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Bases for Structures and Theories I

Jeffrey Ketland

Abstract. Sometimes structures or theories are formulated with differ-
ent sets of primitives and yet are definitionally equivalent. In a sense,
the transformations between such equivalent formulations are rather like
basis transformations in linear algebra or co-ordinate transformations in
geometry. Here an analogous idea is investigated. Let a relational signa-
ture P = {Pi}i∈IP be given. For a set Φ = {φi}i∈IΦ of LP -formulas,
we introduce a corresponding set Q = {Qi}i∈IΦ of new relation sym-
bols and a set of explicit definitions of the Qi in terms of the φi. This
is called a definition system, denoted dΦ. A definition system dΦ deter-
mines a translation function τΦ : LQ → LP . Any LP -structure A can be
uniquely definitionally expanded to a model A+ |= dΦ, called A + dΦ.
The reduct A+dΦ to the Q-symbols is called the definitional image DΦA
of A. Likewise, a theory T in LP may be extended a definitional exten-
sion T + dΦ; the restriction of this extension T + dΦ to LQ is called the
definitional image DΦT of T . If T1 and T2 are in disjoint signatures and
T1+dΦ ≡ T2+dΘ, we say that T1 and T2 are definitionally equivalent (wrt
the definition systems dΦ and dΘ). Some results relating these notions are
given, culminating in two characterization theorems for the definitional
equivalence of structures and theories.

Mathematics Subject Classification. Primary 03C07; Secondary 03C95.

Keywords. Definitional equivalence, Theories, Definability.

1. Introduction

Sometimes theories are formulated with different sets of primitives and yet are
definitionally equivalent. The non-logical primitives of a formalized language L
are called its signature. There are many examples of theories (often involving
formalized systems of arithmetic and set theory) formulated in very differ-
ent signatures, which are nonetheless “equivalent”. To take a simple example,
consider the theory T1 of a reflexive relation:

T1 : ∀xP (x, x),
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expressed with a binary relation symbol P . Suppose we introduce a new binary
relation symbol, Q, and give an explicit definition of it—call this definition
d1—in terms of P as follows:

d1 : ∀x∀y(Q(x, y) ↔ (P (x, y) ∧ x �= y)).

Call the extended theory T1 + d1. Then T1 + d1 � ∀x¬Q(x, x).
Let T2 be the theory saying that Q is an irreflexive relation:

T2 : ∀x¬Q(x, x).

Consider following “inverse definition” of P in terms of Q, call it d2:

d2 : ∀x∀y(P (x, y) ↔ (Q(x, y) ∨ x = y)).

Call the extended theory T2 + d2. Then T2 + d2 � ∀xP (x, x). Moreover, we
have:

T1 + d1 � d2 and T2 + d2 � d1.

These two theories, T1 and T2, are in fact equivalent with respect to these
definitions. That is, T1 + d1 and T2 + d2 are logically equivalent :

T1 + d1 ≡ T2 + d2.

We say that T1 and T2 have a “common definitional extension” and are there-
fore “definitionally equivalent” (see Definition 27 below).

As the reader may have guessed, this example derives from the standard
mathematical method of passing between a non-strict preorder ≤ and its cor-
responding strict preorder <: they may be defined in terms of each other. To
put the above in the more standard notation:

{∀x(x ≤ x),∀x∀y(x < y ↔ (x ≤ y ∧ x �= y))}
≡ {∀x¬(x < x),∀x∀y(x ≤ y ↔ (x < y ∨ x = y))}.

In effect, the explicit definitions d1 and d2 are “mutual inverses”. This
notion will play a major role later.

Moving on to increasingly sophisticated examples, there are equivalent
reformulations of Peano arithmetic PA with different primitives from the usual
signature {0, S,+,×}. For example, one might take exponentiation as the sin-
gle basic notion, along with certain axioms for exponentiation, along with
explicit definitions for 0, S,+ and × (along with induction). The result is
equivalent to PA.

As is well-known, one can interpret a modification we shall call ZF0 of
ZF set theory, obtained by removing the axiom of infinity, adding its negation,
along with an additional axiom of “transitive containment”, into PA. Moreover,
the inverse of this interpretation interprets PA into ZF0.1 So PA is definitionally
equivalent to the theory of finite sets ZF0.

1A detailed analysis and proof of this “mathematical folklore” result is given in Kaye and

Wong [13], who show that there exist translation functions between PA and ZF0 which are
mutual inverses (Theorem 20 of their paper). A fairly detailed discussion of the equivalence
of Peano arithmetic and finite set theory ZF0 may also be found in the lecture notes Andréka
and Németi [2], pp. 41–45.
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A similar relationship holds between the theory of formalized syntax and
PA. Suppose SA is the theory of concatenation for strings from alphabet A, with
|A| ≥ 2, and with the appropriate induction principle. Then SA is definitionally
equivalent to PA.2

There are other examples—from mathematics, logic and philosophy of
science.3 To return to the broader point, the transformations between such
equivalent formulations are rather like “basis transformations” in linear algebra
and other parts of mathematics. In this paper and the follow-up, an analogous
idea is investigated.4

2. Syntax, Structures and Theories

Throughout, everything we consider is 1-sorted, relational and first-order.

Definition 1. Let P = {Pi}i∈I be a set and let a : P → N. The pair S = (P, a)
is called a one-sorted signature, and a is called the arity function for S. The
multiset t = (a(Pi) | Pi ∈ P ) is called the similarity type of the signature S.
If a(Pi) = 0, then Pi is called a sentence letter (or a propositional atom). The
alphabet of S is P .

Definition 2. (P c, ac) is a copy of (P, a) iff the similarity types of (P, a) and
(P c, ac) are the same. (P c, ac) is a disjoint copy of (P, a) when, in addition,
P ∩ P c = ∅.

Definition 3. LP is the first-order language over the signature S = (P, a),
where each symbol Pi is a primitive relation symbol of arity a(Pi). We will
sometimes call LP “the P -language”.

