toward another obstacle. The possible values of Y , the speed

of this projectile right after impact, also range from zero to one meters per second, with

each value equally likely. Suppose X and Y are causally and probabilistically independent.

Given this set-up, what is P (X > 1/2|X = Y )? In other words, what is the probability of

fast conditional on same speed?

A natural thought is that the probability of fast should not be affected by same speed :

P (X > 1/2|X = Y ) = P (X > 1/2) = 1/2. Perhaps you don’t share this thought, however,

and are unready to commit to an answer until you have performed some calculations. In

that case, you may still be willing to endorse the following weaker claim:

Uniqueness In this set-up, the physical probability of fast given same speed is well-defined

and determinable based on the information given above.1

In support of Uniqueness, note that fast and same speed are consistent, well-defined phys-

ical events. It would be odd to insist that there is no fact of the matter regarding the chance

of one given the other. Moreover, it seems we have fully specified the relevant probabilistic

and causal structure of the set-up. What further information is needed?2

Uniqueness is an attractive assumption. However, consider the following equally, if not

more, attractive claim:

Equivalence If B is necessarily equivalent to same speed, then the physical probability of

fast given B equals the probability of fast given same speed (if well-defined).3

The thought is that if A,B are necessarily equivalent then one cannot happen without the

1At least for now, we stay neutral on whether determinability is understood in a metaphysical sense
(e.g. supervenience) or an epistemic sense (e.g. derivability).

2To lend credence to the second clause, if P (X = Y ) > 0, then the probability of fast given same speed
is indeed determinable based on the information specified above.

3Here we have in mind nomological (or physical) necessity, though similar puzzles will arise even if we
strengthen to metaphysical or logical necessity.
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other, and so (for example) if the occurrence of A raises the chance of C, then the occurrence

of B must raise the chance of C, and vice-versa.

Unfortunately, Uniqueness and Equivalence are jointly untenable. Moreover, the

problem is not restricted to this case. The projectile example was designed to be math-

ematically simple, but there are less artificial examples where the same issue arises. Later

in the paper, we will see an example from statistical mechanics (Kac and Slepian, 1959).

Although this formulation in terms of physical probability and Uniqueness and Equiv-

alence is new, the mathematical aspect of this puzzle is familiar. It is a Borel-Kolmogorov-

type paradox, in which conditioning on the same event B, where P (B) = 0, seems to lead to

different values of P (A|B) depending on how B is ‘viewed’ (Kolmogorov, 1933; Rao, 1988).

How to interpret this phenomenon is a controversial question. For instance, Kolmogorov

suggests that this type of paradox “shows that the concept of a conditional probability with

regard to an isolated given hypothesis whose probability equals 0 is inadmissible”. Others

see the paradox as a problem internal to Kolmogorov’s probability formalism (Hájek, 2003;

Kadane et al., 1999; cf. Gyenis et al., 2017).

Why rehash this well-known paradox in the physical probability setting? We believe

the paradox gains new force and significance when considered in the context of the physical

sciences. After presenting the conflict between Uniqueness and Equivalence, we point out

that the paradox arises regardless of whether we use the standard Kolmogorov formalism

or axiomatize conditional probability directly. We also point out that the paradox has a

new urgency, because it calls into question the reliability of several of scientists’ probability

judgments. We then propose a way to make headway on resolving the paradox. The proposal

is inspired by the approach that scientists took toward an instance in statistical mechanics.
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2 Uniqueness and Equivalence

In this section we survey multiple methods for determining the probability of fast given same

speed and show that, given Equivalence, they each yield incompatible answers depending

on how they are applied, suggesting a conflict between Uniqueness and Equivalence.

2.1 Limits

In elementary probability theory, there is a standard method for computing conditional

probabilities given probability zero events, which we will call the limits method. Roughly

speaking, one calculates P (A|B) as the limit of P (A|Bn) where the Bn are an appropriately

chosen sequence of positive-probability events that converge to B.

