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Abstract

What (if anything) justifies the use of Bayesian statistics in sci-
ence? The traditional answer is that Bayesian statistics is simply an
instance of orthodox expected utility theory. Thus, Bayesian statis-
tical methods, like principles of utility theory, are justified by norms
of individual rationality. In particular, most Bayesians argue that a
scientist’s credences must satisfy the probability axioms if she adheres
to norms of practical and epistemic (individual) rationality. We argue
that, to justify Bayesian statistics as a tool for science, it is necessary
that a scientist’s public credences (i.e., her degrees of belief qua scien-
tist) obey the probability axioms. We claim that norms of collective
science help justify this restricted view, termed public probabilism.

What (if anything) justifies the use of Bayesian statistics in science?
The traditional answer is that Bayesian statistics is simply an instance of
orthodox expected utility theory, and so Bayesian statistical methods, like
principles of utility theory, are justified by norms of individual rationality.
For example, one who has credences that violate the probability axioms
is Dutch-Bookable, accuracy dominated, and so on. And if one is Dutch-
Bookable or accuracy dominated, so the standard arguments go, then one
violates some norm of practical or epistemic (individual) rationality.

In this paper, we explore an alternative defense of scientists’ use of
Bayesian statistical methods: norms of collective science may work in tan-
dem with norms of individual rationality to justify the mathematical ma-
chinery of Bayesian statistics. We focus on probabilism, the thesis that
experimenters’ credences must obey the probability axioms.

The paper contains two major sections. In §1, we criticize (versions of)
three of the most common arguments for probabilism: Dutch Book argu-
ments, accuracy dominance arguments, and representation-theorem based
arguments.1 We argue that none of the three justifies the claim that ra-

1For a summary of Dutch book arguments, see [Vineberg, 2011] and references therein.
For accuracy dominance arguments, see [Joyce, 1998] and [Pettigrew, 2016]. For use of
representation theorems, see [Savage, 1972] and [Krantz et al., 2006].
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tional credences obey an Archimedean axiom. The first two merely assume
credences are real numbers and so must have that property. Proponents of
the third argument do try to justify the Archimedean axiom but they often
appeal to implausible behaviorist assumptions to do so.

In §2, we argue that, to justify the use of Bayesian statistics in science,
a scientist’s prior distribution cannot be interpreted as an her personal cre-
dences. Instead, a prior distribution must represent what we call the sci-
entist’s public credences, which are the beliefs that she adopts in virtue
of her professional and social obligations as a scientist. We then argue
that a norm of collective science, which we call epistemic cooperativeness,
can justify the claim that a scientist’s public credence should satisfy the
Archimedean axiom. Our argument provides some evidence for the claim
that, together, norms of individual rationality and collective science may
justify public probabilism, the thesis that scientists’ public credences should
obey the probability axioms.

Should one conclude that Robinson Crusoe may rationally violate prob-
abilism but that scientists must heed Bayesian norms? Our arguments leave
open that possibility. But our arguments are better understood as opening
a different avenue for defending the claim that scientists’ behavior should
abide by decision-theoretic norms. To be clear, our arguments do not estab-
lish that the traditional, individualistic strategy for defending probabilism is
hopeless; we argue only that some common individualistic arguments share
a weakness. We also do not definitively establish that scientists’ public cre-
dences should abide by the probability axioms. After all, we focus on only
one axiom that is necessary for a probabilistic representation of credence.

The paper, therefore, should be understood as an attempted proof of
concept: we aim to show that collective norms for scientific inquiry might
better justify what are often taken as norms for rational, individual behavior.

1 Individualistic Foundations of Bayesianism

The fundamental thesis of Bayesianism is probabilism, which asserts that,
given an algebra of events A, one’s credences over A ought to be repre-
sentable by a probability measure P : A → [0, 1].2 What does it mean for

2In this paper, we define probability measures as functions of sets in an algebra. Some
computer scientists and philosophers prefer to define probability measures as functions
from sets of sentences in some formal language to real numbers. The difference between
the two axiomatizations has philosophical importance but only in ways tangential to our
goals in this paper. Additionally, we assume only that the probability axioms require
finite (rather than σ/countable) additivity, though we do not rule out the possibility
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credences to be representable by a probability measure? We first distinguish
theories of credence along two dimensions: (1) absolute vs. comparative and
(2) mental vs. behavioral. These distinctions will be critical for our argu-
ment in the next section that rational comparative credence might violate
the Archimedean axiom.

