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Abstract

Noncommutative geometries generalize standard smooth geometries, parametriz-
ing the noncommutativity of dimensions with a fundamental quantity with the di-
mensions of area. The question arises then of whether the concept of a region smaller
than the scale - and ultimately the concept of a point - makes sense in such a theory.
We argue that it does not, in two interrelated ways. In the context of Connes’ spectral
triple approach, we show that arbitrarily small regions are not definable in the formal
sense. While in the scalar field Moyal-Weyl approach, we show that they cannot be
given an operational definition. We conclude that points do not exist in such geome-
tries. We therefore investigate (a) the metaphysics of such a geometry, and (b) how
the appearance of smooth manifold might be recovered as an approximation to a
fundamental noncommutative geometry.
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1 Introduction
In the vast landscape of contemporary theoretical physics, few research programmes come as
close to engaging, as a matter of course, with traditional metaphysics as quantum gravity research
programmes do. The two theoretical edifices that these programmes aim to unify (or replace)—
quantum theory and relativistic gravitation theory—have been notoriously uncooperative with
attempts at unification. It is not clear precisely which aspect of these theories is to blame, and
what aspects ought to be held onto in future theories. Consequently, we are led back to traditional
questions in the metaphysics of space and time. Questions like: what is the nature of space(time)?
Are space(time) points fundamental? Is space(time) discrete?

In this paper, we discuss a particular approach to the metaphysics of discrete space suggested
by one popular family of approaches to quantum geometry that go under the name of noncommu-
tative geometries. From a philosophical perspective, attention to noncommutative field theories is
valuable, because these theories allow us to embed our extant, well-confirmed physical theories
in a broader logical landscape. Doing so allows us to unearth a number of tacit assumptions in
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§1 Introduction

our current physical theories that might otherwise have been invisible, or appeared as matters of
necessity.

Our goal, therefore, is to introduce noncommutative geometry to a wider philosophical au-
dience, by discussing three metaphysical puzzles about the nature of space and, in particular,
indeterminacy of location to which these geometries give rise. We understand ‘indeterminacy
of location’ as referring to situations in which, for whatever reason, nature does not ascribe to a
body a determinate a matter of fact about its spatial location below a particular scale. The first
puzzle, accordingly, is to characterise this particular brand of metaphysical indeterminacy. This
leads to the second puzzle of how one ought to think about the ontology of a theory that is based
on a noncommutative geometry. The final puzzle is to account for our experience of spacetime
as, at least approximately, being described by a commutative geometry.

There is a family of approaches tomodelling indeterminacy in quantummechanicsmentioned
according to which, if quantum mechanics is true, then particular facts about the world are
‘unsettled’—we can pose questions about the values of certain properties of systems such as,
say, the x and the y components of spin, but nature itself does not determine the answers to
such questions. Here, we focus on the subspecies of these approaches dubbed ‘supervaluationist’
(see e.g. [11, 12]).1 We refer to this approach as modelling indeterminacy as underdetermination:
one considers various precisifications of the models of the physical system, and then models
indeterminacy as the underdetermination of which of the precisifications truly represents the
world.

Some sorts of quantum indeterminacy can plausibly be modelled as underdetermination,
because ordinary quantum mechanics presupposes a continuous manifold of spatial points
structured by some geometric relations (in non-relativistic quantummechanics, these are the
relations that constitute Galilean spacetime). Each precisification is itself antecedently mean-
ingful, on the basis of a localisability thesis that we defend below. Noncommutative geometry,
on our interpretation, does not have the resources to make meaningful claims about localisabil-
ity below a certain magnitude. We therefore argue that the indeterminacy that results from a
noncommutative approach to spatial geometry, as suggested by noncommutative geometric
approaches to quantum geometry is of a different kind fromwhat the supervaluationists consider.
We call this indeterminacy as meaninglessness. In this paper, we cash out ‘meaninglessness’ in two
distinct ways, depending on the approach to NCG: (i)§2 presents Alain Connes’ spectral triple
generalisation of Riemannian geometry, and characterises meaninglessness as undefinability;
(ii)§3 presents a concrete representation of quantum theories in noncommutative space, and
characterises meaningless as non-operationalisability. We then invoke an Occamist norm to link
these semantic claims to our preferred metaphysical picture on which we deny the existence of

1Since the ‘determinables-based’ approaches (primarily associated with Wilson and collaborators,
[42, 8]) also presuppose a topological manifold structure on the domain of discourse, the criticism we offer
in this paper also targets the determinables-based approach. However, for dialectical clarity, we choose to
focus only on the supervaluationist approaches.
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§2 Spectral triples

spacetime points.2

Having established our argument for a fundamental metaphysics that eschews the concept of
arbitrary localisability, we discuss some alternative views of the ontology of a noncommutative
field theory in §4. One thing all of these proposals agree on is that the elements of the relevant
noncommutative algebra should be treated as fundamental. The picture of a field as an ascription
of properties to points (supplemented with some story, kinematical or dynamical, about how
those points are related to each other) is untenable. While fields-first proposals have been in the
philosophical literature for decades (Earman discussed so-called Leibniz algebras at least as far
back as 1977 [18]), they have been presented as alternatives to standard ontologies for commutative
theories like general relativity. In noncommutative field theories, fields-first interpretations are
the only game in town.

In §5, we go on to examine a proposal for the recovery, from a noncommutative underlying
geometry, of physical spacetime that is at least approximately commutative. In particular, we
discuss a proposal that relies on structural features of quantum field theories to allow us, at least
in some restricted but nonetheless physically salient circumstances, to recover a geometry that
is approximately Minkowskian. The mismatch between the manifest and scientific images of
space is an especially acute problem in the case of a theory with a putatively non-spatiotemporal
fundamental ontology. This is because all evidence for a theory is ultimately given in terms of
spatiotemporal data. In recovering the manifest image from NCG, at least in a restricted context,
we counter the possibility that NCG is empirically incoherent, to use a term introduced by Barrett
[2] to describe theories whose truth undermines our justification for believing in their truth.

2 Spectral triples
A standardmove in contemporary philosophy of spacetime is to model a spacetime theory as con-
sisting of a smooth (i.e. infinitely differentiable), second countable, Hausdorff manifold on which
are defined some tensor fields which encode spatial and temporal relations (in relativity theory, a
Lorentzian metric tensor field) and some other tensor (or spinorial tensor) fields representing a
matter distribution. The elements of the smoothmanifold are typically treated as constituting
the domain of discourse, call it M , of the theory; these elements, (commonly referred to as the
‘spacetime points’), are considered to be part of the fundamental, non-derived, non-emergent
ontology of the theory.

We take such a structure as the starting point for our discussion, using it to define a notion
of localisability in §2.1. However, as we show in §2.2, such localisability is undefinable below a
certain distance in the noncommutative space proposed by Alain Connes. In this sense, such
distances are unphysical, and with them point regions.

2We do not intend to suggest that this is the only way to make sense of the pointlessness claim—for an
alternative picture, see e.g. [38].
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2.1 Meaning and definition

2.1 Meaning and definition
In this paper we are concerned with physical, hencemetrical space; our conception of localisa-
tion is correspondingly metrical: localisation within some region of determinate size. Thus our
arguments will be to the effect that nothing can be localised in regions smaller than a certain
size in our quantum spaces: that there are no smaller regions. (Insofar as our interest is in the
status of points, which are closed intervals, our definition of localisation invokes boundaries of
objects.) Of course metrical notions of localisation are familiar from the mereology literature: for
example,‘exact location’, according to which ‘entity x is exactly located at a region y if and only if
it has the same shape and size as y ’ ([32]. Metrical localisation is to be contrasted with thinner
topological conceptions, say of proper or improper set inclusion. But since the spaces, classical
and quantum, which we consider are metrical – because they purport to represent physical space
– a metrical notion is appropriate in this context.

Therefore, in one dimension, an entity is exactly localised within some finite interval of length,
call it δ (from which one can straightforwardly define the more useful notion of localisation to a
finite area) iff the coordinate functions, x i associated with the boundaries of that object satisfy
the following constraint:

δ = |x i (p) − x i (q)| ≥ 0 (1)

where | · | is a given norm in Rn , δ < ∞ and p ,q ∈ M are its boundary points.Call the claim that it
is possible to localise a body to an arbitrarily small interval the localisability thesis.

The domain has metric structure, which is to say, enough structure to allow us to define a
distance between any two of its elements. Webegin by looking at how the story about this structure
might be told in a mathematical textbook. We can define a property like location in the manner
above because a coordinate function can be stipulated to be an isometry from the domain, M , to
R. If, in addition, we do not wish to privilege a particular position, and instead care only about
distances between pairs of points (e.g. boundary points of objects), we need to associate with M

an entire equivalence class of coordinate functions, each of which agrees on the length between
end points.

In this way, our preferred coordinatisations can be thought of as inducing metric structure on
M , inherited from the primitivemetric structure ofR. And something similar is true of topological,
smooth, linear or any other form of geometric or algebraic structure—more exotic structures can
be imposed onM by choosing differentmathematical spaces as target of coordinate functions. Let
us call such a space a structured domain, and denote it asMs . This inducedmetric structure on the
structured domain allows us talk of separations between elements of Ms in terms of separations
of the images in R of those elements under the coordinate functions.

On this set up, the space of coordinate functions encodes certain facts about some of the
structure that our theory recognises. For example, the fact that we associated M with an equiva-
lence class of coordinate functions, each element of which disagrees over the precise coordinate
value to which a particular element of M is mapped, means that we cannot identify absolute
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2.1 Meaning and definition

positions in M .3 To put this another way, the labels of absolute positions are not invariant under
the automorphisms of the space of privileged coordinate functions. Here, automorphisms of the
structured domain should be understood as bijections from the space of coordinates to itself that
preserve the space of privileged coordinate functions.

Adapting terminology frommodel-theory, we refer to this condition as undefinability (cf. [21]),
and where definability is characterised thus:

A piece of mathematical structure is definable (relative to a structured domain) if and only
if it is invariant under the automorphisms of that structured domain,

As is demonstrated in the example below, for a putatively spatial or spatiotemporal theory (i.e. a
theory in which there are no ‘internal’ degrees of freedom)we can always characterise a structured
domain by restricting the class of privileged coordinate systems.