Recall the projectile set-up above. The idea is to consider the positive probability event

that X is close to Y , |X−Y | ≤ ε, and then compute the limit of the conditional probability

as ε shrinks. Under our assumption that X and Y are independent and both uniformly

distributed, the calculation,

P (X > 1/2|X = Y ) = lim
ε→0

P (X > 1/2| |X − Y | ≤ ε)

= lim
ε→0

P (X > 1/2, |X − Y | ≤ ε)

P (|X − Y | ≤ ε)
,

yields 1/2, as expected. To see why, we can picture |X − Y | ≤ ε as a band of thickness ε

around the diagonal line X = Y , as shown in Figure 1a. The conditional probability of fast

given this event “close speed”, one takes the proportion of this band that overlaps with the

right-hand side of the square (the area corresponding to X > 1/2). By the symmetry of

the band, this proportion is clearly 1/2, and will stay at 1/2 as the thickness of the band

shrinks.

Crucially, however, different ways of quantifying the “closeness” between the two speeds

leads to different results when the same method is applied.4 We have considered whether the

4The mathematical backbone of this case is due to Lindley (1982) and Rescorla (2015).
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(a) |X − Y | ≤ ε. (b) |X/Y − 1| ≤ ε.

Figure 1: Two measures of closeness.

difference between the two recoil speeds is small, |X − Y | ≤ ε. But we might also consider

whether their ratio is almost 1, |X/Y − 1| ≤ ε. And if we instead consider the limit as this

ε shrinks, the calculation,

P (X > 1/2|X = Y ) = lim
ε→0

P (X > 1/2| |X/Y − 1| ≤ ε)

yields a value greater than 1/2. Why? Note that smaller speeds are less likely to have

smaller ratios (for instance, 0.01 and 0.001 have a ratio of 10, whereas 0.91 and 0.901 have

a ratio near 1), and so X/Y being small raises the probability X is large. The situation is

represented in Figure 1b. The lopsided band corresponds to the event |X/Y − 1| ≤ ε. The

proportion of the band that overlaps with the right-hand side is clearly greater than the

proportion that overlaps with the left-hand side.

Let’s make the tension between these two results more precise. On the one hand, defining

Z = X/Y , the limits method implies that:

1. P (X > 1/2| |X − Y | = 0) = limε→0 P (X > 1/2| |X − Y | ≤ ε) = 1/2, and

2. P (X > 1/2| |Z − 1| = 0) = limε→0 P (X > 1/2| |Z − 1| ≤ ε) > 1/2.

On the other hand, since X = Y is necessarily equivalent to |X − Y | = 0 and |Z − 1| = 0,
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Equivalence implies:

3. P (X > 1/2|X = Y ) = P (X > 1/2| |X − Y | = 0) = P (X > 1/2| |Z − 1| = 0).

And these three claims are inconsistent, assuming Uniqueness (in particular, assuming

P (X > 1/2|X = Y ) is well-defined).

Now, one might insist that the difference |X − Y | ≤ ε is the correct or more natural

way to quantify closeness. First note, though, that we do not always take difference as the

intuitive measure of closeness. Consider the population data of two counties C and D in years

1918 and 2018 shown in Table 1. The absolute difference between the populations is the

same in both years, but there is an intuitive sense in which the population of C is “closer”

to the population of D in 2018 than it was in 1918. Second, note that even if we grant

that absolute difference is the correct measure of closeness, whether the response succeeds

is sensitive to one’s choice of units. Imagine the Logarians are in every aspect like their

Earthian counterparts, except that they measure lengths in logameters rather than meters,

and speeds in logameters per second rather than meters per second. The Logarians might

agree that absolute difference is the natural measure of closeness. However, because of their

choice of scale, they will judge two speeds as close in absolute difference whenever we judge

them as close in ratio. For the Logarians, the closer the two speeds are stipulated to be, the

more likely it is for them to be fast. And so in the limit, when two speeds are so close that

they are equal, the current method will yield the verdict that the probability of X > 1/2 is

greater than 1/2. In fact, by choosing a suitable rescaling in units, one can make the limiting

conditional probability any value one wants (Arnold and Roberston, 2002).

1918 2018
C 10 100
D 20 110

Table 1: Population of C and D by year.
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2.2 Independence reasoning

Examining the limits method and reflecting on its failure, it seems it does not make full use of

a key piece of information about the set-up, namely that X and Y are both probabilistically

and causally independent. Perhaps these independence features can allow us to determine

that the answer is 1/2 without Equivalence raising trouble.