1.1 What is credence?

Some philosophers and social scientists argue an agent’s credence c(A) in
event A is what we call absolute: c(A) is a property of the agent and a single
event. In contrast, some decision theorists assume that humans and perhaps
other agents possess only comparative credences among sets of events. An
agent’s comparative credences are typically represented by a binary relation
� on a space of events, where A � B represents the claim that the agent
believes A to be at least as likely as B.3 Under the absolute interpretation,
one’s credal function c is said to be representable by a probability measure
if c is itself a probability measure. Under the comparative interpretation,
one’s credences are representable by a probability measure just in case there
is a probability function P such that A � B if and only if P (A) ≥ P (B).4

Absolute and comparative accounts of credence can, in turn, be either
behaviorist or mentalist.5 For example, a behaviorist might identify an
agent’s absolute credence c(A) with the agent’s fair price Pr(A) on A, i.e.,
the price she would be willing both to buy and sell a gamble that pays pre-
cisely $1 if A occurs and is worthless otherwise. Alternatively, a behaviorist
might claim A ≺ B precisely if, when forced to choose between (i) receiving
a prize if A occurs or (ii) receiving the same prize when B occurs, the agent
would prefer the latter option. This comparative, behaviorist account of
credence, therefore, identifies credence with the outcomes of forced choices.

that collective norms might justify countable additivity in ways that axioms of individual
rationality might not.

3 Historically, binary representations are the most common way of representing com-
parative credence. However, it is well-known that some aspects of human perception are
best represented by higher arity relations. For instance, see [Krantz et al., 2006, p. 139]’s
discussion of difference structures. Further, choice behavior is often represented by choice
functions [Seidenfeld et al., 2009, Sen, 1971], which take sets of arbitrary size and output
the options that are “choice-worthy.” So it is not beyond the realm of possibility that
credence should similarly be modeled by relations of higher arity or some mathematical
apparatus like choice functions. We focus on binary relations for simplicity.

4What we call representability is often called “agreement” in decision theory. Some
decision theorists aim only for what is called “partial” or “almost” agreement between �
and a probability measure. See [Fishburn, 1986] for survey.

5For an enlightening discussion of behaviorist vs. mentalist views, see [Okasha, 2016].
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Figure 1: An example of the Archimedean property for real numbers.

Most philosophers and social scientists reject behaviorist accounts of
credences.6 According to those scholars, an agent’s fair prices might be a
crude measurement of her credence, but fair prices and credence are not the
same. Instead, credence is said to be a mental state (or mental disposition)
that is causally related to behavior, but not the sole determinant.7 We do
not defend mentalism, but we identify problems with several common, naive
behaviorist interpretations in §1.3. Our reasons for discussing behaviorism
will be clearer after we discuss the Archimedean axiom.

1.2 The Archimedean Axiom

Real numbers satisfy an Archimedean axiom: for any two real numbers
r, s > 0, there is some natural number n such that n · r > s. See Figure 1
for a visual example. Thus, if credences are numerically representable, then
they must obey an Archimedean-like condition. In this section, we formulate
a (simple) comparative Archimedean condition – one that can be expressed
solely in terms of � and the set-theoretic structure among events in an
algebra.8 Then, we provide an example of comparative credences that seem
rational but violate the condition. Thus, our Archimedean condition seems
not to be justified by norms of individual rationality.

Before diving into the mathematical details, we sketch our argument
informally. Many philosophers and scientists (e.g., Nicolas of Cusa) have
believed that space is infinite and that the number of planets is likewise

6See [Eriksson and Hajek, 2007] for an especially trenchant criticism of behaviorist
views.

7For example, see [Walley, 1991, §1.3]’s discussion of “theoretical” interpretations of
probability.

8For similar Archimedean conditions for comparative probability relations, see [Krantz
et al., 2006, p. 204].
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infinite. Suppose, for the sake of argument, that Nicolas of Cusa considered
two hypotheses about the number of planets that contained water: θ1, that
exactly one planet, Earth, contains water, and θ2, that at least two planets
contain water. It is rationally permissible, we claim, for Cusa to believe
that, for any positive whole number n, the proposition that “There are at
least two planets with water even though exactly n many planets will be ob-
served by humans and, of those observed, none but Earth contains water” is
at least as probable as θ1. Space is infinite after all, so no matter how many
planets Cusa observes, he will only have observed an infinitesimal fraction
of all planets. Yet if he holds such beliefs, we claim that his comparative
credences are not real-valued. In greater detail, consider the following con-
dition.

Archimedean axiom for credence: Every bounded and disjoint sequence
of events is finite, where a sequence of events A1, A2, . . . is bounded and
disjoint if it has three properties:

1. Ai ∩Aj = ∅ if i 6= j,

2. Ai � A1 for all i, and

3. A1 � ∅.

Why is the condition above analogous to the Archimedean axiom for
real numbers? Think of the events A1, A2, . . . as line segments, just as real
numbers were depicted by line segments above. Condition 1 says the line
segments do not overlap; condition 2 says all of the segments are at least
as long the first one, and condition 3 says the first segment has positive
length. So if there were an infinite sequence of bounded and disjoint events
A1, A2, . . ., then its union B =