Consider a structured domain Ms of uncountable cardinality whose automorphisms charac-
terise it as a topological manifold (i.e. whose coordinate functions are stipulated to be homeo-
morphisms into R). Let us structure this domain further by defining a set of maps, g : N → Z

from a countable proper subset of Ms to the integers, Z. Let us stipulate that these coordinate
functions are isometries, thus imposing on N a metric structure. Denote the smallest distance
between any two points in N as µ.

Now consider a topology-preserving map from M to itself (i.e. a homeomorphism) which,
in addition, preserves the distances between the elements of N as determined by the discrete
coordinate function g . Our structured domain Ms , is now characterised in terms of this more
restricted class of coordinate systems.

Consider the following set of pairs of elements p ,q ∈ M , call it Rµ :{〈p ,q〉|d(p ,q) < µ}. One
characteristic feature of this set is that if one element of a pair that constitutes Rµ is contained in
N , then the other is not. So this set is not invariant under all automorphisms of Ms : for example, a
homeomorphism on M which is the identity on N unchanged, but permutes every other element
of M . In this case, Rµ is not invariant under the automorphisms of Ms , so is not definable relative
to Ms . Here, we simply cannot model indeterminacy of location as mere underdetermination
betweenmodels each of which specifies an arbitrarily precise location, given our understanding of

3We should flag that we are treading in the vicinity of a debate over so-called ‘symmetry-to-reality
inferences’ (SRI) [see e.g. [3, 13, 30]]. This debate focusses on question of how we can use symmetries of a
theory as a guide to its ontology, and in particular what, if anything, justifies an eliminativist metaphysical
stance with regard to symmetry-variant structure. The concern is a potential circularity in the argument
that symmetry-variant structure is unreal, and that real structure is symmetry-invariant. This is a deep
and fraught question, and one on which we do not wish to take a stance in this paper. What we do argue
for is primarily a semantic claim—the relation of arbitrarily small spatial separation is not definable in a
theory whose space of privileged coordinate functions have a particular structure. We avoid circularity
concerns by stipulating the structure on the space of coordinate functions, and examining the semantic
and metaphysical consequences of this stipulation. We do not, for example, argue that the algebra of
coordinates we focus on is the correct algebra because it renders undefinable arbitrarily short spatial
separations.
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2.2 The spectral approach

exact localisation, because we cannot associate a real number δ < µ in accordance with equation
(1).

Our restriction to a domain with this privileged discrete structure was contrived. But it was
contrived in order to make an important point about representation and indeterminacy; the
examples we discuss in the rest of the paper will be more physically motivated. Quantum inde-
terminacy in position of a particle on the de Broglie-Bohm interpretation, for example, can be
unproblematically represented by an underdetermination between different models, where each
model has associatedwith it a perfectly determinate notion of location, derived from the definabil-
ity of arbitrarily short lengths (more precisely, a family of two-place relations on M corresponding
to arbitrarily small separations). And this is perfectly permissible (indeed, encouraged) in a for-
malism which treats the structured domain as a metric space. In what follows, however, we will
argue that a quantummechanical approach to geometry mandates a noncommutative, discrete
structure on the domain of discourse. As a result, separations below certain scales (again, more
precisely, a family of 2-place relations on M corresponding to separations below a certain scale)
will not be definable, so indeterminacy in position cannot be modelled by underdetermination
betweenmodels with determinate notions of location.

2.2 The spectral approach
It appears, therefore, that we have a problem. It is all very well to say that a metric space can be
characterised by assigning a real number to each pair of its elements, but how does one do this
systematically for a domain M with uncountably many objects? We cannot simply list numbers
associated with all pairs of elements in M . The standard move is to define a line element on M ,
ds2 = gi j dx i dx j , which represents, roughly, an infinitesimal displacement, and then integrate this
line element along an arc that connects any two points in M in order to assign to that pair some
real number. This ‘arc-connectedness’ is the basis of all differential geometry, and is an extremely
powerful piece of mathematical technology.

Unfortunately, this move brings with it a problem: this definition of length requires that we
can define arbitrarily short lengths, i.e. that the space is arc-connected. This won’t do–recall from
the previous section that we had good reasons to believe that lengths above a certain minimal
scale ought to be definable even if lengths were not definable below that scale. In other words,
our desideratum is the ability to define some lengths in a space that is not arc-connected, so our
definition of length cannot require that a space be arc-connected. How ought one proceed in
light of this demand?

Alain Connes’ formalism of spectral triples promises to solve this problem. In order to assess
the plausibility of this claim, we need to understand both the motivations and the mechanics
behind this proposal. We begin by making precise the questions of interest to which the spectral
triple formalism provides the answer:

Question 1:What is the minimal structure of the domain of discourse required to make sense of
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2.2 The spectral approach

locations?

As discussed earlier, in physical space a natural answer to this question is ‘the structure of a
metric space, 〈M ,d〉’, where d is the geodesic distance between any two elements in the domain of
discourse. Differential geometry demonstrates that arc-connectedness (together with a few other
assumptions) is sufficient to characterise a metric space. Our aim in this section is to explicate
a generalisable alternative characterisation, thus demonstrating that arc-connectedness is not
necessary. In other words, we seek to answer in the affirmative the following question:

Question 2: Can we turn a domain of discourse of uncountable cardinality into a metric space
even if it is not assumed to be arc-connected?

The goal, then, is to recover a metric space 〈M ,d〉 algebraically, from a starting point that does
not assume any metric or topological structure on the structured domain. Connes [10] proposes
using spectral triples, 〈A ,H ,D〉, whereA is a particular kind of algebra over a field, known as
aC?-algebra4,H is a Hilbert space, and D is a particular self-adjoint operator over that Hilbert
space, known as aDirac operator. The idea is simple: define, in algebraic terms, the structures
that we know and love from differential geometry as special cases of these triples, check that we
can still do differential geometry after this step, and then modify and deform these structures in
such a way as to generalise differential geometry to unfamiliar domains. In particular, this will
allow us to ascribe to a structured domain enough structure to define all and only lengths above a
certain scale, satisfying our earlier desideratum.

We split the task of recasting differential geometry in the language of spectral triples into two
steps:

Step 1: Recover a topological manifold, M , from a spectral triple.

Step 2: Recover a geodesic distance function, d on M , from a spectral triple.

Step 1 is completely straightforward and it builds on mathematical work in the forties, mainly
a well-known representation theorem due to Gelfand and Naimark [25], which we describe briefly.
Consider a Hausdorff topological space: for simplicity wemay think of amanifold,M , for instance
the (2-dimensional) plane or sphere. Defined on it are the scalar fields, continuous functions
that assign a complex number to each point: the set of such functions5 is known as C (M ). To
understand the following, it is important to distinguish between such fields, which are functions

4AC?-algebra is an algebra over a complex field, equippedwith an inner involution, denoted by?, which
generalises the operation of taking the complex conjugate of a number, and a norm, which generalizes
the modulus of the complex numbers, with respect to which the algebra is complete. Complex number
themselves are the simplest example ofC?-algebra.

5For our purposes we need not go into detail as for the class of functions, continuous (for topology) or
smooth (for differentiability) or other classes.
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2.2 The spectral approach

over all space, from their values at a point: the former are complete ‘configurations’ of individual
point-values.6

Two scalar fields, φ and ψ ∈ C (M ), can be multiplied together in an obvious way to obtain a
third, χ ∈ C (M ) – the value of χ at any point p, is just the ordinary product of the values of φ and
ψ at p : χ(p) = φ(p) · ψ(p). Such ‘pointwise’ multiplication of fields is in fact so obvious as to almost
be invisible: how could there be an alternative? In §5.1, we shall see that there are alternative rules
for multiplying fields, and indeed, they may even be more physical than pointwise multiplication.

Because ordinarymultiplication is commutative, a ·b = b · a , so is pointwisemultiplication for
elements ofC (M ): φ · ψ = ψ · φ.The algebra contains a great deal of information about the space
on which the fields live. In fact, the algebra contains all the information that we typically take
to characterize a topological space. Topology, understood as characterizing relations between
points, can be reconstructed from purely algebraic data as maximal ideals7, the neighborood of
a point can be likewise inferred from the relations among ideals. Global characteristics are also
encoded in the algebra; for example a closed compact space (such as a circle) is described by an
algebra which contains a multiplicative identity element. By contrast open spaces such as the real
line are described by algebras which lack such an element. In short, this representation theorem
states the logical equivalence of a space topology and its algebraC (M ).

It’s worth emphasizing the strength of this point, by reflecting on what is meant by an ‘algebra’:
nothing but a pattern of relations – a structure – with respect to some abstract operations. One
might, for instance fully characterize an algebra by saying that there are two elements, {a ,b},
and an operation ◦, such that a ◦ a = b ◦ b = b and a ◦ b = b ◦ a = a (and specifying that the
operation is associative). What the elements are is not relevant, neither is the meaning of ◦; all
that matters is howmany elements, and what function on pairs of elements ◦ is. Of course, an
algebra can have different concrete representations: concretely, a might be represented by the set
of true propositions, and b by the set of false propositions, in which case ◦ is represented by the
boolean not-biconditional connective. But there are other representations: addition mod-2 for
instance (and perhaps a could be represented by the presence of a 30kg hemisphere of uranium
235, b by the absence, and ◦ by the operation of putting together – the critical mass of U235 is 52kg!).
These are different representations of a single algebra, which captures their common structure.

It is not relevant that the concrete elements of the algebra are fields over the manifold, all
that need be specified are their relations with respect to a binary operation. However, the scalar
fields on a particular manifold define a specific algebra, and, according to the representation
theorem, no other manifold has scalar fields with the same algebra. The point is that the algebra

6The usual notation for fields, e.g. Ψ(x), tempts a conflation here, as the argument could be read as a
particular value; but it instead indicates that we have a function over (co-ordinatized) points. Since that is
understood, we might leave out the argument, and just denote the field (the function, the configuration) as
Ψ. With respect to the setC∞, the fields are its elements, and their identities depend on the point-values
(two fields are the same field, iff all their point values agree).

