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Jeffrey Ketland

Computation and Indispensablity

Abstract. This article provides a computational example of a mathemati-
cal explanation within science, concerning computational equivalence of pro-
grams. In addition, it outlines the logical structure of the reasoning involved
in explanations in applied mathematics. It concludes with a challenge that
the nominalist provide a nominalistic explanation for the computational
equivalence of certain programs.
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1. Nominalism

Nominalism is the claim that there are no abstract entities:

Nominalism is the doctrine that there are no abstract entities. The
term ‘abstract entity’ may not be entirely clear, but one thing that
does seem clear is that such alleged entities as numbers, functions and
sets are abstract  that is, they would be abstract if they existed. In
defending nominalism therefore I am denying that numbers, functions,
sets or any similar entities exist.
Since I deny that numbers, functions, sets, etc. exist, I deny that it is
legitimate to use terms that purport to refer to such entities, or variables
that purport to range over such entities, in our ultimate account of what
the world is really like. [Field, 1980, p. 1]

From the point of view of modern science, the class of entities whose
existence is thereby denied is extremely comprehensive: expression types,
syntax trees, numbers, sets, functions, quantities, orderings, graphs,
groups, rings, fields, metric spaces, manifolds, magnetic and electric
fields, wavefunctions, Lie groups, gauge connections, structure groups,
etc.
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Yet, as Quine emphasized in his writing, particularly from [Quine,
1948] onwards, mathematics is an integral part of science. First, Quine
set out his (correct) account of ontological commitment:

To be assumed as an entity is, purely and simply, to be reckoned as the
value of a variable. In terms of the categories of traditional grammar,
this amounts roughly to saying that to be is to be in the range of
reference of a pronoun. Pronouns are the basic media of reference;
nouns might better have been named propronouns. The variables of
quantification, “something”, “nothing”, “everything”, range over our
whole ontology, whatever it may be; and we are convicted of a particular
ontological presupposition if, and only if, the alleged presuppositum
has to be reckoned among the entities over which our variables range
in order to render one of our affirmations true. [Quine, 1948, p. 32]

This criterion (of being assumed as an entity) is then applied first to
mathematics:

[. . . ] classical mathematics, as the example of primes between 1000 and
1010 clearly illustrates, is up to its neck in commitments to an ontology
of abstract entities. [Quine, 1948, p. 32]

and then to scientific theories (here Quine appeals to a coherentist ac-
count of epistemology):

Now what of classes or attributes of physical objects, in turn? A pla-
tonistic ontology of this sort is, from the point of view of a strictly
physicalistic conceptual scheme, as much a myth as that physicalistic
conceptual scheme itself is for phenomenalism. This higher myth is a
good and useful one, in turn, in so far as it simplifies our account of
physics. Since mathematics is an integral part of this higher myth, the
utility of this myth for physical science is evident enough.

[Quine, 1948, p. 37]

As he later put it:

If we subscribe to our physical theory and our mathematics, as indeed
we do, then we thereby accept these particles and these mathematical
objects as real; it would be an empty gesture meanwhile to cross our
fingers as if to indicate that what we are saying doesn’t count.

[Quine, 1973, p. 65]

Likewise, Putnam emphasized similar points:

[. . . ] mathematics and physics are integrated in such a way that it
is not possible to be a realist with respect to physical theory and a
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nominalist with respect to mathematical theory [. . . ]. If talk of numbers
and “associations” between masses, etc., and numbers is theology (in
the pejorative sense), then the Law of Universal Gravitation is likewise
theology. [Putnam, 1975, pp. 74–75]

If there are no abstract entities, science is false. But we are (epis-
temically) committed to science as the most coherent and explanatory
systemization of our sensory experience. And it is difficult to see how the
integration of abstract entities within science can be dispensed with or
eliminated. The resulting argument is now sometimes called the Quine-
Putnam indispensability argument. It amounts to the two claims: first,
that science is inconsistent with nominalism; and, second, that attempts
to “nominalize” science are hopeless  the mathematics is indispensable.

