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Abstract

Relative to digital computation, analog computation has been neglected in the

philosophical literature. To the extent that attention has been paid to analog computation, it

has been misunderstood. The received view—that analog computation has to do essentially

with continuity—is simply wrong, as shown by careful attention to historical examples of

discontinuous, discrete analog computers. Instead of the received view, I develop an account of

analog computation in terms of a particular type of analog representation that allows for

discontinuity. This account thus characterizes all types of analog computation, whether

continuous or discrete. Furthermore, the structure of this account can be generalized to other

types of computation: analog computation essentially involves analog representation, whereas

digital computation essentially involves digital representation. Besides being a necessary

component of a complete philosophical understanding of computation in general,

understanding analog computation is important for computational explanation in

contemporary neuroscience and cognitive science.

Those damn digital computers!

Vannevar Bush, MIT
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1 Introduction

Like clocks and audio recordings, computation comes in both digital and analog varieties. Relative

to digital computation, analog computation has been neglected, and as a result, not well

understood. This is partially due to the fact that an account of what counts as analog in general has

proven controversial, particularly in contrast to what counts as digital. Fifty years have passed since

Goodman ([1968]) began the discussion of the so-called analog/digital distinction in the

philosophical literature, and still we have not reached a consensus. In the few places where analog

computation has specifically been mentioned, it usually goes something like this: ‘Analog

computation is often contrasted with digital computation, but analog computation is a vague and
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slippery concept…Roughly, abstract analog computers are systems that manipulate continuous

variables to solve certain systems of differential equations’ (Piccinini [2015], p. 123).

One might think, like Piccinini, that all we need to know about analog computation is that it is

continuous, rather than discrete. One might think that we need no more than this kind of rough

characterization of analog computation because analog computation is no more than a historical

curiosity, devoid of interest or relevance to contemporary philosophy. But these thoughts would be

misguided.

The received view of analog computation—that it is essentially about continuity—is simply

wrong, as shown by studying actual analog computers from the 20𝑡ℎ century. Providing an account

of analog computation is not as simple as the received view would have it. Further, while it is true

that the heyday of analog computers has come and gone (there are no companies that produce

analog computers anymore), there are two reasons why providing such an account is still important.

First, if we want to understand computation simpliciter, we need a clear account of analog

computation in order to see how it might fit into a more general account of computation that

includes analog and digital (and perhaps other) types as species. Second, if we take seriously the idea

that cognitive science and neuroscience are in the business of explaining what minds and brains do

in terms of the computations that they literally perform,1 then we should understand all types of

computation that might be applicable to such explanations.

Here is the structure of what follows. In order to get a feel for how analog computation actually

works, I will first present a few examples of different types of mid-20𝑡ℎ century analog computers.

After making clear why continuity alone does not suffice, I will then argue that a refined version of

analog representation—the Lewis-Maley2 view—explains what is analog about analog

computation. Finally, with this account of analog computation in hand, I will conclude with some

general considerations about the relevance of this account to contemporary issues in philosophy and

the cognitive sciences.

Before beginning in earnest, a preemptory note is in order. Space prohibits a full account of
1This is a stronger claim than that the brain can be computationally simulated, which is true of

virtually any scientific object of interest (Piccinini [2007]).
2This is how Adams ([2019]) labels the view originally developed by Lewis ([1971]) and refined

and defended byMaley ([2011]).
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analog and digital computation. As just mentioned, the standard approach is to present an account

of both simultaneously. I think this has been a mistake, because, ‘analog’ and ‘digital’ are neither

opposites not jointly exhaustive. I can only offer some comments on digital computation and

representation in passing. It should simply be noted that a system of representation or computation

that is not analog on the account presented here is not necessarily digital.

2 Analog Computers

If one wants to trace the history of digital computers, one excellent place to start is the work of

Turing ([1938]). To be sure, digital computing machines predate Turing’s work: examples include

Babbage’s difference engine and Pascal’s calculator (sometimes known as the Pascaline).

Nevertheless, Turing’s work on computable numbers is usually taken to have initiated what we now

understand as computer science, and later, digital computer engineering.3

There is no such conceptual birthplace when it comes to analog computers. Analog devices have

been used since antiquity: an early review essay on analog computing machines begins ‘The use of

instruments of computation and analysis is as old as mathematics itself’ (Bush [1936], p. 649), and

the function of the two-millenium-old Antikythera mechanism has only recently been discovered

(Efstathiou and Efstathiou [2018]). As for a contemporary theoretical centerpiece—something like

the ‘Turing’ of analog computation—common citations include (Shannon [1941]) and (Pour-El

[1974]); but, as we will see later, even these are insufficient to account for analog computation in its

entirety.4

Rather than tracing a complete history of these instruments, we will begin with those devices first

developed in the 1930s, now referred to as the first analog computers.5 Even still, beginning here is
3However, some, such as Corry ([2017]), have argued that Turing’s theoretical work did not

influence the birth of digital computation nearly as much as is commonly thought.
4For instance, a recent monograph (Piccinini [2015]) on physical computation states that ‘[t]he

clearest notion of analog computation is that of Pour-El (1974)’.
5Using the term ‘computer’ to describe these machines is, of course, anachronistic: this term

referred to a particular job, usually held by women, that involved performing mathematical

computations by hand. More accurate would be ‘analog computing machines.’ For brevity,

however, I will use the anachronistic terminology in what follows.
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something of a challenge because of the lack of attention paid to these machines, particularly relative

to digital computers. One historian puts the point this way:

In general, historians of computing have neglected analog computing, viewing it

primarily as an obsolete predecessor to digital…[W]e have not yet begun to understand

the history and significance of analog computing, especially the relationship between

analog and digital machines. (Mindell [2002], p. 10)

A computer scientist makes a similar point:

Because digital computers and computation have been so successful, they have

influenced how we think about both computers as machines and computation as a

process—so much so, it is difficult today to reconstruct what analog computing was all

about. (Nyce [1996], p.3)

To be sure, there have been some limited discussions of analog computation in the philosophical

literature. For example, O’Brien and Opie ([2008], [2010]) use analog computation to illustrate the

role of representation in cognitive science. Shagrir ([2010], [forthcoming]) discusses the use of what

he calls ‘analog-model’ computing, which he takes to involve the simulation or modeling of a

system.6 Isaac ([2018]) has recently argued that analog computation is compatible with embodied

approaches to cognition. Papayannopoulos ([2020]) has recently defended the orthodox view that

analog computers are simply computers with continuous values (a point I will return to below).

These and related works are undoubtedly important steps toward the project of understanding

analog computation; nevertheless, we do not yet have a complete philosophical treatment of the

subject. Providing such a treatment is one goal of this essay.