2A weak theory of concatenation without the induction principle is now usually called TC
(Grzegorczyk [8]), and the precise interpretability relationship of TC and Robinson arith-
metic Q has recently been clarified. Although similar systems had been studied before (Quine
[15]; Tarski et al. [17]), the undecidability of TC is demonstrated in Grzegorczyk [8]; in Grze-
gorczyk and Zdanowski [9], the essential undecidability of TC is demonstrated through an
interpretation of TC into Robinson arithmetic Q. Subsequently, Visser and Sterken [18],

Ganea [7] and Švejdar [16] demonstrated the interpretability of Q into TC.
3As another example, there is the theory CEM, of “classical extensional mereology”, in a
language with basic binary relation symbol � (x � y means “x is part of y”). There is a
definitionally equivalent theory I shall call F (for “fusions”) with a basic binary operation
symbol ⊕ (where x ⊕ y can be read “the fusion of x and y”). The detailed formulation and
proof of definitional equivalence are given in Ketland and Schindler [12].
4Often, we have translations/interpretations T1 → T2 and T2 → T1, for theories which
appear, on the surface, to be quite different. But it is not automatically true that T1 and
T2 are definitionally equivalent: the translations involved must be mutual inverses of each
other. (See our Theorem 2 below.) A valuable discussion of this point, and a criterion for it to
hold, is Friedman and Visser [6], who show that when two theories are “bi-interpretable via
identity-preserving interpretations”, then they are definitionally equivalent (Sect. 5 of their

paper). Moreover, they give an example of two finitely axiomatized sequential theories that

are bi-interpretable but not definitionally equivalent (Sect. 7 of their paper). An example
of a pair of theories which “define each others’ models” but which are not definitionally
equivalent is given in Andréka et al. [1].
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Definition 4. Let

Φ = {φ1, . . . } = {φi}i∈IΦ

be a set of LP -formulas, which will be called defining formulas. Given the φi,
a corresponding set

Q = {Qi}i∈IΦ

of new relation symbols Qi is introduced, such that the arity of each Qi matches
the arity of its corresponding φi. The new language LQ will sometimes be called
“the Q-language”. The combined language is then called LP,Q.

A theory T in L is a set of L-sentences. When we require deductive
closure, we say so. We use a deductive system such that, if Δ � α, then
Δ � ∀xα, so long as x doesn’t appear free in any formulas in Δ.5 T � α means:
there exists a derivation of α from the axioms/rules of T . An L-structure A will
always interpret all variables. So, we can always write A |= α, even where α has
free variables, since A will assign a value xA to each variable x ∈ FV(α).6 The
Completeness Theorem holds in the usual form: Δ � α iff, for any A |= Δ, A |=
α. A theory T in LP is said to be deductively closed iff, for all α ∈ Sent(LP ),
if T � α, then α ∈ T . The deductive closure of T (written DedCl(T )) is
{α ∈ Sent(LP ) | T � α}.

So far as I can tell, nothing in this paper uses either proof theoretic
methods or model theoretic methods beyond what is taught at intermediate
logic.7 We do introduce specific new terminology for the following notions:

Definition systems dΦ.
Definitional expansions/extensions A �→ A + dΦ and T �→ T + dΦ.
Definitional image operator A �→ DΦA and T �→ DΦT .
Definitional equivalence A

Φ←→
Θ

B and T1
Φ←→
Θ

T2.

Definition 5. A structure A for the language LP specifies a non-empty domain,
dom(A); and interprets each variable x of LP as an element xA ∈ dom(A);
and interprets each n-ary relation symbol Pi as a n-ary relation (Pi)A ⊆
(dom(A))n.

Definition 6. Given signature P , let P c be a disjoint copy of P . Let A be an
LP -structure. Then the disjoint copy Ac of A in LP c is defined by setting
dom(Ac) = dom(A) and, for each Pi, setting (P c

i )Ac

= (Pi)A. Let T be an
LP -theory. Then the disjoint copy T c of T in LP c is defined by replacing every
occurrence of Pi, in any sentence in T by the new symbol P c

i .

5The deductive system I usually have in mind is the Hilbert system set out in Machover [14]
or in Enderton [5].
6For any variable x, the denotation of x in A is xA. We define Ax

a to be the structure just

like A, except that, for the variable x, we have xAx
a = a.

7The terminology and definitions we use largely follow those of Machover [14], Hodges [10],
or Enderton [5].
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We may next give inductive definitions of the denotation function t �→ tA

(specifying what any term t in LP refers to in A) and the satisfaction relation
|= between A and LP -formulas.

Definition 7. If A1 and A2 are LP -structures, then an isomorphism

f : A1 → A2

is a bijection from dom(A1) to dom(A2) satisfying the preservation condition
that f [(Pi)A1 ] = (Pi)A2 , for each relation symbol Pi in the signature P . This
is written

A1

f∼= A2

(or simply A1
∼= A2 if the isomorphism is left implicit).

Definition 8. If A is an LP -structure and T, T1, T2 are sets of LP -sentences:

(1) ThLP
(A) := the set of LP -sentences true in A.

(2) A |= T := for all α ∈ T , A |= α.
(3) ModLP

(T ) := the class of LP -structures A |= T
(4) T1 ≡ T2 := Mod(T1) = Mod(T2).
(5) T1 � T2 := for all α ∈ T2, T1 � α.

ThLP
(A) is called Th(A) if it’s clear from context what language is involved.

Likewise, ModLP
(T ) is called Mod(T ) if it’s clear from context what language

is involved.

If T1 and T2 are deductively closed theories, then T1 � T2 iff T2 ⊆ T1.
The Completeness Theorem tells us that T1 ≡ T2 iff T1 � T2 and T2 � T1.

Definition 9. Let A be an LP -structure and A+ be an LP,Q-structure. Then
A+ is an expansion of A iff for all Pi, (Pi)A+

= (Pi)A. This is equivalent to
saying that A is a reduct of A+. If A+ is an LP,Q-structure, its reduct to P is
denoted A+ �P (an LP -structure) and its reduct to Q is denoted A+ �Q (an
LQ-structure) and we have: (Pi)A+�P = (Pi)A+

and (Qi)A+�Q = (Qi)A+
.

The central property of expansions is that the truth value of a formula
in the smaller language LP remains invariant as we pass from an LP -structure
to an expanded structure for LP,Q: if α ∈ LP and an LP,Q-structure A+ is an
expansion of an LP -structure A, then A+ |= α iff A |= α.

Definition 10. A theory T+ is an extension of T iff T is a subset of T+. Let
signatures P,Q, and corresponding languages LP , LQ and LP,Q be given. An
extension T+ in LP,Q of T in LP is called a conservative extension of T with
respect to LP -formulas iff, for any LP -formula α,

T+ � α ⇒ T � α
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3. Definition

Definition 11. Given the set Φ = {φi}i∈I of LP -formulas, we introduce a dis-
joint set Q = {Qi}i∈I of new relation symbols, with card Q = card Φ, and with
the arity of Qi matching the arity of φi, and let ni be a(φi). The definition
system over Φ, which we write as,

dΦ

is the set of explicit definitions,

∀x1 . . . xni
(Qi(x1, . . . , xni

) ↔ φi)

where {x1, . . . xni
} = FV(φi). These define the new symbols Qi in terms of

the LP -formulas φi. We shall sometimes write ∀x(Qi(x) ↔ φi) instead of
∀x1 . . . xn(Qi(x1, . . . , xn) ↔ φi).8

Definition 12. If A is an LP -structure and φ(x1, . . . , xn) is an LP -formula,
then

φ(A) := {(a1, . . . , an) ∈ (dom(A))n | A |= φ[a1, . . . , an]}
is the relation that φ defines in A.