7An ideal is a subalgebra such that the product of one of its elements by any element of the algebra still
belongs to the ideal.
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2.2 The spectral approach

does all the work: there is nothing smuggled in about the manifold simply because we realize the
algebrawith fields over it. Additionally, every abstract commutativeC?-algebra can be represented
as an algebra of continuous functions C (M ) over some Hausdorff space M . So that settles our
choice of algebra in the spectral triple: letA beC (M ), the algebra of continuous complex-valued
functions over M . In general,A determines a Hilbert space (theH in the spectral triple) as well
via a procedure known as the GNS construction.8

Step 2 is a little more involved, and it follows step 1 by nearly half a century, thanks to the
work of Alain Connes and others. As we noted above, we cannot immediately recover, from the
algebra of continuous functions, a metric manifold 〈M ,d〉 in the way that we could recover a
compact topological manifold M . One might wonder, however, if there is some subalgebra of
C (M ) that encodes metric facts about M . And there is, but this algebra can only be picked out
if we allow ourselves the third piece of structure in a spectral triple, theDirac operator, D . If we
stipulate that our domain of discourse, 〈M ,d〉, has enough structure for us to define a notion of
spacetime spinors, roughly speaking, we can then define a differential operator,D := iγµ∂µ on the
vector space of these spinors.9 With this extra structure, we have enoughmachinery to isolate a
subalgebra ofA that will allow us to recover d , the geodesic distance on M .

Consider the subalgebra of C (M ) known as the (algebra of) Lipschitz functions, defined as
follows:

Given two metric spaces, 〈M ,dM 〉 and the real line R, the function f : M → R is a real-valued
Lipschitz function if and only if for all x1, x2 ∈ M there exists a real-valued constant, K such
that:

|f (x1) − f (x2)| ≤ K dM (x1, x2) (2)

Since Lipschitz functions can only be defined onmetric spaces, the idea is that if we can find a
subalgebra ofA of Lipschitz functions,AL , we could use that algebra to reconstruct the geodesic
distance on M . The problem thus splits into two parts:

Part 1: Identify the subalgebra ofC (M ) that constitutes the algebra of Lipschitz functions that
we denote asCL(M ).

8Briefly, this is achieved by treating the underlying vector space ofA as its own representation space
and using the representation, together with a specification of a complex-valued functional, ω (more on
this object in §3.2) to induce an inner product on the vector space. Finally, one takes care to ensure that the
space is completed in the associated norm.

9 Usually, in order to define spacetime spinors, one equips a differentiable manifold with a so-called
‘spin structure’. This is tantamount to defining a Lorentzian inner product on each tangent space. A
spinor can then be thought of as an object that transforms in a particular representation—the spinor
representation—of the Lorentz group (for a rigorous definition, see e.g. [41]). A well known consequence
of this transformation behaviour is that spinor states are invariant under rotations of 4π, but in general,
not rotations of 2π. The set of spinors forms a vector space, and it is on this vector space that the Dirac
operator is defined.
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2.2 The spectral approach

Part 2: Identify the appropriate Lipschitz function such that for every pair of points on M one
can identify it with the geodesic distance between those two points using equation (2).

For part 1, we start by considering a bounded measurable function, a ∈ C (M ), on M . From the
GNS construction associated with this algebra, we know that it can be represented as an operator
on a Hilbert space.10 There is a theorem that states that this function will be almost everywhere11

equal to a Lipschitz function if and only if the commutator [D , a] is bounded [10], where D is the
Dirac operator defined on the Hilbert spaceH . So if we specify a Dirac operator, we can identify
the algebra of Lipschitz functions,CL(M ), a proper subalgebra ofC (M ).

For part 2, we see directly from the definition of a Lipschitz function, that, for the value K = 1,
the supremum of the norm of the difference of image points is the geodesic distance. We are thus
led to the following suggestion for the geodesic distance function on M :

d(p ,q) = sup{|a(p) − a(q)|; a ∈ C (M ), ‖[D , a]‖ ≤ 1} (3)

where | · | is the L2-norm on C and ‖ · ‖ is the norm on the Lipschitz algebraCL(M ). Note that we
are defining a distance function on M indirectly—by appealing to structure in the algebraCL(M ).
We need to establish that this, in fact, gives us the correct expression for the geodesic distance.
The rigorous mathematical demonstration, detailed in [10, Ch. 6], requires the introduction of
more technical machinery than we have introduced here. The upshot is that, with the help of
somemathematical footwork,when the algebra is commutative, one can map each path between
two points in the manifold to a norm in the Lipschitz algebra in such a way that the shortest path
is mapped to the largest norm and the longest path the smallest norm. The geodesic distance
in an arc connected space is then mapped to a supremum norm in the algebra. Now this link
no longer exists when the algebra is noncommutative, but we can, nonetheless still speak of a
geodesic distance expressed in terms of (only) the Lipschitz algebra norm.

The advantage of the use of spectral triples, in the context of the discussion in the previous
section, is clear—we can, using equation ((3)), define a notion of distance between two elements
of a domain of discourse even when that domain is not assumed to be arc-connected. We thus
have the construction that we required in order to answer question 2 in the affirmative. Crucially,
since we no longer need to assume M is arc-connected, we can generalise the algebra, from the
commutativeC (M ) to a noncommutativeA . We do not need to worry that there is no longer a
sensible notion of infinitesimal distance. All we need is a determinate specification of geodesic
distance between elements of the subset of the domain of discourse for which the notion of separa-
tion is definable. This specification does not need to piggyback on a specification of infinitesimal
distance, and is thus still available to us in spaces characterised by having a noncommutative
algebra of functions.

10To cut down on unnecessarily complicated notation, we refer to this element as a , while remaining
vigilant about correctly identifying which space these similarly labelled operators belong to.

11i.e. everywhere except for a measurable set of Lebesgue measure zero.
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2.2 The spectral approach

Denote the convex subsets of a generic algebraA as S(A ); and the ‘extreme boundary’ of a
convex set K , as ∂E (K ).12 Elements of the extreme boundary of S(A ) are also known as pure states.
It turns out that the space of pure states is also homeomorphic to M when A is commutative.
So now we have two spaces, M and ∂E S(C (M )), arrived at by different constructions, that are
homeomorphic to each other. Let us focus on one important pair, ∂E S(C (M )) and M . This isomor-
phismmeans that points in M stand in a one-one correspondence with pure states. Consider the
appropriate expression for d on ∂E S(C (M )):13

d∂E S(C (M ))(α, β) = sup{|α(a) − β(a)|; a ∈ ∂E S(C (M )), ‖[D , a]‖ ≤ 1} (4)

All of this demonstrates that we should not be fooled into thinking that a geodesic distance
can only be defined when M and ∂E S(A ) are homeomorphic—once this isomorphism is broken
by replacing a commutative algebra with a noncommutative algebra of functions on M , ∂E S(A ) is
still a metric space with a metric given by equation (3). But now, this metric space is no longer
isometric to the space 〈M ,dM 〉 (unsurprisingly, given that they are no longer even homeomorphic).
Consequently, and crucially, the pure states are no longer identified with points in M (the choice
of terminology is not accidental—in quantummechanics, these are the standard pure states that
can be identified with rays in the system’s Hilbert space).

To reiterate, when A = C (M ), which is commutative, the space of pure states, ∂E S(C (M )) is
homeomorphic (and can be made isometric) to the space M , so it does not matter which space
we begin with. This is no longer true when A is noncommutative. In this case, the geodesic
distance function on ∂E S(A ) still maps pairs of pure states to real numbers, but the space of pure
states, ∂E S(A ) is no longer homeomorphic to the domain of the functions that constituteA . The
function define in equation (4) now identifies distances between pure states which cannot, in
general, be interpreted as points of space.

To relate this construction to the discussion in §2.1, let us consider the algebra of coordinate
functions. The algebraic structure on this space privileges certain coordinate functions, and
automorphismsof the algebra preserve this privileging, thus allowingus to structure the structured
domain, Ms . For certain noncommutative algebras (for example, the noncommutative algebra of
coordinate functions that we discuss in the second half of this paper), the set of pure states is not
a topological manifold, a fortiori cannot be interpreted as a set of points. This is what underlies
the ‘pointlessness’ of NCG, as alluded to in several discussions of NCG, for example:

The concept of a point becomes evanescent, and in some cases one is forced to
abandon it altogether. [35, p. 95]

The conceptual shift in NCG is to treat the algebraA as fundamental, and the structure on
12A vector space K is called a convex set iff ∀v ,w ∈ K and t ∈ [0, 1], t v + (1−t )w ∈ K . Its extreme boundary

is the set of all v ∈ K such that if v = t w + (1 − t )x for certainw , x ∈ K and t ∈ [0, 1], then v = w = x .
13It is worth noting that this expression gives us distances on the entire space of states on S(C (M )), not

just the pure states. However, in this section, we focus just on the subset of pure states.
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the space M as derived (we will explore some of the metaphysical consequences of this move
in §4). In regimes where we need only focus on commuting algebras of observables, distances
between pure states can, to whatever the appropriate degree of approximation, be identified with
distances between locations.

We are now in a position to understand how this construction allows us to determine under
what circumstances the 2-place ‘spatial separation’ relation is definable. Define an automorphism,
h of a spectral triple as an automorphism ofA such that leaves the Dirac operator invariant. To
reiterate, the spectral triple is playing the same role—structuring the structured domain—as the
privileged coordinate systems were in the simple example in §2.1.

IfA = C (M ), then D picks out the same distance function before and after the transformation.
In other words, h is an automorphism of 〈C (M ),H ,D〉 iff

d(p ,q) = sup{|h(a(p)) − h(a(q))|; a ∈ ∂E S(C (M )), ‖[h(D),h(a)]‖ ≤ 1} (5)

where d(p ,q) is defined as in equation (3).
This d(p ,q) is equal to the standard Riemannian distance defined directly on M :

dM (p ,q) = inf
∫
γ

gi j dx i dx j (6)

Consider a set of pairs of elements of 〈M ,dM 〉:

Rµ := {〈p ,q〉 ∈ M |dM (p ,q) = µ} (7)

where dM (p ,q) = inf
∫
γ

gi j dx i dx j = µ and µ ∈ R. This relation is invariant under an automorphism
h on 〈M ,dM 〉. This automorphism will induce an automorphism hA on 〈C (M ),H ,D〉 such that:

sup{|hA(a(p)) − hA(a(q))|; a ∈ ∂E S(C (M )), ‖[hA(D),hA(a)]‖ ≤ 1} = µ. (8)

We can now define a relation RC (M )
µ on ∂E S(C (M )):

RC (M )
µ := {〈α, β〉 ∈ ∂E S(C (M ))|d∂E S(C (M ))(α, β) = µ} (9)

This relation is invariant under all and only the automorphisms of ∂E S(C (M )) induced by
automorphisms that preserve Rµ . So Rµ and RC (M )

µ are equivalent, and it does not matter whether
we use an algebraic or geometric description. They agree on themagnitudes that we are interested
in here—lengths and areas, and consequently, as µ is made arbitrarily small, both RC (M )

µ and Rµ

can be thought of as picking out the same relation even though they are defined on different sets.
We propose that a necessary condition for the equivalence of a relation on a normed space (like
∂E S(C (M ))) to a relation of spatial separation on amanifoldM is that there exist a homeomorphism
between the two spaces (given our understanding of localisability, this fails to be a sufficient

13
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condition).
Of course, the point of characterising the same structure in two different ways is that the new

characterisation still applies when we leave the classical regime and instead consider noncom-
mutative algebras of observables. Let θ quantify the magnitude of the noncommutativity ofA , i.e.
∀x̂ , ŷ ∈ A , [x̂ , ŷ ] = iθ. Since θ is the commutator of distances, it is an area, which, for example, one
could identify with the square of Planck’s length ∼ 10−70 m2.

