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Abstract

I advance a stipulational account of symmetries, according to which symmetries
are part of the content of theories. For a theory to have a certain symmetry is for the
theory to stipulate that models related by the symmetry represent the same possibility.
I show that the stipulational account compares positively with alternatives, including
Dasgupta’s epistemic account of symmetry, Møller-Nielsen’s motivational account, and
so-called formal and ontic accounts. In particular, the stipulational account avoids the
problems Belot and Dasgupta have raised against formal and ontic accounts of symme-
try while retaining many of the advantages of these otherwise-attractive frameworks.

1 Introduction

A particular sort of inference is common in the philosophy of physics (and in the practice of

physics itself, when the question arises). I’m referring to what Shamik Dasgupta (2016) has

called a symmetry-to-reality inference: the move from the premise that some quantity or

property varies between solutions of a theory related by a symmetry to the conclusion that

that quantity or property is unreal according to that theory.1 Alternatively, we may think

of symmetry-to-reality inferences in terms of a theory’s models in the following way: if two

models of a theory are related by a symmetry, those models represent the same possibility.

1Although this is how I understand symmetry-to-reality inferences, it is not precisely how Dasgupta
understands them. For Dasgupta, only the following sort of symmetry-to-reality inference is valid: “if a
putative feature is variant in laws that we have reason to think are true and complete, then this is some
reason to think that the feature is not real.” (Dasgupta, 2016, 840)
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I’ll begin from the assumption that symmetry-to-reality inferences are reasonable. The

challenge I will undertake is to provide an account of what symmetries are that explains

why these inferences are reasonable (and that gets sufficiently close to working physicists’

use of the term). My proposal is the stipulational account of symmetries. On this view, a

symmetry is a stipulated relation of representational equivalence between models or solutions

of a theory. This means that symmetries are not something to be read off or inferred

from the content of a theory; rather, they are part of that content. To state the view

precisely: many theories posit (among other things) that certain groups of transformations

among their models are symmetries, which is to say that two models related by one of those

transformations represent the same possibility.

I will begin in Sec. 2 with a brief look at the puzzles surrounding symmetry-to-reality

inference. In Sec. 3 I situate my account of symmetry within an overall picture of the

interpretation of theories (especially, although not exclusively, physical theories). I emphasize

the importance of the fact that we normally interpret non-fundamental theories, beginning

from what Ruetsche (2011) calls a partial interpretation. This makes it natural to introduce

stipulations about the equivalence of states into our interpretations of theories, and for

scientists to include such stipulations in constructing theories. In Sec. 4, I show that the

problems of interpretation are fruitfully analogous to certain problems in metaphysics, and

that similar stipulations of equivalence can help resolve some of these problems. This also

provides a clear illustration of what it means to introduce these stipulations into a theory,

and of why they can never appear in a completely fundamental theory of everything.

In Sec. 5 I identify and justify my points of disagreement with Møller-Nielsen’s moti-

vational account. In particular, I defend the claim that symmetry-to-reality inferences are

sometimes justified even before we have formulated a theory that can be stated only in terms

invariant under the symmetry against Møller-Nielsen’s objections. Sec. 6 discusses when it

is justifiable to posit a symmetry. There remains the concern that the stipulational account

cannot do all of the work an account of symmetry must do in physics, since symmetries so

defined cannot feature in important theorems. I offer a conciliatory answer to this concern

in Sec. 7.

So, what are symmetries?
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2 Symmetry-to-reality inference

Wallace and Greaves (2014, 60) observe and endorse the “widespread consensus that ‘two

states of affairs related by a symmetry transformation are really just the same state of affairs

differently described.”’ Although they cite works of philosophy in support of their assertion,

one can also find many examples of practicing physicists supporting the same consensus

(Strocchi (2008, 119), Feynman et al. (1965, Lec. 17)). These statements all amount to

assertions of the soundness of symmetry-to-reality inference. To kick off our inquiry into

symmetry, let’s unpack what this consensus consists in and what might justify it. This will

lead us quickly to some tough puzzles.

To begin with the easiest question, what does it mean in physics to say that two (putative)

states of affairs are really the same? Normally we represent a state of affairs in physics with a

solution to some equation(s), or a mathematical state in a space of states. An interpretation

of a theory fixes its content, in the sense of specifying which physical possibility each state

represents. This leads naturally to a definition of equivalence: I will say that two states are

physically equivalent iff on the correct interpretation of the theory, the states represent the

same physical possibility.2

What about the other key term, symmetry? The definition is often given in colloquial

terms: a symmetry is a transformation that preserves a theory’s laws. “Preserving” the laws

can’t just mean something like “If the laws are true of state A, and our symmetry takes A

to B, then the laws are true of state B,” though. This would mean every one-one reshuffling

of a theory’s states is a symmetry (Belot, 2013, 2), and the symmetry-to-reality inference

would lead to the absurd consequence that all states are equivalent.

Dasgupta (2016) identifies three families of definitions to flesh out the notion of symmetry.