Definition 13. An LP,Q-structure A+ is a definitional expansion of an LP -
structure A with respect to the definition system dΦ just if A+ is an expansion
of A interpreting each Qi, and A+ |= dΦ. This ensures that (Qi)A+

= φi(A+),
for each Qi.

Given any LP -structure A, it is clear that there is a unique definitional
expansion A+ |= dΦ. We introduce the following notation for this expansion:

Definition 14. A + dΦ := the unique definitional expansion A+ |= dΦ.

We are going to treat the definitional expansion map

A �→ A + dΦ

as a unary operator +dΦ (indexed by Φ), taking us from LP -structures to
LP,Q-structures. It is clear that it is well-defined (i.e., unique, given Φ). It also
satisfies the following useful “right cancellation” law (this amounts, in essence,
to taking a reduct):

Lemma 1. If A1 + dΦ
∼= A2 + dΦ then A1

∼= A2.

Definition 15. A relation symbol Pi in the signature P is explicitly definable
in T just if

T � Pi(x) ↔ θ

for some formula θ in the language of the subsignature P\Pi. We say that θ
is a defining formula for Pi in T .

8As explained below, dΘ will be an abbreviation for the set of definitions of the form
∀x(Pi(x) ↔ θi), where the θi are LQ-formulas.
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Definition 16. A relation symbol Pi in the signature P is implicitly definable
in T in LP just in case, given any pair of models A,B |= T , with dom(A) =
dom(B) and which assign the same extension to all Pj except Pi, we have
(Pi)A = (Pi)B .

Beth’s Theorem states that a relation symbol Pi is implicitly definable
in T iff Pi is explicitly definable in T .9

Definition 17. Given a definition system dΦ, the definitional extension of T
wrt Φ is T + dΦ. We say that T+ in LP,Q is a definitional extension of T in
LP just if

T+ ≡ T + dΦ,

for some definition system dΦ, where Φ is some set of LP -formulas.

So, each new relation symbol Qi is explicitly defined in T + dΦ and the
defining formula for Qi(x) is simply φi. Analogous to what we did with struc-
tures, we are going to treat the definitional extension map

T �→ T + dΦ

for theories as a unary operator +dΦ (indexed by Φ), taking us from LP -
theories to LP,Q-theories. Again, it is well-defined (i.e., unique, given Φ) and
satisfies an analogous “right cancellation” law for LP -theories:

Lemma 2. The following are straightforward consequences of the definitions:

(1) If T1 + dΦ ≡ T2 + dΦ then T1 ≡ T2.

(2) A |= T iff A + dΦ |= T + dΦ.

(3) If B |= T + dΦ, then B = A + dΦ, for some A |= T .

Before moving on to translations, we give three standard lemmas about
definitional and conservative extensions (the converse of Lemma 3 is far from
being true):

Lemma 3. If T+ in LP,Q is a definitional extension of T in LP , then T+ is a
conservative extension of T wrt LP -formulas.

Lemma 4. T + dΦ is a conservative extension of T for LP -formulas.

Lemma 5. Let T in LP and T+ in LP,Q be such that T ⊆ T+. Suppose that, for
any model A |= T , there is an expansion A+ |= T+. Then T+ is a conservative
extension of T for LP -formulas.

9For a proof, based on Craig’s interpolation lemma, see Boolos and Jeffrey [3], Ch. 25.



J. Ketland Log. Univers.

4. Translation

Definition 18. Let a definition system dΦ be given. Define the translation, in-
duced by Φ

τΦ : LQ → LP

as follows. For symbols Qi, variables x, y, x, and for LQ-formulas α, α1, α2: #

(1) τΦ(Qi(x)) := (φi)′

(2) τΦ(x = y) := (x = y)
(3) τΦ(¬α) := ¬τΦ(α)
(4) τΦ(α1#α2) := τΦ(α1)#τΦ(α2)
(5) τΦ(qxα) := qxτΦ(α).

is any binary connective, q is a quantifier and (φi)′ is the result of ensuring
that the free variables appearing φi are relabelled, to match those of Qi(x).
We call τΦ the translation induced by Φ. It maps from the new language LQ

back to the original language LP .10

Lemma 6. For any α, β ∈ LQ, if α � β then τΦ(α) � τΦ(β).

Proof. We will prove this using a lemma below. Suppose τΦ(α) � τΦ(β). This
gives us a model A |= τΦ(α) and A �|= τΦ(β). By Lemma 15(1) below, DΦA |= α
and DΦA �|= β. So, α � β. �

Lemma 6 is a general property of translations, but its converse is not true
in general.

Corresponding to a translation τΦ : LQ → LP is its “lift” τ+
Φ : LP,Q → LP

from the combined language LP,Q down to LP :

Definition 19. Let Φ be given, along with definition system dΦ. Define the
lifted translation τ+

Φ induced by Φ

τ+
Φ : LP,Q → LP

as follows. For symbols Qi, Pi, variables x, y, x: Along with the requirement

(1) τ+
Φ (Qi(x)) := (φi)′

(2) τ+
Φ (x = y) := (x = y)

(3) τ+
Φ (Pi(x)) := Pi(x)

that τ+
Φ commutes with the logical operators on the full language LP,Q.

Thus, the translation τΦ is the restriction to LQ of its lift, τ+
Φ .

Note that because the translations we are interested in always act as the
identity on equations, it is always the case that � α ↔ τΦ(α) if α is an equation.
Thus, in inductive proofs establishing biconditionals of the form α ↔ τΦ(α),
we only need to check the condition holds for atomic formulas which are not
identity formulas.

10The clauses (3)–(5) are usually read as saying “τΦ commutes with the logical operators”.
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Lemma 7. We have:

(1) A + dΦ |= α ↔ τΦ(α) for any α ∈ LQ.
(2) A + dΦ |= α ↔ τ+

Φ (α) for any α ∈ LP,Q.
(3) T + dΦ � α ↔ τΦ(α) for any α ∈ LQ.
(4) T + dΦ � α ↔ τ+

Φ (α) for any α ∈ LP,Q.

