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                     Postscript to my paper, Probability Kinematics and Commutativity 
                              (Philosophy of Science 69 (June 2002), pp. 266-278)                       
                                             
                                              Carl Wagner (1 December 2020) 
 
These notes elaborate on material appearing in the above paper, in which proofs of the more 
elementary results were omitted.  I have written them for students and others new to formal 
epistemology, should they find a detailed exposition of such proofs to be helpful. 
 
 
1. Notation and terminology.  In what follows, denotes a set of possible states of the world, 
and A is a sigma algebra of subsets (called events) of . E  and F  are countable 

partitions of , with A for all  To avoid having constantly to postulate the positivity 
of various probabilities, we adopt the convention that all probability measures p on A are 
assumed to be strictly coherent, in the sense that  whenever   
        If p and q are probability measures on A and A , the relevance quotient, , is 

defined by the formula  . Typically, q is thought of as resulting from the 
revision of p as a result of encountering new evidence. In such cases, p is called the prior 
probability, and q the posterior probability.  If q comes from p by conditioning on the event E, 
then  
 
 (1.1)                .  

  
Above, and in what follows,  is an abbreviation for    
 
If p and q are as above, and A and B are events, the Bayes factor, , is defined by the 

formula  , which is simply the ratio of the posterior odds on A against 

B to the prior such odds. Relevance quotients and Bayes factors are clearly connected by the 
formula 

 (1.2)                                          . 

When q comes from p by conditioning on the event E, then  reduces to the familiar 
likelihood ratio   
 
      A probability measure  is said to come from  by probability kinematics (or Jeffrey 
conditioning) on E if,  
 

(1.3)                     ,  with each , and    

Ω
Ω ={Ei} ={Fj}

Ω Ei ,Fj ∈ i, j.

p(A) > 0 A ≠ ∅.
A∈ Rp

q (A)

Rp
q (A) : = q(A) / p(A)

Rp
q (A) = p(A | E) / p(A) = p(AE) / p(A)p(E) = p(E | A) / p(E)

AE A∩ E.

Bp
q (A : B)

Bp
q (A : B) : = q(A) / q(B)

p(A) / p(B)

Bp
q (A : B) =

Rp
q (A)
Rp
q (B)

Bp
q (A : B)

p(E | A) / p(E | B).

q p

q(A) = ei
i=1
∑ p(A | Ei ) ei > 0 ei

i
∑ = 1.
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It is easy to see that (1.3) is equivalent to the rigidity condition 
 
(1.4)                        , along with . 
 
 
2. Successive probability-kinematical updating: the general model 
 
Figure 2.1                                        E,   
                                                                              
 
                       F,                                                       F,   
 
                                                                         
                                             E,   
 
 Suppose that p is revised to q by formula (1.3), and then q is revised to r, where 
 

(2.1)                 , with each , and   

Expressing the conditional probabilities in (2.1) by means of (1.3) yields the formula 
 

(2.2)                                     .  

 
Now consider reversing the order of updating, first revising  to  by the formula 
 

(2.3)                                      , with each , and   

 
and then revising  to  by the formula 
 

(2.4)                   , with each , and   

 
Note that, as our notation suggests,  may differ from , and  from . 
 
     Combining (2.3) with (2.4) yields 
 

(2.5)                                

q(A | Ei ) = p(A | Ei ) q(Ei ) = ei

ei
p q

′f j f j

′q ′r r
′ei

r(A) = f j
j
∑ q(A | Fj ) f j > 0 f j

j
∑ = 1.

r(A) =
ei f j

p(Ei )q(Fj )i, j
∑ p(AEiFj )

p ′q

′q (A) = ′f j
j=1

m

∑ p(A | Fj ) ′f j > 0
j
∑ ′f j = 1.

′q ′r

′r (A) = ′ei
i=1

n

∑ ′q (A | Ei ) ′ei > 0
i
∑ ′ei = 1.

′ei ei ′f j f j

′r (A) =
′ei ′f j

′q (Ei )p(Fj )i, j
∑ p(AEiFj ).
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Comparing  (2.2) and ( 2.5), it is obvious, and unsurprising, that  may differ from  Under 
what conditions will the identity  hold ? In Wagner (2002) I proved that the Bayes factor 
identities 
 
(2.6)                       and  

 
are sufficient and, under mild regularity conditions, necessary for  My paper also contains 
a number of observations about the special case of successive updating in which  and 

, as explored earlier in a beautiful paper by Diaconis and Zabell (1982). The following 
section contains proofs of those observations, which, though elementary, may be of interest to 
students and others new to the subject. 
 
3. Successive probability-kinematical updating: the restricted model 
 
Figure 3.1 
 
                                                       E,   
                                                                              
 
                      F,                                                       F,   
 
                                                                         
                                             E,   
 
In the restricted model, we have from (2.2) and (2.5) that 
 

(3.1)          and     

 
So it is obvious that what Diaconis and Zabell term Jeffrey independence, namely, the 
conditions,  
 
(3.2)                (a)         and       (b)   , 
 
are sufficient to ensure that  Indeed, Diaconis and Zabell proved that these conditions are 
necessary as well. In Wagner (2001) I noted, without proof, several equivalents of Jeffrey 
independence. 
 