⋃
n∈NAn would be representable by an infi-

nite line and would be “infinitely more probable” than A1.
If an an agent’s comparative credence relation � is representable by a

finitely additive probability measure P (i.e. A � B ⇔ P (A) ≤ P (B)),
then � satisfies the above Archimedean axiom for credence.9 Thus, if it

9Proof: Otherwise, there is an infinite bounded and disjoint sequence A1, A2, . . ., and
thus for all n:

P (
⋃
k≤n

Ak) =
∑
k≤n

P (Ak) as Ai ∩Aj = ∅ if i 6= j

≥ n · P (A1) as A1 � Ai for all i

Since ∅ ≺ A1, we know P (A1) = r > 0. Hence, by the Archimedean property of real
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is rationally permissible for one’s credences � to violate the Archimedean
axiom above, then it is rationally permissible to have credences that violate
the probability axioms. We now defend the antecedent of that conditional.

Again, let θ1 represent the proposition “Exactly one planet, Earth, con-
tains water” and θ2 represent “At least two planets contain water.” Let
A1 = θ1, and for any natural number n ≥ 2, let Bn represent the proposi-
tion that “exactly n many planets will be observed by humans but, of those
observed, none but Earth contain water”, and let An = Bn ∩ θ2 be the con-
junction of Bn and θ2. Because it is impossible for humans to observe both
exactly five and exactly six planets, the events An are disjoint and satisfy
condition 1 above. Because the Earth has water, one should regard A1 as
strictly more likely than the impossible event ∅, as condition 3 requires. Fi-
nally, it is permissible to regard An as at least as plausible as A1 – if one
believes there are infinitely many planets – because one might believe there
are many other planets that contain water that have yet to be observed. So
it is rationally permissible for one’s credences to satisfy condition 2.

Importantly, the example shows that, even when only two hypothe-
ses are under investigation, one’s credences might rationally violate the
Archimedean condition if infinite amounts of data are available.

1.3 The Archimedean Axiom and Behaviorism

Our criticism of the Archimedean axiom requires rejecting two behaviorist
theories of credence that entail the condition. So in this section, we first
provide reasons for rejecting those behaviorist theories and then explain
how non-behaviorist assumptions are employed in the argument above.

First, note that the two crude behaviorist views discussed in §1.1 entail
that credence obeys an Archimedean condition. According to the first –
where one identifies an agent’s credence c(A) in A with her fair price –
credences are Archimedean because (i) prices are real numbers and (ii) real
numbers, by definition, satisfy an Archimedean condition.

This strategy for defending the Archimedean axiom, however, faces a
serious problem. If credence were nothing more than a disposition to bet
in a particular way in highly artificial situations, then it would be of lit-
tle philosophical interest. When philosophers and social scientists discuss
credence, however, their working hypothesis is that there is some underly-
ing disposition or mental state that is causally related to a wide variety of
other mental states (e.g., desires and regrets) and behaviors. Fair prices

numbers, there is some sufficiently large n such that P (
⋃

k≤nAk) ≥ n · r > 1, which is a
contradiction.
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might be one crude way of measuring that underlying disposition or mental
state, but they aren’t the only way. Further, sometimes fair prices might
be wildly misleading: it is not at all clear that, when forced to offer prices
in a laboratory, one’s behavior will identify an underlying attitude that can
consistently explain or predict one’s behavior in other scenarios.

The second behaviorist strategy – in which one identifies comparative
credences with outcomes of particular forced choices – is often used to jus-
tify the Archimedean axiom for � in a different way: one can only make
finitely many choices, and hence, there are no infinite sequences of bounded
disjoint events.10 But this behaviorist strategy is even cruder than the last.
It identifies credence not just with forced choices, but with forced choices
that have already been made. Credences so understood are, we conjecture,
theoretically useless for predicting future behavior and for explaining past
behavior (as credence just is the outcome of forced choices).

There are, of course, other ways that one might try to identify credence
with behavior. We cannot prove that no such attempt will be successful.
Rather, we claim only that if one identifies credence with behavior in a way
that make it easy to justify the Archimedean axiom, then one typically faces
the difficult task of defending the claim that credence, so defined, plays any
important predictive or explanatory purpose in describing other behaviors.11

To see why our argument requires rejecting the above two behaviorist
protocols, consider our earlier example involving Nicolas of Cusa. A naive
behaviorist might object that (i) Nicolas of Cusa’s credences are Archimdean
because they equal his fair prices or (ii) Nicolas of Cusa could only finitely
many choices, and thus, his credence relation cannot be defined over an in-
finite space. To the first objection, we reiterate what we have said above:
Cusa’s fair prices at any give time are likely little use in explaining or pre-
dicting his behavior in other contexts. To the latter objection, we respond
that it is perfectly plausible to compare the likelihood that n or m plan-
ets have water, for any numbers n and m. Such comparisons require one
to adopt either (i) a mentalist framework, in which agents are attributed
infinitely many non-occurrent credences or (ii) a behaviorist framework in
which credence is understood as a disposition that is partially manifested
in infinitely many possible scenarios. We see no reason to rule out such
theories of credence.