There have been a variety of attempts to rebut these anti-nominalist
arguments of Quine and Putnam. Quine himself had attempted just this
in a 1947 paper with Nelson Goodman (“Steps Towards a Constructive
Nominalism” [Quine and Goodman, 1947]), aiming to somehow eliminate
quantification over syntactic types in the theory of syntax by quantifica-
tion over concrete syntactic token (i.e., physical inscriptions, etc). But
Quine quickly saw this as hopeless, and rapidly abandoned the program,
as was clear in Quine 1948. As Church commented in a 1958 letter to
Goodman:

[. . . ] additional tasks that ‘nominalistic’ (better, finitistic) syntax might
be asked to accomplish [:] the deduction theorem; . . . the proof of the
rules of substitution as derived rules [. . . ] Post’s completeness theorem
for the propositional calculus; the metatheorem that every quantifier-
free theorem of first-order functional calculus has a quantifier-free proof;
the principal results about the Skolem normal form; Gödel’s incom-
pleteness theorems . . . ; Gödel’s relative consistency proof for the ax-
iom of choice and the generalized continuum hypothesis; the results of
Fraenkel, Lindenbaum, and Mostowski concerning the independence of
the axiom of choice. [Church, 1958] in [Goodman, 1972]

Probably the most important, detailed and insightful challenge to
Quine and Putnam’s arguments is [Field, 1980], which gave a geometry-
based programmatic nominalization of classical mechanics, as well as
identifying the conservativeness property as both guaranteeing that
mathematics itself adds no further non-mathematical content to a non-
mathematical theory, while explaining the utility of mathematics in
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speeding-up the deduction of non-mathematical sentences from other
non-mathematical sentences.1

However, in the last fifteen years or so, debates concerning the indis-
pensablity of mathematics have often turned away from attempted nom-
inalistic reformulations of scientific theories, to questions about whether
the role of mathematics in science is explanatory. See, for example,
[Baker, 2005], and the ensuing debate [e.g., summarized in Mancosu,
2018]. So, by and large, nominalists have conceded to Quine and Put-
nam that science is inconsistent with nominalism  that is, nominalists
consider our best scientific theories to be false. This was Quine’s and
Putnam’s central point. But even so, they insist that these mathemati-
cized scientific laws do not even explain their predictions.

For example, my favourite physical law is one of Maxwell’s laws:

∇ · B = 0

This asserts that a certain (axial) vector field (i.e., the magnetic field
B) has zero divergence, everywhere. What is a vector field? A vector
field is a function which maps each point in space(time) to a vector.
Nominalists assert that the magnetic field B does not exist. I assert that
the magnetic field most certainly does exist.

2. Explanations Using Mathematics

There is a trick mathematics lecturers use to surprise large lecture halls.
Supposing the hall holds around, say, 400, if the lecture is nearly full,
the lecturer can ask the audience: “I wonder if there are two people
here with exactly the same birthday?”. This causes some puzzlement.
Supposing there are at least 367 in the hall and at most 366 days of the
year (1 Jan up to 31 Dec) for birthdays, it follows, by what is known
as the Pigeonhole Principle, that at least two members of the audience
must share a birthday.

The trick works for days-of-the-week someone is born on; in that case,
it requires at most eight people, since the size of the set of birthdays is
now down to seven: a function f : P → B from a set P of eight people

1 Still the best survey of many attempted nominalist reformulations of science is
[Burgess and Rosen, 1997]. A recent extension of Field’s geometric program to field
theories in physics is [Arntzenius and Dorr, 2012], where fibre bundles over spacetime
are treated as nominalistically acceptable.
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to the set B of the seven (birth) days-of-the-week must be non-injective.
So, there are at least two distinct people p, q ∈ P such that f(p) = f(q).
The situation (illustrating the Pigeonhole Principle) can be visualized as
follows:

p1 •
p2 •
p3 •
p4 •
p5 •
p6 •
p7 •
p8 •

P

• Mon
• Tue
• Wed
• Thur
• Fri
• Sat
• Sun

B

f

It may seem odd that one can make this prediction, which after
all is an empirical, contingent one. How could mathematics alone 
the subject which deals with abstract, causally inert, timeless, modally
invariant objects  have generated an empirical, contingent prediction?
As Feynman noted:

I find it quite amazing that it is possible to predict what will happen by
mathematics, which is simply following rules which really have nothing
to do with the original thing. (Feynman, 1965, p. 171)

If we look closely, we see that the prediction “at least two persons
must share a birthday” is the consequent of a certain conditional:

(C0) If
there are exactly 8 people,
there are exactly 7 days for birthdays,
and each person has exactly one birthday,

then
at least two persons share a birthday.

