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Abstract It is commonly argued that an undesirable feature of a theoretical or phenomenological
model is that salient observables are sensitive to values of parameters in the model. But in what
sense is it undesirable to have such ‘fine-tuning’ of observables (and hence of the underlying model)?
In this paper, we argue that the fine-tuning can be interpreted as a shortcoming of the explanatory
capacity of the model: in particular it signals a lack of explanatory depth. In support of this argument,
we develop a schema—for (a certain class of) models that arise broadly in physical settings—that
quantitatively relates fine-tuning of observables to a lack of depth of explanations based on these
models. We apply our schema in two different settings in which, within each setting, we compare
the depth of two competing explanations. The first setting involves explanations for the Euclidean
nature of spatial slices of the universe today: in particular, we compare an explanation provided by
the big-bang model of the early 1970s (where no inflationary period is included) with an explanation
provided by a general model of cosmic inflation. The second setting has a more phenomenological
character, where the goal is to infer from a limited sequence of data points, using maximum entropy
techniques, the underlying probability distribution from which these data are drawn. In both of these
settings we find that our analysis favors the model that intuitively provides the deeper explanation
of the observable(s) of interest. We thus provide an account that relates two ‘theoretical virtues’ of
models used broadly in physical settings—namely, a lack of fine-tuning and explanatory depth—and
argue that finely tuned models sacrifice explanatory depth.

1 Introduction

One hope, in light of what is commonly claimed to be the fine-tuning of our existence—as described
by our current favored physical theories—is that there is some alternate theory that renders our
existence less-finely tuned. Such a hope is not restricted to concerns about life however, for it arises
for scientific theories more broadly: in particular, it arises in cases where salient observables are deemed
to be sensitive to values of parameters that are not specified by the theory. If one interprets part of
the role that theories play as that of providing an explanation for measured values of observables,
then a natural question arises: if measured values of observables are finely tuned, does this signal
a problematic feature of the corresponding explanation of these measured values? In this paper we
generally answer this question in the affirmative and argue that the feature of such an explanation
that is compromised by finely tuned observables is that of its depth.

There are two types of theories in which we will be interested, that reflect a broad range of
physical settings. The first type encompasses dynamical theories. Such theories can be characterized
by (i) equations of motion for dynamical variables and (ii) free parameters, whose values are not
fixed by the theory, but which need to be fixed in order to yield agreement with observations. Such
free parameters typically come in two varieties: first, as initial conditions for the dynamical variables
mentioned in (i) and secondly, as ‘constants’, which do not explicitly refer to the dynamical variables.
In principle, the sensitivity of observables described by such a theory can be due to any combination
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of (i) and (ii). Our focus will be on sensitivity that arises due to free parameters as specified in
(ii). Our formalism also applies to a second type of scenario encountered in the physical sciences. In
particular, it applies to those scenarios in which established theoretical frameworks have yet to be
developed but where there exist phenomenological characterizations of data. In such scenarios one
can again identify salient observables, and our interest is in the sensitivity of these observables to
values of parameters in such phenomenological models.1 (See Secs. 3 and 5.1 for a more complete
description of the types of settings in which we are interested.)

Such models, we contend, play a crucial role in explanations for observables. Of course, what
we mean by an explanation needs to be made precise: as is well known, the literature on scientific
explanation is vast and controversial (see, for an overview, [13], [21], [27], and references therein).
The concept of the depth of an explanation—one that has practical appeal—has received relatively
less attention. (See, for example, [10], [29], and [24].) We commit, in this paper, to an account of
explanation that has precursors in the literature (see, for example, [28]), but our account of depth
is novel. We show, in a way that has been largely ignored in the literature, that the depth of an
explanation can be related to the degree of fine-tuning of an observable. In short, we provide a schema
that captures the following intuition: the greater the ranges of values of parameters [as described in
(ii) above] that yield the same value (or similar values) of some salient observable, the less-finely
tuned is that observable, and the deeper is the explanation of the value of the observable. In this way,
we provide insight into a key aspect of model choice by relating two important ‘theoretical virtues’:
namely the virtue of a lack of fine-tuning of salient observables and the virtue of a deep explanation.2