I will describe three somewhat simplified examples of analog computers: one mechanical, one

electrical, and one electromechanical. These examples will illustrate some of the general principles

needed to motivate later discussion of the right way to think about analog computation.
6Shagrir’s view has much in common with the view on offer here, although his focus is on

computation more generally. The differences are important, but they will have to wait for another

time.
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2.1 Mechanical analog computers

One of the most well-knownmechanical analog computers is the differential analyzer, developed by

Vannevar Bush ([1931]). ‘Mechanical’ in this context means that the elements doing the computing

use physical movement, such as rotation and displacement, to perform their tasks. Bush’s

differential analyzer uses an interconnected series of components to compute solutions to

mathematical operations, including differential equations. One such component is the integrator,

which represents the values of functions (changing over time) using the rotation of rods connected

to a disk and ball bearing assembly. A simplified version of this component7 is shown in Figure 1.

First, we will examine how it works mechanically, then how it functions as a computer.

Figure 1: Disk B rotates faster near the edge of disk A than near the center.

There are two disks: the large bottom disk A, which is a turntable, and disk B, in contact with,

and perpendicular to, disk A. Disk A rotates at a constant speed, and disk B is connected to an input

linkage that can be slid left and right (closer to and farther from the center of A), changing the point

where B contacts A. As A rotates, B rotates in the perpendicular direction. However, while the
7Simplifications include using two connected disks rather than a disk and ball bearing assembly,

as well as omitting various supporting structures to allow for easier visualization.
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speed of A is constant, the speed of B depends on exactly where B contacts A: disk B will rotate faster

when near the edge of A, slower near the center of A, and not at all when it is at the exact center of A.

So how, and what, does this mechanism compute? As the name implies, this component

integrates a function over time.8 The value of the function determines the position of B, which

moves to the right (farther from the center) as the value increases, and left (close to the center) as

that value decreases.

As an example, suppose we want to integrate part of the sine function shown in Figure 2. This

means we want to compute the area under the black curve (shown in gray). The bottom disk A

serves as the independent variable. Because the function we are integrating starts at zero, the position

of B would begin at the center of A (where, again, even when A is moving, B will not move in

response). As our function begins to increase, the position of B will move to the right, further from

the center. As it does so, B will start rotating, and rotate faster as it moves closer to the edge of A. At

the apex of the function, B will be closest to the edge of A; after that, B will move back toward the

center of A. By tracking the total number of rotations of B, we compute the area under the curve.

Figure 2: The sine function from zero to 𝜋.

In summary, the rotation of disk A represents an independent variable, such as time. Once the
8Strictly speaking, the independent variable could be something other than time, but time is the

most common and easiest to explain, so that is what we will use.
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computation begins, A rotates at a constant speed, not influenced by other variables. The position

of B, relative to the center of A, serves as the input, or dependent variable. This position represents

the value of the function to be integrated. For different functions, this position will move back and

forth in different ways: in the case of the sine function, it will decelerate as it moves toward the

center, then accelerate away from it after reaching the maximum of the function.9 Again, the speed

that disk B rotates is determined by where it is relative to the center of A; thus, the running total

number of rotations of the disk B serves as the output: it represents the definite integral—the area

under the curve—of the input up to that point.

Many other devices were used to compute various mathematical functions in similar ways:

displacement and rotation were used to represent quantities, which were then mechanically engaged

in clever ways to deliver the requisite output. The particular example of the integrator is merely one

component, which could be connected to other components to compute more complex functions.

The output of the integrator, for example, might serve as the input to another component (and even

more integrators in the case of higher-order differential equations). Similarly, the input could come

from the output of a separate component (in fact, the next section will demonstrate an example

where a number of elements are connected together in just such a way). Besides the integrator, there

were mechanical adders, multipliers, function generators, and many others (presented in, for

example, (Soroka [1954]), (Truitt and Rogers [1960]), and (Ashley [1963])).

2.2 Electronic analog computers

Rather than using moving mechanical parts, electronic analog computers largely consisted of

configurable electronic circuitry. Thus, in these machines, quantities are represented by various

electrical properties (such as voltage or resistance) rather than mechanical properties. Once again,

we will look at a simplified example in order to give us a feel for how these machines worked.10

First, let us consider a simple physical problem that we can set up an analog computer to solve. In

Figure 3, we have a mass M connected to a wall via a spring. The problem we would like to solve is:
9Note that the disk can represent both positive and negative values of a function: in this

example, if the disk were to move to the left of the center of A, then it would subtract the total

number of rotations, just as we would expect when integrating negative values of a function.
10This example is adapted from a textbook on analog computers (Peterson [1967], p. 29).
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how does the mass move as a force is applied to its side? In other words, what is its left-right

displacement (the variable 𝑥) when a right-moving force (the variable 𝑦) is applied to the left side of

M and released?

Figure 3: A mechanical system consisting of a mass M connected to a wall via a spring (with spring-
constant K), friction (B), with a force applied to its left side (y).

This problem is not trivial: we must take into account the friction between the mass and the

ground (given by B), and the ‘springiness’ of the spring (given by K). Still, we can use some basic

physics to characterize this systemmathematically. Using the values M = 1 kg, B = 3 nt/m/sec, K =

16 nt/m, and 𝑦 = -80 nt, the differential equation (and initial conditions) for this system is given by

the following:

𝑦 = 𝑥′′ + 3𝑥′ + 16𝑥; 𝑦 = −80 (2.1)

𝑥′(0) = −0.64; 𝑥(0) = 2

To set up an electronic analog computer to provide the solution, we will rewrite the equation to

isolate the second derivative, which gives us:

−𝑥′′ = 3𝑥′ + 16𝑥 − 𝑦 (2.2)

Using this equation and the initial conditions as a guide, we connect four types of electronic

components together, as shown in Figure 4: an adder (triangle with
∑
), two integrators (triangles
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with
∫
), an inverter (triangle with −), and two potentiometers (circles with×), which act as

multipliers.

Figure 4: Electronic analog computer schematic.

When the voltages—which are determined by the values of the equations—are ‘run’ on this

computer, the output of the system is given by 𝑥. The output starts at a value of two volts (the initial

value given in the equations), then changes over time as a function of itself (note that the output 𝑥 is

fed back in as an input to the computer in Figure 4) and the other terms in the equation.11 After a

rapid change and a few oscillations, the output reaches a steady state, as shown in Figure 5. This is

what happens with the physical system depicted in Figure 3: the mass rapidly goes back to—and

then overshoots—its equilibrium point, oscillates a bit around that point, and finally settles.

This particular type of analog computer is known as an electronic differential analyzer (EDA).

EDAs were by far the most common type of electronic analog computer, simply because differential

equations are so common in science and engineering (most people who are familiar with analog

computers generally have in mind an EDA). We need not attend to the details of the individual
11In real electronic analog computers, the values of the variables of interest would have to be

scaled so as to stay within the electrical limits of the analog computer. So, for example, if our system

required a value of 700, we might scale everything by .01 so that the computer would use seven volts,

rather than 700 volts. In such a case, the graphical output would look the same, but the axes would

need to be linearly scaled to make sure the values are correct. This is identical to how slide rules can

only be used within a certain range, so problems have to be scaled up (or down) in order to fit in that

range, then scaled back down (or up) once the calculations are finished.
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Figure 5: Solution of the system given in Equation 2.1.

components of the EDA, but we can see how the overall structure of this computer solves the given

equations. For example, consider the adder on the top left (indicated by the triangle with the

summation sign), which sums its three inputs. The first (top) input to that component is simply the

value -80, which here is represented by -80 volts. Tracing the path of the other two inputs, we see

that the bottom one is the output from the first integrator (which is 𝑥′), multiplied by -3. The

middle input is the result of the output from the second integrator (which is 𝑥), multiplied by 16.