Proof. For (2), we reason by induction. Let α be an atomic LP,Q-formula.
As noted above, for equations (x = y), the translation τΦ(x = y) is trivially
(x = y): so α ↔ τΦ(α) always holds for equations. Suppose α is an atomic
formula of the form Qi(x). Then its translation τ+

Φ (α) is φi. Since we have
A+ dΦ |= ∀x(Qi(x) ↔ φi), we have: A+ dΦ |= Qi(x) ↔ τΦ(Qi(x)). Instead let
α be Pi(x). Then its translation τ+

Φ (α) is simply α. So, A + dΦ |= α ↔ τ+
Φ (α).

The other cases are shown by induction on the construction of α.
For (1), the result follows from (2), by restricting to LQ-formulas (since

τ+
Φ (α) = τΦ(α) for α ∈ LQ).

For (4), reasoning by induction, let α be an atomic LP , Q-formula. If α is
atomic, then the condition is trivial. Suppose α has the form Pi(x). Again, he
condition is trivial, since τ+

Φ (Pi(x)) is Pi(x). Instead, suppose α has the form
Qi(x). Then its translation τ+

Φ (α) is φi. Qi(x) ↔ φi is a theorem of T + dΦ,
by construction. The other cases are shown by induction on the construction
of α.

For (3), the result follows from (4), by restricting to LQ-formulas. �
Definition 20. Let τΦ : LQ → LP be the translation induced by dΦ. If T2 is a
theory in LQ, then the image of T2 under τΦ is the set of LP -sentences:

τΦ[T2] := {τΦ(α) ∈ LP | α ∈ T2}
If T1 is a theory in LP , then the pre-image of T1 under τΦ is the set of LQ-
sentences:

(τΦ)−1[T1] := {β ∈ LQ | τΦ(β) ∈ T1}
Similarly, if Θ = {θi}i∈IP is a set of LQ-formulas and dΘ is the corre-

sponding definition system over Θ (for the primitives Pi of LP ), we can define
a translation

τΘ : LP → LQ

by requiring that τΘ commute with the logical operators and, for atomic LP -
formulas: Likewise, we can also define the lifted translation τ+

Θ : LP,Q → LQ.

(i) τΘ(Pi(x)) := (θi)′

(ii) τΘ(x = y) := (x = y)

Definition 21. Let τ : LQ → LP be a translation. Let T1 be a theory in LP

and T2 be a theory in LQ. Then we say:
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(1) τ interprets T2 into T1 iff T1 � τ [T2].

(2) τ faithfully interprets T2 into T1 iff T1 ≡ τ [T2].

One may compare the condition T1 ≡ τ [T2] with Visser’s definition of
faithful interpretability:

We write K : U � faith V for: K is a faithful interpretation of U in V .
This means that: for all U -sentences A, we have: U � A iff V � AτK .
(Visser [19], p. 6).

Thus τΦ : T2 � faith T1 holds iff, for all α ∈ LT2 , we have: T2 � α iff T1 � τΦ(α).
Thus, τΦ : T2 � faith T1 iff T1 ≡ τΦ[T2]. This establishes:

Lemma 8. τΦ faithfully interprets T2 into T1 iff, for all α ∈ LQ, we have:
T2 � α iff T1 � τΦ(α).

Definition 22. Let τΦ : LQ → LP and τΘ : LP → LQ be translations induced
by dΦ and dΘ. Let T1 be an LP theory. Let T2 be an LQ theory. Then τΘ is
an right inverse of τΦ in T1 iff, for any α ∈ LP ,

T1 � α ↔ τΦ(τΘ(α))

We write this more suggestively as:

(τΦτΘ = 1)T1

And τΘ is an left inverse of τΦ in T2 iff, for any β ∈ LQ,

T2 � β ↔ τΘ(τΦ(β))

Likewise, we write this more suggestively as:

(τΘτΦ = 1)T2

The following two lemmas are easy to prove, and yet hold to the key to
much that follows. Both lemmas use “invertibility conditions”, of the form:

A + dΦ |= dΘ

T + dΦ � dΘ.

As we see later, these conditions express a very strong constraint on the set
Φ of defining LP -formulas involved—the property of being a “representation
basis” for A (or T ) with inverse Θ.

Lemma 9. Suppose that A + dΦ |= dΘ. Then:
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(1) A + dΦ |= α ↔ τΦ(α) for α ∈ LQ.
(2) A + dΦ |= α ↔ τ+

Φ (α) for α ∈ LP,Q.
(3) A + dΦ |= α ↔ τΘ(α) for α ∈ LP .
(4) A + dΦ |= α ↔ τΘ(τΦ(α)) for α ∈ LQ.
(5) A + dΦ |= α ↔ τΦ(τΘ(α)) for α ∈ LP .
(6) A + dΦ |= τΦ(θi) ↔ θi.
(7) A + dΦ |= τΘ(φi) ↔ φi.
(8) A |= α ↔ τΦ(τΘ(α)) for α ∈ LP .
(9) A + dΦ |= α ↔ τ+

Θ (α) for α ∈ LP,Q.

Proof. Claims (1) and (2) are already established in Lemma 7(1,2) and do not
need the side condition. (They are included for convenience of reference.)

For (3), the proof is analogous to the proof of Lemma 7(1), but using the
fact that A+dΦ |= dΘ. Reasoning by induction, let α be an atomic LP -sentence,
say Pi(x). Then its translation τΘ(α) is θi. And A + dΦ |= ∀x(Pi(x) ↔ θi). So
A + dΦ |= Pi(x) ↔ θi. That is, A + dΦ |= Pi(x) ↔ τΘ(Pi(x)). The other cases
are shown by induction on the construction of α.

For (4), we already have that A + dΦ |= α ↔ τΦ(α), for any α ∈ LQ. But
τΦ(α) is an LP -formula. So, by (3), we have: A + dΦ |= τΦ(α) ↔ τΘ(τΦ(α)).
So, A + dΦ |= α ↔ τΘ(τΦ(α)), as required.

For (5), the reasoning is analogous to that for (4). And (6) and (7) are
merely applications of (1) and (3).

For (8), using (5), we have A + dΦ |= α ↔ τΦ(τΘ(α)), for any α ∈ LP .
But A + dΦ is an expansion of the LP -structure A, and α ↔ τΦ(τΘ(α)) is an
LP -formula. Thus, A |= α ↔ τΦ(τΘ(α)).