All three require that symmetries preserve the laws in the trivial sense just noted, but they

add further conditions:

Formal definitions hold that a symmetry is (defined to be) a transformation on states

satisfying some mathematically defined condition.

Ontic definitions take a symmetry to be any transformation that preserves some privileged

2I take this to be equivalent in practice to the similar definition given by Belot (2013, 1): “two solutions
(models) of a physical theory are physically equivalent if and only if, for each possible physical situation, the
two are equally well- or ill-suited to represent that situation.”
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physical properties.

Epistemic definitions take a symmetry to be a transformation preserving some privileged

epistemically-defined properties (e.g. “the appearances,” or the empirical data).

Physicists tend to work with formal definitions. Those texts that don’t simply leave the

definition ambiguous tend to spell out symmetry in terms of commuting with the dynamical

laws: “the action of the symmetry transformation and of time evolution [must] commute.”

(Strocchi, 2008, 7) This is the most plausible type of formal definition, but it gives rise to

two very serious problem.

Belot (2013) points out the first problem: the most reasonable ways of spelling out what

it is for a symmetry to commute with dynamical evolution generate counterexamples to the

symmetry-to-reality inference. For example, the dynamical laws of classical theories can

ordinarily be codified either in terms of a Hamiltonian (energy functional) or a Lagrangian

function (encoding the difference between kinetic and potential energy). One can then define

a Hamiltonian symmetry as a transformation preserving the Hamiltonian, and a variational

(or Lagrangian) symmetry as a transformation preserving the Lagrangian. These amount to

two different notions of what it is to commute with the dynamics of a classical theory.3

As Belot shows, both definitions give absurd results in certain cases when used in

symmetry-to-reality inferences. For example, velocity boosts are not generally a varia-

tional symmetry of Lagrangian theories set on Galilean spacetime (Belot, 2013, 8). Nor

are they a Hamiltonian symmetry, since they alter a system’s kinetic energy while leaving

its potential energy unchanged (Belot, 2013, 12). But the nonexistence of absolute velocity

(i.e., the equivalence of states related by Galilean boosts) is a paradigm case of successful

symmetry-to-reality inference. And in other cases, both these formal definitions identify as

“symmetries” certain transformations that clearly relate physically inequivalent states. For

example, all solutions of the simple harmonic oscillator are related by a variational symmetry

(Belot, 2013, 11).

The second problem is that there is no single (known) formal framework in which all

physical theories can be written, such that a single formal definition of symmetry can even

3Dasgupta (2016, 864) seems to characterize variational and Hamiltonian symmetries as ontic, but this
rests on a restriction of a theory’s “formalism” to solely logical vocabulary, which is difficult to defend or
apply in physics. Ultimately this is a merely verbal question, but I believe Dasgupta has miscategorized
these symmetries.

4



be specified. As Belot notes, not all classical theories can be described using Lagrangians.

Perhaps they can all be given a Hamiltonian formulation. But not all theories are classical

theories. Algebraic quantum theories, for example, normally formulate their dynamical laws

in terms of automorphisms on an algebra of observables, which do not mention or require

either Lagrangians or Hamiltonians (Summers, 2012, see). Moreover, it is not clear that the

notion of time evolution or dynamical laws must apply to all physical theories. It is often

suggested that space and time are emergent rather than fundamental quantities in quantum

gravity theories (Huggett and Wüthrich, 2013). So presumably the fundamental symmetries

of these theories should not be defined as transformations that commute with time evolution.

Ontic definitions, on the other hand, are useless for purposes of symmetry-to-reality

inference. Dasgupta (2016, 861-866) makes this point persuasively. As he points out, for

an ontic definition to be adequate it must completely spell out which physical properties

are real. That is, the privileged physical properties included in the ontic definition must at

least form a supervenience base for all of the physically significant properties. Otherwise

some symmetries would exist which alter the physically significant properties of a system,

and symmetry-to-reality inference would fail for those symmetries. But if we’re already in

a position to spell out which properties are real, who needs symmetry-to-reality inference?

The whole reason symmetry-to-reality reasoning is useful is because we often have no other

way to determine which properties are real, aside from checking whether they are invariant

under symmetries. So an ontic definition might be extensionally correct, but it will generally

be incapable of undergirding the inferential practice we seek to justify–in other words, it

cannot really do the work an informative definition of symmetry ought to do.

Dasgupta concludes that only epistemic definitions can succeed, and argues that symmetry-

to-reality inference is essentially a special case of Occam’s Razor. This is a viable picture

of symmetry that I will not attempt to refute here. Instead, I will present a different viable

alternative.

3 The starting point of interpretation

My alternative account is best understood within an overall picture of what it is to interpret

theories. Here two points will be key. First, interpretation never begins completely from

scratch; we always work from what Ruetsche (2011) calls partial interpretations. Second,
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although the notion of “reality” appealed to in symmetry-to-reality inferences is best spelled

out in terms of fundamentality, we are almost always in the business of interpreting non-

fundamental theories.