10 See [Krantz et al., 2006, pp. 25-26] for discussion of this defense.
11For what it’s worth, we think philosophers and social scientists should aim to develop a

plausible, operationalist account of credence, but there are many possible ways of measur-
ing “mental” states other than through behavior (e.g., through fMRI scans, eye-tracking
experiments, etc.).

7



2 Collectivist Foundations for Bayesianism

2.1 Public Probabilism

In the previous section, we argued that three standard arguments for prob-
abilism – which appeal exclusively to norms of individual rationality – share
a common weakness: they do not justify the Archimdean axiom. We now
argue that, luckily, to justify the use of Bayesian statistics in science, one
need not assume that a scientist’s private credences satisfy the probability
axioms.

Our view is not entirely novel. Many statisticians already reject the view
that the prior probability distributions appearing in scientific journals should
be interpreted as the author’s credences. For example, [Gelman and Shalizi,
2013, p. 19], two prominent statisticians, write, “. . . the prior distribution
p(θ) is one of the assumptions of the model and does not need to represent
the statistician’s personal degree of belief in alternative parameter values.”
They continue:

We do not have to worry about making our prior distributions
match our subjective beliefs still less about our model containing
all possible truths. Instead we make some assumptions, state
them clearly, see what they imply, and check the implications.
This applies just [as] much to the prior distribution as it does
to the parts of the model showing up in the likelihood function
[Gelman and Shalizi, 2013, p. 20].

We will not reconstruct Gelman and Shalizi’s view in detail, but the quo-
tation raises an interesting possibility: Bayesian statistical methods might
be justified without discussing rational belief at all!

Unlike Gelman and Shalizi, we do think of prior probabilities as rep-
resenting belief in some sense, but not as representing the experimenter’s
actual credences, nor even as idealizations of those credences. Instead, prior
probabilities are, we claim, best interpreted as a model of a scientist’s public
(or “professional”) credences.

We think of modeling scientists’ beliefs in much the same way one might
model the beliefs of a juror in a criminal trial. Famously, jurors are required
to ignore some types of evidence (e.g., hearsay), and they are obliged to
consider other types (e.g., exhibits introduced during trial). A model of
a juror’s decision-making – whether descriptive or normative – would be
wildly inaccurate if it considered the private beliefs of the juror qua citizen;
what matters are the beliefs of the juror qua juror. We refer to these as
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the juror’s public beliefs. The juror’s public beliefs are, we think, rightfully
called “beliefs” because they explain the juror’s courtroom behavior in much
the way her private beliefs explain her behavior in her private life.12

Analogously, participation in a scientific community requires one to adopt
certain beliefs and to modify those beliefs in a particular way, regardless of
one’s private opinions. A model of scientific decision-making – whether nor-
mative or descriptive – might likewise be inaccurate if it confuses the beliefs
of a scientist qua scientist with her beliefs qua private citizen.

For example, consider the paleontologist Marcus Ross, who identifies as a
creationist.13 Ross professes to believe that the universe is only 10,000 years
old despite having written a dissertation on a marine animal that is widely
accepted to be 65 million year old. When asked whether the reasoning in
his dissertation was sound, Ross responded, “Within the context of old age
and evolutionary theory, yes. But if the parameter is different, portions of
it could be completely in error.” Here, Ross himself distinguishes between
his private beliefs and what he advocates on the pages of scientific journals.
Any attempt to explain or predict Ross’ professional behavior on the basis
of personal religious convictions, therefore, is doomed to failure.

Similarly, any attempt to evaluate Ross’ scientific work should not con-
fuse his scientific reasoning with his religious thinking. Ross’ publications,
grant proposals, and teaching – his behavior qua scientist – might be scien-
tifically rigorous and satisfy all the demands of normative decision theory.
Of course, Ross’ behavior considered as a whole may be deeply irrational:
his professional choices seem incoherent given his private beliefs. Yet that
irrationality is irrelevant to the coherence of his professional behavior.

In general, when we participate in different institutions (e.g., as jurors,
journal referees, etc.), we may be required to act as if our beliefs differ
from our private beliefs for two reasons. First, the evidence that we are
required to consider (or not) in virtue of the institution’s goals may differ
from the evidence that is available to us as individuals. Second, procedural
constraints require us to evaluate evidence in particular ways (e.g., rubrics
in hiring committees).

12Nothing in our argument hinges on us calling the juror’s attitudes “beliefs.” Some
philosophers might prefer to say the juror “accepts” certain propositions [Cohen, 1992,
Levi, 1967, Maher, 1993, Van Fraassen, 1980]. For those who prefer the language of
acceptance, our thesis is that scientists have some professional, graded acceptance-like
attitude that must obey the probability axioms. [Fleisher, 2018] defends a similar thesis,
namely, that the hypotheses a scientists endorses should be selected to maximize expected
(epistemic) utility. Comparing our view to Fleisher’s is beyond the scope of this paper.