For (9), the proof is analogous to the proof of (2), but is applied to the
“lift” τ+

Θ : LP,Q → LQ of τΘ. Reasoning by induction, let α be an atomic LP -
sentence, say Pi(x). Then its translation τ+

Θ (α) is θi. And A+dΦ |= Pi(x) ↔ θi,
since A + dΦ |= dΘ. Instead, let α be an atomic LQ-sentence, say Qi(x). Then
its translation τ+

Θ (α) is Qi(x). Trivially, A + dΦ |= Qi(x) ↔ Qi(x). The other
cases are shown by induction on the construction of α. �

The following lemma, and the corresponding proofs, is a near repetition
of the previous one, except that it deals with theories:

Lemma 10. Suppose that T + dΦ � dΘ. Then:
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(1) T + dΦ � α ↔ τΦ(α) for α ∈ LQ.
(2) T + dΦ � α ↔ τ+

Φ (α) for α ∈ LP,Q.
(3) T + dΦ � α ↔ τΘ(α) for α ∈ LP .
(4) T + dΦ � α ↔ τΘ(τΦ(α)) for α ∈ LQ.
(5) T + dΦ � α ↔ τΦ(τΘ(α)) for α ∈ LP .
(6) T + dΦ � τΦ(θi) ↔ θi.
(7) T + dΦ � τΘ(φi) ↔ φi.
(8) T � α ↔ τΦ(τΘ(α)) for α ∈ LP .
(9) T + dΦ � α ↔ τ+

Θ (α) for α ∈ LP,Q.

Proof. Essentially, a repetition of the proofs for Lemma 9. �

Lemma 11. Suppose T1 is an LP -theory and T2 is an LQ-theory. Then:

(1) If (τΦτΘ = 1)T1 then T1 + dΦ � dΘ.
(2) If (τΘτΦ = 1)T2 then T2 + dΘ � dΦ.

Proof. For (1), we assume τΘ is a right inverse of τΦ in T1. I.e., for any α ∈ LP ,
T1 � α ↔ τΦ(τΘ(α)). Thus, T1 � Pi(x) ↔ τΦ(τΘ(Pi(x))). Since τΘ(Pi(x)) is
θi, we have T1 � Pi(x) ↔ τΦ(θi). Taking the definitional extension, T1 + dΦ �
Pi(x) ↔ τΦ(θi). Now, for any LQ-formula β, we have T1 + dΦ � β ↔ τΦ(β)
from Lemma 7(2). So, since θi ∈ LQ, T1 + dΦ � θi ↔ τΦ(θi). Thus, T1 + dΦ �
Pi(x) ↔ θi, as required.

We obtain (2) by relabelling everything (T2 is now a theory in LQ). �

Lemma 11 says that if τΘ is a right-inverse of τΦ, relative to T , then every
relation symbol Pi from the original language can be explicitly defined from
the θi. In a sense, the original definition system, dΦ is a kind of inverse of dΘ.

5. Definitional Images

Definition 23. Let A be an LP -structure. Then the LQ-structure DΦA is de-
fined by:

DΦA := (A + dΦ) �LQ

DΦA is called the definitional image of A with respect to Φ.

Immediately, we see that the following three conditions provide an equiv-
alent characterization of DΦA:

(1) dom(DΦA) = dom(A)
(2) xDΦA = xA, for any variable x
(3) (Qi)DΦA = φi(A), for each new symbol Qi.
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Lemma 12. For any α ∈ LQ: α(DΦA) = α(A + dΦ).

Although A + dΦ is by construction a definitional expansion of A, it is
by no means automatically true that A + dΦ is a definitional expansion of
DΦA. The requirement for this to hold is that each primitive relation (Pi)A

be definable in DΦA, by some formula, say θi.
Turning to theories, we introduce analogous concepts:

Definition 24. The definitional image of T , with respect to Φ, is the restriction
of the deductive closure of T + dΦ to the new language LQ. The definitional
image of T with respect to Φ is denoted DΦT . That is,

DΦT := DedCl(T + dΦ) �LQ
= {β ∈ LQ | T + dΦ � β}

The definitional image DΦT of a theory T in LP is, essentially, the pre-
image (τΦ)−1[T ] of T under the translation τΦ induced by Φ:

Lemma 13. (τΦ)−1[T ] ≡ DΦT .

Proof. Suppose DΦT � β, for β ∈ LQ. Thus, T + dΦ � β. But T + dΦ � β ↔
τΦ(β), by Lemma 10(1). So, T+dΦ � τΦ(β). Since T+dΦ conservatively extends
T for LP -formulas, T � τΦ(β). Hence, β ∈ (τΦ)−1[T ]. And so (τΦ)−1[T1] � β.
Conversely, suppose β ∈ (τΦ)−1[T ]. So, T � τΦ(β). So, T + dΦ � τΦ(β). But
T + dΦ � β ↔ τΦ(β), by Lemma 10(1) again. Thus, DΦT � β. �

Definition 25. Let A be an LP -structure, B an LQ-structure, T1 an LP -theory
and T2 an LQ-theory. Then we say:

(1) Φ defines B in A iff B ∼= DΦA.
(2) Φ proof-theoretically defines T2 in T1 iff T2 ≡ DΦT1.
(3) Φ model-theoretically defines T2 in T1 iff Mod(T2) = DΦ[Mod(T1)].

The second of these, (2), amounts to saying that T2 � DΦT1 and DΦT1 �
T2. The third is equivalent to saying that

Mod(T2) = (Mod(T1 + dΦ)) �LQ
.

Note that the restriction �LQ
is taken after the models are extracted from

the definitional extension T1 + dΦ. If the restriction is taken first, we get the
rather different set Mod((DedCl(T1 + dΦ)) �LQ

) of models: i.e., Mod(DΦT1).
Indeed, this is generally a superset of DΦ[Mod(T )]. As Lemma 15(3) will show,
we have: DΦ[Mod(T )] ⊆ Mod(DΦT ).

6. Some Book-Keeping Lemmas

We next provide several groups of “book-keeping” lemmas about translations
and definitional images. The first, Lemma 14, primarily concerns theories. The
second group, Lemma 15, concerns semantics and models. The third group (in
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particular, Lemma 16) establishes five calculationally useful equivalences for
the “definition invertibility condition” on structures:

A + dΦ |= dΘ.

The fourth group establishes some analogous results for theories, including
the main equivalence (Lemma 19) for the “definition invertibility condition”
on theories:

T + dΦ |= dΘ.

Lemma 14. Each of the following is true:

(1) T + dΦ is a conservative extension of DΦT for LQ-formulas.
(2) DΦT1 � T2 iff T1 � τΦ[T2].
(3) τΦ interprets T2 into T1 iff DΦT1 � T2.
(4) τΦ interprets DΦT into T .
(5) DΦT = {β ∈ LQ | T � τΦ(β)}.
(6) DΦT � β iff T � τΦ(β) (for any β ∈ LQ).
(7) T2 ≡ DΦT1 iff, for all β ∈ LQ: T2 � β iff T1 � τΦ(β).
(8) T2 ≡ DΦT1 iff τΦ faithfully interprets T2 into T1.