As noted above, an interpretation is a specification of a theory’s content, including at

minimum a characterization of the physical possibilities represented by its states. It’s worth

noting that in practice, no interesting theory ever exists in a completely un-interpreted

condition. As Ruetsche points out,

[T]he vast majority of the theories philosophers talk about are already partially

interpreted. Otherwise they wouldn’t be theories of physics. These theories

typically come under philosophical scrutiny already having been equipped, by

tradition and lore, with an interpretive core almost universally acknowledged as

uncontroversial. (Ruetsche, 2011, 7)

For example, it is plausible that for much of its history, the theory of electrodynamics was

ambiguous about the ontology of the electromagnetic field. Interpretive work was necessary

to determine whether such an entity even exists in any sense. By contrast, it was never

ambiguous which aspects of the theory represent charged matter. In its earliest formulations,

the theory posited an ontology including electric charge–it came into existence partially

interpreted.

Partially-interpreted theories make ontological commitments; they say something about

what there is. The early partially-interpreted theory of electromagnetism was ontologically

committed to the reality of charge. I see no reason why a partially interpreted theory cannot

also say something about what is not real. The early (pre-Minkowski) theory of special

relativity provides one example. Plausibly, the theory’s commitments included asserting the

unreality of absolute rest or absolute simultaneity–this despite the fact that the theory (at

least at this early stage) did not include an exhaustive description of its positive ontological

commitments. In short, the theory was then only partially interpreted, and among the partial

interpretation’s commitments was the stipulation that certain putative facts or entities were

unreal.

It’s natural to understand the partially-interpreted theory of pre-Minkowskian special

relativity as stipulating that non-Lorentz-invariant entities and properties are unreal. On

the stipulational account of symmetry, this is what it means to say that Lorentz invariance

is a symmetry of the theory.
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This fits within a rough, idealized account of the average theory’s life cycle: First it is pro-

posed as a partially-interpreted formalism. The partial interpretation includes stipulations

about which quantities and mathematical structures represent which properties and objects.

It may also include stipulations about which quantities and structures do not represent any-

thing real. These are normally formulated in terms of transformations that (the theorists

stipulate) preserve all the real structures; in that case, those transformations are called sym-

metries. Typically the partially-interpreted theory is then empirically confirmed, and once it

is sufficiently well confirmed a more complete interpretation is constructed, holding fixed the

stipulations made in the partial interpretation. It is at this stage that symmetry-to-reality

inferences are useful.

Once a theory’s interpretation is complete, symmetry-to-reality inferences are no longer

useful, since at that point we have fully determined which of the theory’s quantities are real.

This need not mean that symmetries have no interpretive purpose at that point, however. To

see why they may still be of interest, let’s look at the role of fundamentality in interpretation.

On my view, fundamentality needs to come in when we ask the question of what it

means for a property or entity to be “real” (as the term is used in symmetry-to-reality

inference, and in interpreting physics generally).4 Here I mean fundamentality in the sense

of naturalness or joint-carving (Lewis, 1983; Sider, 2012). Interpreters of physics are not

much concerned with highly non-fundamental facts or things. For example, the question of

whether the mereological fusion of two far-apart charged particles that are not in a bound

state really exists is not a question for interpreters of electromagnetism. Insofar as this

question is substantive, it is a question for general metaphysics. The question of whether

the electromagnetic field exists, on the other hand, is clearly a question for interpreters of

physics. What makes the difference between these two questions? The latter is a fundamental

question, because the field (if it exists) is among the most fundamental entities described

by electromagnetism. The fusion of two distant particles, on the other hand, is not among

the most fundamental entities. Thus its existence is not a substantive interpretive question

about electromagnetism.

We must not infer, however, that only perfectly fundamental questions are relevant for

interpretation. We know that no currently accepted theory describes fundamental reality in

4One might object that the relevant notion of reality instead boils down to something like objectivity or
perspective-independence. Dasgupta (2016, 850-852) argues cogently against this alternative picture.
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terms of its fundamental properties. If that proves possible, it is a task for a future theory

of everything, such as M-theory. In addition, many theories which are less fundamental

even than other present-day theories (thermodynamics, classical electrodynamics) are still

the subject of interesting interpretive questions. How can we understand this?

The notion of approximate truth is indispensable to scientific realism, and although

no satisfactory formal definition exists, our intuitive concept is sharp enough to be useful

(Psillos, 1999, 261-279). Plausibly, a non-fundamental theory is one which provides a good

approximation to the truth in its domain of application, but is such that the truth could be

better approximated within the same (or a larger) domain by a different (more fundamental)

theory.5 This makes it natural to say that the quantities treated as basic by the non-

fundamental theory are approximately fundamental within its domain, in the sense that

it is a good approximation to the truth to say that they are perfectly fundamental. So

within the domain of thermodynamics (systems with many degrees of freedom), temperature

is an approximately fundamental quantity. One does not go very far wrong by treating

temperature as one of the basic building blocks when describing such systems. This is what

makes temperature foundationally interesting. In general, I suggest that non-fundamental

quantities are “real” for interpretive purposes when they are approximately fundamental

within the domain of the theory being interpreted.

