
Functorial Erkennen

Dario Dentamaro† and Fosco Loregian‡

Abstract. We outline a ‘formal theory of scientific theories’ rooted in the
theory of profunctors; the category-theoretic asset stresses the fact that
the scope of scientific knowledge is to build ‘meaningful connections’
(i.e. well-behaved adjunctions) between a linguistic object (a ‘theoret-
ical category’ T ) and the world W said language ought to describe.
Such a world is often unfathomable, and thus we can only resort to a
smaller fragment of it in our analysis: this is the ‘observational category’
O ⊆ W. From this we build the category [Oop, Set] of all possible dis-
placements of observational terms O. The self-duality of the bicategory
of profunctors accounts for the fact that theoretical and observational
terms can exchange their rôle without substantial changes in the re-
sulting predictive-descriptive theory; this provides evidence for the idea
that their separation is a mere linguistic convention; to every profunctor
R linking T and O one can associate an object O ]R T obtained glue-
ing together the two categories and accounting for the mutual relations
subsumed by R. Under mild assumptions, such an arrangement of func-
tors, profunctors, and gluings provides a categorical interpretation for
the ‘Ramseyfication’ operation, in a very explicit sense: in a scientific
theory, if a computation entails a certain behaviour for the system the
theory describes, then saturating its theoretical variables with actual
observed terms, we obtain the entailment in the world.
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[. . .] Le rôle essentiel [du travail de
mathématicien] c’est cette transition qu’il y a
entre ce quelque chose qui est écrit, qui parait
incompréhensible, et les images mentales que l’on
crée.

A. Connes

1. Semantic conception of theories

The present work approaches a well-established problem in epistemology: how
do we build representations of the world from perception? What is, if any,
the relation between the two ‘worlds’, one depicted in our minds, and one on
our fingertips? Sometimes, such a representation results in a faithful image
of the perceived world (we call it ‘science’); sometimes it doesn’t (we call it
‘superstition’).

We hereby propose a sense in which science and superstition can be told
apart using a mathematical theory, or even a mathematical object.

1.1. A convincing notion of theory: two dictionaries
Along the XXth century, there have been many attempts towards a formal
definition of a scientific theory.

Examples are theWiener Kreis’ verificationist paradigm, and Neurath’s
theory of ‘protocol statements’, that gave an initial input towards the elabo-
ration of a semantic framework for scientific theories and spurred the search
for a pan-linguistic vision of philosophy of science [29].

The formal account in which –among others– Carnap [11] provided his
notion of ‘theory’ is known in the literature as syntactical conception of the-
ories or ‘received view’ [14, 13, 12]. Albeit the term ‘semantic’ is due to later
developments, the field of epistemology that logical neopositivism started can
legitimately be labelled a ‘semantics of theories’, because some of its features,
if not the underlying ideology, are the same throughout the work of Carnap
[10, 11], Beth [4], and Suppe [26].

Thus, a ‘Wiener Kreis’ theory’ is understood as a structure (FL,K)
where FL is a formal language, and K the totality of all its interpretations,
or models.

The idea to separate further FL into two ‘vocabularies’ (T ,O) (intended,
in modern terms, as two syntactic categories carved from two first order the-
ories) first appears in Carnap; these are respectively the pure or T heoretical
terms, and the applied or Observational terms [10].

It is a commonly accepted belief –albeit rarely formalised– that scien-
tific theories arise from some kind of tension between the theoretical and the
observational world. Our aim here is to try and ‘resolve the tension’, acknowl-
edging T ,O and their mutual relations as a concrete mathematical object,
rooted in category theory [20, 23, 25, 18].
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As elementary as it may seem, this idea seems fruitful to us: building
on Carnap,

Remark. A reasonable notion of ‘scientific theory’ is a triple 〈(T ,O),K〉
whose first two elements form the ‘underlying logic’ FL = (T ,O) and where
K is a (possibly large) category of models or ‘interpretations’.

This is, in fact, a familiar old idea for mathematicians, as the habit of
identifying a sort of mathematical structure in a way that is independent from
the cohort of its syntactic presentations, permeates classical universal algebra
since the early work of Lawvere [16, 17] (see also [1, 7, 21] for applications to
logic and other disciplines).

In the Carnapian –and in general the neopositivistic– account a theory
can be expressed as a sentence formed by terms τ1, . . . , τk taken from both
the dictionaries of FL.

In the Wiener Kreis paradigm, the formal specification of O is left un-
clear; Carnap [11] posits the existence of correspondence rules between O and
T , associating to each term o of O, or O-term, its companion in T , or the
T-term τ derived from o. In general, Carnap holds that O ⊂ T , but at the
same time he blurs the features of this identification of observational terms
as ‘types of T-terms’.

We can maintain a similar idea, just phrased in a slightly more precise
way: we posit the existence of a function ϕ that translates O-terms into T-
terms. So, a Wiener definition of a theory is a suitable set of pairs {〈τ, ϕ(τ)〉 |
τ ∈ T } ⊆ T × O, where ϕ : T → O is called a translation function. In this
way, it is trivially true that all the terms of a theory are in the first dictionary.

Remark. A reasonable notion of scientific theory must take into account
‘meaningful relations’ between the observable world O and the theoretical
world T ; the Carnapian request that there is a functional correspondence
between the two is, however, too restrictive when T ,O are thought as cate-
gories.