13Our description of Ross’s beliefs is based on [Rosin, 2007]’s report.

9



Because a scientist’s private credences may differ from her public ones
(i.e., her credences qua scientist), probabilism – if understood as a thesis
about a scientist’s private credences – is neither necessary nor sufficient to
justify the use of Bayesian statistics in science. Instead, the use of Bayesian
statistics requires the truth of what we call public probabilism, which asserts
that a scientist’s public credences should obey the probability axioms, at
least on a restricted set of propositions in her domain of expertise.14

2.2 Epistemic Cooperativeness

In the next section, we argue that a norm of scientific inquiry, which we
call epistemic cooperativeness (or just “cooperativeness” for short), requires
that scientists’ credences obey an Archimedean condition. In this section, we
define “cooperativeness” and argue it is a norm of contemporary science.15

Epistemic cooperativeness, in our sense, is a relation between a re-
searcher, a scientific question, and a community, which may include both
experts and laypersons. Roughly, we say a researcher is epistemically co-
operative (or just “cooperative”, for short) if she is publicly open-minded
towards all “live” hypotheses about the question at hand. For example,
Galileo was cooperative towards his peers and the general public with re-
spect to the question of whether a heliocentric or geocentric model best
explained everyday phenomena and astronomical data at his time. Whether
Galileo privately believed that geocentrism was unfathomably stupid is ir-
relevant to whether he was cooperative in our sense. Galileo’s published
writings and his correspondences with Church officials contain a serious en-
gagement with geocentrism.

More precisely, cooperativeness constrains a scientist’s (1) evaluation of
evidence and (2) experimental design. When analyzing data, a cooperative
researcher cannot employ methods that foreclose the possibility of finding
evidence for rival, live hypotheses and against her own pet hypothesis. When
designing experiments and gathering data, a cooperative researcher must
ensure that her experimental protocol has some ability to distinguish among
rival live hypotheses (if there are any) and to find faults with any hypotheses
she seeks to confirm.16

14For instance, a computer scientist need not have an informed stance on climate change.
15Although sociologists of science have studied norms of science extensively (e.g., see

“The Normative Structure of Science” in [Merton, 1973]), our notion of “epistemically
cooperative” cuts across several different purported scientific norms (e.g., Merton’s norms
of “disinterestedness”, “universalism”, and “communism”), and so we give it a new name.

16In [Mayo, 1996, 2018]’s terminology, experiments and data-analysis methods must be
“severe tests” of the experimenter’s hypothesis. Unlike Mayo, we do not think the philo-
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We emphasize three features of our definition of cooperativeness. First,
what counts as “live” can change; astronomers no longer need to test geocen-
tric models. Second, a scientist may be cooperative but extremely critical
of her peers’ work. Third, cooperativeness does not require “impartiality”
on “non-partisanship.” A cooperative scientist may seek to discredit others
and to confirm her own pet hypotheses. In fact, an epistemically cooperative
scientist may be motivated entirely by fame, monetary prizes, and personal
grudges against her rivals.17 To be cooperative, in our sense, requires only
that a scientist’s public behavior meets the two conditions above.

What is required to meet the first condition of epistemic cooperative-
ness, i.e., to avoid foreclosing “the possibility of finding evidence for rival
hypotheses and against [one’s] pet hypothesis”? Here is a weak necessary
condition that will play a central role in our argument.

Weak Cooperativeness: If H1 and H2 are live hypotheses and a scientist
receives an indefinite amount of evidence in favor of H1 and against H2,
then she must eventually not regard H2 as infinitely more likely than H1.

18

The reader might wonder why what we call “cooperativeness” is a norm
that arises only for scientists engaged in collective inquiry. Why, for example,
would an inquisitive person deserted on a remote island not be bound by the
same norms? Why not call the virtues we have described “open-mindedness”
or “vigilance against error”, which are phrases that seem to describe virtues
that a researcher might exhibit in isolation?

We do not deny the existence of purely individualistic epistemic norms.

sophical motivation for severe-testing prohibits the use of Bayesian statistical methods,
but cooperativeness may constrain the prior distribution representing the scientist’s pub-
lic credences. Of course, to consider whether cooperativeness constrains the “choice” of a
prior probability distribution, one must first argue that a scientist’s public credences are
representable by a probability distribution at all, which is the entire point of this paper.

17We take no stance on whether such behavior or motivations violate other scientific,
moral, or social norms. However, there are compelling arguments that “epistemically
impure” motives might improve science [Kitcher, 1990, 1995, Strevens, 2003].