Proof. To establish (1), note that DΦT is simply the restriction of the deduc-
tive closure of T + dΦ to LQ-sentences. So if T + dΦ � α, where α ∈ LQ,
then DΦT � α, as required. Statement (2) simply expresses the relationship
between images and pre-images. Statement (3) is an immediate corollary of
(2). Statement (4) is an immediate corollary of (3).

For (5), note that DΦT = (τΦ)−1[T ], from Lemma 13 above. Thus,
DΦT = {β ∈ LQ | T � τΦ(β)}. For (6), let β ∈ LQ. Then, from (5), we
have DΦT � β iff T � τΦ(β), as required.

For (7), suppose first that T2 ≡ DΦT1. So, for all β ∈ LQ, T2 � β iff
DΦT1 � β. But from (6), DΦT1 � β iff T1 � τΦ(β). So, for all β ∈ LQ, T2 � β
iff T1 � τΦ(β), as required.

Instead suppose that for all β ∈ LQ, we have: T2 � β iff T1 � τΦ(β). Then
reason as follows: So, T2 ≡ DΦT1, as required.

T2 � β iff T1 � τΦ(β) (from the hypothesis)
iff T1 + dΦ � β (as T1 + dΦ � β ↔ τΦ(β); Lemma 10(1))
iff DΦT1 � β (from the definition of DΦT1; i.e., Definition 24).

(8) is an immediate corollary of (7) and Lemma 8. �

Lemma 15. Each of the following holds:
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(1) For any α ∈ LQ: DΦA |= α iff A |= τΦ(α).
(2) If A |= T , then DΦA |= DΦT .
(3) DΦ[Mod(T )] ⊆ Mod(DΦT ).
(4) Let T2 be a theory in LQ. If A + dΦ |= T2 then DΦA |= T2.

Proof. (1): By induction. Suppose α = Qi(x). Thus,

DΦA |= α ⇔ ((x1)DΦA, . . . , (xn)DΦA) ∈ (Qi)DΦA

⇔ ((x1)A, . . . , (xn)A) ∈ φi(A)
⇔ A |= φi

⇔ A |= τΦ(Qi(x))
⇔ A |= τΦ(α).

The case of equality, and the induction steps are routine.
(2): Let A |= T and DΦT � α, for some α ∈ LQ. We want to show

DΦA |= α. We do this using the translation τΦ. Since DΦT � α, it follows, by
Lemma 14(4), that T � τΦ(α). And so, A |= τΦ(α). From (1), DΦA |= α iff
A |= τΦ(α). So, DΦA |= α, as required.

(3): Let B ∈ DΦ[Mod(T )]. So, there is some A |= T with B ∼= DΦA.
Since A |= T , we have DΦA |= DΦT , by (2). So, B ∈ Mod(DΦT ).

(4): Suppose that for any β such that T2 � β, we have A + dΦ |= β. We
want to show that for any β such that T2 � β, we have DΦA |= β. So, let
T2 � β and A + dΦ |= β. By Lemma 7(1), A + dΦ |= τΦ(β). So, A |= τΦ(β). By
(1), DΦA |= β. �

Neither the converse of Lemma 15(2) nor the converse of the inclusion in
Lemma 15(3) is true.

Lemma 16. The following are equivalent:

(1) A + dΦ |= dΘ.
(2) For all Pi, for all Qj: (Pi)A+dΦ = θi(A + dΦ) & (Qj)A+dΦ = φj(A + dΦ).
(3) A + dΦ

∼= DΦA + dΘ.
(4) DΘDΦA = A.
(5) A |= α ↔ τΦ(τΘ(α)) (with α ∈ LP )

Proof. For (1) ⇔ (2). This is simply unwinding the definitions.
For (1) ⇒ (3), suppose A+ dΦ |= dΘ. Then, from (2), we have, for all Pi,

for all Qj ,

(Pi)A+dΦ = θi(A + dΦ) & (Qj)A+dΦ = φj(A + dΦ).

So, since θi(A + dΦ) = θi(DΦA + dΘ) = (Pi)DΦA+dΘ , we have, for all Pi, for
all Qj ,
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(Pi)A+dΦ = (Pi)DΦA+dΘ & (Qj)A+dΦ = φj(A + dΦ).

So, since φj(A + dΦ) = (Qj)DΦA+dΘ , we have, for all Pi, for all Qj ,

(Pi)A+dΦ = (Pi)DΦA+dΘ & (Qj)A+dΦ = (Qj)DΦA+dΘ .

So, A + dΦ
∼= DΦA + dΘ, as required.

For (3) ⇒ (1). This reverses the reasoning (1) ⇒ (3). Suppose A + dΦ
∼=

DΦA + dΘ. That is, for all Pi, for all Qj ,

(Pi)A+dΦ = (Pi)DΦA+dΘ & (Qj)A+dΦ = (Qj)DΦA+dΘ .

Now (Qj)DΦA+dΘ = (Qj)DΦA = φj(A) = φj(A + dΦ). So, for all Pi, for all Qj ,

(Pi)A+dΦ = (Pi)DΦA+dΘ & (Qj)A+dΦ = φj(A + dΘ).

But trivially, DΦA+dΘ |= dΘ. So, DΦA+dΘ |= Pi(x) ↔ θi, for each Pi. Thus,

(Pi)DΦA+dΘ = θi(DΦA + dΘ).

But we also have

DΦA + dΘ
∼= A + dΘ

Therefore,

(Pi)DΦA+dΘ = θi(A + dΘ)

Thus, for all Pi, for all Qj ,

(Pi)A+dΦ = θi(A + dΘ) & (Qj)A+dΦ = φj(A + dΘ).

And therefore, A + dΦ |= dΘ, as required.
For (1) ⇒ (4). Suppose A + dΦ |= dΘ. So, from (3) above, we have:

A + dΦ
∼= DΦA + dΘ

Therefore, DΦA + dΘ |= dΦ. A proof analogous to that of (3) above gives us
that if B + dΘ |= dΦ then B + dΘ

∼= DΘB + dΦ, and so, if DΦA + dΘ |=
dΦ then DΦA + dΘ

∼= DΘDΦA + dΦ. And so, we may conclude,

DΦA + dΘ
∼= DΘDΦA + dΦ

And thus,

A + dΦ
∼= DΘDΦA + dΦ

And right cancellation gives,

A ∼= DΘDΦA
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But since the map DΦ leaves the domain invariant, we have A = DΘDΦA.
For (4) ⇒ (5), suppose A = DΘDΦA. We have, applying Lemma 15(1)

twice, for any α ∈ LP , β ∈ LQ:

A |= τΦ(β) iff DΦA |= β
DΦA |= τΘ(α) iff DΘDΦA |= α

So, for α ∈ LP ,

A |= τΦ(τΘ(α)) iff DΘDΦA |= α

But A = DΘDΦA, and so,

A |= τΦ(τΘ(α)) iff A |= α

And thus,

A |= α ↔ τΦ(τΘ(α))

as required.
For (5) ⇒ (1), assume A |= α ↔ τΦ(τΘ(α)). So,

A + dΦ |= Pi(x) ↔ τΦ(τΘ(Pi(x)))

But τΘ(Pi(x)) = θi. So,

A + dΦ |= Pi(x) ↔ τΦ(θi)

And θi ∈ LQ, and so, from Lemma 7(1),

A + dΦ |= Pi(x) ↔ θi

and thus,

A + dΦ |= dΘ

as required. �

Turning next to theories:

Lemma 17. DΦT + dΘ � α ↔ τΘ(α), for all α ∈ LP .