Our plan for this paper is as follows. In Sec. 2 we describe, from a conceptual point of view, our
rationale for connecting fine-tuning with explanatory depth. In Sec. 3, we describe quantitative aspects
of our schema. We first describe an account of explanation suited to a broad class of physical settings.
We then introduce a quantitative notion of fine-tuning of observables (where these observables depend
on some specified set of parameters), adapting work by Azhar and Loeb [2], and describe how this
notion can be related to a measure of the depth of an explanation.3 In Sec. 4 we apply our schema to
two different examples. In particular, in Sec. 4.1, we illustrate how the schema yields results that agree
with the putative consensus about the relatively deeper explanation provided by a general model of
cosmic inflation [9]—for the Euclidean nature of spatial slices today—compared to the explanation
provided by the big-bang model of the 1970s (namely, a cosmological model that traces the evolution
of the universe back to a singularity without encountering an inflationary period). In Sec. 4.2, we
turn our attention to more phenomenological characterizations of data. We analyze a basic problem
in which one looks to infer an underlying probability distribution from a finite set of data. We show
how our schema, applied in such a way as to discriminate between two models, favors the intuitively
correct model. We conclude in Sec. 5, where we provide further context for our results and include a
comparison with salient work in the literature.

In short, we present work that conceptually relates a notion of explanatory depth with a lack
of fine-tuning, in a way that applies to a broad range of physical settings. This is combined with
a quantitative analysis in which we introduce a measure of depth that can be used to discriminate
between models. Our schema yields results that accurately reflect the types of practical judgements
that have been made in the past, as well as those that may be useful in other novel physical settings.

2 Linking fine-tuning to explanatory depth

Broadly considered, at the core of the concept of fine-tuning lies a sensitive dependence of ‘outputs’
(of a certain type) on ‘inputs’ (of a certain type). The concept has, perhaps unsurprisingly, been
described in different ways in the scientific literature. For example, a non-finely tuned phenomenon

1 In what follows (and given what we have just described) we will not need to make much of the distinction between
theories and models, and so for the sake of generality we shall refer primarily to “models” (though we will revert to
using “theories” in places where it is more natural to do so, such as in Sec. 5.1).

2 For some background on theoretical virtues in the sciences, see [15] and [18]. For more recent work, see, for
example, [11] and [20].

3 The explanandum is, in effect, the values possessed by the observables. Our measure of depth takes into account all
parameters that describe an observable—though the measure is most sensitive to parameters that render the observable
‘finely tuned’. Also, the inclusion of a larger number of parameters will generally decrease the depth of the corresponding
explanation. In this way, a lack of depth is related to both a sensitive dependence of possessed values of an observable
on (values of) parameters, as well as the total number of parameters.
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is sometimes described as one that is ‘stable’ or ‘robust’ or ‘natural’. These various descriptions do
not necessarily express the same idea—and distinctions have indeed been drawn between them—but
they share a common general theme: that of an invariance or preservation of some phenomenon to
changes of a certain type.4

For the types of settings we will explore in this paper, a broad characterization of the fine-tuning
of some phenomenon, F , described by some model, M, can be stated as follows: if circumstances
in M were a little different, F would change significantly [2]. Of course, we need to make precise
what we mean by “circumstances”, “change significantly”, as well as the nature of the phenomena
considered. In any specific physical setting, there is no agreed upon way to do this, thus assessments
of fine-tuning seem to carry with them a degree of subjectivity. However, there is a class of models
that are commonly considered in physics, for which (at least) some of the concepts that enter into
this broad characterization of fine-tuning can be made more precise. In particular, we mean those
models that can be described as dynamical systems. For such systems, the relevant phenomena are
observables that we can measure in experiments. The “circumstances” refer to the conjunction of
the following (as mentioned in Sec. 1): (i) equations of motion for dynamical variables; (ii) initial
conditions for the variables; (iii) dimensionless free parameters that aren’t specified by the model,
but which need to be fixed in order to extract a crisp prediction from the model. Perhaps the least
tractable aspect of this broad characterization is how to make precise the notion of “a little different”.
That is, the task arises—for which, we admit, no general consensus exists—of defining and justifying
a measure the captures this notion. In this paper, we will tackle some of these questions in specific
physical settings that include the type of dynamical setting described above, as well as settings that
have a more phenomenological flavor.