I promised that these insights about fundamentality would illuminate the interpretive

interest of symmetries for a fully-interpreted theory. Here’s how: A non-fundamental theory

might be formulated using some basic-looking building blocks (primitives) that are not even

approximately fundamental. Famously, for example, general relativity is normally formulated

in terms of primitive spacetime points, but it is problematic to treat the identities of these

points as real (Hoefer, 1996). Facts about the identities of the points are not invariant

under the theory’s diffeomorphism symmetry, however! So interpreters of the theory should

not treat the points’ identities as real (approximately fundamental) even though they are

among the fundamental-looking constituents of the theory’s models (compare Dewar, 2015,

321-326). The most complete interpretation–the best statement of what is approximately

fundamental in its domain–is given by the theory’s models, plus a catalogue of which aspects

of the models represent which (approximately) fundamental quantities, plus its symmetries.

5In practice, it may be prohibitively difficult to apply the more fundamental theory in the domain of the
less fundamental theory, but all that’s required is the possibility in principle of doing so.
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The symmetries do the work of specifying that certain fundamental-looking features of the

models are not actually fundamental.

With my account on the table, it is worth noting its close relationship with the picture

of symmetry defended by Dewar (2015). On Dewar’s view, solutions related by symmetries

should be considered equivalent, and “we can implement this [equivalence] without altering

our theory, i.e., merely by making acceptable interpretational stipulations regarding the

theory.” (Dewar, 2015, 317) For Dewar, symmetries play the same interpretive role they do

on my picture: states related by symmetries are stipulated to be equivalent. But for Dewar,

symmetries are not defined to be stipulated relations of equivalence. Instead he assumes

they can be specified via some mathematical (formal or ontic) definition; he then urges us

to stipulate that symmetries so defined relate equivalent states.6

Thus, in Dasgupta’s terms, Dewar’s account rests on an ontic or formal definition of

symmetries. This means his account is undermined by Dasgupta and Belot’s objections to

such definitions, which objections are evaded by my stipulational account.

There is one other significant difference between my stipulational account and Dewar’s

picture. Dewar (forthcoming) argues that a reduced formulation of a theory, in which sym-

metries have been eliminated and the theory reformulated in completely invariant terms,

may sometimes be inferior to the un-reduced theory for interpretive purposes. For me this

is a bridge too far, for reasons that will become clear in the next section.

4 Symmetry and theories of everything

Could a fundamental theory of everything have symmetries? It depends on how you define

‘fundamental theory of everything,’ but on the most natural definition the answer is no. I

take a theory of everything to be a theory that describes the perfectly fundamental features of

reality and nothing else. A theory with (non-trivial) symmetries is not like that. It describes

not only fundamental reality, but also some non-fundamental things: the features of the

theory’s models which are not invariant under the symmetries. The fact that the theory

also stipulates (via the symmetries) that these excess features are not fundamental isn’t

enough to qualify it as a theory of everything. A theory of everything would not mention

6In personal communication, Dewar has confirmed that while he had in mind an ontic or formal definition
of symmetry, he is now also sympathetic to stipulational definitions.
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non-fundamental things at all. To put the point another way, it is nonsense to say that

fundamental reality could include brute, unexplained facts about which possibilities are the

same or different. But that is what it would mean for a true theory of everything to include

symmetries.

But it’s entirely possible that the closest humans could ever get to a theory of everything

might be a theory with some symmetries. There are a couple of reasons why humans might

never be able to formulate a real theory of everything, even in principle. First, it could

turn out that there is no such thing as fundamental reality. Or relatedly, it could be that

there is an infinite descent of more and more fundamental scales which never bottom out in

a perfectly fundamental level (Schaffer, 2003). These are strange possibilities. (They also

don’t directly speak to the possibility of symmetries in our ultimate best theory.) What’s

more likely, in my estimation, is that the true fundamental theory of everything might be

ineffable to humans.

I use the term ‘ineffable’ in the sense coined by Hofweber (2017): something is ineffable

if it is impossible for us to represent it in thought or language. Although he ultimately

rejects them for Carnapian reasons, Hofweber presents several cogent arguments for the

likely existence of ineffable facts. To my mind, his strongest argument is one of the simplest.

Much of what humans know is ineffable to all other animal species on Earth, and even

(plausibly) to young human children. What are the odds that human adults, alone out of all

known living things, are mentally capable of representing every feature of the universe? It is

more plausible that some possible being could do an even better job of representing reality,

including its fundamental features, than we are capable of. If this is correct, we should

expect there to be some ineffable fundamental states of affairs that could not be represented

in any theory comprehensible to humans.

This means that the best possible human theory of the universe might describe it redun-

dantly. In particular, it could turn out that two states of such a theory describe the same

physical possibility, and the explanation for the equivalence of these states is ineffable to

humans. If so, our best possible theory might include symmetries relating such equivalent

states.