18The requirement that the acquired evidence is both for H1 and against H2 is essential
here. Suppose H1 is the hypothesis that the value of some unknown physical constant θ is
exactly π, and let H2 be the hypothesis that θ is close to but not equal to π, e.g., H2 asserts
θ ∈ [π− ε, π+ ε] \ {π} for some small ε. Although measurements might confirm over time
that the value of θ matches π to further and further decimal places, such measurements
don’t distinguish H1 from H2. Although H1 and H2 are rival hypotheses, every piece of
data that is compatible with H1 is likewise compatible with H2. So one is not obliged to
regard H1 as more probable than H2, even if one acquires an indefinite amount of evidence
for H1. Thanks to Blinded for review for asking us to make this clear.
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We claim only that those norms, if they exist, are weaker than what many
philosophers have imagined. To see why, consider the question, “Which
hypotheses should a scientist take seriously when designing experiments and
evaluating data?” A scientist is not obliged to consider all hypotheses that
explain her data for there are innumerable such hypotheses that have yet to
be articulated.

We claim that the set of hypotheses that a scientist is obliged to consider
depends upon, among other things, the history of her field of study and the
current work of her peers. Why? A scientist would be considered negligent
if, each time she acquired novel data or designed a new experiment, she
ignored all past research and considered only several new hypotheses that
she personally devised. Practically speaking, the norm to consider rival
hypotheses is often enforced through peer review, where referees for grant-
giving institutions and journals evaluate whether the proposer or author has
discussed and cited “relevant” or “appropriate” literature.”19 Similar prac-
tices show many scientists’ obligations depend upon their institutional roles
(e.g., as employees of public universities, members of academic societies,
journal referees, etc.) and upon the interests of society at large.

One might object that, although cooperativeness is a collective norm,
Weak Cooperativeness is not. The objector might grant that the set of
hypotheses that a scientist must consider is determined (in part) by pro-
fessional and social obligations, but that once that set is determined, Weak
Cooperativeness amounts to the duty to be responsive to evidence. Such a
demand is a paradigmatic norm of individual (epistemic) rationality.

We disagree. As we show in the next section, Weak Cooperativeness
entails that a scientist’s credences should obey the Archimedean condition.
Thus, if a rational agent’s credences may violate the Archimedean condition,
then Weak Cooperativeness is not a requirement of individual rationality.
Our earlier example involving Nicholas of Cusa demonstrates this, as the
example suggests that he is individually rational but not weakly cooperative.
In particular, he does not seriously engage with the hypothesis that Earth
is the only planet with water. The objector, we think, mistakes a vague,
individualistic epistemic norm (to consider evidence) with a rather precise,
formal consequence of epistemic cooperativeness.

At the very least, we think the normative force of Weak Cooperative-
ness is strengthened by a scientist’s obligations towards others. Imagine an
uncooperative scientist S who publicly believes a hypothesis H and might

19 For example, referees for Nature are asked, “does this manuscript reference previous
literature appropriately? If not, what references should be included or excluded?”[noa].
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continue to believe H (publicly) in the face of indefinite evidence to the con-
trary. In such a case, S’s colleagues would be unlikely to seek out her paper
defending H, for her colleagues would know that S might conclude that H
in spite of large amounts of disconfirming evidence; after all, S’s dogmatic
stance towards H is public.

If S’s data were publicly accessible, then expert readers could evalu-
ate the data themselves. But data are not always publicly accessible, and
reanalyzing another researcher’s work is often costly and time-consuming.
Equally importantly, some scientists may need to rely on S’s results but lack
the technical knowledge to re-analyze S’s data. Finally, even if S honestly
discloses her data, her colleagues might worry that she ignored or failed to
report relevant evidence because, by supposition, some pieces of evidence
will not sway S at all. In short, if a scientist violates Weak Cooperativ-
ness, then her research is likely to be ignored by her colleagues, and if it
is not ignored, it might not be trusted. Thus, even if Weak Cooperative-
ness is partially supported by norms of individualistic rationality, its force
is strengthened by considering a scientist’s obligations to her peers.

Is cooperativeness so described actually a norm of science? As we have
discussed above, peer review (of articles and grant proposals) suggests that
scientists are required to evaluate how well their evidence bears on a vari-
ety of live hypotheses. Contemporary calls for pre-registered trials - with
the requirement to include a detailed data-analysis plans – provide further
evidence that scientists are discouraged from using methods that preclude
the possibility of finding support for their rivals’ hypotheses [Nosek et al.,
2018].

2.3 Non-Archimedean credences violate epistemic coopera-
tiveness

We now argue that if a scientist initially regards one hypothesis H1 as “in-
finitely more probable” than anotherH2 – in other words, her prior credences
over hypotheses violate the Archimedean condition – then she might acquire
an indefinite amount of data favoring H2 and nonetheless continue to be-
lieve that H1 is infinitely more plausible than H2.