As a first attempt, one might propose the following principle:

Naive Independence If two physical quantities X and Y are causally and probabilistically

independent of each other, then the chance that X takes a specific value or range of

values is unaffected by whether or not Y happens to sync up with X. In particular,

for any x, the probability of X > x given X = Y equals the unconditional chance of

X > x.

Since X is causally and probabilistically independent of Y in the projectile scenario, Naive

Independence yields P (X > 1/2|X = Y ) = P (X > 1/2) = 1/2 as desired.

As the name suggests, however, Naive Independence is false. It even gives the wrong

verdict in simple finite cases. Imagine Jonny tosses a coin with bias a on the North Pole and

Donny tosses a coin with bias b on the South Pole, where the two coin tosses are causally and

probabilistically independent of one another. Let heads denote the event that Jonny’s coin

lands heads, and let same side denote the event that Jonny and Donny’s coins land on the

same side. The unconditional chance of heads is a. What is the probability of heads given

same side? The Independence Principle entails the answer is a. But suppose, for example,

a = b = 0.6. Then:

P (heads|same side) =
P (heads & same side)

P (same side)
=

0.62

0.62 + 0.42
> 0.6.

In general, one can check that P (heads|same side) = P (heads) if and only if Donny’s coin is

unbiased (b = 0.5). Intuitively, this is because if Donny’s coin is biased towards heads (tails),

then same side means it is more likely that Jonny’s coin lands heads (tails). An upshot here
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is that causal and probabilistic independence of physical quantities is not always a direct

guide to conditional chances involving those quantities.

Nevertheless, the observation that heads is independent of same side when Donny’s coin

is unbiased also suggests a charitable amendment to Naive Independence. Crucially, in the

projectile example, Y is uniformly distributed, not ‘biased’ toward low or high speeds. At

least in that special case, the thought goes, the occurrence or truth of X = Y should not

affect the probability of X ≥ x:

Independence Principle If two physical quantities X and Y are causally and probabilistically

independent of each other, have the same (marginal) distribution and are uniformly

distributed over their support,5 then the distribution of X is unaffected by whether or

not X happens to sync up with Y . In particular, for any x the chance of X > x given

X = Y equals the unconditional chance of X > x.

This principle also implies the desired verdict of 1/2 in the projectile case. And it fares much

better than Naive Independence. Indeed, one can prove that if chances are probabilities that

satisfy the standard Kolmogorov axioms, then the principle is true whenever P (X = Y ) > 0:

Fact 1. Suppose X and Y are probabilistically independent with identical, uniform distribu-

tions. If P (X = Y ) > 0, then P (X > x|X = Y ) = P (X > x) for any x.

It would be very odd, one might think, if the Independence Principle were false only if

P (X = Y ) = 0. Intuitively, the truth of this principle should not be sensitive to the chance

of X = Y .

Remarkably, though, trouble looms even for this revised principle. First notice that

analogous reasoning supports the following dependence principle:

Dependence Principle If two physical quantities W and V are causally and probabilistically

independent of each other, have the same (marginal) distribution and are not uniformly

5The support of a real-valued random variable X is the set {x ∈ R : P (X ∈ B(x, r)) > 0 for all r > 0}
where B(x, r) denotes the ball with radius r centered at x.
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distributed over their support, then there exists a w such that the probability of W > w

given W = V does not equal the unconditional chance of W > w.

Indeed, one can prove that this principle is also true in the case where P (W = V ) > 0:

Fact 2. Suppose W and V are probabilistically independent and have the same (marginal)

distribution, and are not uniform over their support. If P (W = V ) > 0, then there is an w

such that P (W > w|W = V ) 6= P (W > w).

However, now we can derive a conflict, as follows. Consider the quantities EX = 1
2
mX2

and EY = 1
2
mY 2 which represent the kinetic energy of the projectiles after impact, where we

suppose the two projectiles have the same mass m. Note that EX and EY are not uniformly

distributed and, more generally, they satisfy the conditions of the Dependence Principle,

with W = EX and V = EY . Thus, by the Dependence Principle,

1. There exists an a such that P (EX > a|EX = EY ) 6= P (EX > a).

On the other hand, by the Independence Principle:

2. For all x, P (X > x|X = Y ) = P (X > x).

But since X >
√

2a
m
⇔ EX > a, and EX = EY ⇔ X = Y , Equivalence implies:

3. P (X >
√

2a
m
|X = Y ) = P (EX > a|EX = EY ).