This is exactly what Equation 2.1 specifies.

The design and physical implementation of the electronic analog computer looks very different

than the mechanical one illustrated earlier. The important point to note, however, is that the basic

principle is the same. In each case, we have a physical quantity representing a variable: rotation and

displacement in the mechanical case, and voltage in the electronic case. Both computers are designed

so that they manipulate the physical quantities that represent values in ways that correspond to the

requisite mathematical operation.

Insofar as the relevant physical quantities are continuous, both the mechanical and the electronic

analog computers illustrated here fit perfectly well with the received view of analog computation

mentioned at the beginning of this essay: analog computation is simply computation using

continuous elements. However, analog computers also used discontinuous elements, an important

but little-known fact that causes serious trouble for the received view. So let us look at some

examples of these discontinuous analog computers.
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2.3 Discontinuous analog elements

While many analog computer elements are continuous, including the EDAmentioned above, not

all are. One textbook introduces this point quite nicely:

Ninety-nine and forty-four one-hundredths percent of the time, when an engineer

speaks of an analog computer he is referring to an electronic differential analyzer

(EDA), but the EDA is just one type of analog computer, one specific application of

the general principal of computation by analogy. So let’s see first of all what is meant

by analogy and how we use analogs in computation—in the general sense, not just in

the EDA. (Peterson [1967], p. 1, emphasis original)

Let us follow this lead and look at that 0.56 percent.

Many phenomena that one might want to study using analog computers include discontinuities

of various sorts; as such, analog computers implement many different kinds of discontinuities.12 For

example, some physical systems that involve spur gears or other mechanical parts have a certain

amount of slack that cannot be eliminated, because the components cannot be be in perfect physical

contact (if they were, they would be unable to move). In the case of gears, this means that one gear

might begin moving for a very short time before it contacts another, at which point the second gear

will move. Thus, the movement of the second gear is not a continuous function of the movement of

the first. In fact, if several such gears are connected, the slack can become an important feature of

the system to be studied. As such, it was necessary to include this kind of discontinuity in analog

computers to study systems with such discontinuities.

More generally, we may want to model any number of discontinuous functions, for any number

of reasons. Figure 6 illustrates a few of these as they are implemented in an electronic analog

computer, adapted from (Cadman and Smith [1969], p. 31). Note that the behavior of the second
12For the moment, what is meant by ‘discontinuous’ is that the function in question is not

smooth, which in turn means that it has a number of points at which the function is not

differentiable. Although this accords with a commonsense understanding of discontinuous, it

would still count as continuous in the strict mathematical sense, in which the function has gaps or

jumps. Later we will see examples of functions that are discontinuous even in this strict sense.
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gear just mentioned is captured by using the ‘zero limiting’ circuit: as a function of the first gear’s

movement, the second gear is zero until a single point, at which it abruptly (not smoothly) begins to

increase.

Figure 6: Four different circuits implementing discontinuities (left column) and their respective graphs
(right column).

Amore complex example is also one of the more surprising, particularly to those who endorse the

received view of the analog, and who are only familiar with the EDA as the paradigm example of
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analog computation. Recall the example of the spring-mass system and the accompanying EDA

from section 2.2. We began with a physical problem, which we were then able to precisely

characterize in mathematical terms. This allowed us to create a circuit based solely on that

mathematical characterization, which in turn allows us to compute the solution via an EDA. In this

case, this was because we could analyze the problem using known physical principles: characterizing

spring-mass systems in terms of differential equations is a well-known technique.

Some problems, however, do not admit of this kind of mathematical characterization. For

example, we may know what a particular function looks like, although we do not know how to

translate that into a set of equations that we can then use to construct an analog computer. Many

problems are unlike the spring-mass system in that regard: there may be no first principles from

which one can derive a set of equations that describe the system. Although this might seem to

render analog computers useless for such problems, they have components to handle cases exactly

like these:

Such behavior presents almost insurmountable obstacles to purely mathematical

investigation, but poses no particular difficulty to analog-computer investigation.

Again, we are not solving equations, we are modeling systems. Thus if we can describe

the input-output relationship…, all we need to do is provide an element on the

computer which has the same relationship between its input and output voltages.

Such elements are known as arbitrary function generators. (Peterson [1967], p. 109,

emphasis original)

Using an arbitrary function generator, an analog computer could be set up to construct a discrete,

piecewise-linear approximation to any function, even one without a knownmathematical

characterization. The piecewise-linear approximation generated by this component consists of a

series of straight line segments, with discontinuities where those segments meet. Figure 7 shows an

example of a continuous function plotted with such a piecewise approximation. Depending on the

application and the particular function generator used, better approximations could be achieved by

varying the number of points and the distances between the points.

If—as the received view would have it—analog computers essentially use only continuous

elements, one would expect that an analog computer would have to use a continuous function to
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Figure 7: A continuous function (grey), approximated by a piecewise-linear function (black).

approximate a discontinuous problem of interest. But note that the exact opposite is happening in

the example just given. For some applications in which one wanted to study a continuous function

whose mathematical characterization is unknown, the analog computer could use a discontinuous

function to model that continuous function.

In an earlier footnote, I mentioned that ‘discontinuous’ in the examples just given simply means

that the functions in question are not smooth. Although analog computer users and engineers

referred to these function as discontinuous, mathematically speaking these kinds of function are still

continuous. The rough idea is that if we were to draw these functions on a piece of paper, we would

not need to lift our pencil off of the surface, even if there are sharp (rather than smooth) changes in

direction.13 Mathematically discontinuous functions require gaps or jumps where we would need

to lift our pencil off of the surface to draw them. As it turns out, analog computers implemented

these types of functions, too.

An excellent example is a particular electromechanical component. Like purely electronic analog

computers, electromechanical analog computers use electrical properties, such as voltage, to

represent variables of interest. However, in the electromechanical case, these variables are

manipulated by mechanical means rather than purely electronic means. The example here is a
13More technically, these functions are not everywhere-differentiable.
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step-function generator. Step-functions are constant for a specified interval, then ‘jump’ to a

different constant for a different interval. Figure 8 shows a schematic of a simplified version of such

a component, plus the step function it generates (adapted from (Korn and Korn [1952], p. 254)).

The component has a rotating element that makes contact with separate wires, which in turn

connect to a variable resistor at different points. The farther from the input, the lower the resistance,

and thus the greater the output. As this element rotates (counterclockwise in this example), it

momentarily breaks contact with one wire, then makes contact with the next wire, resulting in a

discontinuous jump from one voltage to another.14 By adjusting the number of wires, where they

contact the resistor, and the speed of the rotating element, one could implement different step

functions with different characteristics.

Figure 8: Switch-type step function generator (left) and its resulting step function (right).