20 Thus, her beliefs violate
Weak Cooperativeness.

Let Θ be a set of competing, live hypotheses. Following standard sta-
tistical terminology, we call elements of Θ simple hypotheses. We call a

20Some philosophers have often argued that being appropriately “open-minded” requires
that one’s credences be representable by hyperreals, which violates an Archimedean con-
dition. See [Easwaran, 2014] for a summary and criticism of those arguments.
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subset H ⊆ Θ a composite hypothesis, representing a disjunction of simple
hypotheses.

Imagine a scientist designs an experiment with outcomes in Ω, and so
her credence relation � orders events in the Cartesian product Θ×Ω. Given
H ⊆ Θ and E ⊆ Ω, the set H × E thus represents the event that (i) one of
the hypotheses in H is true, and (ii) one of the experimental outcomes in
E occurs. Below, we will often write H instead of H × Ω to represent the
event that one of the simple hypotheses in H is true and similarly we often
write E instead of Θ × E to represent the event that some outcome in E
is observed. Finally, we will combine these conventions and write H ∩E to
denote (H × Ω) ∩ (Θ× E) = H × E.

To represent how the scientist’s credences change over time, we make
the following assumption about her conditional credence H|E that H is
true given E is observed:

Assumption †: If (1) H1 ∩ E � H2 ∩ E and (2) H1|E and H2|E are well-
defined, then H1|E � H2|E.

The assumption is true if (i) one’s credences are representable by a nu-
merical probability function P and (ii) one’s conditional credence P (H|E)

is defined by the ratio formula P (H|E) = P (H∩E)
P (E) .21 However, we think the

assumption has plausibility outside those circumstances as well. In particu-
lar, it might have non-trivial consequences even if one’s theory of probability
permits conditioning on events with zero probability.

Now suppose that the scientist’s credences violate the Archimedean con-
dition, i.e., she believes one simple hypothesis θ2 is “infinitely more prob-
able” than another θ1. Formally, assume there is an infinite, bounded and
disjoint sequence of observable events E1, E2, . . . ⊆ Ω such that the experi-
menter regards θ2 ∩ En as at least as probable as θ1 for all n.22

Now consider what happens if the scientist first learns E =
⋃

n∈NEn (i.e.,
that at least one En is true) and then, at a discrete set of times 1, 2, . . ., the
scientist learns ¬E1,¬E2, and so on for all n. By stage n, therefore, the
scientist has learned E ∩

⋂
k≤n ¬Ek, which is equivalent to learning that

Fn =
⋃

k>nEk. Thus, the scientist’s conditional credence at stage n in θ is
equal to θ|Fn. Using our earlier example, Nicolas of Cusa learns at stage 1
that one planet other than Earth has been scoured for water unsuccessfully;

21Proof: If P (E) > 0, then P (H1|E) ≥ P (H2|E) if and only if P (H1 ∩E) ≥ P (H2 ∩E).
22For brevity, we often write θ∩A, θ|A, and θ×A instead of {θ}∩A, {θ}|A, and {θ}×A

respectively.
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at stage 2, he two planets have been scoured, and so on.
We claim that, at every stage of inquiry, the experimenter still regards

θ2 as infinitely more probable than θ1. More precisely, we claim that, for
any stage n, there is an infinite, bounded and disjoint sequence of observ-
able events G1, G2, . . . ⊆ Ω such that conditional on Fn, the experimenter
regards θ2 ∩ Gk as at least as probable as θ1 for all k. In fact, we show
the claim holds by letting Gk = Ek+n, assuming the relation � is transitive
and has the property that A � B whenever B ⊆ A (i.e., the experimenter
regards A is at least as likely as B whenever B entails A).

Claim: θ2 ∩ Ek+n|Fn � θ1|Fn for all n and all k ≥ 1.
Proof: By assumption, θ2∩Em � θ1 for all m. Thus, θ2∩Ek+n � θ1 for all
n and all k ≥ 1. Since θ1 ∩Fn ⊆ θ1, it follows that θ2 ∩Ek+n � θ1 � θ1 ∩Fn

for all n and all k ≥ 1. Now (θ2 ∩ Ek+n) ∩ Fn = θ2 ∩ Ek+n since Ek+n ⊆
Fn =

⋃
m>nEm. Thus, by transitivity, (θ2 ∩ Ek+n) ∩ Fn � θ1 ∩ Fn. By

Assumption †, it follows that θ2 ∩ Ek+n|Fn � θ1|Fn for all n and all k ≥ 1,
which is what we desired to show. �

Importantly, nothing in our argument prevents us from also assuming
that the evidence ¬En favors θ1 over θ2 for every natural number n!23 In
short, as we stated above, the scientist dogmatically continues to believe θ2
is true, no matter how much data she acquires in favor of θ1.

To return to the example of the previous section, our fictitious version
of Nicolas of Cusa might not be individually irrational to continue believing
θ2, that “At least two planets contain water”, no many how many water-
less planets he observes. But if his peers regard hypothesis θ1 “Only Earth
contains water” as a legitimate competitor to θ2, then Nicolas of Cusa vio-
lates the norm of epistemic cooperativeness by collecting data that he knows
might never lead him to take his peers’ view seriously.