It is this conditional (C0) which is implied by the mathematics. In this
case, it is a logical truth and a necessity.2 I shall call it an “application
conditional”.

2 Though not all such examples are logical truths.
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To try and understand the logical situation, suppose Math is some
system of applicable mathematics. In particular, suppose Math proves
various comprehension theorems, of the form

∃R∀x1 . . . xn((x1, . . . , xn) ∈ R ↔ φ)

including instances where the defining formula φ applies to non-math-
ematical objects, along with some system of axioms governing set op-
erations, properties of sets, their cardinalities, functions between them
and, typically, an incorporated theory of number systems, etc. What
generally makes application possible, besides the assumption that Math

is true, is the fact that

Math ⊢ (C0).

More generally, Math will logically imply certain “application condi-
tionals”:

Math ⊢ θ(X1, . . . ) → ψ(X1, . . . ),

where the formulas θ(X1, . . . ), ψ(X1, . . . ) are contingent/empirical sen-
tences, but which may have some set, relation or function variables free
(as well as variables ranging over concrete individuals). Since such an
“application conditional” is logically implied by Math, it is a necessity
and can be read counterfactually:

If θ were the case, then ψ would be the case.

Compare this with, for example, the following analysis from a stan-
dard classical mechanics textbook:

In fact, mechanics  and indeed all theoretical science  is a game of
mathematical make-believe. We say:

“If the Earth were a homogeneous rigid ellipsoid acted on by
such and such forces, how would it behave?”

Working out the answer to this mathematical question, we compare our
results with observation. If there is agreement, we say we have chosen
a good model; if disagreement, then the models or laws assumed are
bad. [Synge and Griffith, 1959, p. 5]

Under certain conditions, when no other mathematical terms appear
in θ or ψ (e.g., no formulas of the form x ∈ Y occur), the conditional θ →

ψ is a theorem of logic alone (e.g., as above, (C0) is logically true). In that
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scenario, a certain system of restricted set-theoretical comprehension
axioms is conservative.3

But that is a highly unusual situation with respect to the typical
applications of mathematics in science. This is because the scientific
theory, hypothesis or equation which we add to Math (in order to de-
duce consequences from the law, boundary conditions, etc.: see below)
is almost never “nominalized”. That is, the formulas θ and ψ are not
“purely nominalistic” sentences. If one examines the relevant exam-
ples of such conditionals, the antecedent and consequent are themselves
mathematically formulated or “mixed”, as we show below.

For example, if I reason in classical mechanics, based on equations of
motion

dpi

dt
= −

∂V

∂xi
(1)

I will use position co-ordinates, mass & momentum values/functions,
potential functions, etc. To use the technical jargon, the equations in-
volved refer to, and relate, mixed mathematical entities: sets, relations
and functions: these connect physical objects/systems to abstract values
(or “containers” in the case of sets).

Similarly, if I reason in quantum theory, based on the equation of
motion

i~
∂Ψ

∂t
= ĤΨ (2)

I will refer to some wavefunction Ψ on spacetime, and perhaps to oper-
ators like Ĥ on that space of wavefunctions, and to eigenvalues of such
operators, etc. Here, likewise, the equations involved refer to, and relate,
mixed mathematical entities: sets, relations, functions, wavefunctions,
etc. It is these mixed functions, sets and relations  call them mixed
quantities  which are the engine of applicability. The laws of various

3 This is analogous to the well-known result that adding predicative second-order
comprehension to Peano arithmetic, yielding a system called ACA0, is a conservative
extension wrt arithmetic sentences [see, e.g., Simpson, 2010]. This kind of conser-
vativeness result is one of the two main parts of Field’s programme [Field, 1980] of
showing how mathematics can be dispensed with in scientific applications. The other
part consists in aiming to show that scientific theories, laws of motion, etc., can be
reformulated nominalistically, dispensing with mathematical notions and quantifica-
tion over mathematical entities. In [Field, 1980], this approach focuses on classical
mechanics and gravitation. Similar ideas are introduced and extended in [Arntzenius
and Dorr, 2012], looking at the geometric (fibre-bundle) formulation of field theories.
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specific sciences are (typically) equations, about such mixed quantities,
such as (1) and (2).