Again these three claims are inconsistent assuming Uniqueness, in particular assuming the

conditional probabilities are well-defined. To see this, note that P (X >
√

2a
m

) = P (EX > a),

so if P (EX > a|EX = EY ) 6= P (EX > a) then P (X > x|X = Y ) 6= P (X > x) for some x.

2.3 Other methods

There are other methods to derive P (X > 1/2|X = Y ) = 1/2 that one might attempt. For

instance, consider the discretization method. Unlike the limits method, which considers

|X − Y | ≤ ε as ε shrinks, the discretization method begins by modeling the projectile
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speeds as discrete quantities X̃n and Ỹn with n distinct possible values, and then taking

limn→∞ P (X̃n > 1/2|X̃n = Ỹn).

However, as one might predict, this method yields different results depending on how the

quantities are discretized. For example, depending on whether we discretize state space into

increments of equal speed or increments of equal kinetic energy, we get different results even

in the limit.

We need not belabor the point. Reflecting on all these cases, Uniqueness and Equiva-

lence seem in conflict. Crucially, this is not to say there is no good argument for the answer

of 1/2. Perhaps there are good reasons to discretize X in a certain way, or to take the

difference approximation |X − Y | ≤ ε rather than the ratio. Our point is simply that such

arguments would plausibly have to appeal to physical considerations beyond those supplied

in the specification of the chance set-up. It seems doubtful that the physical probability of

fast given same speed supervenes on, or can be determined from, only the facts about X, Y

and the situation that were explicitly provided. And this is what Uniqueness requires.

3 Is the formalism to blame?

It is tempting to chalk up the puzzles and difficulties of the last section to a limitation of our

mathematical representation, and in particular a limitation of standard Kolmogorov prob-

ability theory, according to which conditional probabilities are defined derivatively rather

than axiomatized directly. As Gyenis et al. (2017, p. 2595) write, “According to [a certain

popular view], the Borel–Kolmogorov Paradox poses a serious threat for the standard mea-

sure theoretic formalism of probability theory, in which conditional probability is a defined

concept, and this is regarded as justification for attempts at axiomatizations of probability

theory in which the conditional probability is taken as the primitive rather than a defined

notion.” Proponents of this view include Kadane et al. (1999), who see the paradox as a de-

fect of Kolmogorov’s theory (224–5, notation adapted): “The seeming contradiction is often
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resolved by claiming that the transformation of variables only yields conditional probability

given the sigma field of events determined by the random variable [...] not given individ-

ual events in the sigma field. This approach is unacceptable from the point of view of the

statistician who, when given the information that X = Y has occurred, must determine the

conditional distribution of X.”

We think this view is mistaken for two reasons. First, the tension between Uniqueness

and Equivalence is formalism-neutral. It exists insofar as one grants that P (A|B) equals

the limit of P (A|Bn), or that both the Independence Principle and the Dependence Principle

are true. And these principles seem attractive even if one takes conditional probability to

be primitive rather than derivative.

Second, none of the existing alternative probability formalisms really solve the puzzle,

conceptualized as a tension between Uniqueness and Equivalence. For instance, in the

projectile example, if we model P (·|·) as a primitive two-place function (as in Popper (1959)

and Rényi (1955)), then there will be many P (·|·)’s that are compatible with the set-up, but

differ on the value assigned to P (X > 1/2|X = Y ). In fact, one can prove that for any answer

obtained from the limits method discussed in Section 2.1, there exists a Popper function P (·|·)

which yields that answer and is otherwise consistent with the set-up.6 Similarly, if we allow

P to range over infinitesimals in addition to positive reals between 0 and 1, then the value of

P (X > 1/2|X = Y ) typically depends on the choice of ultrafilters that specify how to sum up

infinitesimal probabilities.7 In general, these non-standard formalisms do not solve whether