LetA be noncommutative, and at the same time, let us structureM as ametric space, 〈M ,dM 〉.
In this case, as mentioned above, M will no longer be isometric (or even homeomorphic) to the
space of pure states, ∂E S(A ). We can, of course, still define a relation Rµ on 〈M ,dM 〉, because it
remains invariant under automorphisms,h of 〈M ,dM 〉. But things changewhenwe take the algebra
A as fundamental. For commutative algebras, we could exploit the assumed homeomorphism
between ∂E S(A ) and M to speak of two ‘equivalent’ relations, one defined on ∂E S(A ), the other
on M .

Consider relation RA
µ , whereA is noncommutative:

RA
µ := {φ,ψ ∈ ∂E S(A )|d∂E S(A )(φ,ψ) = µ} (10)

where d∂E S(A )(φ,ψ) is given by equation (3).
While this relation is, indeed, invariant under automorphisms of the noncommutative spec-

tral triple, 〈A ,H ,D〉, therefore definable, it is no longer equivalent to the relation Rµ . This is
because although the metric space of pure states 〈∂E S(A ),d∂E S(A )〉 is invariant under spectral
triple automorphisms, it is no longer homeomorphic to 〈M ,dM 〉. Therefore it is no longer possible
to assess whether the two relations are co-extensive: Rµ and RA

µ are incommensurable relations.
This clashes with what we had identified as a necessary condition for RA

µ to represent a spatial
separation of magnitude µ: that ∂E S(A ) is homeomorphic to M .

We can, however, restrict our attention either to commutative algebras, or to regimes in which
the algebra of relevant observables can be treated as being commutative (i.e. the scale µ is much
larger than the noncommutation factor θ). In these scenarios, RA

µ can be seen to be equivalent to
(or nearly equivalent to) Rµ . We can therefore have localization within sufficiently large regions,
but notwithin regions below a certain scale. The upshot of this discussion is thatRµ , and hence our
concept of localisation, is definable in a theory whose domain of discourse is a spectral triple only
if the algebra is commutative. Since we can express all of the dynamicallymeaningful components
of the noncommutative theory without making any reference to separations below the scale µ, on
Occamist grounds, we excise these putative regions – including points – of spacetime from our
ontology.

14



§3 Operationalism

3 Operationalism
Philosophers of physics with operationalist leanings might be sympathetic to but nonetheless
unmoved by the argument in the previous section. Operationalism is a view about how words
that describe concepts acquire meaning, according to which ‘the concept is synonymous with
the corresponding set of operations.’[5] From the perspective of a physical theory, rather than
trying to imbue an abstract formalism with physical salience, it is built into the formalism from
the beginning.

Operationalism was introduced by Percy Bridgman, and most famously discussed in his The
Logic of Modern Physics. Although Bridgman himself does not present his view as such, it can be
read as advancing a specific semantic claim about scientific words, namely that the meaning of a
word is (in a sense to be made precise) completely exhausted by a specification of the operations
that one would need to perform in order to measure a magnitude corresponding to that concept.
Of particular relevance to the discussion in this paper is the following from Bridgman:

If a specific question has meaning, it must be possible to find operations by which an
answer may be given to it. It will be found in many cases that the operations cannot
exist, and the question therefore has no meaning. [5, p. 28]

For various reasons, as a semantic theory, operationalism is no longer fashionable amongst
contemporary philosophers. However, the empiricist spirit of operationalism still underwrites a
standard approach among physicists and philosophers of physics for clarifying obscure concepts.
This approach often proceeds via some form of thought experiment: think of Newton’s globes as a
way of understanding absolute space or the behaviour of light rays and test particles as a way of
understanding the chronogeometric significance of the metric in general relativity.

It is in this spirit that, in this section, we present what might best be termed a ‘tempered opera-
tionalism’, according to which a necessary condition on a concept having physical content is that
it is possible, by the lights of physical theory, to describe a (perhaps idealised) measurement pro-
cedure for a magnitude associated with the concept. We refer to such concepts as operationally
definable. To give operationalism substance, one has to specify what measuring operations are
available; since we are interested in the possibility of operationalizing points of space, we will
consider a (probabilistic) particle detector.

3.1 The tempered operationalist approach to points
Having clarified the sense in which we understand operationalism, in this section, we describe
an idealised location measurement procedure. We argue that, on this setup, in ordinary classical
field theory, localisations can be arbitrarily precise in principle, but trouble starts to brew in
noncommutative geometries, leading to a violation of operational definability.

15



3.1 The tempered operationalist approach to points

In brief, the argument as follows. In classical field theories on a commuting space, any uncer-
tainty inmeasurement of location is down to technological or epistemic limitations. To account for
these limitations, we associate what one might call an epistemic state with a particle: a probability
measure over some interval of space representing our uncertainty about the exact location—the
ontic state—of a particle. We then model an idealised measurement in such a way that the proba-
bility distribution that characterises our epistemic state becomes infinitely peaked at the particle
location, in the limit that the uncertainty tends to zero.

In theories of noncommutative space, we again assume—but this time for reductio—that
there is an ontic state corresponding to an arbitrarily precisely localised particle. We construct the
analogue of an epistemic state: a density operator. We then attempt to localise this epistemic state
to an arbitrarily small area and discover that this leads to ascriptions of negative probabilities.
Since these measures are not elements of the state space, this signals a pathology. The only
way to avoid this pathology, we argue, is to drop the assumption that there is an ontic state
corresponding to an arbitrarily precisely located particle. Thus, even in principle, it is not possible,
in a noncommutative space, to localise a particle below a certain area. Operationally, then, such
areas—and a fortiori points—are undefinable.

3.1.1 Classical space

We will thus operationalize spatial regions and points in terms of particle location measurements;
if measurements are only physically possible to finite precision, we argue that areas smaller
than that scale do not exist. So first, consider a single particle prepared in a state localised to a
region in M . In practice, there will be some uncertainty because of technological limitations in
the preparation of the system. Second, we model a location measuring device: some apparatus
which “clicks” if the particle is in a region, and is silent otherwise. Again, in practice there will be
uncertainty in the measurement, because of our lack of full control of the dynamics. Because of
both kinds of uncertainty—and for technical and dialectical reasons—wemodel both the state of
the particle, and the measuring device with Gaussian functions.

Consider, first, the commutative case. Here, the coordinate functions of the two dimensions
commute and therefore decouple (we will shortly see why this is not the case in noncommutative
space), so it is sufficient to consider just one dimension. We represent the state of a particle as a
normalised Gaussian centered around a point x0:

ρ =
1
√
πα

e
−
(x−x0)

2

α2 (11)

where α is the width of the Gaussian.
Observables are represented in this formalism as real functions of configuration space, say

f (x), and a measurement will give as average value 〈f 〉ρ =
∫

dx ρ(x)f (x). The limit α → 0 is well
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3.1 The tempered operationalist approach to points

defined and limα→0 〈f 〉ρ = f (x0) For instance, for position, x :

〈x〉ρ = x0 ;
〈

x2
〉
ρ
= x20 +

α2

2
(12)

so that the uncertainty is ∆x = α√
2
The limit α → 0 is well defined, and in that limit, the state is

perfectly localised in x0.
We also model a position measuring device, with resolution β as a Gaussian.

√
2 · g1(x) = e

−
(x−x1)

2

β2 (13)

The average value of the corresponding observable, for α = β is then

〈g1〉ρ = e
−
(x0−x1)

2

2α2 (14)

This quantity is very small unless x0 ∼ x1, i.e. the device is near the particle. When |x − x1 | � α

this quantity is close to one, and goes to zero very fast as |x0 − x1 | grows. In other words, this
observable indeed corresponds to a positionmeasurement, capable of discriminating the location
of a particle to arbitrary accuracy, as α → 0. We will see later (§5.1) that things are quite different
in noncommutative geometry.

3.1.2 Quantum kinematics

In the previous section, we were interested in the classical kinematics of location. Consequently,
our states were just elements of some configuration space, observables were functions of these
states, and measurement outcomes (magnitudes) were elements in the range of these functions.
Quantum kinematics is different. The textbook story14 is that states are positive trace-class op-
erators15 on a Hilbert space, observables are self-adjoint operators on that Hilbert space and
measurement outcomes are probabilities over magnitudes and are determined by the Born Rule.
In particular, the expectation value associated with some observable, call it Ô is:

〈Ô〉ρ = Tr(ρO ) (15)

where ρ is a state.
By assuming that ρ is positive trace class we require that it has no negative eigenvalues, which

would correspond to pathological (or contradictory) negative probabilities for physical measure-
ments. Thus we designate the assumption the condition of state physicality:

State Physicality: Physical states of a quantum system are (represented by) positive trace class
14as presented in e.g. [37].
15A state represented by an operator in quantum mechanics is trace class if it has a well-defined (i.e.

basis-independent) trace. If this trace is positive, then the operator is positive trace class.
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operators on complex Hilbert spaces.

For our purpose the important consequence of this condition is that physical states cannot be
represented by trace-class operators with negative eigenvalues.