Proof. We reason by induction on the construction of α. Let α = Pi(x). Then
we have: DΦT + dΘ � Pi(x) ↔ θi. But τΘ(Pi(x)) = θi. And thus, DΦT + dΘ �
Pi(x) ↔ τΘ(Pi(x)). The equality case and compound cases proceed routinely.
(Notice this is analogous to Lemma 10(1).) �

Lemma 18. Suppose that T + dΦ � dΘ. Then, for any α ∈ LQ:

(1) DΦT � α ↔ τΘ(τΦ(α))
(2) DΦT + dΘ � α ↔ τΦ(α).
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Proof. For (1), we have, for any β ∈ LQ, if T + dΦ � β, then DΦT � β,
since DΦT is simply the restriction of the set of theorems of T + dΦ to LQ.
By Lemma 10(4), we have T + dΦ � α ↔ τΘ(τΦ(α)), for any α ∈ LQ. Now
α ↔ τΘ(τΦ(α)) is also in LQ. Thus, DΦT � α ↔ τΘ(τΦ(α)).

For (2), from Lemma 17, we have, for any α ∈ LQ: DΦT + dΘ � τΦ(α) ↔
τΘ(τΦ(α)), since τΦ(α) ∈ LP . By (1), we have DΦT + dΘ � α ↔ τΘ(τΦ(α)).
Hence, DΦT + dΘ � α ↔ τΦ(α), as required. �

The next lemma is the most important result needed for Theorem 2 given
in Sect. 8:

Lemma 19. The following are equivalent

(1) T + dΦ � dΘ.
(2) T + dΦ ≡ DΦT + dΘ.

Proof. (1) ⇒ (2). Suppose T + dΦ � dΘ. We want to show

(a) T + dΦ � DΦT + dΘ.
(b) DΦT + dΘ � T + dΦ.

First, for (a), let A+dΦ |= T +dΦ. So, since T +dΦ � dΘ, we have A+dΦ |= dΘ.
So, by Lemma 16(3), we have A + dΦ

∼= DΦA + dΘ. Since A |= T , we have
DΦA |= DΦT . So, DΦA + dΘ |= DΦT + dΘ. Thus, A + dΦ |= DΦT + dΘ. And
therefore, since A was arbitrary, T + dΦ � DΦT + dΘ, as required.

For (b), we want to show that DΦT + dΘ � T + dΦ. That is, for for any
LP,Q-formula α,

If T + dΦ � α then DΦT + dΘ � α.

First, note that we may relabel Lemma 9(2) in terms of some LQ-structure B
and definition system dΘ, rather than A and dΦ, to obtain: for any α ∈ LP,Q,

(i) B + dΘ |= α ↔ τ+
Θ (α).

For a contradiction, suppose we have some α ∈ LP,Q such that

(ii) T + dΦ � α
(iii) DΦT + dΘ � α.

Since T + dΦ � dΘ, we have, from Lemma 10(9), that T + dΦ � α ↔ τ+
Θ (α)

and since T + dΦ � α, we have:
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(iv) T + dΦ � τ+
Θ (α).

From (iii), there exists an LQ-structure B |= DΦT with B + dΘ �|= α. So, from
(i), B + dΘ �|= τ+

Θ (α). And since τ+
Θ (α) ∈ LQ, we have:

(v) B �|= τ+
Θ (α).

Recall that DΦT = {β ∈ LQ | T + dΦ � β}. So, since B |= DΦT , it follows
that, for any β ∈ LQ, if T + dΦ � β, then B |= β. Thus, if T + dΦ � τ+

Θ (α),
then B |= τ+

Θ (α). So, from (iv), we infer:

(vi) B |= τ+
Θ (α).

Contradiction.
(2) ⇒ (1). Let T + dΦ ≡ DΦT + dΘ. Then T + dΦ � DΦT + dΘ. Thus,

T + dΦ � dΘ, as required. �

Lemma 20. DΘDΦT � α iff T � τΦ(τΘ(α)), for α ∈ LP .

Proof. If we examine the definitions of DΦT and DΘT2 (where T2 is in LQ),
we get

DΦT = {α ∈ LQ | T � τΦ(α)}
DΘT2 = {α ∈ LP | T2 � τΘ(α)}

Together, these imply that DΘDΦT � α iff T � τΦ(τΘ(α)). �

Lemma 21. Suppose T + dΦ � dΘ. Then

(1) DΦT + dΘ � dΦ.
(2) DΘDΦT ≡ T .

Proof. For (1), suppose T + dΦ � dΘ. By Lemma 18(2), for any α ∈ LQ,

DΦT + dΘ � α ↔ τΦ(α)

Thus,

DΦT + dΘ � Qi(x) ↔ τΦ(Q(x))

Thus,

DΦT + dΘ � Qi(x) ↔ φi

as required.
For (2), suppose T + dΦ � dΘ. We want to show that, for any α ∈ LP ,

we have: DΘDΦT � α iff T � α. By Lemma 20, we have

DΘDΦT � α iff T � τΦ(τΘ(α))
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Since T + dΦ � dΘ, by Lemma 10(8), we have

T � α ↔ τΦ(τΘ(α))

Hence,

T � α iff T � τΦ(τΘ(α))

And therefore,

DΘDΦT � α iff T � α

as required. �

Lemma 22. The following are equivalent:

(1) T ≡ DΘDΦT .
(2) T � α iff T � τΦ(τΘ(α)), with α ∈ LP .

Proof. (1) ⇒ (2). From the previous lemma, DΘDΦT � α iff T � τΦ(τΘ(α)).
So, if T ≡ DΘDΦT , we infer that T � α iff T � τΦ(τΘ(α)), for α ∈ LP .