Could we ever be entitled to posit such a symmetry? It may seem unreasonable to

stipulate the equivalence of models in the absence of an explanation. Dasgupta argues that

without an invariant reduced theory in front of us, “It remains possible that dispensing with
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the [non-invariant] feature yields a theory that has too many other vices to warrant belief,

such as being too inelegant or complex” (Dasgupta, 2016, 854). In such a case, he suggests,

we are in the same position as Newton. Because Newton was unaware of the possibility of

theories positing absolute acceleration but not absolute position and velocity, he was not in

a position to eliminate the latter two quantities from his ontology. By parallel reasoning, one

might argue that we can never be justified in positing a symmetry that we cannot explain

in terms of a more fundamental invariant theory.

There is room to argue that Dasgupta is mistaken here, and Newton would have been

correct to deny the existence of absolute rest (Dewar, 2015, 322). Insofar as Newton was

justified in inferring that these quantities exist, I would suggest that his justification rested

on the assumption (reasonable at the time) that his mechanics was a fundamental theory.

If Newton had been alert to the possibility of an unknown or ineffable explanation for the

equivalence of different states of absolute rest, on the other hand, he would have had strong

reason to posit such equivalence.

In fact, Dasgupta’s suggestion that we cannot justifiably posit equivalence in the absence

of an invariant theory is implausible. There are cases in which this is clearly reasonable.

Think of a mathematician working prior to the development of modern number theory, con-

sidering the theory of integers as compared with the integer subset of the rational numbers.

Should the mathematician consider the equations “2+2=4” and “4/2 + 4/2 = 8/2” equiv-

alent in the absence of a satisfactory theory describing their common structure? Surely the

answer is yes. Although no “invariant” theory had been formulated at the time, there was

every reason to assume its existence.

It can also be reasonable to assume the existence of an ineffable “invariant” theory.

Consider a (non-prodigy) seven-year-old child familiar with integers and fractions. A typical

seven-year-old brain is unable to entertain all the propositions involved in number theory,

so the theory is ineffable to the child.7 But the child could reasonably come to understand

that integer addition and fraction addition must be describing some of the same facts, and

might even come to understand that those facts are something the child cannot fully grasp.

The bottom line is that mathematical conjectures, including conjectures about a theory

7Imagine that the child is not part of a community including adults who understand number theory, so
there’s no sense in which the child can think or speak about complicated number-theoretic facts even by
indirect acquaintance.
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one has not constructed, are sometimes justified. (How such conjectures are justified is a

tough question, but not one that needs addressing here.)8 The possibility of such justified

conjectures is sufficient to establish the possibility of justified symmetry-to-reality inference

even without a reduced theory in hand.

Recent work in the foundations of logic provides a useful (if speculative) example of a

place where this sort of reasoning is plausible. As Sider (2012, Ch. 10) notes, his realist

metaphysics implies that if predicate logic is a fundamental theory, either the universal

quantifier ∀ is more fundamental than ∃, or ∃ is more fundamental, or there is redundancy

in the world’s fundamental logical structure (since every sentence using only ∀ is logically

equivalent to some sentence using only ∃ and vice versa).

This is not an attractive consequence of Sider’s framework! But McSweeney (2019)

presents an alternative option, a thesis she calls Unfamiliar: namely that neither quantifier

is fundamental, but that some unknown third structure could ground the truth of both

universally and existentially quantified sentences. This “unfamiliar” third structure is clearly

something with which we aren’t currently acquainted. Indeed, it’s plausible that it may be

impossible for humans to grasp the unfamiliar structure if there is one. After all, our concepts

seem to bottom out in existential and universal quantification.

If this view of the foundations of quantification is correct, this is an example (albeit a

non-physical one) in which a symmetry must be posited. And it must be posited on the

basis of a conjecture about the existence of an ineffable logical “theory of everything,” which

would be formulated in terms of McSweeney’s unfamiliar structure if only it were possible

for humans to entertain it. Thus logic itself may constitute an case where the best humans

can do is a theory with symmetries, because the most fundamental theory of its domain is

ineffable to us.

My position here is similar in some ways to a position Sider (2020) has called the “quo-

tienter” view. The quotienter (a hypothetical character, but one who resembles Dewar

among others) holds that “for any model, we can say which features of the model are gen-

uinely representational and which are artifacts. There is no need to provide some privileged,

artifact-free description from which we can recover this information.” (Sider, 2020, DRAFT-

229) Sider contrasts this quotienter with the archetypal fundamentalist metaphysician, who

8In one of the few systematic treatments of the subject, Corfield (2005, 101-129) suggests that the relevant
sort of reasoning is strongly analogous to Bayesian confirmation.
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assumes “there must always be some way of describing the phenomenon in question that

(in some sense) lacks artifacts. There must be some way of saying what is really going on.”

(Sider, 2020, DRAFT-228-229) When I entertain each of these positions, they each have a

strong ring of truth to them.