If we begin with a set of self-adjoint operators on a complex Hilbert space, we can define
an operator norm on this set, and endow this set with the structure of a C?−algebra. We can
incorporate some of the structure of the Born Rule into the definition of a state by defining states
as maps from the C?−algebra of operators into the field of complex numbers. More precisely,
given an algebra with a norm, a state ρ is a map from the elements of the algebra into the set of
complex numbers with the following properties:

ρ(α1f1 + α2f2) = α1ρ(f1) + α2ρ(f2)

ρ(1) = 1

ρ(f +f ) ≥ 0

‖ρ‖ ≡ sup
‖f ‖≤1

ρ(f +f ) = 1

C?-algebras allow us to express the kinematics of classical and quantummechanics in broadly
analogous ways. We should flag, however, the contentious nature of the appellation ‘quantum’.
For some, e.g. [33], it is sufficient for a theory to be quantum that the algebra of observables be
noncommutative. Others [22], argue that the quantum/classical divide is less clearly delineated,
and lies on a continuous spectrum, where the actual divide is sensitive to other considerations.
The cases that we consider in this section are noncommutative, but are not ‘quantum’ in the
narrow sense of imposing ~-dependent commutation relations on the canonical variables. In this
paper, we remain neutral on the substantive question, but for clarity speak only of commutative
and noncommutative field theories, reserving our use of ‘quantum’ for later (§5.2), for domains
that can strictly be thought of as quantummechanical. But the point here is that the framework
just developed is appropriate for any situation with noncommutative observables, and so is
appropriate to the case of noncommutative space, as we shall now see.

3.2 Noncommutative space
With the algebraic characterisation of geometry in mind, we nowmodel the measurement proce-
dure as we did in §3.1.1,mutatis mutandis, for a noncommutative space.16 We do not need the full
structure of the spectral approach described in §2.2, instead we work with a simple special case.
We should stress at this stage that the lessons that we draw about measurements in this simplified
model, based as they are on claims about the noncommutivity of the algebra of coordinates,
generalise to more other systems modelled by noncommutative spectral triples.

16A discussion of the role of observers in a pointless space, of which the quantum phase space is an
example, can be found in [43] and references therein.
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Consider a simple toy example of a space in which what were previously coordinate func-
tions (what we henceforth refer to as ‘base elements’) are now self-adjoint operators with the
commutator:

[x̂ , ŷ ] = iθ. (16)

As before, the area θ is the measure of the noncommutativity, analogous to ~, in the canonical
commutation relations. The algebra of functions of x̂ and ŷ—the field algebraA—which in the
classical case was commutative, is now noncommutative. In particular, their polynomials are
noncommutative elements of the algebra.

Sowe seek a representation of the algebra, satisfying the quantum kinematics described above,
via a ‘quantization map’ that associates to any function an operator. There is some freedom in
this choice, and usually one uses theWeyl map, which associates self-adjoint operators to real
functions. The definition is made via the Fourier transform

f̃ (ξ, η) =
∫

dxdy f (x , y )e
i
θ (ξx+ηy ) (17)

the operator corresponding to the function f (x , y ) is therefore

F̂ =

∫
dξdη f̃ (ξ, η)e−

i
θ (ξx̂+ηŷ ). (18)

The inverse map, which associates functions to operators, is called theWigner map:

f̃ (ξ, η) = Tr Fe
i
θ (ξx̂+ηŷ ) (19)

The operators we obtain can always be represented as acting on a separable Hilbert space, so
both operators and states are represented as (infinite dimensional)matrices. Then the require-
ments (16) translate to the claim that we can associate with a state an Hermiteanmatrix ρ̂with
positive eigenvalues and Tr ρ̂ = 1. This is standardly referred to as a density matrix.

Consider now a classical Gaussian epistemic state peaked around the origin and of width α:

ρ =
1
α2π

e
−

x2+y2

α2 (20)

The quantization map associates an operator to this function, and we may write this operator
in the x basis as:17

ρ̂ =
1
α2π

∫
dηdξe−

ξ2+θη2

α2 e−1(xη+∂x ξ) (21)

This operator has well defined action on functions of x .
This matrix has been calculated ([15, 34], and found to be:

17Remember that x and y do not commute, and therefore do not have a simultaneous basis, hence we
cannot write the operator using both of them.
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ρ̂ =

©«

2θ
α2+θ

0 0 · · ·

0 2θ
α2+θ

(
α2−θ
α2+θ

)
0 · · ·

0 0 2θ
α2+θ

(
α2−θ
α2+θ

)2
· · ·

...
...

... . . .

ª®®®®®®®¬
(22)

This operator is trace class, with Tr ρ̂ = 1 in all cases. So it satisfies the first condition of state
physicality. But under certain circumstances, it fails the second: for certain values of α, it gives
rise to negative expectation values for any observable. This can be inferred from the eigenvalues
of this operator, for particular values of α and θ.

α >
√
θ The state is not particularly localised, and ρ̂ is a density matrix, with all eigenvalues positive
and smaller than 1.

α =
√
θ The state is a density matrix with the first eigenvalue equal to 1, and the rest vanishing.

α <
√
θ Thematrix is not a density matrix, the first eigenvalue is larger than 1, and negative eigenval-
ues appear, which lead to negative expectation values for all operators. Thus the operator
violates state physicality.

Thus the quantum state corresponding to a classical epistemic state localised to an area
below

√
θ does not correspond an ontic quantum state—the associated density operator does not

represent a physical state.
To better understand this result, consider the position measurements that we take to opera-

tionalize position in the noncommutative framework.
〈

x̂2
〉
= 0, which reveals no problem, but if

we consider higher powers we find:

〈
x̂4

〉
=

3
16
(2α4 − α2θ − θ2) (23)

which—impossibly—is negative for α <
√
θ. Moreover, that the value of 〈x̂〉 is positive is in fact an

artifact of the symmetric state we chose; a different ρ, not symmetric around the origin, would
have shown pathological behaviour even for a direct position measurement. In §5.1 we will
introduce the formalism necessary to also see the noncommutative analogue of (14), a position
measurement involving an imprecise device. We will see in more concrete terms why we cannot
operationalize position measurements: attempts to measure below a certain scale are frustrated.

We conclude that measurements attempting to localize particles to a linear scale smaller than
√
θ are unphysical; of course, this result is a reflection of the fact that there are no ontic states

localizing particles below this scale. Then, from our tempered operationalism, we conclude that
space in fact has no regions smaller than this scale – and in particular, is ‘pointless’.

20



§4 Ontology

4 Ontology
We have argued that the notions of point, or region smaller than the commutation scale are
undefinable in noncommutative geometry; undefinable in the formal sense of definition in a
structured domain, and undefinable in the physical sense of tempered operationalism. All we
have is a (metric) space of (pure) states, and these can only be identified as being pointlike if the
algebra of fields is commutative. In that case, the traditional conception of the manifold fails
too, and with it the ‘fields as properties of spatiotemporal points’ view about the ontology of a
field theory (as endorsed by, e.g. Hartry Field [23]). Thus the question of the interpretation of
theories of noncommutative geonetry arises: what kind of world, what kind of basic elements,
does it describe? One immediate thought is to develop a structure of spacetime by composing
regions each of which is of size above the commutation scale. The issue with this proposal is that
the set theoretic closure of such open sets includes regions smaller than the commutation scale;
so such an interpretation would require non-standard laws of composition. We take such issues
as indicating that such an approach would shoehorn classical notions into what is, essentially,
a quantum theory. So we will instead propose that the algebra, A , whose elements are not
intrinsically spatiotemporal at all, is itself the basic ontology. Naturally, this will require some
elaboration!

Note that until now, we have only spoken of spatial, rather than spatiotemporal noncommu-
tivity. From this point on, we also indulge in talk of noncommutative ‘spacetime’. But note that we
always take the time coordinate to commute with the spatial coordinates (even when the latter do
not commute with each other).18 We will also refer to noncommutative geometry as ‘NCG’ for
brevity.

In Book IV, Chapter 1 of his Physics Aristotle offers the view that existence requires being
somewhere: everything that is, has a place. (He is setting up the question, attributed to Zeno, of
where places are, if they exist.) This idea is intuitive: the world seems fundamentally spatial, and
it starts to capture the idea that ‘real’ things can be interacted with, by traveling to them. If one
accepts such a view of existence, then it becomes impossible to take the algebraic formulation of
the theory as giving an ontology for the world, because it does away with space as a fundamental
object. Modern philosophers are more likely to take a logical view of existence, perhaps adopting
Quine’s view that to be is just to be the value of bound variable in a true theory. At any rate, seems
inadvisable to reject the algebraic formulation out of hand because of a view of existence.

Related to the idea that ties existence to space, is the idea that comprehension requires the
spatial. Maudlin [36], following Barrett [2], expressed a concern that theories without fundamental
spatiotemporal quantities could not be connected to experiments, which immediately concern
local beables. But a vaguer objection that only spatiotemporal theories can be properly ‘under-
stood’ perhaps remains; useful predictions might be possible, but otherwise a theory can only be

18Noncommuting time is a delicate issue, technically and conceptually. See [28, 4] for discussion.
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an instrument, not comprehendible by us. Kant had a view like this of course, which influenced
Maxwell in the construction of electromagnetism; and such claims were made by Schrödinger in
his arguments with Heisenberg. See ([14]) for some history of the topic. But such instrumentalism
is no more of a threat to an algebraic interpretation than Aristotle’s spatial view of ontology. First,
one can make the same kind of move to logic as before. Suppose a theory is algebraic rather
than geometric, then it may not give an image that is easily visualized by the humanmind, but it
still can provide understanding in the sense of systematizing the connections between different
parts of nature; between the quantum and gravitational realms, ideally. That is, our ability to
understand formal systems that aren’t spatial does plausibly give us the ability to understand
physical systems that are not spatial. Second, there is a sense of ‘understanding’ that indicates
facility with a theory rather than any sense that its models can be visualised. For instance, de Regt
([14]) develops Feynman’s view that understanding a formalism is a matter of ‘knowing’ what the
solution to a problem should be without having to compute it explicitly. But as de Regt points out,
while our geometric intuitions are a fruitful resource for ‘seeing solutions’, they need not be the
only one; again, familiarity with an algebra also allows one to anticipate when algebraic relations
hold without explicit calculation.

So there do not seem to be in principle barriers to developing an algebraic theory. All the same,
commutative space seemingly provides a very useful tool for investigating ontology, insofar as
individuals can be separately localized, and the parts of space give a way of distinguishing parts of
individuals. (Of course, even non-relativistic quantum non-locality makes this road to ontology
treacherous at best.) Or again, physical reality is often tied to causal connectedness, which in turn
is most readily understood in terms of effects propagating in space. So despite our metaphysical
sophistication it is still puzzling to know where to start in talking about the ontology of a theory
like NCG, in which the familiar spatial handles are missing. What, then is there? How can we
discern a coherent ontology from the theory?