That said, partial differential equations, such as (1) and (2), with
quantities taking highly abstract value ranges (and perhaps with various
linear operators appearing too, etc.) require quite advanced methods to
understand. And needlessly so in relation to the point being made here
about the underlying logical structure of applied mathematical reasoning,
involving such laws and predictions. In general, such reasoning takes the
following schematic form:

Math ⊢






law/differential equation
︷ ︸︸ ︷

Law(X1, . . . ) ∧

boundary condition
︷ ︸︸ ︷

BC(X1, . . . )




 →

solution
︷ ︸︸ ︷

Sol(X1, . . . ) .

Informally, the applicable mathematics implies a conclusion to the
effect that:

If we have quantities X1, . . . , Xn, satisfying some law
Law(X1, . . . ), and boundary conditions BC(X1, . . . ), then the
solution (or prediction) is given by: Sol(X1, . . . ).

I will briefly sketch a fairly simple example. In university level mathe-
matics and physics, one learns how to solve various differential equations,
ranging from very simple ones at the outset, to highly complicated ones
in advanced courses: such as many-particle Schrödinger equations, the
Navier-Stokes equation, Einstein’s field equations, or Yang-Mills field
equations, or perhaps more esoteric differential equations that pop up
in chaos theory. But here is a simpler example. This would be an
exponential growth/decay law:

dF

dt
(t) = kF (t)

subject to a boundary condition, such as,

F (0) = p

In this case, one can figure out that the solution is

F (t) = pekt
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In effect, one has a mathematical theorem:4

(

∀t ∈ T (
dF

dt
(t) = kF (t)) ∧ F (0) = p

)

→ ∀t ∈ T (F (t) = pekt).

This is another example of an application conditional. Indeed, it is of
the kind that is ubiquitous in theoretical physics, engineering, chem-
istry, etc. And, typically, applied mathematical reasoning is, as we have
noted above, the deduction of such application conditionals from some
(implicit) system of axioms for applicable mathematics.5

The current example looks like this:

Math ⊢








differential equation
︷ ︸︸ ︷

∀t ∈ T (
dF

dt
(t) = kF (t)) ∧

boundary condition
︷ ︸︸ ︷

F (0) = p








→

solution
︷ ︸︸ ︷

∀t ∈ T (F (t) = pekt)).

Schematizing even further:

Math ⊢

assumption about F, . . .
︷ ︸︸ ︷

θ(F, . . . ) →

conclusion about F, . . .
︷ ︸︸ ︷

ψ(F, . . . ) .

This kind of schema, I claim, will account for a high proportion of cases
of reasoning in applied mathematics.

3. A Computational Prediction

Below, we discuss the logical situation in some more detail, but first
I would like to give another example of mathematical explanation in
science. It is relatively easy to explain and also highlights the logical
structure of the underlying reasoning involved. It involves the closed
form expression for any finite geometric series: 1 + x+ x2 + · · · + xN .

Suppose you and your friend have the R programming language on
your laptops and you are going to take some lectures by me on, say,

4 This oversimplifies a bit, by omitting some implicit clauses. For example, a
clause expressing that F is a real-valued differentiable function on T .

5 I do not claim that every example of mathematical reasoning in applied mathe-
matics is the deduction of a solution from a law constrained by a boundary condition.
Even so, it is fairly typical.
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regression models. My unpopularity is so high that there are only two
students: you and your friend. I ask you to type the following code into
R, defining a function f :

Program Pf

1 f <- function(x, N) {

2 S <- rep(NA,N+1)

3 S[1] <- x^0

4 for(i in 1:N){

5 S[i+1] <- S[i]+x^{i}

6 }

7 S[N+1]

8 }

Given input arguments x,N , this short program first initializes S to be a
vector/sequence S[1], . . . , S[N+1], of length N+1, with each component
set as “NA” (“not available”). It next sets the first component S[1] of
S to be x0. It then loops through the remaining range of indices on the
vector S, from 1 to N , by defining S[i + 1] to be S[i] + xi. Finally, it
outputs the final component S[N + 1]. So, the program Pf computes
1 + x+ x2 + · · · + xN .6

I ask your friend to type the following code, defining a function g:

Program Pg

1 g <- function(x, N) {

2 (1 - x^{N+1})/(1 - x)

3 }

In conventional mathematical terminology, the programs Pf and Pg com-
pute the functions f , g, where:7

6 R code like this is sometimes called a “script”, which can be “run” without
separate compiling. Languages like Python, Perl and many others are similar.