Above I suggested it’s possible that the most fundamental theory formulable by humans

may contain symmetries. In this sense, I am a quotienter. But I also maintain that if

our best theory ends up containing symmetries, the explanation will (probably) have to

do with human limitations rather than nature itself. If that’s right, there must exist an

ineffable theory of everything, which lacks symmetries and hence lacks artifacts–exactly as

the fundamentalist metaphysician demands. The stipulative account of symmetries thus

provides a framework for reconciling what seems correct about the quotienter’s point of view

with what seems correct about the metaphysician’s approach. There must indeed be some

way, in principle, of saying what is going on–but humans may not be capable of saying it,

and hence the best we can do may be to stipulate which features of our best theory are

artifacts.

5 Møller-Nielsen’s objection

Some implications of my view have come into question already in the literature on symmetry.

In the course of proposing his motivational account of symmetries, Møller-Nielsen (2017)

argues against the “interpretational” account on which the existence of a symmetry (formally

defined) is sufficient to justify symmetry-to-reality inference. Considering again the example

of Newton, he writes,

The Newtonian who adopts the interpretational construal of symmetries[...] might

know that she may legitimately regard all symmetry-related solutions as physi-

cally equivalent, but the reality in terms of which this physical equivalence is to

be understood will (absent a reformulation of the theory) remain opaque to her;

she is offered no immediate explanation as to how such physical equivalence is to

be construed or how it could even be said to arise. (Møller-Nielsen, 2017, 1263)

All this is equally true of the stipulational account of symmetries. But I don’t believe it is

a problem for the stipulational account, because the consequences Møller-Nielsen points to

13



only seem unacceptable if we imagine them applying to a fundamental theory of everything.

In a non-fundamental theory, it is no surprise that some of the interesting (and non-brute)

facts posited should be left unexplained. Some such facts may be best explained in terms

of a more fundamental theory, and so it may be a mistake to look to the non-fundamental

theory for their explanation.9

Møller-Nielsen might insist in response that it is unacceptable to posit that two models

are equivalent without providing an explanation for their equivalence. This objection could

be supported by the claim that we could never be justified in accepting a theory that posits

unexplained equivalence.

In response, note first that it may be difficult to make this objection precise without

absurdity. Suppose our acceptance of theories is best understood in terms of degrees of

belief. Should our degree of confidence in the unexplained equivalence of models always be

zero? Presumably not. Is it impossible for any evidence or reasoning whatsoever to bear

on the question of whether symmetry-related models are equivalent, in the absence of a

known invariant theory? Again, this seems a bizarrely overconfident pronouncement for the

motivational theorist to make, especially in light of examples like Leibniz’s arguments and

pre-number theory arithmetic.

To the contrary, it seems that when all we have is a non-fundamental theory, we often

have reason to expect that a more fundamental invariant theory will treat certain of the

present theory’s models as equivalent, even when we don’t yet have an invariant theory

ready to hand. The grain of truth to the motivational account is that our confidence in the

equivalence of symmetry-related states should not exceed our confidence in the existence of

an acceptable invariant theory.10 But that degree of confidence could be quite high even

without an invariant theory in hand, if it is based on a plausible conjecture.

9What sort of explanation would the more fundamental theory provide? Møller-Nielsen is on the right
track when he alludes to an “explanation [...] as to how such physical equivalence [...] could even be said
to arise.” (Møller-Nielsen, 2017, 1263) A more fundamental reduced theory provides an understanding of
how it could possibly be true, consistently and coherently, that the invariant quantities described by the
non-fundamental theory are real while its non-invariant quantities are unreal. The non-reduced theory
cannot explain this, since it cannot describe the invariant quantities without also saying something about
the non-invariant quantities.

10To put this more precisely, in my terms, our confidence in the existence of a symmetry should not
exceed our confidence in the existence of an invariant theory–since symmetry-related states are equivalent
by definition, on the stipulational view.
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6 The epistemology of symmetry

All I’ve done so far is lay out a framework and its consequences. But the framework itself

does not tell us when to apply it. Suppose we have a theory T , and are considering positing

a symmetry that would identify some of T ’s states as equivalent, reducing it to T ′ (which is

either known or plausibly conjectured to exist). When should we posit the symmetry?

One way to proceed would be to co-opt the heart of Dasgupta’s epistemic account, and

posit a symmetry whenever the states related by the putative symmetry transformation

are experimentally indistinguishable. This should certainly be a necessary condition for

positing a symmetry. But as Dasgupta himself acknowledges, the Occamist reasons he

cites for identifying possibilities that aren’t detectably different can be outweighed by other

theoretical virtues. Thus for Dasgupta, the symmetry-to-reality argument requires “that

the hypotheses [states related by the symmetry]... are equally simple, elegant, common-

sensical, and so on; more generally, that they score equally well on every theoretical virtue”

(Dasgupta, forthcoming, 6).

Recall Dasgupta’s point that without an invariant theory in hand, “It remains possible

that dispensing with the [non-invariant] feature yields a theory that has too many other vices

to warrant belief, such as being too inelegant or complex” (Dasgupta, 2016, 854). I have

suggested above that this may be too quick, since we could be in a position to justifiably

conjecture that a well-behaved invariant theory exists. But Dasgupta’s underlying point is

well taken: other virtues matter aside from simplicity. The stipulational account can and

should take this underlying point on board.