In fact, the set of pairs of a Carnap translation function ϕ is precisely
the graph of ϕ, and not by chance: cf. our Corollary 2.7.1

Now, the neopositivistic current of epistemologists was the first to ob-
serve that one can build an observational version of a theory T following
a procedure first outlined by Ramsey [24] and colloquially called Ramseyfi-
cation of a theory; the nature of this operation seems quite elusive to those
approaching it: colloquially, it can be thought as the process of replacement of
each observational term of a theory with a ‘corresponding’ theoretical term.
The nature of this replacement, the syntactic domain of terms, and the sense

1In passing, it is worth to notice that Carnap’s intuition fits even more nicely in our
functorial framework: assume T ,O exhibit some kind of structure, and that i : O ⊆ T as
substructures (e.g., assume that they are some sort of ordered sets, and that the order on
O is induced by the inclusion); then, a left (resp., right) translation function ϕL (resp.,
ϕR), is a left (resp., right) adjoint for the inclusion i : O ↪→ T . We will not expand further
on this idea, but see Remark 5.10.
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in which the process makes a theory FL and its ‘Ramseyfied’ analogue FRa
L

equivalent are however quite elusive.
In the language of category theory –and especially through our profunc-

torial approach– instead things become clearer: under mild assumptions on
a diagram

W
Nϕ

zz

Nψ

$$
[T op,Set]

NR̂

// [Oop,Set]

of categories and profunctors, if a ‘deduction’ entails a certain interaction or
a certain behaviour for the theoretical category over the observational one,
then there exists a particularly well behaved natural transformation

$ : NR̂ ⇒ 〈ϕ/ψ〉

filling the triangle above; in non-mathematical terms, this means that the
entailment of a theoretical prediction into an observed system (i.e. a term τ
of type R(T,O)) yields an entailment ϕ(T )→ ψ(O) in the world. The details
of this construction, that we consider the heart of the paper, are contained in
Remark 5.5, Definition 5.6, and heavily rely on the terminology introduced
in Sections 2 and 3.

The next subsection offers a birds-eye view of the structure of the paper.

1.2. Our contribution
The first remarks that we made in the introductory subsection motivate at
least our tentative definition for a ‘pre-scientific’ theory: it is some sort of
correspondence of categories R : T 7−→ O, between an observational and a
theoretical category.

Another important point throughout the above discussion however is
that from a neo-positivistic stance the distinction between theoretical and
empirical is purely formal.

This is not due to the hypothetical nature of the former (empirical
laws can be hypothetical), but to the fact that the two kinds of law contain
different types of terms, as first observed in [10]. This purports a purely
linguistic approach to epistemological issues, that we want to take at the
extreme.

In fact, our work pushes in this direction even more: the profunctorial
formulation of scientific theories deletes even more forcefully any intrinsic
distinction that might be between the observational and the theoretical/-
linguistic structure of a theory.

In profunctorial terms, thanks to Corollary 2.7 and standard category-
theoretic arguments, there is a direct counterpart in the mathematical model
for the vanishing of the distinction between observational and theoretical.

First of all, the bicategory defined in Definition 2.1, taking from [9], is
self-dual; this means that every profunctor R : T 7−→ O admits a ‘mirror
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image’ Rop : O 7−→ T ;2 second, and certainly more decisive a comment
towards our thesis, as outlined in Remark 5.9 a generic profunctor R : T 7−→
O yields the ‘collage’ of the observational and theoretical categories T ,O
‘glued along’R; in simple terms, the collage of T ,O alongR is a new category
T ]p O, fitting in a span

T ]p O

##{{
T O

(1.1)

having suitable fibrational properties (cf. Definition 2.4 and in particular
Remark 2.8) allowing to recover the theoretical and observational terms as
‘lying over’ (T,O) ∈ T ×O.

From this perspective, it seems obvious why we require the pair (T ,O)
to admit a profunctor in either direction; profunctors categorify the notion of
‘meaningful relation’ between structured high-level systems, i.e. two syntactic
categories T ,O ‘modelling’ the environment to which we have access.

Proposing the fundamental features of a ‘general theory of scientific
theories’ stated in terms of profunctors is the main contribution of the present
work.

We conclude this introductory section with a paragraph discussing the
‘nature” of the categories T ,O, while surveying on the main arguments of
the paper. As we already observed in our previous work, the problem of
locating the syntactic objects embodying a linguistic theory can be easily
solved from an experientialist stance: the world undeniably exists, and it is
a sufficiently complex structure to contain the concrete building blocks of a
formal system. We derive the primitive symbols of language from a portion
of the world, complex enough to offer expressive power.

This problem, and its proposed solution, reflect how the categories T ,O
are built. In our model the world is a (possibly large) category W, unfath-
omable and given since the beginning of time, to which we can only access
through probe maps (functors) ϕ : L → W (cf. Definition 4.3) representing
small ‘accessible’ categories construed from parts of W that we can experi-
ence.

The request that W is ‘sufficiently expressive’ now translates into the
request that as a category W contains enough traces of functors like ϕ; this
(cf. Definition 4.2) translates formally in the request that any such ϕ admits
a colimit (cf. [5, Ch. 2]) in W.

When things are put in this perspective, a few remarks are in order:

2This is reminiscent of the fact that, as observed in section 2, a relation has not a privileged
domain of definition; clearly, the category Cat has a nontrivial involution given by oping a
category, and this renders the auto-duality slightly more visible in the case of categorified
relations (i.e., profunctors).
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• This perspective allows to close the circle over the problem of represen-
tation of a worldW in terms of a portion T to which we have hermeneu-
tical access, and from which we have carved a language.