Once again, we have a counterexample to the received view. These elements (and ones like them)

were not uncommon in analog computers, yet they do not use continuously-varying elements.

Instead, the variation is as discontinuous as could be.

At this point, one might wonder why analog computer engineers would go to the trouble of

making these discontinuous components, given the well-known fact that these types of functions

can be approximated by continuous functions. For example, a simple step function that goes back

and forth between two values can be approximated by a sum of sine and cosine functions. While

this may be good enough for some purposes, it is not good enough for others. In particular, the
14This particular example is of a non-shorting switch, or ‘break-before-make’ contact. This

ensures that the voltage truly jumps from one value to another. Other switches had overlapping

contacts, called shorting switches, or ‘make-before-break’ contact, which could be used if the true

discontinuity was not wanted.
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difference between the approximation and the actual value of the step function one wants can be

particularly bad at transition points for certain kinds of approximations,15 as illustrated in Figure 9.

So, rather than trying to use continuous functions to approximate discontinuous functions, analog

Figure 9: Step function (black) and a Fourier series continuous approximation (grey).

computers were able to directly implement discontinuous functions. In a discussion of the use of

relays and switches to incorporate a discontinuous voltage change (like the electromechanical

component just illustrated), rather than using a continuous approximation (the diode limited

amplifier circuit, which would result in an approximation similar to that shown in Figure 9), the

author of an analog computing monograph explains:

For the problem being studied, it is not immediately obvious why the relay is needed.

The voltage from the diode limited amplifier circuit can be made to closely

approximate a delayed step function.…There are two reasons why this is not practical.

The slope of the ‘step’ function out of this circuit is not exactly zero after the original

discontinuity. In the process of adding two of these step functions, a small error that

increases with [time] would be applied to the integrator and cause an unwanted ‘drift’

in the output of the integrator. (Ashley [1963], p. 201)

The idea is simply that small approximation errors in different components can combine to form
15This is known as the Gibbs phenomenon.
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increasingly large errors. Better to use the exact values of a discontinuous function to model a

discontinuous function, rather than a continuous approximation.

These are just a few of the examples that demonstrate how analog computation was not only

about continuity. Discontinuous components are important for approximating continuous

functions, as well as their use in directly implementing discontinuous functions of interest.

Although this may seem surprising today, it was known during the heyday of analog computation.

For example:

Any mechanism which involves continuous variables is nowadays in danger of being

called “analog,” of course to distinguish it from “digital”…To make matters still more

confounded, the common usage for computing structures, whereby only continuous

methods are called analog, is wrong, since it is clear that discrete or digital machines

may also embody and constitute analogs of prototype phenomena. (Philbrick [1961],

p.7)

It is clear that the received view—that analog computation is essentially about continuity—is

simply false. However, we still need to make clear what analog computation is essentially about. In

the next section, I will discuss different accounts of the analog, and argue that only one particular

account of analog representation makes sense of analog computation.

3 What makes analog computation ‘analog’ and ‘computational’

Nearly all accounts of the analog focus on analog representation, rather than analog computation

more specifically. Moreover, nearly all accounts of analog representation are made in contrast with

digital representation. This is unfortunate. The similarities and differences between analog and

digital representation—and analog and digital computation—are lost when ‘analog’ and ‘digital’ are

taken to be opposites, and jointly exhaustive of representational types. In other words, many have

assumed that once we know the right way to characterize analog representation, then digital

representation comes for free (or vice versa): digital is whatever is not analog. While I take this

assumption to be false, I cannot engage in a full defense here, so I will limit the discussion to the

relevant aspects of the positive accounts of what counts as analog. I will first review several accounts

of analog representation, and then argue that only the so-called Lewis-Maley account is able to make
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sense of analog computation. What follows is captured quite well by Peacocke: ‘Analog

representation is representation of magnitudes, by magnitudes. Analog computation is the

operation on representing magnitudes to generate further representing magnitudes’ (Peacocke

[2019], p.52), although how that slogan is elaborated here differs from Peacocke’s own elaboration.

Again, I will not provide a detailed account of digital representation (much less digital

computation), although I will offer a few remarks to make clear the contrasts that other authors

have made, and outline the case for why ‘digital’ is neither synonymous with ‘discrete’, nor with

‘non-analog’.

Philosophical accounts of analog representation generally fall into one of two camps, which Beck

([2018]) calls the ‘continuous’ and the ‘mirroring’ conceptions.16 I will use ‘covariation’ instead of

‘mirroring’ (for reasons explained below), but the idea is roughly the same. In what follows, we will

look at each type of account, plus some specific instances of each.

3.1 Analog as continuity

According to the continuous conception (the received view), the essential feature of analog

representation is that it is continuous in nature. What exactly ‘continuous’ means is not always made

precise, but the basic idea is that analog representations vary smoothly, rather than in discrete steps.

The first account of this kind in the philosophical literature is due to Goodman ([1968]). On this

view, analog representations are continuous, or dense, while digital representations are

differentiated, or discrete.17 Haugeland ([1981]) draws from this account, and distinguishes

between analog and digital devices in terms of the reliability of the procedures that read and write

representation tokens. In short, digital devices read and write tokens that are completely

determinate, with read/write procedures that are perfectly reliable. Analog devices, on the other
16There are still other types, such as (Frigerio et al. [2014]), that do not fit well into either camp;

but these accounts are not relevant to the concerns noted here.
17Goodman speaks of representational schemes, rather than individual representations. The idea

is that a single representation in isolation is neither continuous nor discrete, but representations can

vary continuously or discretely in accordance with a scheme. While this is an important

consideration, for brevity of exposition, I will simply refer to representations, rather than

representational schemes.
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hand, read and write tokens that are not perfectly determinate, with read/write procedures that are

approximate at best.

Katz ([2016]), Schonbein ([2014]), and Papayannopoulos ([2020]) all offer elaborations and

defenses of these views. Katz clarifies a potential flaw in Haugeland’s view, specifying that whether a

given representation system is analog or digital is not a matter of objective facts about the system,

but how the system is used (or supposed to be used). Katz makes clear that what counts as a user can

be very general, and need not be a human or other agent located outside of the system in question.

The point is simply that we need to look carefully at the context in which representations are read,

written, and otherwise used. Schonbein argues for the received view on historical grounds. On this

view, there is an entrenched engineering literature that treats analog as continuous, and digital as

discrete. However, Schonbein also allows that there may be different varieties of analog

representation, such that different accounts might be better suited for different purposes.

Papayannopoulos argues that a modified version of Goodman’s account is best suited for

understanding analog computation, although he specifically discounts discrete components as

being analog (although he does not use actual examples, he contends that two continuously-varying

wheels connected together would be analog, but wheels that move in discrete steps, constrained by

the teeth of gears, would be digital).

Given the discontinuous examples from section 2.3, this family of accounts of the analog does

not properly characterize analog computation. There are, of course, differences among this family

of accounts, and some of them disagree about hypothetical cases. However, what unites them is the

thought that continuity is essential for any account of analog representation (or devices that use

analog representations, such as computers). Given that each implicitly accepts the idea that analog

and digital are both opposites and jointly exhaustive, each account takes discontinuous cases like the

one presented above to be non-analog, and thus digital.