P (X > 1/2|X = Y ) = 1/2; they agree that this question can only be answered with respect

to an appropriate Φ, where Φ is a primitive conditional probability function, an ultrafilter,

a limiting procedure, a conditioning sigma-field, etc., but they leave open how a particular

choice of Φ can be justified.8

6This follows from a result due to Dubins (1975).
7See for example Benci et al. (2012).
8That being said, one’s choice of formalism is not entirely irrelevant to the paradox. Different formalisms

may fit more or less naturally with certain approaches to resolving the paradox. Kolmogorov’s formalism,
for example, lends itself very naturally to approaches that reject Equivalence, whereas if one models
probabilities using primitive conditional probability functions, Equivalence follows as a theorem of their
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4 The urgency of the paradox

We have been arguing that the paradox is formalism-neutral, and in this sense, even if

you don’t ascribe to the Kolmogorovian formalism, “the Borel-Kolmogorov paradox is your

paradox too” (cf. Hájek (2007)). But it is worth mentioning that even if you doubt this

conclusion, the paradox should still concern you for a further reason.

Scientists use the standard formalism. They use the formalism to represent continuous

chancy quantities and, crucially, to infer claims about conditional probabilities involving

those quantities. For example, Sauve et al. (1999) consider a gamma ray shot toward an

obstacle and allowed to scatter. They ask for the probability that the ray’s out-of-plane

scatter angle φ is greater than a, given that the ray’s Compton scatter angle θ equals b, and

reason from the premise that φ and θ are independent to the answer P (φ > a|θ = b) =

P (φ > a), which they then use in further calculations. However, our discussion in Section 2

casts into doubt the reliability of this independence-based reasoning. Thus a question arises

whether to try to recover the scientists’ judgment, or to somehow explain away the role of

these conditional probabilities in the model, not only in this case but also many other cases

where theorists and practitioners apply the methods from Section 2. We think discarding

the judgments is a last resort, so we should explore strategies for resolving the paradox that

might vindicate them.

5 Toward a resolution

Since Uniqueness and Equivalence conflict, the first step in a proposed resolution to the

paradox is to reject at least one of these premises.

We think that rejecting Equivalence is a last resort. In the setting of rational cre-

dence, Cr(A|B) may plausibly differ from Cr(A|B′) even when B and B′ are metaphysically

necessarily equivalent. This may happen, for instance, if rational credence is sensitive to

axioms.
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intensional or hyperintensional differences; for example, our credences conditional on Hespe-

rus is Phosphorus may differ from our credences conditional on Phosphorus is Phosphorus.9

However, we find this kind of failure of Equivalence much less plausible in the case of phys-

ical probability. Physical probability, it seems, should not be sensitive to intensional and

hyperintensional differences, at least not in ordinary scenarios like the projectile example.

We propose instead rejecting Uniqueness, and in particular the determinability clause.

In the projectile scenario, while there is a single true value of the physical probability

P (X > 1/2|X = Y ) which does not change depending on how X = Y is viewed or repre-

sented, this value is not determinable from the information provided. Either P (X > 1/2|X = Y )

taking the value it does is a primitive matter or, more plausibly, it takes the value it does in

virtue of physical features of the chance set-up that were not explicitly specified.10

What kind of physical features could those be? On our treatment, this is the central

question. While we do not have a general answer to this question, we think an example from

statistical mechanics (Kac and Slepian, 1959) offers us an important clue. We conclude the

paper by examining this case.

Consider a particle whose trajectory is a Gaussian process {x(t)}t∈R. In particular, fixing

a time t, the displacement x(t) follows a Gaussian distribution with a mean of 0 meters and

a standard deviation of, say, 1 meter from the origin. Let v(t) denote the velocity of the

particle at t, which we suppose also follows a Gaussian distribution and is independent

of x(t). Given this set-up, what is P (v(0) > 1/2|x(0) = a)? In other words, what is the

9Rescorla (2015) analyzes the Borel-Kolmogorov paradox in the subjective setting, and pursues this kind
of idea.

10A related treatment of the paradox is the ‘relativization’ approach (Kolmogorov, 1933; Jaynes, 2003;
Easwaran, 2008; Gyenis et al., 2017). The idea is that conditional probability is a three-place relation; the
probability of A given B is always relativized to a sigma-field that represents some “hypothetical experiment”
from which B is drawn. Our proposal goes beyond this approach in two respects. First, while we think
conditional (physical) probabilities are sensitive to contextual information about the chance set-up, we are
agnostic here about (i) whether this information is exhausted by information about the experiment, if there
is one, and (ii) whether it can always be mathematically represented as a sigma-field of events. Second, as
Rescorla (2015) points out, the relativization approach does not “explain why conditional probabilities are
relativized” but merely “stipulates that they are”. Our proposal gives a partial explanatory story: as one
might expect, physical probabilities are sensitive to physical features of the chance set-up; what the paradox
shows is that these features may not always be fully specified in textbook toy examples.
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(a) Vertical window. (b) Horizontal window.