7 As aficionados will recognise but philosophers may be interested to know, these
function definitions are lambda-abstractions, which go back to the ideas of Frege [1891]
and Russell [1903-05] concerning the syntactic and semantic analysis of function terms,
and to Church’s early papers [Church, 1932, 1933] on lambda-calculus (the system
given there in fact turned out to be inconsistent, as shown in [Kleene and Rosser,
1935]. See [Klement, 2003] for a detailed discussion of those historical developments.
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f(x,N) :=
N∑

i=0

xi,

g(x,N) :=
1 − xN+1

1 − x
.

I then ask you to compute f(0.5, 10) and I ask your friend to compute
g(0.5, 10). What ought we predict about these computations?

Prediction: You both get the same answer!

But why is this so?8 The answer is:

(i) your laptop runs a program Pf computing the function f ;
(ii) your friend’s laptop runs a program Pg computing the function g;
(iii) you are both operating the inputs and outputs correctly;
(iv) and, for all x ∈ R, for all N ∈ N, f(x,N) = g(x,N).

The first three parts (i)–(iii) of this explanans are contingent. Maybe
you mistype the function definition, and at run-time, get an error mes-
sage. Maybe you typed it correctly, but your laptop’s battery might
give up a microsecond after you press “run”. Likewise, may you enter
the inputs incorrectly. To make the prediction, we must suppose none
of this happened, and suppose that (i)–(iii) are true.

The fourth part, (iv), however, is a mathematical necessity. We know
from algebra that these computations always yield equal results. The
algebra is fairly straightforward. We wish to work out the sum

∑N
i=0 x

i

and show it is equal to 1−xN+1

1−x
.

Since the 1960s, lambda-abstraction is now an integral part of modern programming
languages. The code

g <- function(x, N) { (1 − xN+1)/(1 − x) }

says: let g be the binary function, with arguments x, N , whose value, given x, N , is
1−xN+1

1−x
.

To illustrate a lambda-abstraction inside another lambda abstraction, there is a
shorter “vectorized” program definition of the function f :

f <- function(x, N) { sum(sapply(0 : N, FUN = function(n){xn})) }

This uses sapply(., FUN = .) to apply a defined function to a sequence, 0 : N. However,
this program is less intuitive than the one given above. In fact, it runs about 5 times
slower too.

8 The answer, by the way, is: f(0.5, 10) = 1.999023 = g(0.5, 10).
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First, we have an obvious recurrence relation:

N+1∑

i=0

xi =
N∑

i=0

xi + xN+1. (3)

Second, factorizing gives:

N+1∑

i=0

xi = 1 + x+ x2 + · · · + xN+1 = 1 + x(1 + x+ · · · + xN ),

Thus, it follows that a second recurrence relation holds:

N+1∑

i=0

xi = 1 + x

N∑

i=0

xi. (4)

Equating the right-hand-sides of (3) and (4),
N∑

i=0

xi + xN+1 = 1 + x

N∑

i=0

xi.

So, rearranging,
(1 − x)

N∑

i=0

xi = 1 − xN+1.

This implies, so long as x 6= 1:

N∑

i=0

xi =
1 − xN+1

1 − x
.

Thus, the functions f, g defined by the given code are coextensive.9

Putting this all together, the mathematical statement:

(E0) For all x ∈ R, and all natural numbers N ,

1 + x+ x2 + · · · + xN =
1 − xN+1

1 − x
.

9 There is a caveat that attempting to compute g will yield an error message
when x = 1. That is, when a program call g(1, N) is made, it will throw an error
message. This is because the ratio of functions defining g is indeterminate at x = 1
(i.e., 0/0). In fact, it converges. There is no difficulty of course in working out

f(1, N) (i.e.,
∑N

i=0
xi when x = 1). It is N + 1. So, f(1, N) = N + 1. For the ratio

of functions defining g, the same value may also be obtained using L’Hôspital’s Rule,

by differentiating top and bottom expressions. This gives −(N+1)xN

−1 , whose limit at
x = 1 is N + 1.
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explains, given the definitions of f and g, why:

(E1) For all x ∈ R, N ∈ N : f(x,N) = g(x,N).