In fact, such a representation happens through ‘canvas functors’
ϕ : L → W that, thanks to the cocompleteness property of W, extend
uniquely to representation functors [Lop,Set]�W.
• On the other hand, ‘the world’ as a whole is unknowable: instead of
W, we can access to an observational fragment O, from which we re-
cover, exploiting the cocompleteness of [Oop,Set], a further representa-
tion [Lop,Set]� [Oop,Set]. In general, this is all that can be said; such
a picture is already capable of determining, by elementary means, an
equivalence of categories (i.e., an equivalence of models) between the
observational and the theoretical nuclei of [T op,Set] � [Oop,Set]: we
discuss the matter in Definition 5.3, and Remark 5.9.

• Additional assumptions on the canvas ϕ : L → W, however, can refine
our analysis: we can infer that the totality of models [Lop,Set] contains
a copy of the world W. In this precise sense, assuming what is outlined
in the definition of science© in Definition 4.3, language prevails: the
unfathomable world is a full subcategory of the class of all modes in
which the language of T can be interpreted.

• Under very mild assumptions on the arrangement of functors

W
Nψ

$$

Nϕ

zz
[T op,Set]

NR̂

// [Oop,Set]

(cf. Proposition 3.3) where ϕ,ψ are two canvases, respectively on the
theoretical and observational side, we can find a natural 2-cell filling the
triangle; this amounts to a ‘concretisation’ of the canvases (see Defini-
tion 5.6 and Remark 5.7) into an implication between (a trace that) the
theoretical terms (left in the world via ϕ) and the observational terms
(to which we have experimental access) in W. This last sentence is ‘the
Ramsey sentence’ that the canvases carve into the world, expressed in
the internal language of W.

Structure of the paper. Section 2 and 3 outline the mathematical background
we need throughout the work; the focus is not on proofs, but we refrain from
delivering a terse account of the mathematical paraphernalia without any
intuition. Section 4 introduces our main notions: a canvas, i.e. a functor
ϕ : L → W representing a small category in a ‘world’, a big category W;
a theory, and a science, i.e. a well-behaved canvas. Sections 5 and 6 will
conclude the discussion; we propose some vistas for future investigation.
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2. Profunctors and the Grothendieck construction
There are two possible ways to define a relation R between two sets A,B:
r) a relation R is a subset of the cartesian product A×B;
r) a relation R is a function A×B → {0, 1}.
This notion of ‘relation between A and B’ is inherently symmetric, in the
sense that such R can be regarded both as a kind of ‘botched’ map A  B
or B  A: a relation between A and B is equally a function B → PA or
A→ PB.

Because of this, every relation R between sets A,B gives rise to a Galois
connection

R( ) : PAop � PB : ( )R (2.1)
between the power-sets PA = 2A and PB = 2B : the set U ⊂ A goes to the
set RU of all b such that (a, b) ∈ R for all a ∈ U ; in an exactly symmetric
way, a set V ⊆ B goes to the set

V R = {a ∈ A | (a, b) ∈ R, ∀b ∈ V }. (2.2)

Unwinding the definition, it is easy to verify that V ⊆ RU if and only if
U ⊆ V R, if and only if U × V ⊆ R, so the adjunction rules of [5, 3.1.6m] are
satisfied.

Now, using a process known as ‘categorification’ [2], we can replace a
two-valued relation R : A×B → {0, 1} with a set-valued functor Aop ×B →
Set between two (small) categories A,B.1 In this perspective, the truth value
for the proposition aRb=‘(a, b) ∈ R’ is considered too poor an information
about R (it is also usually wise to approach mathematics rejecting two-valued
logic); because of this, instead of the mere truth value of the proposition aRb
we consider the type of all proofs that aRb. This point of view will be re-
introduced along section 5.

More precisely, we can give the following definition.

Definition 2.1 (Profunctor). Let A,B be two small categories; a profunctor
R : A 7−→ B is, by definition, a functor Aop × B → Set; we define the
bicategory of profunctors Prof having
p) objects the small categories A,B, C, . . . ;
p) 1-cells the profunctors R : A 7−→ B, and composition law between
A R7−→ B P7−→ C given by the assignment2

P �R : (A,C) 7→
∫ B

R(A,B)×P(B,C) (2.3)

1The reason why the category A is twisted with an ‘op’ functor is that we want to bestow
the hom functor homA : Aop × A → Set with the rôle of identity ‘profunctor’; in the
categorification perspective, hom plays the rôle of the diagonal relation R = ∆ : A→ A×A.
The category of sets (i.e., of discrete categories) has no nontrivial involution on objects, so
in the case of sets the opping operation is hidden.
2See [6, 6.2.10] for the definition: representing a profunctor as a matrix of sets, this universal
construction is the matrix product whose (A,C)-entry is the generalised sum

∑
B R(A,B)×

P(B,C) modded out for a certain equivalence relation.
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p) the identity 1-cell is the hom functor homA : Aop ×A → Set;

p) 2-cells R⇒ R′ the natural transformations α : Aop × B
R

''

R′

77�� α Set .

This formalises the above intuition thatR(A,B) is the type whose terms
are all proofs that (A,B) ∈ Aop × B are in a ‘generalised relation’ R. This
intuition agrees with the fact that a profunctor between discrete categories
is precisely a relation between the sets that those two categories are.

Starting from here, one can build a rich and expressive theory; for our
purposes, we are contempt with a careful analysis of the analogue of r
and (2.1) above: the latter is the scope of section 3, we now concentrate on
describing a ubiquitous technical tool in category theory, called Grothendieck
construction, suited to categorify the equivalence between r and r.