(2) ⇒ (1). Suppose, for α ∈ LP ,

T � α iff T � τΦ(τΘ(α))

We already have

DΘDΦT � α iff T � τΦ(τΘ(α))

So, for α ∈ LP

DΘDΦT � α iff T � α

Thus, DΘDΦT ≡ T . �

Notice that, in the case of structures, we have:

DΘDΦA = A then A |= α ↔ τΦ(τΘ(α))

However, unlike that case, for theories, we only have established:

If T ≡ DΘDΦT then T � α iff T � τΦ(τΘ(α))

So, we have not established the provability of the biconditional α ↔
τΦ(τΘ(α)) inside T itself.11

11That said, I do not have a counterexample. It is conceivable that the example given in
Andréka et al. [1] might yield such a counter-example.



Bases for Structures and Theories I

7. Definitional Equivalence

We next explain what it means for structures and theories to be definition-
ally equivalent.12 Intuitively, a pair of structures are definitionally equivalent
when they have a common definitional expansion. And a pair of theories are
definitionally equivalent when they have a common definitional extension.

Throughout the next two definitions, A is an LP -structure, Φ = {φi}i∈I1

is a set of LP -formulas; Q is the new disjoint signature corresponding to Φ;
and B is an LQ-structure. Similarly, Θ = {θi}i∈I2 is a set of LQ-formulas.
dΦ is the definition system of the Qi primitives in terms of the φi, and dΘ is
the definition system the Pi primitives in terms of the θi. Similarly, T1 is an
LP -theory and T2 is an LQ-theory. Please note that the definitions of these
notions given below assume disjoint signatures.

Definition 26. Structures A and B are definitionally equivalent wrt dΦ and dΘ

iff

A + dΦ
∼= B + dΘ.

If this is so, we write:

A
Φ←→
Θ

B

Definition 27. Theories T1 and T2 are definitionally equivalent wrt dΦ and dΘ

iff

T1 + dΦ ≡ T2 + dΘ.

To express this, we write:

T1
Φ←→
Θ

T2

These definitions require that the signatures of A and B (or T1 and T2)
be disjoint. But is not A obviously definitionally equivalent to itself? Is not
a theory definitionally equivalent to itself? Well, one can always arrange for
a pair of structures A and B in overlapping signatures to be reformulated as
copies Ac and Bc in entirely disjoint signatures (see Definitions 2, 6 above). If
Ac is a disjoint copy of A in LP c , then clearly Ac is definitionally equivalent
to A with respect to the trivial definition systems: That is,

dP c

P : ∀x(P c
i (x) ↔ Pi(x))

dP
P c : ∀x(Pi(x) ↔ P c

i (x)).

A + dP c

P
∼= Ac + dP

P c

A similar copying procedure can be adopted for theories too. If we have a
theory T in LP , and T c is a disjoint copy of T in LP c , then clearly T c is
definitionally equivalent to T with respect to the definitions:

T + dP c

P ≡ T c + dP
P c

12The concept appears to have first articulated by de Bouvère [4] and Kanger [11].
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So, one can give a more general definition of definitional equivalence by
first applying this copying procedure to both structures, and then applying
the definition above.13

8. Main Results

We finally give two main results, which characterize definitional equivalence.

Theorem 1. The following are equivalent:

(1) A
Φ←→
Θ

B

(2) DΦA ∼= B and DΘB ∼= A

Proof. (1) ⇒ (2). Let A
Φ←→
Θ

B. Thus, A + dΦ
∼= B + dΘ. So,

A + dΦ |= dΘ

B + dΘ |= dΦ

Thus, by Lemma 16(3) (switching labels in the second case), we have:

A + dΦ
∼= DΦA + dΘ

B + dΘ
∼= DΘB + dΦ

Thus,

B + dΘ
∼= DΦA + dΘ

A + dΦ
∼= DΘB + dΦ

And by right cancellation,

B ∼= DΦA

A ∼= DΘB

(2) ⇒ (1). Let DΦA ∼= B and DΘB ∼= A. Since we have two isomor-
phisms, we can arrange, without loss of generality, for dom(DΦA) = dom(B),
and dom(DΘB) = dom(A). We want to show First, we work out the extensions

(a) (Pi)A+dΦ = (Pi)B+dΘ

(b) (Qi)A+dΦ = (Qi)B+dΘ

of Pi and Qi in A+dΦ. For Qi, we have (Qi)A+dΦ = φi(A). Using the assump-
tion DΘB = A, we have (Pi)A+dΦ = (Pi)DΘB+dΦ . So, (Pi)A+dΦ = θi(B). And
using the assumption DΦA = B, we have (Pi)A+dΦ = θi(DΦA). Summarizing:

Next working out the extensions in B + dΘ, and using the assumption
DΦA = B, we have (Pi)B+dΘ = (Pi)DΦA+dΘ and (Qi)B+dΘ = (Qi)DΦA+dΘ .
I.e., And (i) and (iii) imply (a), while (ii) and (iv) imply (b). �

13See Andréka and Németi [2] for a related but slightly different procedure.
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(i) (Pi)A+dΦ = θi(DΦA).
(ii) (Qi)A+dΦ = φi(A).

(iii) (Pi)B+dΘ = θi(DΦA).
(iv) (Qi)B+dΘ = φi(A).

Theorem 2. The following are equivalent:

(1) T1
Φ←→
Θ

T2.

(2) (τΦτΘ = 1)T1 and T2 ≡ DΦT1.

Proof. For (1) ⇒ (2), suppose T1
Φ←→
Θ

T2. Thus, T1 + dΦ ≡ T2 + dΘ. Thus,

T1 + dΦ � dΘ.
Then, from Lemma 10(8), we have T1 � α ↔ τΦ(τΘ(α)), for α ∈ LP . I.e.,

(τΦτΘ = 1)T1 . And secondly, since T1+dΦ � dΘ, we have T1+dΦ ≡ DΦT1+dΘ,
by Lemma 19. So, T2+dΘ ≡ DΦT1+dΘ, and by right cancellation, T2 ≡ DΦT1.

For (2) ⇒ (1), suppose (τΦτΘ = 1)T1 and T2 ≡ DΦT1. From Lemma
11(1), we may conclude that T1 + dΦ � dΘ, and from this, we may conclude
that T1 + dΦ ≡ DΦT1 + dΘ, via Lemma 19. But since T2 ≡ DΦT1, we may
conclude that T1 + dΦ ≡ T2 + dΘ, as required. �

Indeed, from T1 + dΦ ≡ T2 + dΘ, we may also conclude (τΦτΘ = 1)T1 ,
(τΘτΦ = 1)T2 , T2 ≡ DΦT1 and T1 ≡ DΘT2. For example, if T2 + dΘ � dΦ, from
Lemma 10(8), by relabelling, we have T2 � β ↔ τΘ(τΦ(β)), for β ∈ LQ, and
thus (τΘτΦ = 1)T2 .
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