Thus I conclude that a symmetry (i.e., a stipulation of equivalence between states) should

be posited when the overall picture of reality encapsulated by the theory has more and better

theoretical virtues with the symmetry than it does without. In the case where the reduced

theory (T ′ above) is known, this boils down to the question of whether T ′ has more and

better virtues than T . Where T ′ is not known, the question is whether we can justifiably

conjecture that T ′ probably has more and better virtues than T .

Consider again the example of pre-Minkowski relativity. Without making any claims

about what Einstein himself believed, it seems to me that the following conclusions were

justified at the time: Although no theory had yet been constructed treating the interval as

the fundamental quantity, with no mention of position and time coordinates, there was no
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apparent obstacle to constructing such a theory. Further, its ontology would clearly be more

parsimonious than Lorentz’s ether, and its laws could be expected to be more parsimonious

as well. Thus there was every reason at the time to (tentatively) posit Lorentz invariance as

a symmetry in my preferred sense.

I am not, however, convinced by Dasgupta’s suggestion that Occamist parsimony will al-

ways be the operant theoretical virtue behind symmetry-to-reality inference. Other virtues

may be even more important in some cases, for example in the case of gauge symmetry.

In electromagnetism, if we were to consider states related by gauge transformations as dis-

tinct, the theory would be indeterministic in a pathological-seeming way. The initial state

would neither deterministically entail later states, nor would it even entail any probabilistic

predictions about later states. This is one of the most important reasons for wanting a

gauge-invariant ontology for the theory (Belot, 1998, 534-537).

The virtue of a gauge-invariant interpretation is not only parsimony, it is a certain sort

of explanatory intelligibility: the initial values of the gauge-invariant quantities can explain

the future values of these quantities, while the initial value of the potential is incapable of

explaining its future values. This is a significant part of the justification for positing this

symmetry.

To give a more speculative example, it is sometimes suggested that some or all of the

dualities discovered by the string theory program should be interpreted as showing the

equivalence of the duality-related states, in a move analogous to symmetry-to-reality infer-

ence (DeHaro, 2019; Huggett, 2017). For example, holographic (AdS/CFT) duality has been

interpreted, analogously to a symmetry, as showing that string theories in (D + 1) dimen-

sions are equivalent to quantum field theories on their D-dimensional conformal boundary.

Plausibly, one virtue of this approach is a sort of unification, both abstract and concrete. At

the abstract level, the holographic duality unifies string theories with conformal quantum

field theories in a way that is widely considered illuminating. And at the concrete level, it

permits an explanation of the otherwise mysterious entropy in blackhole thermodynamics,

thereby unifying certain aspects of gravity and thermodynamics.

If correct, this outlook on dualities (construed as symmetries) shows that symmetries can

play a role in unifying explanations. Thus the virtue of unification can also be promoted

by positing symmetries. This further illustrates that Dasgupta’s focus on parsimony is too

narrow to capture the breadth of symmetry-to-reality inference as it occurs in science.
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Beyond presenting examples like these, I don’t believe there is much more that can

be achieved in spelling out which theoretical virtues might lie behind symmetry-to-reality

inference. There may be a single correct list of the theoretical virtues, and a correct metric

of how best to weigh their significance, but we are very far from a systematic understanding

of that list.

This is true even though we are rather good at applying the virtues in practice. The

situation seems to be roughly analogous to that of normative ethics, where our attempts at

systematizing the rules humans ought to live by remain woefully incomplete even though

conscientious people tend to be quite accurate at judging which concrete acts are right and

wrong except in thorny cases. Many of the most moral people do this without any explicit

conscious model of the normative rules they’re following. Similarly, good scientists seem

to be apt at picking plausible (i.e., virtuous) theories despite lacking an explicit conscious

model of the theoretical virtues.

This last point has a further methodological consequence: when scientific experts assert

that a certain symmetry-to-reality inference is justified in a given theory, this should be

taken as tentative evidence that a symmetry (in my sense) exists. And this is so even when

the experts do not cite any explicit theoretical virtues in justifying the inference.

7 Varieties of symmetry

The stipulational account succeeds, I claim, because it explains why symmetry-to-reality

inference is justified, and it has the power to explain this while doing justice to the whole

host of reasons that can ground such inference (in contrast to Dasgupta’s purely Occamist

account). It also fits in nicely with what I take to be the most plausible account of how fun-

damental and non-fundamental theories should be interpreted, which account I’ve outlined

above.

But the stipulational account cannot be the whole story about “symmetry” as the term

is used in physics. This is because it is manifestly not a formal definition of symmetry, but

it is formal definitions that accomplish much of the work done by symmetry in theoretical

physics. Consider the famous connection between continuous symmetries and conserved

quantities, for example. This connection is established by Noether’s theorem, which assumes

that the symmetries in question are all symmetries of the action, a formal definition within
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the Lagrangian framework. Thus only this particular formal definition of symmetry (or a

stronger definition that entails it) can do the theoretical work required to explain the nature

of conserved quantities. The stipulational definition cannot accomplish this.