A finely tuned model can reasonably be defined as one that contains at least one finely tuned
phenomenon, but precisely which phenomena should count as being relevant to such an assessment is
an interesting conceptual question. (See [16] for a discussion of this issue.) For some model, there are
a variety of phenomena, some more intuitively important than others, that require circumstances to
turn out ‘just so’. In considering the fine-tuning of life, for example, particular lives are finely tuned
(circumstances need to turn out in very particular ways for you to arise) but these phenomena aren’t
the ones used to diagnose the fine-tuning of life, as understood within the context of our current best
physical models (such as the standard models of particle physics and cosmology). It is the supposed
sensitivity of life itself—to changes in observed values of parameters in these models—that determines
this diagnosis and, moreover, that is often deemed to be in need of explanation. Considering models
more generally, is it perhaps less straightforward (setting aside, of course, the issue of precisely what
we mean by ‘life’) to identify relevant phenomena. A pragmatic approach will look to glean such
phenomena from the theoretical and observational context. We will proceed under the assumption
that one has, indeed, identified salient phenomena.

This leads to one of the main tasks of this paper. Namely, the following question arises: what
problems are presented by salient phenomena that are finely tuned—and, thus, by finely tuned models?
One response to this question looks to undermine a key premise, namely, it looks to deny that fine-
tuning can be unambiguously assigned as a feature of phenomena and models. (See, for example, [17]
and the response in [14].) The charge is that fine-tuning cannot be described in ‘objective’ terms and
so one could reasonably call into question any putative case of fine-tuning. (Of course, a lack of fine-
tuning could also, for a similar reason, be called into question.) Though we agree that establishing
some objective account of fine-tuning remains a challenge, we will nonetheless argue that remaining
agnostic about the possibility of fine-tuning is the wrong stance to take. One can and should look to
assess degrees of fine-tuning (we return to this claim below): the question of what to then do with
this assessment is a separate issue.

4 ‘Stability’ is often characterized as the invariance of a phenomenon to perturbations in the model that describes
that phenomenon. The ‘Einstein static universe’ was famously shown by Eddington to be ‘unstable’ [8]. The equilibrium
condition in this model-universe specifies a particular value of the mass density of matter (in terms of the cosmological
constant). A slight increase in the mass density of matter away this value leads to a runaway contraction of the
universe, whereas a slight decrease leads to a runaway expansion. ‘Robustness’ is closely related to this characterization
of stability, but depending on the particular context, it can have distinct or added features. One such feature, that
arises for biological systems, is a “slow degradation of a system’s functions after damage, rather than catastrophic
failure” [12, p. 1663]. ‘Naturalness’ is a concept that is commonly employed in particle physics settings. It describes
a “prohibition of sensitive correlations between widely separated energy scales” [25, p. 82]. (See also [5] and [26] for
recent foundational and philosophical accounts.) On the issue of how naturalness and fine-tuning (understood as akin
to ‘stability’) may come apart, see [25, Sec. 3].
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Indeed, there are settings where fine-tuning seems to exist but it is not considered to be especially
problematic. An exemplar of such a model is that of deterministic chaos. Sensitive dependence of the
dynamics on initial conditions is the defining feature of such a model. But there are other settings—
settings that are not chaotic—where finely-tuned models spark the intuition that there is a less-finely
tuned model that could account for some salient phenomenon. (One may, of course, worry about such
a possibility for chaos as well, but we do not have a suggestion as to what type of less-finely tuned
models could be implemented instead and so we will not discuss this possibility any further.) For
example, Bialek [3] states the following:

“Physics, especially theoretical physics, is the search for concise mathematical descriptions
of Nature . . . The dirty laundry of this enterprise is that our mathematical descriptions of
the world have parameters. . . . if the predictions of the model are too sensitive to the exact
values of the parameters, there is something vaguely unsatisfying about our claim to have
explained things. Such strong parameter-dependent explanations are often called finely tuned,
and we have grown to be suspicious of fine tuning. Experience suggests that if parameters
need to be set to precise (or somehow unnatural) values, then we are missing something in our
mathematical description of Nature” [3, p. 247].