In summary, according to the continuous account, discontinuous analog computers are not

really analog. That is a shortcoming: although not as widely known as the continuous elements of

analog computers, discontinuous elements were not uncommon. Fortunately, another account of

analog representation is available, which does properly characterize analog computation as analog.
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3.2 Analog as covariation

The second family of accounts of analog representation rejects the idea that this kind of

representation is necessarily continuous. Instead, this family takes the essential feature to be some

kind of mirroring, or covariation, between the representation and what is represented. What exactly

‘covariation’ means is not always made precise (and differs somewhat between different accounts),

but the basic idea is that analog representations are structurally isomorphic (or, in some cases,

homomorphic) to what they represent.

The first account of this kind in the philosophical literature is due to Lewis ([1971]). Lewis

suggests—contra Goodman—that what is important about the voltage in an analog computer is not

that it is continuous, but that it covaries with what it represents. Specifically, as the quantity we want

to represent increases, so does (for example) the voltage, which is what is doing the representing.

The value 34, for example, is represented by 34 volts; 34.8 is represented by 34.8 volts. Furthermore,

this covariation would occur even if we had discrete, rather than continuous, variations of voltages:

whether the voltage could only increase in increments of 1, volt, 0.1 volts, or continuously, the

covariation would still be present. According to Lewis, what does the representing in an analog

representation is some primitive or ‘almost primitive’ physical magnitude, such as voltage.

Other examples of this kind of account include (Blachowicz [1997]), (Kulvicki [2015]), and

(Peacocke [2019]). Blachowicz argues for what he calls the model interpretation: ‘the function of

analog representation is to map or model what it represents’ (Blachowicz [1997], p. 83). In line with

the covariation account, Blachowicz argues that continuity is inessential to analog representation.

However, Blachowicz is primarily concerned with examples of analog perception and thought,

going beyond the kind of analog representation characterized here. Kulvicki agrees that important

examples of analog representation need not be continuous, and that the preservation of structure

between what is represented and what is doing the representing is the essential feature. Kulvicki is

also focused on more complex examples, including the ways in which these examples support

particular kinds of psychological tasks or capacities. Peacocke’s view aligns almost perfectly with the

Lewis-Maley view to be developed below, although Peacocke’s overall purpose is to develop an

account of the metaphysics that explains our perceptual capacities (Peacocke’s view of digital

representation, however is at odds with the Lewis-Maley view).

21



Maley ([2011]) builds on Lewis’s account by arguing that the notion of primitive or almost

primitive physical magnitude is too restrictive, and by offering a more precise characterization of the

kind of covariation involved in analog representation. While in one sense Maley’s characterization is

the narrowest, it is also the most precise. However, we can improve uponMaley’s original view,

resulting in the following characterization (with the formalism to be explained below):

A representation 𝑅 of a quantity𝑄 is analog (with resolution 𝑟) iff:

1. there is some property 𝑃 (the representational property) of 𝑅 such that the physical quantity

or amount of 𝑃 specifies𝑄; and

2. the quantity or amount of 𝑃 is a monotonic function 𝑓 of𝑄, and that function is a

homomorphism from𝑄 to 𝑃. Furthermore, let 𝑃1 and 𝑃2 be values of 𝑃 that represent

quantities𝑄1 and𝑄2, respectively. If |𝑃1 − 𝑃2 | ≥ 𝑟, then (without loss of generality)

stipulate that 𝑃1 < 𝑃2 (that is, let 𝑃1 be the smaller of the two). In the case where 𝑓 is

monotonically increasing (non-decreasing), then𝑄1 < 𝑄2; if 𝑓 is monotonically decreasing

(non-increasing), then𝑄1 > 𝑄2. However,𝑄1 ≤ 𝑄2 only implies 𝑃1 ≤ 𝑃2 for

monotonically increasing 𝑓 , or 𝑃1 ≥ 𝑃2 for monotonically decreasing 𝑓 .

A few points about this characterization should be highlighted. First, this is not an account or

theory of representation in general; rather, this is a characterization of what makes something

already taken to be a representation a specifically analog representation. Second, and relatedly,

‘specifies’ in the first clause refers to what it is about the representation that does the representing,

and not about how the physical properties of the representation are caused to have the value that

they do. Finally, specifying that the function is a monotonic homomorphism allows for maximal

generality with respect to which functions will count as preserving an analog relationship. In

general, this means that an increase in the property doing the representing necessarily means that

what is represented has increased, but an increase in what is to be represented does not necessarily

mean that the property doing the representing increases (although it may).

Consider a mercury thermometer. This counts as analog because an increase (or decrease) in a

particular property of the thermometer—the height of the mercury—represents an increase (or

decrease) in the ambient temperature. Another example is a vinyl record: these are analog because
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an increase in the ‘frequency’ of the ridges within a groove represents an increase in the frequency of

the sound represented (and similarly for the height of the ridges and the amplitude of the sound).

Still another is an hourglass: the amount of substance (sand or liquid) in the bottom of the glass

increases as the amount of time has elapsed since the glass was turned over.

Importantly, this characterization also counts these examples as analog if they happen to only

vary in discrete steps. Consider the hourglass, for example. Many hourglasses use discrete particles,

such as sand, whereas others use liquids (which are presumably continuous). On the account

offered here, it is the fact that the amount of substance is doing the representing that makes the

hourglass analog, rather than whether that substance is continuous or discrete.18

Similarly, this characterization counts analog clocks correctly, whether they vary continuously or

discretely. Consider the second hand of an analog clock. On the continuous conception, an analog

clock with a hand that sweeps continuously would be analog, whereas one that ticks would not. But

on the account here, it is the fact that an increase in the angle of the second hand represents an

increase in time that matters, regardless of whether that increase happens continuously or discretely.

This also illustrates the relevance of the homomorphism constraint (where an isomorphism would

be too strong). Assume that time is continuous, and consider its representation by a

discretely-ticking second hand. If the second hand has moved, we know that time has passed. On

the other hand, small amounts of time—smaller than the resolution term 𝑟, which in this case

would be one second—can pass without the second hand moving.

The resolution term 𝑟 also captures the fact that in a discrete analog representation, there may

also be small amounts of ‘jitter’ or noise. When the second hand ticks to a new location, it might

oscillate very slightly. However, we do not want these oscillations to count as differences in what is

being represented. Thus, if the difference in magnitude between two positions is not greater than 𝑟,

then those magnitudes do not represent different quantities.

Finally, some analog representations may represent in a kind of inverse way. Perhaps instead of a
18I take it to be a virtue of this account, relative to continuity-based accounts, that we can set

aside issues about whether anything is really continuous (properties like voltage, liquids, spacetime

itself) in order to determine whether anything is really analog. Such questions simply do not matter

for the present account.
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thermometer with a substance whose height increases with temperature, one might have one where

the height decreases as temperature increases. Also, some analog representations might be seen as

increasing in one way, but decreasing in another. As the second hand of a clock increases in angle

from 30 to 36 degrees (with respect to the usual ‘12’ at the top), the reflex angle is decreasing from

330 to 324 degrees (a necessary consequence of angular rotation). Roughly speaking, the relations

still hold between what is represented and what is doing the represented, except in reverse. However,

the inclusion of both monotonically increasing and decreasing functions in the second clause

captures such cases.