And this explains, given the auxiliary assumptions that the program
Pf computes f and the program Pg computes g, why:

(E2) Pf and Pg are computationally equivalent.

Finally, this explains why:

(C1) For any machines m1,m2, if m1,m2 run the pro-
grams Pf , Pg and m1 and m2 receive the same
inputs, then m1 and m2 yield the same outputs.

The final claim (C1) is the application conditional involved, and its con-
sequent, “m1 and m2 yield the same outputs” is the relevant prediction.

4. Logical Structure

We can now sketch the overall structure of this computational explana-
tion:

A computational explanation

(E0) (∀N ∈ N)(∀x ∈ R)
[
∑N

i=0 x
i = 1−xN−1

1−x

]

(E1) (∀N ∈ N)(∀x ∈ R)(f(x,N) = g(x,N))

(E2) Pf is computationally equivalent to Pg.

(C1) If m1, m2 run Pf , Pg, then same inputs to m1, m2 give same outputs.

explains

explains

explains

(given the definitions of f and g)

(given that Pf computes f and Pg computes g)

(given the definition of “m runs P”)
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The following (which simplifies the reasoning a little) is a deductively
valid argument showing how the explanation from (E2) to (C1) works:10

(Df1) Machine m runs program P iff, m performs in sequence each
instruction of P and given an input representing n, and out-
puts the return value of P on n.

(Df2) P1 and P2 are computationally equivalent programs iff, for
any input n, the value of P1 on n = the value of P2 on n.

(1) P1 and P2 are computationally equivalent programs.
(2) Machine m1 runs program P1 and m2 run programs P2.
(3) m1 and m2 receive same input (z, say).

(4) m1 and m2 yield the same output (w, say).

The proximate explanation of (C1) is the fact that programs Pf

and Pg are computationally equivalent. But this is a mathematical fact
about abstract programs. And this fact is explained by the mathematical
fact (E1) that the functions computed by programs Pf and Pg are co-
extensive. And the co-extensiveness of these functions is explained by
the mathematical fact (E0).

Finally, suppose we absorb the definitions and the explanans “in-
side” Math, as it were.11 The result is an instance of the application
conditional schema described above:

10 The formalization of this argument is:

(Df1) ∀x∀p (run(x, p) ↔ (perf(x, p)) ∧ ∀y∀z((inp(x, y) ∧ val(p, y) = z) →
out(x, z))).

(Df2) ∀p1∀p2(equiv(p1, p2) ↔ ∀z(val(p1, z) = val(p2, z))).
(1) equiv(p1, p2).
(2) run(a, p1) ∧ run(b, p2).
(3) ∃z(inp(a, z) ∧ inp(b, z).

(4) ∃w(out(a, w) ∧ out(B, w)).

This can be shown to be valid. And (C1) is, in effect, (2) ∧ (3) → (4).
11 I.e., the explanans (E2) (that Pf and Pg are computationally equivalent, along

with the various mathematical results used to prove that) is now hidden inside Math.
Clearly, as we have shown, Math implies that Pf and Pg are computationally equiv-
alent.
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Math ⊢
[

“law”
︷ ︸︸ ︷

(m1 runs Pf and m2 runs Pg) ∧

initial condition
︷ ︸︸ ︷

(m1 and m2 receive same input)
]

→

prediction
︷ ︸︸ ︷

(m1 and m2 yield same output) .

As soon as one sees the basic explanatory pattern used here, it is easy
to give similar computational examples.

For example, there are plenty of computable functions f, g, which are
defined differently, but which are such that one can prove that f(n) =
g(n), for all n. A nice example would be programs P1 and P2 which,
given input n, print the first n decimal digits of π, or perhaps print the
nth decimal digit of π. Typically, the equivalence of programs P1 and
P2 follows from a mathematical theorem:

∀n ∈ N : P1(n) = P2(n).

As programmers are well aware, it is routine for the properties of
some specified program P (i.e., a piece of abstract syntax in some fixed
programming language) to be analysed mathematically. Often one is
interested estimating the running time of P , measured as a function of
the size of the input. One of the most important open problems in math-
ematics concerns whether there exists a program P , which computes the
satisfiability of given Boolean formulas in CNF in polynomial time.

5. Is There a “Nominalistic” Alternative?

The application conditional that we explained mathematically is the
following:

(C1) If machines m1,m2 run programs Pf , Pg, then same
inputs to m1, m2 give same outputs.