Figure 2: The vertical and horizontal windows.

probability that the particle is fast at t = 0, given it is located at point a?

Independence considerations yield the answer:

P (v(0) > 1/2|x(0) = a) = P (v(0) > 1/2) ≈ 0.31.

This is equivalent to the answer we obtain by fixing the time t = 0, and the considering the

limit as x(0) gets closer to the point a:

lim
ε→0

P (v(0) > 1/2| |x(0)− a| ≤ ε) = P (v(0) > 1/2) ≈ 0.31.

This procedure, depicted in Figure 2a, is called taking the ‘vertical window’.

However, suppose instead we consider the ‘horizontal window’ where we hold fixed the

point a, and consider a shrinking interval of time toward t = 0 (Figure 2b):

lim
ε→0

P (v(0) > 1/2|x(t) = a for some t ∈ [−ε, 0]) ≈ 0.47.

This second procedure yields a different answer, similarly to the situation in Section 2.

So far, these findings parallel our earlier findings in the projectile case. However, in this
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case there is a more obvious physical consideration that breaks the stalemate between these

two answers—and surprisingly, not in favor of the independence-based verdict. The consid-

eration is that the process governing the particle is ergodic. Roughly speaking, ergodicity

means the probabilistic properties of the process x(t) can be deduced from its frequency

properties in a relevant time ensemble. It turns out that the horizontal window procedure is

the only one that respects this equality between the probability and time ensemble limiting

frequency. As Cramér and Leadbetter (2004, p. 221) write (notation adapted):

Further, one of the main properties which we shall require in many cases is that

the conditional probability function should admit an appropriate interpretation

in terms of a limit of relative frequencies. In the simple example given above,

suppose that ti denotes the time points in (0, T ) at which crossings of the level

a [by the variable x] occur. Then, one may wish to show that the proportion

of those ti for which v(ti) > 1/2 converges (with probability one) to P (v(0) >

1/2|x(0) = a) as T → ∞, under an appropriate definition of the conditional

probability. The definition to be given will be such that “ergodic properties”

of this nature may be demonstrated under appropriate conditions. Specifically,

suppose we replace the conditioning event a− ε < x(0) ≤ a in P (v(0) > 1/2|a−

ε < x(0) ≤ a) by the event “x(t) = a for some t in the interval [−ε, 0].” A

conditional probability P2(v(0) > 1/2|x(0) = a) may then be defined by [the

horizontal window definition above].

Granted, these specific considerations will not generalize to all chancy processes where the

paradox arises. But it is a useful illustration of how, rather than rejecting Equivalence, we

might appeal to further physical features of the chance set-up to determine the answer. The

example also serves to further illustrate that the paradox discussed in this paper, concerning

the conflict between Equivalence and Uniqueness, is not just a contrived mathematical

puzzle. It arises in routine scientific modeling, and should be taken seriously.
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A Proofs

To prove Fact 1, we use the following lemma:

Lemma 1. Let X and Y be two random variables that are independent and identically

distributed. Let P be a countably additive probability function. If P (X = Y ) > 0, then both

X and Y are discrete random variables that only take on finitely many values.