Every function is a particular relation: this means that the category of
sets and functions embed into the category of relations and that a relation is
just a function satisfying a suitable rigidity request; something similar hap-
pens to profunctors, and we will freely employ the notation that the following
definition sets up throughout the paper (cf. for example Proposition 2.9, Re-
mark 3.4, Definition 5.6).

Definition 2.2 (The upper and lower image of a functor). Let F : A → B be
a functor; we define
im) the upper image F ∗ of F is Prof to be the functor

B(F, 1) : Aop × B → Set : (A,B) 7→ B(FA,B) (2.4)

im) the lower image F∗ of F is Prof to be the functor

B(1, F ) : Bop ×A → Set : (B,A) 7→ B(B,FA) (2.5)

The correspondence F 7→ F ∗ is a functor, covariant on 1-cells and contravari-
ant on 2-cells; the correspondence F 7→ F∗ is a functor, contravariant on
1-cells, and covariant on 2-cells.

2.1. Grothendieck construction
Each profunctor R : A 7−→ B can be realised as a suitable ‘fibration’ pR :
E → Aop×B, that in turn uniquely determines R. We now recall a few basic
definitions.

Definition 2.3. Let C be an ordinary category, and let W : C → Set be a
functor; the category of elements C

∫
W of W is the category which results

from the pullback
C
∫
W //

��

Set∗

U

��
C

W
// Set

(2.6)

where U : Set∗ → Set is the forgetful functor which sends a pointed set to its
underlying set.
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More explicitly, C
∫
W has objects the pairs (C ∈ C, u ∈ WC), and

morphisms (C, u)→ (C ′, v) those f ∈ C(C,C ′) such that W (f)(u) = v.

Definition 2.4 (Discrete fibration). A discrete fibration of categories is a func-
tor G : E → C with the property that for every object E ∈ E and every arrow
p : C → GE in C there is a unique q : E′ → E ‘over p’, i.e. such that Gq = p.

Taking as morphisms between discrete fibrations the morphisms in Cat/C,
we can define the category DFib(C) of discrete fibrations over C.
Proposition 2.5. The category of elements C

∫
W of a functor W : C → Set

comes equipped with a canonical discrete fibration to the domain ofW , which
we denote Σ : C

∫
W → C, defined forgetting the distinguished element u ∈

WC.

With this terminology at hand, we can consider the category of elements
of a functor F : C → Set; this sets up a functor from Cat(C,Set) to the
category of discrete fibrations over C: the Grothendieck construction asserts
that this is assignment sets up an equivalence of categories.

Theorem 2.6. There is an equivalence of categories

Cat(Cop,Set)→ DFib(C) (2.7)

defined by the correspondence sending F ∈ Cat(C,Set) to its fibration of
elements ΣF : C

∫
F → C.

The inverse correspondence sends a discrete fibration Φ : E → C to the
functor whose action on objects and morphisms is depicted in the following
image: an object C ∈ C goes to the fiber Φ−1C in E , that since Φ is a discrete
fibration is a discrete subcategory of E , hence a set; a morphism u : C → C ′

defines a function Φ−1C ′ → Φ−1C: the object X ′ ∈ Φ−1C ′ goes to the
(unique) object X in the fiber over C, that is the domain of the arrow v such
that Φv = u.

C
C′u

X′

X

There is of course a similar correspondence for covariant functors; the situa-
tion is conveniently depicted by the table

name variance condition

fibration C → Set
X // X′

pX
f

// C′

opfibration Cop → Set
X // X′

C
f

// pX′
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Corollary 2.7. Given a profunctor R : A 7−→ B, regarded as a functor R :
Aop × B → Set, we can consider the category of elements Aop × B

∫
R; this

is often called the collage or the graph of R. In this case, we denote the
category Aop × B

∫
R as A ]R B, to stress the intuition that R prescribes

a way to glue together two categories A,B specifying a set of ‘fake’ arrows
R(A,B) that consistently interact with the arrows in A,B (compare this with
Definition 5.1 below).

Remark 2.8. The above definition deserves to be expanded a little more:
from Definition 2.3 we get that the category A ]R B results as the category
whose objects are those of the disjoint union AotBo, and where the hom-set
A ]R B(X,Y ) is equal to

c) A(A,A′) if (X,Y ) = (A,A′) is a pair of objects in A;
c) B(B,B′) if (X,Y ) = (B,B′) is a pair of objects in B;
c) R(A,B) if X = A is an object of A, and Y = B is an object of B;
c) empty in every other case.

From this definition, it is evident that every profunctor R : A 7−→ B gives
rise via its fibration of elements to a span of categories

A ]R B

##zz
Aop B

(2.8)

Thus, we have obtained a concrete model for a category that realises the
generalised relation between A,B; the structure A]R B is ‘carved’ from A,B
separately, starting from (semi-)free relations witnessing the fact that R con-
nects A,B in a weak way. For example, if R : Aop × B → Set is the empty
functor, then A]R B is just he disjoint union of A,B; and if R is the functor
constant at the singleton set, then A]RB is the join of A,B, i.e. the category
A
∐
B where exactly a single new morphism is added between each and every

object of A and of B (but not in the opposite direction).
As a final remark, we observe that the extremely rich features of the

Grothendieck construction can be at least partly explained resorting to a dual
construction for C

∫
F : more in detail,

Proposition 2.9. The collage construction of Corollary 2.7 enjoys the following
universal property: the category A ]R B fits into a cospan

A J // A ]R B BKoo (2.9)

where both functors J,K are the obvious embeddings, and there exists a
canonical natural transformation γ : K∗ �R⇒ J∗ which is initial among all
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these: this means that given any other arrangement of profunctors

A
� P

  
�J∗

##
_R

��

A ]R B
KS

γ �U // C

B

7
K∗

;;

+
Q

>> (2.10)

like in this diagram of solid arrows, there exists a unique profunctor U :
A ]R B 7−→ C such that U � J∗ = P, U �K∗ = Q, and U ∗ γ = α.