There are at least three limitations of our argument. First, we have
not argued that a scientist with non-Archimedean credences is guaranteed
to remain dogmatic; we have argued that the scientist believes there is a
positive probability she will remain convinced in a hypothesis, even in the
face of an indefinite amount of contrary evidence. Second, our argument
does not show that the experimenter cannot regard certain experimental
outcomes as infinitely more probably than others. Finally, our argument

23Here, one can be agnostic about what “favoring” means, but one way of specifying
that is via a qualitative law of likelihood that asserts the some evidence E favors H1 over
H2 precisely if E|H1 � E|H2.
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only works in finite hypothesis spaces: nothing we have said prevents a
scientist from regarding some infinite (composite) hypothesis {θn}n∈N as
infinitely more probable than another hypothesis.

Despite the limitations, we think the above argument shows how norms
of collective science might be used to justify, at least partially, axioms that
are necessary for an experimenter’s public credences to obey the probability
axioms. Importantly, we do not claim that norms of collective science are
sufficient, by themselves, to justify public probabilism; norms of individual
rationality might still have some role to play.

3 Objections and Replies

Norms often conflict, and so norms of individual rationality likely conflict
with norms of collective science [Mayo-Wilson et al., 2011]. Thus, one might
object that our appeal to both types of norms to justify public probabilism
is illegitimate, as contradictory norms could justify any thesis whatsoever.

Such an objection proves too much, as it applies to any normative thesis
about a juror’s duties, a doctor’s obligations, a sporting referee’s responsi-
bilities, and so on. For instance, Bayesian decision theory entails one should
never turn down free information [Good, 1967], but jurors are required to
turn down free evidence if it is inadmissible.24 However, despite the appar-
ent conflict between norms for jurors and norms of individual rationality,
no one thinks that “any thesis whatsoever” about jurors’ obligations can be
justified by the two types of norms.

Where does the objection go wrong? To answer that question, note
there are at least two ways the objection can be disambiguated. First, our
critics might claim that a scientist’s duties might conflict with her duties as
a private citizen, in the same way a criminal lawyer’s obligation to defend
a client she knows to be guilty might conflict with her duty, qua private
citizen, to report known criminal activity. Of course, we agree that private
and professional obligations often conflict. But notice the conflicts in the
lawyer’s private and professional duties do nothing to challenge the thesis
that, qua lawyer, she is obliged to defend her client. Similarly, the fact that
a scientist has conflicting private and professional duties does little to refute
our thesis that, qua scientist, she should have probabilistic credences.

Second, the objector might continue that our defense of public proba-
bilism is importantly disanalogous from the examples involving lawyers and
jurors. Lawyers’ professional duties qua lawyers override their obligations

24Thanks to Blinded for review for this example.
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qua private citizens; similar remarks apply to jurors. Conflict is avoided by
specifying a priority of duties. In contrast, a defense of public probabilism
might, we have claimed, require appeals to both norms of collective science
and norms of individual rationality; if one of those types of norms outranks
the other in cases of conflict, one may be unable to use both types in defense
of public probabilism.

We think this objection gains plausibility by trading on ambiguity. It
may be plausible that some norms of collective science conflict with some
norms of individual rationality. But thusfar, we have little reason to suspect
the conflicting norms are the ones required to justify public probabilism.

4 Conclusions and Future Work

We have argued that, although rational private credences might violate an
Archimedean axiom, a scientist’s public credences over hypotheses must
obey an Archimedean axiom. But one might imagine that other founda-
tions of probabilism are suspect. So our argument is only a small step
towards justifying public probabilism, and it is a very small step towards
justifying the use of Bayesian statistics in science. Future work, therefore,
ought to investigate to what extent collective norms of science can justify (i)
conditionalization and (ii) other axioms required for probabilism that may
be poorly justified by individual rationality.

Equally importantly, we think our framework opens up potential avenues
for justifying other parts of Bayesian statistical practice that might seem
incompatible with orthodox decision theory. For example, some Bayesian
statisticians argue that one ought to “choose” supposedly non-informative
priors when analyzing data; others argue that scientists ought to choose
priors that have good frequentist properties.25 From the standpoint of tra-
ditional decision theory, analyzing data using a probability distribution that
deviates from one’s personal credences is potentially irrational. Just as it
would be irrational for Alison to choose an action just because it maximizes
Bill’s subjective expected utility, a Bayesian statistician who chooses a prior
in one of the two ways just specified may advocate statistical decisions that
would fail to minimize expected loss by her own lights. Our argumentative
strategy in this paper suggests a novel way to rationalize these two methods
for “choosing” a prior: norms of science might require a statistician to adopt
public credences that differ from her private ones.

25See Excursion/Chapter 6 of [Mayo, 2018] for a discussion of various ways in which
contemporary Bayesians choose priors.
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