For present purposes, I will adopt the improved Lewis-Maley account, simply because it is best

suited for characterizing the kind of analog representation relevant to understanding analog

computation. As mentioned above, this account is relatively limited. However, it is worth

mentioning that this account may well be generalizable to coincide with other mirroring accounts,

as well as what have been called structural representations (Ramsey [2007]), (Shea [2014]),

(Nirshberg and Shapiro [2020]). The Lewis-Maley account as presented covers what we can call

one-dimensional representations: one property of a representation represents some quantity (for

example, the height of liquid in a thermometer represents the temperature at a single point in space),

and it does so by monotonically covarying with that quantity (that is, as the temperature literally

increases/decreases over time, the height of the liquid literally increases/decreases over time). In

future work, however, this account might be extendable to multiple dimensions to cover analog or

structural representations mentioned in other accounts, such as photographs and scale models. For

the present essay, however, we only need a precise account of the one-dimensional representations

used by analog computers.

3.3 What makes it ‘analog’

Different accounts of analog representation have been based on particular examples, often

hypothetical. As mentioned above, where analog computation has been mentioned in this

literature, it is usually taken as nothing more than computation using continuous elements, and

thus used to support the view that to be analog is to be continuous. This is simply incorrect, as our

historical counterexamples have shown. Nevertheless, I endorse the underlying assumption that (all
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else being equal) we ought to prefer an account of the analog that applies to b analog representation

and analog computation.

We saw in section 2.3 that analog computation is not simply about continuity. Discontinuous

analog components were not uncommon in analog computers, and worked alongside continuous

elements. This rules out accounts that take analog representation to involve continuity essentially.

At the same time, this rules in covariation-based accounts, particularly the Lewis-Maley version. Let

us see why.

Consider again the example of the electromechanical step-function generator depicted in Figure

8. Like purely electronic analog computer elements, this device uses voltage to represent a quantity

of interest; unlike some other elements, it can only represent a finite set of values that vary

discontinuously. The way it represents a quantity is via covariation between that quantity and the

voltage: four volts represents a quantity of four; two volts represents a quantity of two.19 This is

precisely the Lewis-Maley account of analog representation. At the same time, the Lewis-Maley

account also covers continuous elements, such as the ones described in section 2.1 and section 2.2.

The monotonic covariation required by that account holds whether the representation varies

continuously or discretely.

Now, in order to avoid confusion, it is important to note what the Lewis-Maley account of

analog representation does and does not require of analog representation. The idea of monotonic

covariation might lead one to think that the example from Figure 8 rules out this account; after all,

the step function shown is absolutely not monotonic! However, this observation is beside the point.

What is monotonic is the relationship between what is doing the representing (the voltage) and

what it represents (the values of the function). Consider the first line segment (at the top left) of this

function, let us say it is at 9.6 volts. That represents the number 9.6. Next, it steps down to 7.5 volts.

The voltage, which is what does the representing, has literally decreased. But so has what is being

represented: 7.5 volts represents the number 7.5, and 7.5 is less than 9.6. Similarly for when it steps

down again to 2.1 volts: both the voltage and what the voltage represents have literally decreased. In
19Recall once again that this is an exegetical simplification: depending on the particulars of the

problem and the machine, the particular values represented by the voltages within a machine may

have been uniformly scaled.
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the next jump, up to 5.9 volts, both the voltage and the value being represented increase.

Let us further clarify this account of analog representation by contrasting it with a case of digital

representation in a digital computer. Like electronic and electromechanical analog computers,

digital computers also use voltage to represent numbers. How digital computers do so is quite

different. In short, analog computers represent numbers by representing their quantity, while

digital computers represent numbers by representing their names. Specifically, digital computers use

a base-2, or binary, representation, which means that a number such as nine is represented as 1001.

The way to interpret this sequence is as follows: starting from the rightmost place, there is a 1 in the

ones place, a 0 in the twos place, a 0 in the fours place, and a 1 in the eights place; thus, add one to

eight, which is nine.20 In a digital computer, the 0s are typically represented in a circuit element by

zero volts, while the 1s are represented by 5 volts. So to represent the number nine, a sequence of at

least four circuit elements would be required. From left to right, the first would be at five volts, the

second at zero volts, the third at zero volts, and the last at five volts.

Now imagine increasing the value that we want to represent from nine to ten. In binary, this is

1010. This would result in the following change: the first circuit element would remain at five volts,

the second element would remain at zero volts, the third would change from zero to five, and the last

would change from five to zero. Note the difference between the changes in voltage here and the

changes in voltage in the electronic analog computer: as the value being represented in the digital

computer increases, some voltages increase, some decrease, and some stay the same. The way they

change reflects a change in the elements of the digital representation of the number: the 1s and 0s

have to change in a systematic way to represent the digits of the larger number. However, in the

analog computer, the voltage does not represent the elements of a representation (the name, or parts

of the name) of the number; rather, the voltage represents the magnitude of the number.

To put this last point in still a different way, observe that the sequence of symbols 1010 is not

larger than the sequence 1001, even though what the sequence 1010 represents is larger than what

the sequence 1001 represents. This is true even when we look at how the individual 1s and 0s are

physically implemented, in this case as voltage levels. But for the analog case, what represents the
20This is simply the standard way that we represent numbers, although we typically use base-10,

or decimal, rather than binary. This is described in more detail in (Maley [2011])
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number ten (ten volts, possibly scaled by some constant 𝑐) is physically larger than what represents

nine (nine volts, again possibly scaled by the same 𝑐). Both the physical representation and what is

represented increase. This is true for other cases as well, such as the height of the liquid in the

thermometer, or the angle of the hand in the watch.

Let us now begin putting everything together. What makes analog computers analog is that they

use analog representations, understood according to the Lewis-Maley account just described (and

what makes analog computers computers will be discussed next). This characterization covers the

well-known continuous examples of analog computation such as the EDA, as well as the

not-so-well-known discontinuous examples discussed above. Furthermore, the Lewis-Maley

account is not an ad hoc characterization of the analog, custom-built for the purpose of making

sense of analog computation. Rather, it is a principled account that also makes sense of examples of

analog representation outside of computation (as argued in (Maley [2011])).

Importantly, requiring the involvement of representations excludes many non-computational

systems from the account (and rightly so). For example, virtually any electrical system with a resistor

can be interpreted as multiplying voltages. But because voltages in general are not representations of

anything, it is not the case that virtually every electrical system is performing analog computations.

The point applies to the mechanical and electromechanical components.

3.4 What makes it ‘computation’

If the above is the right way to understand what is analog about analog computation, what is the

right way to understand what is computational about analog computation? The short answer is

that analog computation is the mechanistic manipulation of analog representations. We have seen

what analog representation is about, so let us look at what mechanistic manipulation is about.