3. Nerve and realisations
We start by recalling the universal property of the category of presheaves over
C: let C be a small category, W a cocomplete category; then, precomposition
with the Yoneda embedding yC : C → [Cop,Set] determines a functor

Cat([Cop,Set],W)
◦yC−−−−→ Cat(C,W), (3.1)

that restricts a functor G : [Cop,Set] → W to act only on representable
functors, confused with objects of C, thanks to the fact that yC is fully faithful.
We then have that

Theorem 3.1.
ye) The universal property of the category [Cop,Set] amounts to the exis-

tence of a left adjoint LanyC to precomposition, that has invertible unit
(so, the left adjoint is fully faithful).

This means that Cat(C,W) is a full subcategory of Cat([Cop,Set],W). More-
over
yi) The essential image of LanyC consists of those F : [Cop,Set] → W that

preserve all colimits.
yi) If W = [Eop,Set], this essential image is equivalent to the subcategory

of left adjoints F : [Cop,Set]→ [Eop,Set].

As a consequence of this,

Definition 3.2 (Nerve and realisation contexts). Any functor F : C → W
from a small category C to a (locally small) cocomplete category W is called
a nerve-realisation context (a NR context for short).

Given a NR context F , we can prove the following result:

Proposition 3.3 (Nerve-realisation paradigm). The left Kan extension of F
along the Yoneda embedding yC : C → [Cop,Set], i.e. the functor

LF = LanyCF : [Cop,Set]→W (3.2)

is a left adjoint, LF a NF . LF is called the W-realisation functor or the
Yoneda extension of F , and its right adjoint the W-coherent nerve.
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Proof. From a straightforward computation, it follows that if we defineNF (D)
to be C 7→ W(FC,D), this last set becomes canonically isomorphic to
[Cop,Set](P,NF (D)). We can thus denote W(F, 1) the functor NF : D 7→
λC.W(FC,D). �

Now, let’s review the way in which a profunctorial analogue of (2.1) can
be obtained: Proposition 3.3 yields that a functor

R : Aop × B → Set (3.3)

whose mate under the adjunction Cat(Aop × B,Set) ∼= Cat(B, [Aop,Set]) is a
functor

R̂ : B → Cat(Aop,Set) (3.4)
determines a NR paradigm, and thus gives rise to a pair of adjoint functor

LanyBR̂ : Cat(Bop,Set)� Cat(Aop,Set) : [Aop,Set](R̂, 1). (3.5)

Remark 3.4. Note that, given a functor F : A → B, the functor NF = B(F, 1)
coincides with the lower image of F into Prof, described in Definition 2.2.

We have just laid down all the terminology needed to prove that

Proposition 3.5. There is an equivalence of categories between Prof(A,B) and
the category of colimit preserving functors Cat(Bop,Set)→ Cat(Aop,Set).

4. Theories and models
In this section, we exploit the terminology established before.

Definition 4.1 (Theory). A theory L is the syntactic category TL (cf. [15,
II.11]) of a type theory L.

The reader interested in how the construction of TL goes can take from
[15] as a standard reference or [1] for a shorter survey, in the simple case L
admits product and function types.

Definition 4.2 (World, Yuggoth). A world is a large category W; a Yuggoth1

is a world that, as a category, admits all small colimits.

Definition 4.3 (Canvas, science). Given a theory L and a worldW, a L-canvas
of W is a functor

L
ϕ // W. (4.1)

A canvas ϕ : L → W is a science© if ϕ is a dense functor.

Remark 4.4. The NR paradigm exposed in Definition 3.2 now entails that
given a canvas ϕ : L → W

1Yuggoth (also Iukkoth, or Ȳ̵̥͎̹͍̤̓ų̶̥͇̼̘͓̯͉͚͉͈̾̌̽̈́̈́͌̎̆̔̚ǧ̷̗̆̀̏ǧ̷̢̪̹̲̗͒̋̄́͌̅̀̈̐̂̌̅͘͘o̸̡̝̗̻̱͎̖͍̲̳͍̫͎̿ͅt̷̮͍̤͈̬̭̯̠͙͔̟͍͚̙͋́̾h̶̡̥̻̟̤̣̆͗̕̕ in Chtuvian language) is an enormous trans-Neptunian
planet whose orbit is perpendicular to the ecliptic plane of the solar system. A Yuggoth is
a world so big to inspire a sense of unfathomable awe.
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• If W is a world, we obtain a representation functor

W // [Lop,Set]; (4.2)

this means: given a canvas ϕ of the world, the latter leaves an image on
the canvas.
• If in addition W is a Yuggoth, we obtain a NR-adjunction

W //
[Lop,Set];oo (4.3)

this has to be interpreted as: ifW is sufficiently expressive, then models
of the theory that explains W through ϕ can be used to acquire a two-
way knowledge. Phenomena have a theoretical counterpart in [Lop,Set]
via the nerve; theoretical objects strive to describe phenomena via their
realisation.
• If an L-canvas ϕ : L → W is a science©, ‘the world’ is a full subcategory

of the class of all modes in which ‘language’ can create interpretation.