Since we are considering a theory that replaces differential geometry with algebra it will be
useful for the following to bear inmind two kinds of interpretational moves made regarding space.
There are two main questions at stake: (i) to what extent, if any, are the points of a differential
manifold real, physical objects, akin to material systems? (ii) What aspects of spatiotemporal
structure, such as topological and geometrical relations, are fundamental (capable, for instance, of
providing ‘deep’ explanations)? Especially, following the (re-)introduction of the ‘hole argument’
([20]), the locus of philosophical debate was on the first question: the ‘manifold substantivalist’,
who holds the points to be physically real, is faced with versions of Leibniz’s shift arguments, in
which one imagines the material content of the universe rearranged in spacetime. Earman and
Norton’s argument makes the point especially sharp in theories with dynamical geometries, such
as GR, since then the problem of indeterminism can (arguably) be added to that of underdetermi-
nation: because of diffeomorphism symmetry there are solutions of the Einstein field equation
that agree up to a given Cauchy surface, but differ by a diffeomorphism after.
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Recent work has largely focussed on the second question. The idea of ‘dynamical interpre-
tations’ of spacetime theories is that certain spatiotemporal structures (particularly affine and
metrical ones) are not fundamental, but merely represent, say, the symmetries of the laws of
material systems; hence ‘real’ explanations (of time dilation, for instance) are in terms of how
systems behave according to physical laws, not geometry (for instance, ([6]); such interpretations
are discussed in ([27, 7]). With all this in mind, consider some possible interpretational strategies;
we do not aim to adjudicate between them, but merely demonstrate the possibility of an algebraic
interpretation.

First, in the formalism of NCG, instead of spatial points and their relations, we have elements
of an algebra and their relations; this observation suggests that the elements could be thought
of, metaphysically, along the lines of points. To pursue this idea more concretely let’s take the
algebra A to be Rd

θ , the algebra of polynomials of the noncommuting base elements, x̂ and
ŷ .19 ‘Algebraic substantivalism’ then attributes to the elements of Rd

θ the same kind of ‘physical
reality’ that manifold substantivalism attributes to points. To be a little more careful, just as
the latter view takes mathematical points to represent, more-or-less literally, physical points, so
algebraic substantivalism takes the elements of the mathematical algebra to represent, more-or-
less literally, physical objects, which we shall continue to call ‘fields’. To be clear, themathematical
representation of the NCG is not itself something physical, but, according to substantivalism,
what it represents is.

The idea that the points of a mathematical spacetime manifold could represent points of
physical spacetime seems to be a natural one; at least philosophers (including Newton and
Leibniz) have taken it (or something like it) to be a view worth defending or disputing. It appears
that applying parallel reasoning in the parallel case of NCG feels less natural. However, the only
difference between the two cases lies in the non-spatiality of the fields. But that is no reason to
reify in one case and not the other: as far as existence goes, we have already rejected spatiality as
a condition. And while non-spatiality makes the fields less immediately connected to objects of
experience, we shall see below how NCG does connect with experience. In other words, however
manifold substantivalism views points, algebraic substantivalism views elements of the algebra;
understand one and you understand the other.

John Earman in [19, §9.9] proposed using such an interpretation to advance the substantivalist-
antisubstantivalist debate, based an algebraic formulation of general relativity, known as an
‘Einstein algebra’, due to Robert Geroch [26]. Because an Einstein algebra fixes a spacetime only
up to diffeomorphism, it seems (but see below) that symmetric situations get the very same
algebraic descriptions; so Earman suggested that an interpretation that takes the algebra as
fundamental would thus avoid the hole argument. Moreover, Earman described the interpretation
as substantival ‘at a deeper level’.

For an alternative interpretation, suppose one has a noncommutative field theory (NCFT) of a
19Standing in for physically realistic algebras of more complex objects like tensors and spinors.
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scalar field: suppose that thedynamical object of the theory is a scalar field, as in electromagnetism
one has a theory of an antisymmetric tensor field. For want of a better term, call this a ‘material
field’, to distinguish it from the fields of the algebraic geometry (though it is only ‘material’ in
the same sense that the electromagnetic field is). Then, each (algebraic) field corresponds to a
possible state of the material field, and can be interpreted to be such. This move is reminiscent of
the anti-substantivalist proposal that points are merely possible locations, not physical objects
themselves; the typical response to this suggestion is that it simply introduces new entities with all
the troubling features of points, and so the difference is too small to generate a truly distinct view in
the interpretation of spacetime theories. But note that in scalar NCFT things are potentially more
promising in that no new possibilia are proposed, because the material field is already assumed
to be a determinable, with many possible determinate ‘configurations’, with a noncommutative
structure. Of course one might say that locations are also possible states of spacetime objects, but
in that case there is the option of taking relative positions to capture locations. There seems to be
no corresponding move for the states of a noncommutative scalar field.20

A third option for interpretation is suggested by Bain ([1]) in the context of the Einstein algebra
formulation of general relativity. In that case diffeomorphisms correspond to automorphisms of
the algebra, and so Leibniz shifts have an algebraic counterpart: there are maps of the algebra
onto itself that preserve the algebra, and hence the geometry. Do we not [39] recapitulate hole
indeterminacy at the algebraic level? Not, it seems, if we pose the question of determinism as
follows: for any two algebraic models whose representations, restricted to t < T , are the same,
are they the same representations tout court? Given the representation theorems about Einstein
algebras, the answer is ‘yes’.

However, Bain, is unconvincedby this response. Heproposes that thefields only have identities
in virtue of their algebraic relations to one another – a version of ‘structuralism’, since the fields
become bare relata for the essential, algebraic, content of the theory. In this case, since the
structure is preserved by automorphisms, such shifts make no difference; the analogy to similar
moves in the hole argument – or in response to other issues arising from shifts – should be clear.
One even (in principle) could go a step further, and treat the elements of the algebra as purely
formal, not representing any physical ‘fields’, even with weakened identity conditions. What
would be left would be pure structure. It seems that all of these structuralist moves could bemade
just as well in the noncommutative as commutative cases (though the question of indeterminism
remains).

Algebraic substantivalism and structuralism, and the idea that fields are states of a scalar field
focus on the ontology of the elements of the algebra, as similar views concern the status of points
in standard spacetime theories, but perhaps one could also attempt a ‘dynamical’ interpretation
of NCFT. Such a view would take the ‘material’ noncommuting field as the fundamental thing,

20([17]) proposes an approach along these lines for spacetime in ordinary QFT, in which points are
identified with sets of local observables, themselves taken as possible properties of systems.
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§5 Recovering space from NCG

and view the algebra (certainly the algebraic relations, but potentially also its elements) as merely
representing something about its equations of motion. How such a viewmight be developed, how
plausible it might be, and how it might relate to the others described here, are questions that will
have to be addressed at another time.

5 Recovering space from NCG
All of the mathematical generalisations, and suggestive analogies might be of only abstract in-
terest, if it weren’t the case that the framework of modern physics, also survives the transition to
noncommutativity. The geometry and calculus involved can be given algebraic form, and survive.
Importantly, the Lagrangian that characterizes any theory, can also be fully rendered in algebraic
terms, even in the noncommutative case: so we have physics in a noncommutative geometry,
specifically, a ‘noncommutative field theory’ (thoughnote, as in §3, it is the geometry that the fields
‘inhabit’ that is noncommutative, as the fields themselves have not been quantized at this stage).
Moreover, other important pillars of modern physics, like Noether’s Theorem, also survive (it only
requires that the algebra be associative): hence the central importance of conserved currents
remains. (And gauge fields also exist, though importantly the distinction between ‘internal’ gauge
symmetries, and ‘external’ spatial symmetries is blurred.) In this section, we discuss a proposal
for the recovery of the manifest image of a classical (commuting) space from a noncommutative
field theory. We begin, in §5.1, by introducing two formally equivalent representations of a non-
commutative field theory. Then, in §5.2 we discuss and assess a proposal about the emergence
of ordinary spacetime from this algebraically construed, fundamentally noncommutative field
theory. We conclude in §5.3 with a short reflection on the problem of empirical incoherence that
we touched upon earlier.

5.1 The Moyal andWeyl representations
Let us try to understand how spacetime might emerge from a theory of non-spatial degrees
of freedom. On the one hand, prima facie we have no degrees of freedom that are intuitively
‘spatial’: no point-valued fields, but instead the state-values are simply elements of the algebra of
functionsmultipled via the?product defined below. Rd

θ . While on the other, the theory apparently
contains enough structure that one successfully might connect it (in some kind of limit) with
familiar physics, in a classical, phenomenal, spacetime. (Note that in this section, the fields, while
noncommuting, are still not fully quantized: we do not have ~-featuring commutation relations
on the canonical variables. We turn to a fully quantum formulation in §5.2.)

Earlier (§3.2), we gave an operator representation of the noncommuting algebra, but we can
equivalently represent it in terms of functions on a manifold, by deforming pointwise mulitplica-
tion to a new product. For instance, in our toy case, with the algebra Rd

θ , we take the usual smooth
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5.1 The Moyal andWeyl representations

coordinate functions x , y , etc as base elements, and introduce the Grönewold-Moyal—or simply
Moyal—product:21

φ(x)?ψ(x) = φ(x) · ψ(x) +
∞∑

n=1
(

i

2
)n
1
n!
θi1 j1 . . . θin jn∂i1 . . . ∂inφ(x) · ∂j1 . . . ∂jnψ(x). (24)

Clearly the?-product contains new terms in addition to ordinary multiplication.22 One just needs
to observe that the new terms form an (infinite) sum of derivatives with respect to the coordinates,
weighted by the elements of θ. For instance,

x̂ ŷ → x ? y = xy +
i

2
θxy , xy . (25)

We can use (25) to verify the relevant commutator in the Weyl transform:

[x , y ]? ≡ x ? y − y ? x = xy − y x + (
i

2
)θxy − (

i

2
)θy x = iθxy , (26)

by the antisymmetry of θxy . Thus commuting coordinates do indeed have the algebra of the
noncommutative theory,with respect to the Moyal product.