First, let us look at what is required of an account of computation simpliciter. A complete

account of computation should (among other things) make sense of what makes digital

computation and analog computation similar enough such that both are genuine species of

computation, yet different enough to count as separate species. Assuming the orthodox view that

computation requires representation, the answer to what makes something analog computation is

what was just mentioned: analog computation is computation that uses analog representation.
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Similarly, digital computation is computation that uses digital representation. When we take

seriously the fact that analog representation can be discrete, then we have an account that is both

principled and does justice to extant examples of computation, such as the ones we examined above.

What remains is the question of what kinds of manipulations count. The essential idea—which

will have to be further developed in future work—is that computation is the mechanistic

manipulation of representations, where ‘mechanistic’ is understood in the sense developed by

Piccinini ([2015]). Unlike Piccinini’s account, however, the positive account I have in mind requires

the manipulation of representations. Importantly, the mechanisms doing the manipulating must be

sensitive only to the physical properties of the representations that are responsible for representing.

Given the Lewis-Maley account of analog representation, we can say that a mechanismmust

manipulate analog representations qua analog representations in order for them to count as analog

computational mechanisms. Finally, the manipulations of those representations are such that the

result is itself an analog representation.

For example, in the electronic and electromechanical analog computers discussed above, it is the

voltage in the circuits elements does the representing. To count as computational, the mechanism

(or mechanisms) that manipulate the representations must do so by manipulating their voltages.

This is in contrast to mechanisms that manipulate some other property, such as the temperature, of

the circuit elements (as a cooling fan might do). Or in the case of mechanical analog computers, the

mechanismmust manipulate the position, speed, or angle (as the case may be) of the relevant

component. Changing the temperature of disk A in Figure 1 does not count as a manipulation

relevant to computation, because temperature is not the property that does the representing.21 But

changing the displacement and rotation does count, because those are the properties that do the

representing.

Requiring the involvement of a mechanism separates analog computation from other systems

that use analog representations, but where the representations are manipulated by other means.22

For example, the liquid height of a mercury thermometer is an analog representation of
21Of course, in some other computers, temperature may well be the property that does the

representing.
22The discussion here is focused on devices that compute, rather than the human activity of

computation.
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temperature. But the thermometer does not have a mechanism that manipulates the level of liquid;

rather, the height changes via a natural process of liquid expansion and contraction due to

temperature change. Thus, a mercury thermometer does not count as an analog computer.

Now, before concluding, it is worth pointing out that there will be borderline cases where it is

unclear whether a computation is being performed or not. For example, is the playing of a record on

a standard record player an instance of analog computation? The vinyl record is clearly an analog

representation. We also have a mechanism: the turntable spins at a particular speed, and the needle

‘reads’ the properties of the record that are relevant to its being an analog representation. Similarly,

placing a weight on a spring scale may twist a dial, indicating its mass. If these count as

computations, then they are very simple computations, and it is not clear how simple a mechanistic

manipulation needs to be in order to not count as a computation. However, this question is not

unique to the present account: it is a question for every account of computation, which we will not

try to answer here.23

4 Questions and Objections

Before concluding, in this section I will respond to what seem to me obvious questions and

objections.

4.1 Aren’t these just hybrid computers?

First, some accounts of digital representation would take issue with the idea that components like

the discontinuous step-function generator mentioned in section 2.3 are analog. For example,

Haugeland counts this kind of device as digital, simply because it is discrete: in responding to a

nearly identical example presented by Lewis ([1971]), Haugeland states ‘I think it’s clearly digital -

just as digital as a stack of silver dollars, even when the croupier “counts” them by height’

(Haugeland [1981], 218). So why not say that, when an otherwise-analog (continuous) computer

uses a component like this, it is simply a hybrid analog-digital computer?
23For example, consider a digital kitchen timer that can only count down from an input setting.

It is not clear whether that counts as a computation or not, and if it does, it is also a very simple

computation.
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This kind of response does not do justice to actual hybrid analog-digital computers. To see why

requires another brief digression into digital computation. For simplicity, I will limit the discussion

to electronic digital computers.

Recall the discussion in the previous section about how digital representation works. Discrete

elements are used to represent the digits of numbers, and the digits of numbers represent the

number in the usual place-based way. However, when we attend to the step-function generator, it is

clear that although it is discrete and discontinuous, it is not digital in the way described above.

Thus, it is a mistake to call it so, as Haugeland does. A digital device requires digital representation,

and a hybrid analog-digital computer has components that convert analog representations to digital

ones (or vice versa).

Figure 10: An analog-digital converter. The physical inputs (voltages) are shown on the left. What
those voltages represent is shown on the right. For the analog input, seven volts represents the number
seven (although the seven volts may be linearly scaled, per footnote 11); for the digital output, zero volts
represents the numeral 0, and five volts represents the numeral 1. These numerals, in turn, represent the
number seven when the numerals are interpreted as the digits of a binary representation.

In short, what makes hybrid analog-digital computers hybrid is not that they use some discrete

elements and some continuous ones. Rather, they are hybrid because they use analog components

and digital components, where, again, ‘digital’ is understood in the sense discussed above. For

example, the interface from an analog to a digital component would include a converter that takes a

single voltage level (for example, seven volts) as input and produces as output a series of separate

voltages, which themselves represent the binary representation of seven, or 0111 (as illustrated in

Figure 10). The conversion from a digital to an analog representation would do the opposite (Korn

and Korn [1964]), (Hyndman [1970]). The step-function generator does not operate via a digital

representation at all, and requires no conversion to operate with other analog components (for

example, the output of the step function generator could be used as an input to some part of the
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EDA in Figure 4).

4.2 Is this really even computation?

Another objection might go something like this. Analog ‘computers’ have very little to do with

obvious paradigms of computers, such as digital computers and TuringMachines. After all, the

entire branch of mathematics known as the theory of computation is concern almost exclusively

with TuringMachines and other abstract automata, none of which operate on analog

representations. Thus, we should not take very seriously the idea that what these analog machines

do is a genuine form of computation in the first place.

This objection simply ignores the history of computation as it has actually been practiced.

Analog computation was the dominant type of computation for several decades before digital

computation became efficient and cost-effective enough to replace it. Analog and digital computers

were used to solve similar problems in science and engineering, and although they work quite

differently, they were seen as two types of the same kind of machine. Numerous textbooks and

research monographs were published with ‘analog computation’ or ‘analog computers’ in the title.

Furthermore, the hybrid computing machines just mentioned were not considered to be partially a

computer (the digital part), and partially something else (the analog part): they were seen as a single

computing machine that operated using two different computational paradigms.

Perhaps there is some positive argument that only digital computation should really count as

computation. But that argument will have to explain why so many scientists and engineers were

wrong to call certain machines computers in the first place. Without a very strong argument to the

contrary, we should consider analog computers to be exactly what scientists and engineers took

them to be: genuine computers.