Remark 4.5. The terminology is chosen to inspire the following idea in the
reader: science strives to define theories that allow for the creation of world
representations; said representations are descriptive when there is dialectic
opposition between world and models; when such representation is faithful,
we have reduced ‘the world’ to a piece of the models created to represent it.

The tongue-in-cheek here is: a science in the usual sense of the world
can never attain the status of a science©, if not potentially; this because
all of its attempts at describing the world are partial. But if the chosen
language is powerful enough, even a small fragment of it can result in a ‘free
linguistic category’ (precisely [Lop,Set]) that is large enough to encompass
W completely.

In this perspective, attempts to generate scientific knowledge are the
attempts of
• recognizing the world W as a sufficiently expressive object for it to

contain phenomena and information;
• carve a language L, if necessary from a small subset of C, that is suffi-

ciently ‘compact’, but also sufficiently expressive for its syntactic cate-
gory to admit a representation into the world;
• obtaining an adjunction between W and models of the worlds obtained

as models of the syntactic theory L; this is meant to generate mod-
els starting from observed phenomena, and to predict new phenomena
starting from models;
• obtaining that ‘language is a dense subset of the world’, by this mean-

ing that the adjunction outlined above is sufficiently well-behaved to
describe the world as a fragment of the semantic interpretations ob-
tained from L.

It is evident that there is a tension between two opposite feature that L must
exhibit; it has to be not too large to remain tractable, but on the other hand,
it must be large enough to be able to speak about ‘everything’ it aims to
describe.
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Regarding our definition of science©, we can’t help but admit we had
the following definition in mind [3, 2.1], regarded with a pair of category
theorist’ goggles:

Definition ([3, 2.1]). A scientific theory T consists of a formal structure F
and a class of interpretations Mi, shortly denoted as T = 〈F,Mi | i ∈ I〉.
The structure F consists of its won right of

• a language L, in which it is possible to formulate propositions. If L is
fully formalised, it will consist of a finite set of symbols, and a finite set of
rules to determine which expressions are well-formed. This is commonly
called technical language;
• A set A of ‘axioms’ or ‘postulates’ in L?;
• A logical apparatus R, whose elements are rules of inference and logical

axioms, allowing to prove propositions.

The language of category theory allows for a refined rephrasing of the
previous definition: we say that a S-scientific theory is the following arrange-
ment of data:

st) a formal language L;
st) the syntactic category TL, obtained as in [15, II.11];
st) the category of functors [TC ,S], whose codomain is a Yuggoth.

More than often, our theories will be Set-scientific: in such case we just omit
the specification of the semantic Yuggoth, and call them scientific theories.

Since the category [TC ,Set] determines L and TL completely, up to
Cauchy-completion [8], we can see that the triple (L, TL, [TL,Set]) can uniquely
be recovered from its model category [TC ,Set]. We thus comply to the addi-
tional abuse of notation to call ‘scientific theory’ the category [TL,Set] for
some TL.

So, a ‘coherent correspondence linking expressions of F with semantic
expressions’ boils down to a functor; this is compatible with [3, 2.1], and in
fact an improvement (the mass of results in category theory become readily
available to speak about –scientific– theories; not to mention that the concept
of ‘formal structure’ is never rigorously defined throughout [3]).

Let us consider two categories O, T , respectively the observational and
the theoretical. Even though their origin is never examined further, it is fruit-
ful to think thatO, T ⊆ W, i.e. that they are ‘carved’ from the world, building
respectively on the tangible experience (for O) and a linguistic structure (for
L).

If W is a Yuggoth each pair of canvases

O
ψ // W T

ϕoo (4.4)

gives rise, according to (4.2), to representations

[Oop,Set]
//
W

Nψ

oo
Nϕ

//⊥⊥ [T op,Set]
oo

(4.5)
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The leftmost category is the category we have experimental access, start-
ing from the fragment O ⊆ W we can observe. The rightmost category is
the category of symbols we can speak of, trying to reproduce the observed
behaviour.

Definition 4.6. We refine the terminology introduced above to speak of a
theoretical (resp., a observational) science, assuming that ϕ (resp., ψ) is a
science©.

Assuming that ϕ : T → W is a theoretical science©, now, the represen-
tation functor W → [T op,Set] above acquires a left adjoint.

5. The tension between observational and theoretical
When working with categorified relations, it is unnatural and somewhat re-
strictive to take into account a two-element set for the possible values a propo-
sition(al function) ‘(a, b) ∈ R’ can assume; instead we would like to consider
an entire space of such values, or rather a type of proofs that (a, b) ∈ R
is true. Again, this idea is best appreciated when thinking that the same
proposition

(n : Nat) -> (m : Nat) -> n + m = m + n

when encoded in any (sufficiently strongly-typed) DSL, can be interpreted
as either the proposition ‘given n and m natural numbers, their sum is a
commutative operation’ or as the type n + m ≡ m + n whose elements are the
proofs that n+m is in fact equal to m+ n.

This intuition is based on the well-known proportion
truth values : proposition = section : presheaf

inspired by the ‘proposition as types’ paradigm. In simple terms, categorifying
a proposition P : X → {0, 1} that can or cannot hold for an element x of a set
X, we shall marry the constructive church and say that there is an entire type
PC, image of an object C ∈ C under a functor P : C → Set, whose terms are
the proofs that PC holds true. This is nothing but the propositions-as-types
philosophy, in (not so much) disguise: [27, 28, 22]

The important point for us is that the dialectical tension between ob-
servational and theoretical can be faithfully represented through profunctor
theory; one can think of propositional functions as relations (x, y) ∈ R if
and only if the pair x, y renders ϕ true; we use this idea, suitably adapted
to our purpose and categorified. This very natural extension of propositional
calculus, pushed to its limit, yields the following reformulation of the ‘tension
between observational and theoretical’.