Another instructive example is the product of Gaussians, which wemight take to represent
(as before) a localized ‘particle’ ρ and measuring device g . Supposing both have width α, and
locations x1 and x2, respectively, the product is:

g ? ρ =
α4 exp

(
−
α2(x21+x22 )−2x1(α2x+2iθy)−2x2(α2x−2iθy)+2α2(x2+y 2)

α4+4θ2

)(
α4 + 4θ2

) (27)

Note that the product is not commutative because of the presence of the phase 2iθy (x1 −x2)which
is not symmetric under the exchange x1 ↔ x2, therefore g ? ρ , ρ ? g . Moreover, the result,
which one whould like to interpret as a probability, is a complex number. This latter aspect could
in principle be resolved taking the modulus, but it is clear that the “classical” interpretation is
becoming untenable.

We can also compare it with the product of classical Gaussians, to see the difference that
noncommutativity makes. Let the Gaussians be sharply peaked, with α = 0.1

√
θ), at the distance

0.5
√
θ. In the classical case the ordinary commutative product is practically zero everywhere (too

21See [40] for a full treatment. Here we continue to assume flat, infinite space, but the representation
extends to more complex cases. We also restrict attention to fields that vanish smoothly at infinity (so that
the ‘physicists fundamental theorem of the calculus’ reads

∫
dx df (x)/dx = 0). This restriction is a common

but notable assumption in physics: on the one hand it is justified locally by the assumption that arbitrarily
distant differences are irrelevant; on the other hand it raises questions about the universality of physical
theories.

22Note that this star operation has nothing to do with the involution operation on ?−algebras. The
product is not unique, and there are several others which reproduce the commutation relation (19) (all of
the translation invariant one are described in [24].
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5.1 The Moyal andWeyl representations

small to be plotted), and the expectation value 14 is effectively zero. However, things are quite
different for noncommuting fields, and the star product is nonvanishing, and quite spread, as can
be seen in figure 1. Although the integral which would gives rise to the expectation value in this
case does not change,23, all of the other moments of the probability change, for example

〈
(x2 + y 2)g

〉
ρ
=

e
−
(x1−x2)

2

2α2
(
πα4

(
2α2 + (x1 + x2)

2) − 4πθ2 (
(x1 − x2)

2 − 2α2
) )

8α2
(28)

which is not positive definite.

Figure 1: The real and imaginary parts of (27) for width 0.1
√
θ, at the distance 0.5

√
θ.

In otherwordswe see again the impossibility of operationalizing positionmeasurements below
the noncommutativity scale: even though the ‘particle’ is supposedly five times the resolution of
the device away, it overlaps with the device, though no probability can be assigned to its detection.
From the manifold point of view there is no appreciable pointwise overlap of the functions, so
this effect appears to be non-local. Better, we should (again) recognize that we have a failure to
operationalize position measurements below the noncommutatitivty scale, and that hence there
really are no smaller regions, and no points, once the geometry is noncommutative.

Working in the Moyal star (or ‘Weyl’) representation greatly facilitates extracting the physical
consequences of the theory because the usualmethods of the calculus (and hence of standard field
theory, including QFT) can then be applied. One ‘simply’ has to multiply physical quantities, not
in the usual way, but with the?-product: an area is x ?y (or the unequal y ?x) not x · y ; fields given
as series expansions of the x is are to be understood in terms of expansions using the?-product
(for instance, exponentials); and terms in the equations of motion involve?-multiplication. In
other words, for every physical purpose, the?-product is the relevant operation, and ordinary
multiplication is only relevant insofar as it is involved in the definition (24) of the putatively ‘real’
multiplication. In yet other words, the physical facts don’t care about the commutativity of space,

23This is a particularity of the Moyal product as opposed to other noncommutative geometries.
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and it is thus natural to see it just as a convenient way of representing, the real noncommutative
nature of space.

So it would then be a mistake to think, because there is such a representation, in terms of
smooth functions on a manifold, that after all noncommutative geometry is a theory of perfectly
ordinary space. As we have been at pains to show, the notions of arbitrary small regions and of
points are not well-defined in any sense in such a theory. In theWeyl representation of the algebra,
the manifold is exactly that, a component of the representation, with excess representational
structure for the true, essentially algebraic, fundamental objects.

It’s important to stress at this point that although elements of the algebra are represented
by functions, φ(x) over space, neither the value at any point, nor the restriction of φ(x) to any
region corresponds to anything in the algebraic formulation, and so has any fundamental physical
significance. (Let that sink in.) Normallywe thinkof the valueof afield at a givenpoint as conveying
some physical meaning, such as the electric field strength, but in the Weyl representation, this is
not the case: only the full function corresponds to an element of the algebra and corresponds to
something fundamental. Obviously this situation presents a puzzle, for most familiar physical
quantities are associated with points and finite regions. We turn to this puzzle next.

5.2 Finding Spacetime
TheWeyl representation provides a way of extracting empirical consequences fromNCG. First,
one can take the equations of motion for a classical field theory in ordinary commuting space,
and rewrite them replacing all ordinary multiplication with Moyal star multiplication: the result
is the equations of motion for a NCFT expressed in its Weyl representation. One obtains a more
complex, but otherwise formally standard field theory – though of course noncommutation
of the coordinates undermines a straight-forward interpretation. At this point, we shift to an
unequivocally quantum theory by formulating a ‘second quantized’ NCFT. In particular, the
machinery of the path integral formalism will be brought to bear so that standard methods allow
the derivation of empirical results, especially probabilities for particles to scatter off one another
in different ways – scattering ‘cross-sections’.

These are often tacitly taken by physicists (at least those working in the QFT program) as
basic concrete—indeed empirical—spacetime objects. That is, scattering occurs at an (extended)
location so gives meaning to place; and depends, amongst other things, on the metric at that
location, so gives meaning to geometry. Philosophically speaking, cross-sections are, crudely
speaking, material objects to which a relationist might attempt to reduce space; or perhaps
better, fromwhich onemight give a ‘dynamical interpretation’ of spacetime. We don’t take any
stance on whether physicists have such programs in mind, but rather draw on the common tacit
assumption in, for instance, string theory that our experiences of space can be recovered through
scattering cross-sections, from a theory that is fundamentally not spatial. Again, the idea being
that scattering gives empirical content to extended location and geometry; so recover a set of
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scattering amplitudes, and you have recovered spacetime. This construction is discussed in more
detail in ([31, chapter 7]).

In particular, consider a world in which the cross-sections of a NCFT turn out to be correct. To
understand the place of observed, classical space in such a NCFT it therefore makes good sense
to focus on these cross-sections; there are other empirical aspects, and other ways in which space
can be found, but cross-sections exemplify both perfectly. So we will proceed (and indeed speak)
as if to understand the meaning of cross-sections in NCFT is to understand classical spacetime.
More could be said, but we expect it to be more of the same, and not to add to the central issue.
And of course, we need to a way to understand ‘pointy’ classical spacetime because we have
argued that points and small regions have no physical meaning; and especially if one adopts an
ontology in which the algebra is fundamental, for as we noted then neither points nor regions
have fundamental significance. Our proposal here, then, is that recovering empiricallymeaningful
cross-sections is to give derivative, empirical meaning to ordinary spacetime: to show how it
‘emerges’. (Though without reifying points.) This question has been addressed by Chaichian,
Demichev and Presnajder (hereafter CDP) in a very interesting paper ([9], what follows is based
on their analysis, though it suggests a somewhat different solution.

The problemof finding scattering cross-sections can be further reduced to the calculation of ‘2-
point functions’: squared, these represent the probability that, left to itself, a quantumat x in space
and time would be ‘found’ at y , the simplest kind of ‘scattering’.24 These, along with interaction
terms, are the ingredients of the Feynmanmethod for calculating cross-sections, so they can be
taken as giving the empirical spatial content of a QFT—and hence of NCFT. The 2-point functions
make the problem of giving a spatial interpretation very clear, for they are functions of x and y ,
coordinates in phenomenal, commuting spacetime – and so have no immediate significance in
NCFT, in which the coordinates cannot be ordinary number-valued, since they don’t commute!
That is, finally, the question of the meaning of phenomenal cross-sections—so of space—in NCFT
narrows to the question of the significance of the commuting coordinate arguments of the 2-point
functions.

Let us take a closer look at the 2-point functions: these are the vacuum state expectation values
of a product of field operators—equation (24). As we have emphasized, to this point we have
not quantized the fields (in the narrow sense) by imposing a noncommutative algebra. Now we
do take that step: take the state of the unquantized field, φW (x), which takes as its values field
configurations in the Weyl representation; and second quantize it, promoting it to a quantum
operator φ̂W (x). The corresponding 2-point function,GW (x1, x2), can be written

GW (x1, x2) = 〈0|φ̂W (x1)φ̂W (x2)|0〉. (29)

We quantize using the path integral formalism, in which such quantities are given by field integrals
24Saying what ‘found’ means in such contexts is to propose a solution to the measurement problem,

something we are trying to sidestep as far as possible.
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over the classical fields, weighted by the action:

=

∫
DφW φW (x1)φW (x2) · e

i~
∫

dn xL(φW (x), ÛφW (x)). (30)

Note that because we have fully quantized, ~ has finally made an appearance.
This expression makes the interpretational issue very clear, for the dependence on the field at

x1 and x2 is explicit in the (functional) integral. But, as discussed at the end of §5.1, the point-value
of a field in the Weyl representation has no fundamental meaning – only the field configuration
over the whole space represents anything in the algebraic formulation, namely an element of the
algebra. So the same is true of the 2-point function: it can have some significance as a function
over Rd ×Rd , but its point-values, or its integral over a region, do not. But these are exactly what
we would like to take as scattering amplitudes, the empirical content of the theory.

A first response would be to more-or-less ignore this situation. One simply takes the coordi-
nates in the Weyl representation to correspond to ‘phenomenal coordinates’—the ones by which
we label points of ordinary, observed space. At first glance it looks as if this response simply throws
away the noncommutative spacetime and views the theory as one with unusual equations of
motion; if the coordinates are just those of ordinary commuting space, then we just have a QFT
in that space with a standard lagrangian modified by use of the Moyal star. However, while this
approach might be expected to produce decent predictions over distances above greater than

√
θ,

it is conceptually incoherent in virtue of being undefined at distances less than
√
θ, as we showed

in §2–3. Once again, the ‘pointlessness’ of noncommutative geometry is the main point of this
paper!

A second response, which recognizes this situation, to recover the appearance of commuting
spacetime, is that based on thework of CDP [9]. To keep things simple, wework in two dimensions,
with [x̂1, x̂2] = θ. As we saw, because of this noncommutivity, the Weyl field operators do not have
the usual interpretation as localized quantities, but that doesn’t mean that the same is true for
other operators in the theory. Indeed, we should expect that some other observables do represent
empirical spacetime quantities.