Proof of Lemma 1. Since Y is uniformly distributed, it cannot be neither discrete nor con-

tinuous, for then there are y, y′ such that P (Y = y) > 0 but P (Y = y′) = 0. We claim

that Y must be discrete. Suppose toward contradiction that Y is continuous, i.e. for all

y in the range of Y , P (Y = y) = 0. There are two cases: either X is continuous, or it

is not. Suppose X is continuous. Let Z = X − Y . Then Z is a continuous variable. So

P (Z = 0) = P (X = Y ) = 0, which contradicts the assumption that P (X = Y ) > 0. Sup-

pose X is not continuous. Let A = {w : P (X = x) > 0}, i.e. A is the discrete component

of X. Let Z1 = Z · 1X∈A (the conditional variable that equals Z on the set X ∈ A, and 0

otherwise). Let Z2 = Z ·1X 6∈A. Then P (Z = 0) = P (Z1 = 0)+P (Z2 = 0). Since both X and

Y are continuous on the set X 6∈ A, Z2 is a continuous variable. So P (Z2 = 0) = 0. On the

other hand, P (Z1 = 0) =
∑

x∈A P (X = x, Y = x) =
∑

x∈A P (X = x)P (Y = x) = 0 since

P (Y = x) = 0 for all x ∈ A. So P (Z1 = 0) = 0. But then again we have a contradiction

with P (Z = 0) = P (X = Y ) > 0. Therefore Y cannot be continuous. Since a distribution

that is neither discrete nor continuous cannot be uniform, it follows that Y (and therefore

X) must be discrete. Moreover, since Y is uniform and P is countably additive, both X and

Y can only take on finitely many values.

Proof of Fact 1. Let X, Y be two independent random variables with identical, uniform

marginal distributions. Suppose P (X = Y ) > 0. By Lemma 1, both X and Y are discrete.

Thus, to show that P (X > x|X = Y ) = P (X > x), it suffices to show that P (X = x|X =

Y ) = P (X = x) for all x. Clearly if P (X = x) = 0, then P (X = x|X = Y ) = 0 = P (X = x).
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Suppose P (X = x) = P (Y = x) = α > 0. Then

P (X = x|X = Y ) =
P (X = x,X = Y )

P (X = Y )
=

P (X = x, Y = x)∑
x′ P (X = x′, Y = x′)

=
αP (X = x)

α
∑

x′:P (X=x′)>0 P (X = x′)
= P (X = x),

as claimed.

Proof of Fact 2. For each interval (a, b], we have

P (a < W ≤ b|W = V ) =
P (a < W ≤ b,W = V )

P (W = V )
≤ P (a < W ≤ b, a < V ≤ b)

P (W = V )

=
P (a < W ≤ b) · P (a < W ≤ b)

P (W = V )
= P (a < W ≤ b) · P (a < W ≤ b)

P (W = V )
.

We consider two cases: either there is (a, b] such that 0 < P (a < W ≤ b) < P (W = V ), or

there is not. In the first case, for that (a, b], if P (W > b|W = V ) 6= P (W > b), then we are

done. If (W > b|W = V ) = P (W > b), then P (a < W ≤ b|X = Y ) < P (a < W ≤ b). So

P (W > a|W = V ) = P (a < W ≤ b|W = V ) + P (W > b|W = V )

< P (a < W ≤ b) + P (W > b)

= P (W > a).

Now suppose that for all intervals (a, b], P (a < W ≤ b) equals 0 or is greater than

P (W = V ). This implies that W is discretely distributed, with its atoms at least of weight

P (W = V ).11 Since W and V are identically distributed, the same holds for V . Now since

V is not uniform over its support, there are v, v′ such that P (V = v) > P (V = v′) where

11Proof. It suffices to show that X has a countable support. Suppose towards a contradiction that the
support of W is uncountable. Then there exists w in the support of W such that P (W = w) = 0 but for
all r, P (W ∈ B(x, r)) > 0. It follows that there is r such that 0 < P (W ∈ B(x, r)) < P (W = V ). Let
(a, b] = [w − r, w + r]. Then. 0 < P (a < W ≤ b) < P (W = V ), contradicting our assumption that for all
(a, b], P (a < W ≤ b) = 0 or P (a < W ≤ b) > P (W = V ).
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both these events have positive probability. Thus

P (W = v′|X = Y )

P (W = v|X = Y )
=
P (W = v′, V = y′)

P (W = v, V = v)
=
P (W = v′)P (V = y′)

P (W = v)P (V = v)

=
P (W = v′)

P (W = v)
· P (V = v′)

P (V = v)
<
P (V = v′)

P (V = v)
,

and so either P (W = v|V = V ) 6= P (W = v) or P (W = v′|W = V ) 6= P (W = v′) or both.

Since a change in W ’s posterior distribution implies a change in its cdf, there must exist an

x which satisfies the desired condition.
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