As is typical in such cases, this is a mixed statement. It is specifically
about two abstract entities  namely, the programs Pf and Pg. Thus,
(C1) is, at best, vacuously true for a nominalist, as the nominalist view
is that only tokens (such as physical inscriptions, utterances, or perhaps
specific concrete encodings in digitized patterns in computer memory or



16 Jeffrey Ketland

on screen) exist. The nominalist may of course talk of tokens of these
programs: let us say they are tf and tg, perhaps defined by ostension.
Then, the corresponding “nominalization” of (C1) would be:

(Cnom
1 ) If machines m1,m2 run tokens tf , tg, then same inputs

to m1,m2 give same outputs.

And the modification of the proximate explanation (E2) is:

(Enom
2 ) Token tf is computationally equivalent to token tg.

It seems to me that one can reasonably argue that (Enom
2 ) explains

(Cnom
1 ).12

But this is not the problem. For consider what explanations might
be given for (Enom

2 ) itself. The mathematician or computer scientist
may explain (Enom

2 ) as follows. First, tf is a token of Pf and tg is token
of Pg. Second, the program Pf is computationally equivalent to the
program Pg, indeed because the functions f, g are coextensive. Moreover,
if programs are computationally equivalent, then so are their tokens.
Ergo, token tf is computationally equivalent to token tg. Q.E.D.13

However, this explanation is not nominalistically admissible since it
refers to abstract entities: programs. Is there a nominalistic explanation
of (Enom

2 )? This might somehow proceed via a discussion of microchips,
wires, atoms, etc., but nowhere advert to abstract entities such as func-
tions, programs or numbers? Or, for that matter, lengths, times, masses,
charges, electric & magnetic field strengths, etc.? This appears to me
to be doubtful.14 The explanation of the (necessarily) true application
conditional (C1), given above, is (E2). The parallel “nominalistic” ex-
planation of (Cnom

1 ) would be (Enom
2 ). However, it seems that (Enom

2 ) is
nominalistically inexplicable.

So, I end with a challenge:

12 Note that (Enom
2 ) and (Cnom

1 ) are now contingent statements. In nearby
worlds, where the physical inscriptions tf or tg are a teeny bit different, they do
not in fact compute the right functions. In fact, nearby tokens of either will not even
be syntactically well-formed and so will not run (an error with be thrown).

13 Admittedly, “t is a concrete token of syntactical entity P” is a notion which
has not received sufficient attention. The only work I know of which has attempted
a sustained analysis of such notions is [Wetzel, 2009].

14 The only manageable approach I can picture would be to try to “nominalize”
the description of the physical machine which “runs” a given token, and then somehow
show that various non-obviously-equivalent “dynamical trajectories” of the physical
machine’s states sometimes take equal input tokens to equal output tokens.
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Challenge: provide a nominalistic explanation of the fact that
token tf is computationally equivalent to token tg.

Acknowledgements. The author acknowledges support by a grant from
the National Science Centre in Cracow (NCN), Poland, grant number
2018/29/B/HS1/01832.

References

Arntzenius, Frank, and Cian Dorr, 2012, “Calculus as geometry”, Chapter 8
of F. Arntzenius (ed.), Space, Time, and Stuff, Oxford: Oxford University
Press. DOI: 10.1093/acprof:oso/9780199696604.001.0001

Baker, Alan, 2005, “Are there genuine mathematical explanations of physical
phenomena?”, Mind 114: 223–238. DOI: 10.1093/mind/fzi223

Burgess, J. P., and Gideon Rosen, 1997, A Subject with No Object. Strategies
for Nominalistic Interpretation of Mathematics, Oxford: Clarendon Press.
DOI: 10.1093/0198250126.001.0001

Church, Alonzo, 1932, “A set of postulates for the foundations of logic”, Annals
of Mathematics 33: 346–366.

Church, Alonzo, 1933, “A set of postulates for the foundations of logic” (second
paper), Annals of Mathematics 34: 839–864.

Church, Alonzo, 1958, “Letter to Goodman (1 Dec 1958)”. Reprinted in [Good-
man 1972].

Field, Hartry, 1980, Science Without Numbers: A Defence of Nominalism,
Princeton, N.J.: Princeton University Press.