In particular, we will consider Weyl fields that are ‘smeared’ over a region of order θ; the idea
being that these are insensitive to sub-θ physics, while capturing the physics of super-θ regions.
More specifically, and in the spirit of §3, we propose that the following maps Weyl fields into
the commuting fields of familiar empirical spacetime physics: i.e., fields describing observed
scattering phenomena.25

φP (x) ≡

∫
d2x ′

e−(x−x′)2/θ

πθ
φW (x

′). (31)

Smearing fields is a common practice in QFT, usually done to avoid pathological behaviours
at short distances. Here we elevate it to a way to operationally use an object, a point, as an

25Technically, these fields are the ‘normal’ symbols of the noncommuting fields.
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approximate avatar to connect with classicality. As can be seen from (31), the effect is to take
a function of two variables, x and x ′ (in this case coordinates on two different spaces), and by
integrating one out, return a function of just one.

This proposal is a ‘guess’, a hypothetical part of the theory, subject to testing, and poten-
tially to replacement by some other ansatz; but it is based on the most natural way of relating
noncommuting and commuting space. (Note too that the form of the smearing is the simplest,
rotationally invariant form one can have.) But we can take the x-arguments of these ‘new’ fields
to be those of observed space; while x ′ is the coordinate of the space in which the Weyl trans-
forms live. That is, (31) can be read as a map into the reals, from observed, commuting space and
Weyl field configurations (the integral means that the map depends on the full configuration):
x × φW (x

′) → R.
Given (31) and the interpretation of φP (x), the 2-point function for the phenomenal fields is

given by the path integral prescription:

GP (x1, x2) ≡ 〈0|φ̂P (x1)φ̂P (x2)|0〉 (32)

=

∫
DφW φP (x1)φP (x2) · e

i
∫

dn xL(φW (x), ÛφW (x)) (33)

which is simply the smeared version of the Weyl 2-point function:

=

∫
d2x ′1d

2x ′2
e−(x−x′1)

2/θ

πθ
·

e−(x−x ′2)
2/θ

πθ
GP (x

′
1, x ′2). (34)

Note that at this point we diverge from the CDP proposal. Their idea is that the action in the
path integral should be rewritten in terms of the phenomenal field φP . Their approach amounts
to treating the phenomenal field as the true degrees of freedom. Instead, what we suggest is that
we treat the Weyl fields as the true degrees of freedom, as we should if we take the noncommuting
spacetime seriously: we simply recognize that the canonical degrees of freedom are not those
we experience as phenomenal fields – those are represented by φP . Again, that hypothesis (in
conjunctionwith the rest of the theory) is testable, and links the fundamental theory to experiment.

A puzzle arises, for if φP (x) has physical—if derivative—significance, then it seems as if its
point values, and values over sub-θ regions do too; contrary to everything we have argued! But
of course it is part of our proposal that they do not; only the differences over super-θ regions
have physical meaning. The point values of φP (x) can only be understood as representational
baggage, required by the formalism that we have adopted to formulate NCFT, and connect it to
experience. (Of course, smearing enforces this interpretation, since it assumes the irrelevance of
sub-θ physics.) Recall that the puzzle we are trying to solve is how to assign physical significance
to any regions if the fundamental objects are essentially algebraic, and non-spatiotemporal. The
CDP ansatz addresses that issue, without giving significance to points.
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One could complain that the theoretical meaning of the phenomenal field is unclear – the
φP (x) can formally be defined according to (31), but can we get a clearer insight into their place in
the theory? In particular, do the phenomenal xs have an interpretation in the theory, since they
are not the noncommuting coordinates? Since they label points of phenomenal space, an answer
will illuminate how phenomenal space is found in a NCFT. CDP suggest an answer ([9],): they
note that the phenomenal fields are equal to the expectation values of the noncommuting fields
in so-called ‘coherent’ states, |ξx 〉

26:

φP (x) =
〈ξx |φ̂W |ξx 〉

〈ξx |ξx 〉
(35)

Coherent states are the quantum states with a semi-classical behaviour. Here they take the added
role of giving an operational meaning to the points of spacetime, albeit in their smeared guise. In
the Weyl representation, a coherent state can be thought of as an isotropic state, centered on a
point, x ; the xs can be taken as their quantum numbers. Then (35) shows how the point-values of
the phenomenal field can also be understood as labelled by coherent states, taking the point in
phenomenal space to be the corresponding quantum number.27

But we will end the discussion here, having suggested how algebraic interpretations might be
given, and shown how to recover the appearance of commutative spacetime, but with fields with
no meaning below a certain scale—so again, pointless physics.

5.3 Empirical coherence and physical salience
More generally, Maudlin[36] questions the feasibility of ‘deriving’ classical spacetime from some
non-spacetime theory (he has in mind deriving 3-space from 3N -configuration space, but the
point generalizes). At the heart of his concern is that even if a formal derivation can be found,
involving a mathematical correspondence between classical spacetime structures and structures
defined in terms of a (more) fundamental non-spatiotemporal theory, it does not follow that the
classical spacetime just is the more fundamental structure. Mathematical correspondences are
too cheap: for instance, many systems are described by simple harmonic oscillator equations, but
it would be a mistake to conclude that they were physically indistinguishable just because of this
formal correspondence. According to Maudlin, for a reductive account, a formal derivation must
also be ‘physically salient’. We take this to mean that the derivation must veridically track the way
in which fundamental structures ‘combine’ to physically constitute derivative ones. For instance,
in ideal gas theory the formal definitions of ‘temperature’ as mean kinetic energy and ‘pressure’ as
momentum transfer track the corresponding phenomenal thermodynamical quantities: kinetic
energy is transferred between the molecules of the gas to liquid in a thermometer causing its

26Specifically, |ξx 〉 = exp (x1 + ix2)a
† |0〉

27CDP approach things from the other direction. They propose that the phenomenal fields should be
labelled by the coherent states, and then conclude that they should be smeared according to (31).
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expansion; and the pressure on the side of a vessel is due to themolecules contained collidingwith
it. The problem with a fundamental theory without spacetime is that our notions of what kinds
of derivation track in this way are spatiotemporal notions, relying on colocation and dynamical
interaction (of gas molecules with thermometers or vessel walls, say), for instance. But such
familiar notions cannot apply if the physics involved is not, by supposition, itself spatiotemporal.
So we face two problems: first, what new notions might apply? And second, even if we have a
proposal, on what grounds can we conclude that we are correct?

If the analysis of this paper is correct, then noncommutative geometry is a nice example
of this situation: the fundamental structure is algebraic, not a commutative geometry, and so
concepts like ‘spatial location’ are not primitives of the theory. Rather, spatial structure is derived.
In particular, we have discussed the proposal that it be recovered via CDP ansatz, which we have
also argued is not entailed by the theory, but an additional postulate. More precisely, it is an
interpretational postulate, specifying how algebraic objects can ‘combine’ to physically constitute
classical spatial structures – a novel proposed non-spatiotemporal conception of which derivations
are physically salient in the theory. Thus the first problem can has been addressed in this case. (As
in most cases, there is enough spatiotemporal structure in the underlying theory – which is after
all a deformation of a commutative geometry – to find clues about how to reconstruct spacetime.)

As for the second problem, [29] proposes that such postulates, concerning howmore funda-
mental structures compose to constitute less fundamental ones, are justified a posteriori, not a
priori. (The paper briefly discusses NCFT and with other examples of theories without spacetime,
along the lines found in this paper: identifying what spatiotemporal features are lost in each case,
and explaining how they may be derived.) That is, how the fundamental gives rise to the less
fundamental is not a matter of metaphysical necessity, but of physical contingency, and so is
something that can only be discovered empirically, with the theory itself. For instance, if a theory
of noncommutative geometry was empirically successful (in the usual ways, especially in making
novel predictions that cannot be accounted for in any other known way) then both the theory
and CDP interpretational ansatz would be confirmed. That is, ultimately why we are justified in
believing a derivation to be physically salient in the same way that any other scientific belief is
justified: through successful confrontation with the data. No more is possible, but then it never is.

Thus, in addition to introducing NCFT and raising some specific interpretational questions,
this paper presents it specifically as an example of derived or ‘emergent’ space, in order to illustrate
and address Maudlin’s challenge. There is a gap between noncommutative and commutative
geometries, which can be formally filled by the CDP ansatz; but if this strategy were empirically
successful thenwewould have scientific grounds to further believe that the derivation is physically
salient, that the ansatz is a veridical statement of physical composition. The hope is that working
through the example makes that claim plausible, or at least intelligible.28

28Of course it is logically possible to deny it, but we would say (a) that the historical record contains
examples of similar changes in the concept of physical salience, and (b) that such a denial would collapse
into a general antirealism, which is not our target here – rather the issue is whether there are special reasons
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6 Conclusion
This paper had three goals beyond introducing noncommutative geometry to an audience of
philosophers. The first was to convince the reader that one of the physical upshots of a theory
having a noncommutative geometric structure is that it cannot include, in its ontology, a set of
arbitrarily small spatial regions (a fortiori points). We demonstrated this in two ways: in terms of
the undefinability of arbitrarily small distances, using Connes’ spectral triples, and in terms of the
non-operationalisability of arbitrarily small separations, using measuring devices modelled by
Gaussians in space. The second was to propose an appropriate ontology for a field theory set in a
noncommutative space. We suggested that a field-first ontology was the only sensible option, and
explored some of the consequences of this proposal. We were then led by this commitment to
a puzzle about how to account for the appearance of a commutative spatiotemporal geometric
structure, at least at the level of experience and experimental data. The final goal, then, was to
discuss and assess a dynamical proposal, originally due toChaichian, Demichev andPresnajder [9]
for the emergence of spacetime using the resources of our best theory of matter–quantum field
theory.

As promised in the introduction, we demonstrated, via considerations of noncommutative
geometries, one way of embedding a class of extant, well-confirmed physical theories (in this
case, quantum field theories) in a broader logical landscape. This is, of course, a small step in the
direction of unearthing all the important tacit commitments associated with interpretations of
such theories. Even so, we have made some real progress on that front. We realised that we can, in
fact, talk about spacetime without it being indiscrete.
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to dispute the physical salience of derivations of spacetime.
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