4.3 The Lewis-Maley account is problematic

Yet another objection might focus on the Lewis-Maley account of analog representation adopted

here. One problem with this account is that some examples of representation count as both analog

and digital. An example is unary notation, where the number four is represented as a series of four

strokes, or four 1s: 1111. We have numerals in places, thus it is digital (for further elaboration of
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what is meant by ‘digital’, see §4 of (Maley [2011])). But we also have a monotonic covariation

between a property of the representation (number of strokes) and what is represented. So this seems

to be both a digital and a discrete analog representation. Another example seems even worse: digital

representations implemented in contemporary computers. Here, each numeral is represented by a

voltage, where the amount of voltage (zero volts or five volts) monotonically increases with what is

being represented (a 0 or 1). Again, the Lewis-Maley account seems to classify this as both analog

and digital. The received view of the analog—equating ‘analog’ with ‘continuous’—does not have

these faults.

While it is true that the first example is both analog and digital, this is a degenerate sense of digital.

Unary, or base-1 notation, can only represent integers, unlike notation in any larger base. To see

why, consider what the digits of a base-10 and a base-2 representation mean.

31410 = (3 × 102) + (1 × 101) + (4 × 100) = 300 + 10 + 4

10012 = (1 × 23) + (0 × 22) + (0 × 21) + (1 × 20) = 8 + 0 + 0 + 1 = 9

In general, for a base 𝑏 and digits 𝑑𝑛…𝑑2 𝑑1 𝑑0, the digital representation is:

𝑑𝑛 ...𝑑2𝑑1𝑑0 = (𝑑𝑛 × 𝑏𝑛) + ... + (𝑑2 × 𝑏2) + (𝑑1 × 𝑏1) + (𝑑0 × 𝑏0)

Back to the unary notation:

11111 = (1 × 13) + (1 × 12) + (1 × 11) + (1 × 10) = 1 + 1 + 1 + 1

So far, so good. However, things change when we use a decimal point. In bases larger than one,

we can represent real numbers, because digits to the right of the decimal place represent negative

powers. Thus:

29.710 = (2 × 101) + (9 × 100) + (7 × 10−1) = 20 + 9 + 0.7
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In unary notation, however, a decimal point is meaningless:

11.111 = (1 × 11) + (1 × 10) + (1 × 1−1) + (1 × 1−2) = 1 + 1 + 1 + 1

So, while the unary case does fit the definition of digital on the Lewis-Maley account, this is an easy

fix. Biting the bullet turns out to be not that bad: it is both analog and digital, but a degenerate sense

of digital. This may seem ad hoc, but it is not: Turing ([1938]) uses base-2 digital representations of

numbers in his discussion of computable numbers. Alternatively, one could simply amend the

Lewis-Maley account to stipulate that the digits of a digital representation must be in a base larger

than one. Again, this is not as ad hoc as it seems: this would bring the characterization of ‘digital’ in

line with how it is understood in Turing’s original presentation of computable numbers.

The other concern may seem greater. If even contemporary digital computers use representations

that are both analog and digital, then something something has gone awry. After all, the entire point

of this essay is that there is an important difference between computers that use analog

representations and those that use digital representations! Again, however, the solution is

straightforward.

In short, some digital representations will contain discrete analog representations as parts (their

digits). Consider the example of the digital representation in Figure 10. In each digit of the whole

digital representation 0111 (which represents seven), 0 is represented by 0 volts, and 1 is represented

by 5 volts. So, each individual digit, considered in isolation, is a discrete analog representation: larger

voltages represent a larger value. However, the entire representation is digital: the rightmost 1, in the

ones place, contributes a value of 1 to what is represented; the leftmost 1, in the fours place,

contributes a value of 4 to what is represented. Thus, it is not that this is both an analog and a digital

representation. Instead, it is a digital representation that itself has parts implemented as discrete

analog representations.

There are undoubtedly other objections that I have not anticipated. My hope is that some of the

most important and obvious have been addressed in this section.
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5 Concluding thoughts

Let us take stock of what we have done. We have seen different examples of analog computers using

mechanical, electronic, and electromechanical mechanisms. We saw that the received view—that

analog computation is essentially continuous—fails: some analog computers use discrete,

non-continuous elements. We then surveyed some accounts of analog representation, and saw that

the the Lewis-Maley account is uniquely able to capture what is analog about analog computation.

Next, we briefly looked at how this account of analog computation fits in with more general

accounts of computation. Finally, we looked at how to answer some anticipated questions and

address some possible objections.

The upshot is that we have a principled account of analog computation that does justice to

analog computers implemented in different physical media, using both continuous and discrete

representations.

So after all that trouble, why care about analog computation? First, it has simply been neglected:

the philosophical attention paid to computation has been almost exclusively aimed at digital

computation. As it turns out, analog computation is both interesting in its own right—as well as

importantly different from digital computation—in ways that have not been appreciated. Any

complete philosophical treatment of computation simpliciter will have to attend to analog

computation alongside digital computation.

Second, understanding analog computation offers richer opportunities for the kinds of

computation that could play a role in the explanation of the mind and brain. Computationalism

about the mind—the view that the mind is literally a computer—has been a major philosophical

view for several decades (Piccinini [2009]). Computationalism about the brain—the view that the

brain is literally a computer—is taken seriously in the sciences of the mind, particularly

neuroscience (Shagrir [2006]). By couching analog computation in mechanistic terms, this account

is applicable to natural (and not just artificial) computational processes like those that may be found

in the mind/brain. After all, it seems that some natural processes are mechanistic ((Machamer et al.

[2000]), (Glennan [2002]), (Woodward [2002])). Thus, natural analog computation is a

straightforward matter. Some work, such as Maley ([2018]), has already argued that some neural

processes may well be analog—but not digital—computations. Furthermore, many psychologists
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have already appealed to the analog nature of certain mental processes (seminal examples include

Shepard andMetzler ([1971]) and Kosslyn ([1994])), but without a clear and precise notion of how

analog representation and computation might go together. The account here may help provide just

such an account. We would be foolish to limit our view of the kind of computation available in

these discussions to digital computation alone, given that there is an entirely separate,

well-established second kind of computation that has received so little attention.

Finally, this account paves the way for investigations into the possibility of still other types of

computation. As sketched above, one natural way to build a general account of computation

couches computation in terms of the mechanistic manipulation of representations. Computations

are then typed by the kinds of representation involved (which in turn constrains the kind of

manipulations possible for the relevant mechanisms). By rejecting the thesis that ‘analog’ and

‘digital’ are jointly-exhaustive opposites, we allow for the possibility of computation that is neither

digital nor analog. Specifically, if there are representational types that are neither analog nor digital,

and we can specify how such representations are mechanistically manipulated, we can come up with

principled accounts of new kinds of computation. This is, of course, largely speculative, but

scientists are actively exploring a menagerie of seemingly-exotic computations, including quantum,

optical, molecular, membrane, and even physarum (slime mold) computation. It may well be that

some of these kinds of computation—if indeed they are species of computation at all—are best

characterized as something other than analog or digital computation. We should be in a position to

characterize computation more generally, and one first step is a full understanding of what

computation could be if it is not digital. I hope to have taken that first step.
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