Frege, Gottlob, 1891, “Function and concept”. English translation of [Frege,
1891] “Funktion und Begriff” (der Jenaischen Gesellschaft für Medizin und
Naturwissenschaft) in P. Geach and M. Black (eds.), Translations from the
Philosophical Writings of Gottlob Frege, Oxford: Blackwell, 1980.

Feynman, Richard, 1965, The Character of the Physical Law, London: Penguin
Books, 1992. Page reference to the 1992 edition. DOI: 10.7551/mitpress/

11068.001.0001

Goodman, Nelson, 1972, Problems and Projects, New York: The Bobbs-Merrill
Company Inc.

Kleene, S. C., and J. B. Rosser, 1935, “The inconsistency of certain formal
logics”, Annals of Mathematics 36: 630–637. DOI: 10.2307/1968646

http://dx.doi.org/10.1093/acprof:oso/9780199696604.001.0001
http://dx.doi.org/10.1093/mind/fzi223
http://dx.doi.org/10.1093/0198250126.001.0001
http://dx.doi.org/10.7551/mitpress/11068.001.0001
http://dx.doi.org/10.7551/mitpress/11068.001.0001
http://dx.doi.org/10.2307/1968646


18 Jeffrey Ketland

Klement, Kevin, 2003, “Russell’s 1903–1905 anticipation of the lambda cal-
culus”, History and Philosophy of Logic 24 (1): 15–37. DOI: 10.1080/

0144534031000076237

Mancosu, Paolo, 2018, “Explanation in mathematics”, Stanford Ency-
clopedia of Philosophy. URL: https://plato.stanford.edu/entries/

mathematics\protect\unhbox\voidb@x\hbox-explanation/.

Putnam, Hilary, 1971, Philosophy of Logic. Reprinted in [Putnam 1979]. Page
reference to [Putnam, 1979].

Putnam, Hilary, 1975, “What is mathematical truth?”, in [Putnam, 1979]. Page
reference to [Putnam, 1979].

Putnam, Hilary, 1979, Mathematics, Matter and Method. Philosophical Papers,
Vol. 1, Cambridge University Press, Cambridge. Second edition. DOI: 10.

1017/CBO9780511625268.022

Quine, W. V., 1948, “On what there is”, Revue of Metaphysics 2: 21–38.

Quine, W. V., 1973, “The limits of knowledge”, Radio Talk. Published in
[Quine, 1976], The Ways of Paradox. Revised enlarged second edition. Har-
vard University Press, Cambridge, Ma.

Quine, W. V., 1995, From Stimulus to Science, Harvard University Press, Cam-
bridge, Ma.

Quine, W. V., and Nelson Goodman, 1947, “Steps towards a constructive nom-
inalism”, Journal of Symbolic Logic 12: 105–122. Reprinted in [Goodman,
1972].

Russell, Bertrand, 1903–05, The Collected Papers of Bertrand Russell, Vol. 4,
Foundations of Logic 1903–05, edited by Alasdair Urquhart, London: Rout-
ledge, 1994.

Simpson, S., 2010, Subsystems of Second-Order Arithmetic, 2nd edition, Cam-
bridge: Cambridge University Press. DOI: 10.1017/CBO9780511581007

Synge, J. L., and B. A. Griffith, 1959, Principles of Mechanics, Third edition,
McGraw-Hill Book Company Inc., New York.

Wetzel, L., 2009, Types and Tokens: On Abstract Objects, Cambridge, Ma.:
MIT Press. DOI: mitpress/9780262013017.001.0001

Jeffrey Ketland

Institute of Philosophy
University of Warsaw, Poland
jeffreyketland@gmail.com

http://dx.doi.org/10.1080/0144534031000076237
http://dx.doi.org/10.1080/0144534031000076237
https://plato.stanford.edu/entries/mathematicsprotect unhbox voidb@x hbox {-}explanation/
https://plato.stanford.edu/entries/mathematicsprotect unhbox voidb@x hbox {-}explanation/
http://dx.doi.org/10.1017/CBO9780511625268.022
http://dx.doi.org/10.1017/CBO9780511625268.022
http://dx.doi.org/10.1017/CBO9780511581007
http://dx.doi.org/10.7551/mitpress/9780262013017.001.0001

	Nominalism
	Explanations Using Mathematics
	A Computational Prediction
	Logical Structure
	Is There a ``Nominalistic'' Alternative?
	References