Theorem 3.1.  In the restricted model, the following are equivalent: (i) Jeffrey independence, as 
expressed above in (3.2); (ii) the relevance quotient identities 

′r r.
′r = r

Bp
′q (Fj1 : Fj2 ) = Bq

r (Fj1 : Fj2 ) B ′q
′r (Ei1 : Ei2 ) = Bp

q (Ei1 : Ei2 )

′r = r.
′ei = ei

′f j = f j

ei
p q

f j f j

′q ′r r
ei

r(A) =
ei f j

p(Ei )q(Fj )i, j
∑ p(AEiFj ) ′r (A) =

ei f j
′q (Ei )p(Fj )i, j

∑ p(AEiFj ).

′q (Ei ) = p(Ei ) q(Fj ) = p(Fj )

′r = r.
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(3.3)                       and      ; 
 
and (iii) the Bayes factor identities,   
 
(3.4)         (a)          and            .1 
 
 
Proof.  We show only that . The proofs that 

 follow from analogous reasoning. 
 
        (i)   from  and the restricted model identity 

, it follows immediately that   

 
       (ii)  immediate, based on formula (1.2). 
 
      (iii)  By the restricted model identity , (3.4a) reduces to the 
equation , which, summed  over all i, yields , and, 
hence,      
 
       Diaconis and Zabell (1982) also note the following: 
 
Theorem 3.2.  If the partitions E and F are p-independent, i.e., , for all 

, then the Jeffrey independence conditions hold. 
 
Proof.  We first prove (3.2a). By (2.3) and p-independence,  we have 

 To prove (3.2b) we apply (1.3) to get 

   

 
Remark 3.1. Note that our proof that p-independence implies Jeffrey independence actually holds 
in the general model. However, this result is of no interest outside the confines of the restricted 
model.  For, as will be seen below, far from ensuring that  in the general model, under mild 
regularity conditions, Jeffrey independence actually implies that  if  there exists an i such 
that  or there exists a  j such that   
 
 
 
 

(a) R ′q
′r (Ei ) = Rp

q (Ei ) (b) Rp
′q (Fj ) = Rq

r (Fj )

B ′q
′r (Ei : E1) = Bp

q (Ei : E1) (b) Bp
′q (Fj : F1) = Bq

r (Fj : F1)

(3.2a)⇒ (3.3a)⇒ (3.4a)⇒ (3.2a)
(3.2b)⇒ (3.3b)⇒ (3.4b)⇒ (3.2b)

(3.2a)⇒ (3.3a) : ′q (Ei ) = p(Ei )

′r (Ei ) = ′ei = ei = q(Ei ) R ′q
′r (Ei ) =

′r (Ei )
′q (Ei )

=
q(Ei )
p(Ei )

= Rp
q (Ei ).

(3.3a)⇒ (3.4a) :

(3.4a)⇒ (3.2a) : ′r (Ei ) = q(Ei )
′q (E1)p(Ei ) = p(E1) ′q (Ei ) ′q (E1) = p(E1)

′q (Ei ) = p(Ei ). !

p(EiFj ) = p(Ei )p(Fj )
i, j

′q (Ei ) = ′f j
j
∑ p(Ei | Fj ) = p(Ei ) ′f j

j
∑ = p(Ei ).

q(Fj ) = ei
i
∑ p(Fj | Ei ) = p(Fj ) ei

i
∑ = p(Fj ). !

′r = r
′r ≠ r

′ei ≠ ei ′f j ≠ f j .
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4.  Jeffrey independence is otiose outside the restricted model 
 
Theorem 4.1.  Suppose that in the general model described in Section 2 above, the following 
regularity conditions hold: 
 
(4.1)         For all  and all  there exists a  such that , and 

 
(4.2).        For all  and all  there exists an i such that .   

 
(In particular, since we are assuming for simplicity here that all probability measures are strictly 
coherent, (4.1) and (4.2) will hold if the partitions E and F are qualitatively independent, in the 
sense that, for all i and all j, ). If there exists an i such that  or there 

exists a  j  such that , and Jeffrey independence holds, then   
 
Proof.   We prove the contrapositive, namely, that if  and Jeffrey independence holds, then 
(1)  for all  i and (2) for all j. We’ll just prove (1), since the proof of 
(2) is nearly identical. Since , and the regularity conditions (4.1) and (4.2) hold, the Bayes 
factor identities  hold by Wagner (2002, Theorem 4.1), i.e., 

 (4.3)                                         

 
By Jeffrey independence, , and so (4.3) simplifies to 
 
(4.4)                                     
 
Summing each side of (4.4) over all i  yields , which, with (4.4), implies that 

  
 
 
Notes 
 
1.  It is easy to show that (3.4a) is equivalent to  , for all   , and, 

similarly, that (3.4b) is equivalent to  , for all  Use, inter alia, the 

fact that .  
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