Definition 5.1. Let T ,O be two small categories, dubbed respectively the the-
oretical and the observational settings. A Ramsey map is merely a profunctor

K : T op 7−→ O (5.1)
or, spelled out completely, a functor K : T × O → Set.
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Example 5.2. Every functor F : A → B gives rise to a profunctor F∗ :=
B(1, F ) : Bop × A → Set and a profunctor F ∗ := B(F, 1) : Aop × B → Set
as in Proposition 3.3; the two functors are mutually adjoint, F ∗ a F∗, see [6,
6.2]. This yield an example of what we call representable Ramsey maps.

Definition 5.3 (Observational and theoretical nucleus). LetR : T op×O → Set

be a Ramsey map, and R̂ : O → [T op,Set] the associated canvas. Let

LanyO R̂ : [Oop,Set]� [T op,Set] : NR̂ (5.2)

be the adjunction between presheaf categories determined by virtue of Propo-
sition 3.5. Let us consider the equivalence of categories between the fix-points
of the monad T = NR̂ ◦ LanyO R̂ and the comonad S = LanyO R̂ ◦NR̂.

This is the equivalence between the observational nucleus Fix(T ) ⊆
[Oop,Set] and the theoretical nucleus Fix(S) ⊆ [T op,Set].

Remark 5.4. Observational nucleus and theoretical nucleus always form equiv-
alent categories; the tension in creating a satisfying image of reality as it is
observed oscillates between the desire to enlarge as much as possible the sub-
category of [Oop,Set] with which our theoretical model is equivalent, where
we can have access to T , [T op,Set] only.

The following remark shows how new structure comes ‘almost for free’
when things are interpreted this way.

Assume ϕ : T → W and ψ : O →W are canvases, R is a Ramsey map,
and LanyO R̂ the functor corresponding to R under the construction in (5.2);
in this notation, we can state a tight condition of compatibility between the
theory identified by (ϕ,ψ) and the Ramsey map R. We employ freely the
presence of adjunction

Lϕ a Nϕ Lψ a Nψ LR̂ a NR̂. (5.3)

Remark 5.5 (Inducing an hermeneutics). Consider the diagram

W
Nϕ

zz

Nψ

$$
[T op,Set]

NR̂

// [Oop,Set]

LR̂oo
(5.4)

given by the theoretical and observational nerves, plus the Ramsey adjunction
mentioned above.

We seek sufficient conditions in order for (5.4) to be filled by a suitable
natural transformation ω : NR̂ ◦Nϕ ⇒ Nψ: such a 2-cell will force a tameness
property on the system described by the two canvases (ϕ,ψ): this is made
precise by the following

Definition 5.6 (Fundamental cell, Hermeneutics). In a display of categories
like (4.4) we say that
• A fundamental cell is a natural transformation ω : NR̂ ◦Nϕ ⇒ Nψ;
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• we say that in the worldW hermeneutics is possible if the right extension
〈ϕ/ψ〉 := RanNϕNψ exists as a functor (note that it always exists as a
profunctor, but this might not be representable).

If hermeneutics is possible in W, and R : T 7−→ O is a Ramsey map, any
fundamental cell induces a natural transformation

$ : NR̂ ⇒ 〈ϕ/ψ〉 (5.5)

obtained exploiting the universal property of 〈ϕ/ψ〉.

If the right extension is representable in the sense above, this amounts to
a higher type map (in the sense of the internal language of a closed category)
comparing ‘generalised formulas’ of kind R⇒W(ϕ,ψ).

Remark 5.7. If we follow the customary practice to identify a morphism of
a category as an entailment between sequents in a deductive system, it is
easy to see that the condition that the possibility of hermeneutics captures is
that we can embody sequents of the form JT ` OK ∈ R(T,O) in the internal
language ofW; more precisely, if we think of R(T,O) as the type of all proofs
that some theoretical terms describe an observational phenomenon, then the
map $ above can be represented as the higher order entailment relation
between JT ` OK and the entailment ϕ(T )→ ψ(O) valid in W:

$T,O : R(T,O)→W(ϕ(T ), ψ(O))
JT ` OK  (Φ[T ] ` Ψ[O])

(5.6)

where Φ[T ] is a shorthand for ϕ[~x/T ], the context of premises saturated by
the theoretical terms, and same for Ψ[O], the context of deductions saturated
by the observational terms.

All in all, the map $T,O exhibits a witness of the expressibility of the
entailment ‘JT ` oK’ in the world W, through the Ramsey map.

More is true: the presence of a fundamental cell means that we can find
a way to assert that the entailment T → O is actually embodied in the world
by an entailment ϕ(T )→ ψ(O) in the internal language of W.

If after a computation we find that a cannonball will follow a parabolic
trajectory, the cannonball fired in the actual world is to be found at the
point we predicted, even though there is no such thing as ‘a parabola’ in the
physical world. (Parabolas, and for that matter, all geometric figures, arise
as abstractions of a bundle of recurrent perceptions)

Such assumptions imply that "hermeneutics is possible", in the very
sense of the word: we can interpret linguistic facts about the world, and
derivations in the former system correspond to variations in the latter.