This should come as no surprise, however, to anyone who has taken on board the lessons

of Belot and Dasgupta’s work as summarized in Section 2. For Belot and Dasgupta have

shown that no formal definition of symmetry can do the work of grounding symmetry-to-

reality inference. Yet, as the example of Noether’s theorem shows, formal definitions are

required to do much of the work done by concepts of symmetry in interpretively significant

areas of physics. Thus no single, univocal concept of symmetry can do all the work that

needs to be done. Multiple varieties of symmetry are needed.

There is much that can be said, however, to defuse the threat of heterogeneity that may

seem to loom. For it is open to theorists and interpreters of physics to stipulate, wholesale,

that certain formal criteria are necessary and/or sufficient for the existence of a symmetry

within some given theoretical framework.

In an example that’s dear to my own heart, the algebraic approach to quantum theory

has its own approach to symmetries (Roberts and Roepstorff, 1969). This family of theories

represents physical systems using a collection of observables (physical quantities) and a state

that assigns probabilities to the observables’ different possible values. Dynamical laws are

represented by mappings transforming the observables at one time into observables at later

times. Symmetries are then understood to be a different set of mappings which permute the

observables and which commute with the dynamical mappings (thereby preserving the laws).

The stipulational account would take this to be a case of quantum theorists positing that

these mappings are relations of physical equivalence because in general, algebraic quantum

theories hang together better (are more virtuous) if this stipulation is made wholesale for all

the theories within the framework.

And once the stipulation is made, it is possible to prove a quantum version of Noether’s

theorem (Buchholz et al., 1986).11 Thus (for theories within this theorem’s domain) it is

true, extensionally, that continuous symmetries imply the existence of conserved quantities.

This observation is entirely compatible with the stipulational approach to symmetry, and

similar examples can be multiplied in other areas of physics.12

11Thanks to Noel Swanson for this example.
12In a more sweeping (and hence more arguable) example, Wallace (preprint) argues on Occamist grounds
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This example illustrates that, to a significant degree, the stipulational account can co-

opt many of the advantages of formal accounts of symmetry, despite the inability of those

accounts to ground symmetry-to-reality inference. This makes my view a natural home

for those who are tempted by the promise of formal accounts, but who recognize their

shortcomings as revealed by Dasgupta and Belot.

8 Conclusions

To zoom out once more, I have argued that symmetry-to-reality inference is best seen as a

means for taking a partially interpreted theory and further interpreting it. This is accom-

plished by stipulating which of the distinctions it seems to draw–which putative possibilities

are described by distinct states in its state space–are not real distinctions.13 Such stipula-

tions should be made on the basis of theoretical virtues. When physicists speak of a theory’s

symmetries, they are frequently (although not always) making such stipulations.

Interpretive work will be required to prise apart the cases when physicists are using a

purely formal or ontic definition of symmetry, as opposed to the present definition. This work

is unavoidable, because much of scientific practice rests on symmetry-to-reality inference, but

Belot and Dasgupta have shown that no formal or ontic notion of symmetry can justify this

practice.

This approach has applications in other areas of philosophy as well. Even many theories

in metaphysics that aim at fundamental accounts of reality are only partially interpreted at

present. The ultimate truth about these domains may be ineffable, or at least it may not

yet have been entertained by theorists. So the positing of symmetries may be essential to

progress in these areas of metaphysics as well.

The best extant alternative foundation for symmetry-to-reality inference is Dasgupta’s

epistemic account. My account allows symmetry-to-reality inference to be justified by other

that the existence of a dynamical symmetry (as he defines it, a group of transformations commuting with
a theory’s dynamics) is sufficient to ground symmetry-to-reality inference when the symmetry universally
extends from subsystems of the world to measuring devices, or (he suggests more tentatively) when the
symmetry is global. If correct, this argument would provide strong grounds for stipulating a symmetry (in
my sense) in a very broad framework including all dynamical theories. But Wallace’s views rest on a rejection
of Belot and Dasgupta’s arguments which I would question.

13That is to say, it is a poor approximation to the truth within the theory’s domain of application to say
that these states differ in some highly natural way.
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virtues rather than just simplicity, which I take to be an advantage over Dasgupta’s ac-

count. But it’s not necessarily a decisive advantage, and Dasgupta may well respond that

the difference of opinion here is merely definitional. He could easily grant that other theo-

retical virtues besides simplicity can also provide reasons for counting states as equivalent;

his account simply does not categorize such reasons under the heading of “symmetry con-

siderations.”

I have shown, though, that there are more alternatives to ontic and formal accounts

beyond just Dasgupta’s epistemic picture. Formal accounts, especially, are appealing because

of their close relationship to scientific practice, and as we’ve seen, the stipulational account

can co-opt this advantage to a significant extent. The stipulational account has already

proven fruitful enough that it deserves serious consideration, alongside epistemic accounts.
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