Remark 5.8. There is nothing in their mere syntactical presentation allowing
to tell apart the observational and the theoretical category; this can be justi-
fied with the fact that the bicategory Prof of Definition 2.1 is endowed with
a canonical self-involution, exchanging the rôle of domain and codomain of
1-cells, and thus of the theoretical and observational category T ,O.
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This is perhaps of some help in solving the conundrum posed by the
existence of ‘fictional objects’. Sherlock Holmes clearly is the object of a
theoretical category. Gandhi is the object of an observational category. But
as linguistic objects they can’t be told apart completely; they can be at most
separated by a profunctor embedding the former in a realistic counterpart of a
fictitious model (that is, for example, the Reichenbach falls), and representing
the latter as part of a fictional model (for example, as part of a movie directed
by R. Attenborough).

We can surely discuss what is the ontological status of each such object.
If it is clear that in the universe of Conan Doyle, an individual named Sherlock
Holmes lives at 221b Baker Street, it is also clear that it ‘projects’ its existence
in the actual world W@; undoubtedly there are relations between Conan
Doyle’s Sherlock Holmes and its shadow in W@; it is possible to rephrase
their relations in terms of the syntactic categories presenting/describing the
two universes, in the way that we have sketched. For a related topic, see the
notion of metakosmial accessibility between worlds or modal semantics of the
narrative objects [19]; as interesting as the topic may seem, we refrain to go
further in this analysis, leaving the stage open for future discussion.

The question deserves a deeper analysis: Attenborough’s Gandhi isn’t
exactly an object insideW@, but instead of an accessible sub-world UG ⊆ W@

that works as a canvas; it might be that many well-tested approaches to the
theory of modal relations might become more streamlined when expressed in
our language: fictional worlds are just particular ways to build canvases and
representations thereof.

Remark 5.9. The clearest possible sense in which the profunctorial approach
‘resolves’ the tension between observational and theoretical is that the Gro-
thendieck construction associated to a profunctor R : T 7−→ O yields a
category where the two ‘worlds’, one carved from perception, and the other
concocted from language, live harmoniously together. All in all said tension is
just an incarnation of the tension between speakable and unspeakable: given
a Ramsey map R : T 7−→ O, the equivalence between its theoretical and
observational nuclei is an equivalence between the speakable (a subclass of
[T op,Set]), with the observable (a subclass of [Oop,Set]); what lies outside
this equivalence in the latter category is observable but ‘unspeakable’ in the
strongest possible sense.

Remark 5.10 (Ramseyfication and translation functors). Assume that there
exists an adjunction

F : O � T : G (5.7)

between the theoretical and the observable categories. Following Carnap, we
might assume that F : O ↪→ T , and thus G is a right translation functor for
(T ,O).

In these assumptions, given a Ramsey map K : T 7−→ O the function
term

(O,X) 7→ K(O,X) (5.8)
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can be pre-composed with F obtaining

(O,O′) 7→ K(FO,O′). (5.9)

We say that a translation adjunction (F,G) is ‘K-admissible’ relative to a
Ramsey map R (denoted F aK G) when there is a natural isomorphism
K(F, 1) ∼= K(1, G).

The property of K-admissibility for a pair of functors is in general dif-
ficult to assess; nevertheless, there are interesting properties for the relation
F aK G: for example

Theorem 5.11. Let F : A � B : G be a pair of functors in opposite direc-
tions; let K : B 7−→ A be a profunctor; if F aK G, then there is a ‘genuine’
adjunction

F e : A ]K B � A ]K B : Ge (5.10)
‘extended’ to the category of elements of K.

6. Towards a universal notion of theory
This concluding section wraps up the various topics touched along the paper.

As we have seen in Remark 5.9, profunctor theory is just a mathema-
tization of the well-known tenet that epistemology is a relational theory:
scientific theories are but well-behaved adjunctions between the part of the
world that we want to model (this part doesn’t have to be physical), the
part of the world to which we have experimental access, and the linguistic
paraphernalia that we use to represent the latter in terms of the former.

Theories can’t be told apart in terms of their objects of study; instead,
they can be classified in terms of the web of relations that they entertain
together with other theories/categories.

This entails that
• There is no substantial difference between the syntactic categories T ,O ⊂
W, i.e. between observative and theoretical terms. Far from being a step
back towards an efficient representation of reality, this elegantly gets rid
of the early gawky attempts towards a ‘naturalisation of epistemology’,
originally thought to even happen inside syntax.

No theory can exit language; this does not mean that a theory isn’t
telling something about the world: instead, theories –and metatheories
about the world– are linguistic objects above all else. How this linguistic
practice unravels, on the other hand, is too loose to be functional; it is,
instead, relational.
• Being able to exchange the rôles of T ,O is reflected in the model in

the property of every profunctor (i.e. Ramsey map) R : T 7−→ O to be
‘swapped’ into a Ramsey map Rop : O 7−→ T . The observational and
theoretical categories bear this name as a result of nothing but arbi-
trary labelling. This gives way to all sorts of fruitful interpretations: it
becomes possible to label as ‘sciences’ sufficiently expressive descriptions
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of possible worlds (few would object that the complicated hierarchy of
sub-worlds in which Eä is divided, or the narration by which it became
the world as we know it, form a ‘science’), or the –strictly speaking–
unobservable phenomena that occur in Physics as well as in theology.

Being ‘scientific’ is thus not a property of the object we want to
describe; instead, ‘scientificity’ is a measure of the faithfulness of de-
scribed phenomena in a ‘world’ W, and of the ability of descriptions to
cast predictions on the behaviour of the system. This is akin to scientific
practice: if quantum mechanics gave more correct predictions about the
world accepting that uncertainty is induced by an ogbanje, physicists
would study Igbo mythology instead of functional analysis.
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