This quote alludes to a contention that underlies our thinking (and underlies our claim, in the previous
paragraph, that fine tuning should be assessed): namely, that finely tuned models are a spur to model
development. There are a variety of examples in the history of science, we contend, where less-finely
tuned models supplant more-finely tuned models. A well-known modern example is provided by
cosmic inflation, which supplanted the big-bang model of the 1970s (without an inflationary phase):
this example will be further developed in Sec. 4.1.5

Part of the reason why one might not find a finely tuned explanation of some phenomenon to
be unsatisfying, is that the model that describes the phenomenon does, indeed, account for the
phenomenon. That is, there is nothing ostensibly empirically inadequate about the model. Rather, as
is evident in the above quote, what seems to require attention is that there is something distinctly
problematic about the explanation into which the model enters. In this paper, we will argue that the
explanatory virtue that is being compromised by such a model can be identified as the depth of the
explanation it provides.

Explanatory depth, unlike explanation has received relatively little attention in the literature.
Moreover—and more relevantly for our purposes—the connection between explanatory depth and
sensitivity, in the sense described above, is lacking a careful treatment. Our paper looks to address
this gap. Of course, one aspect of establishing a link between fine-tuning and explanatory depth is
the question of how we define an explanation. The account that we develop in the following section
is a special case of the account of explanation developed by Woodward and Hitchcock [28], but our
account of depth has a significantly different emphasis. In particular, we focus on certain types of
‘explanatory generalizations’: namely, those that correspond to equations of motion for dynamical
systems or else those (of a certain kind) that are non-dynamical but phenomenological in character.
We then focus on an aspect of depth, namely, a lack of sensitivity, that is not captured by their
subsequent work on depth (which appears in [10]). (Further comparative details appear in Sec. 5.2—
the reader interested in this contrast may wish to consult this section now.) In a broader treatment of
explanatory “power”, Ylikoski and Kuorikoski [29] describe various dimensions of explanatory power
in the context of a particular account of explanation (though their account applies, in their words, to
a notion of depth as well). One of these dimensions is indeed a lack of sensitivity and our account will
look to make precise how this sensitivity can manifest in certain physical settings. For now, we turn
to our account of such settings, and how we understand explanation, fine-tuning, and explanatory
depth in these settings.

5 Other examples that, we believe, are amenable to such an analysis include: (i) Ptolemy’s geocentric model being
supplanted by subsequent non-geocentric models (see, for some background, Weinberg [23], who describes Ptolemy’s
model as finely tuned) and (ii) the development of quantum chromodynamics, which provided a unified framework—via
an account of interactions between quarks and gluons—to understand the ‘zoo’ of hadrons that had been discovered
by nuclear physicists from the mid-twentieth century onward.
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3 Quantitative aspects of our schema

In this section, we will describe our schema linking fine-tuning and explanatory depth, which consists
of three parts: an account of relevant physical settings and the manner in which explanation operates
in such settings; an account of fine-tuning; and a measure for explanatory depth. We turn now to the
first part.

3.1 Explanation in a broad class of physical settings

The physical settings in which we are interested involve the following features.

(i) A set of parameters, p = {p1, p2, . . . , pn}, which collectively take values in some (finite) subset,
P, of n-dimensional Euclidean space, Rn (pi ∈ R for each i = 1, 2, . . . , n). These parameters will
form part of the explanans.

(ii) A set of observables, O = {O1, O2, . . . , Om}, which collectively take values in Rm (Oj ∈ R for
each j = 1, 2, . . . ,m). Specific values for this set of observables will correspond to the explananda.
The observables can be thought of as maps acting on the parameters described in (i):

O : P → Rm

p 7→ O(p) ≡ {O1(p), O2(p), . . . , Om(p)} . (1)

We remain open as to the precise manner in which such maps might be realized, but in accordance
with the two types of models that we will primarily focus on in this paper (as mentioned in both
of the previous sections), such a map might represent the output of a dynamical system, in which
case the parameters would then naturally correspond to initial conditions for any dynamical
variables, as well as constants that are left unspecified by the model that underlies the dynamical
system. Alternatively, such a map could arise for a model that implements a non-dynamical and
phenomenological relationship between parameters and observables. We will explore models of
both types in Sec. 4.

An explanation, on our account, will then be an argument in which the parameters take certain values,
say, p′, such that the mapping in Eq. (1) yields some specific set of values for the observables, say,
OM . We can represent this argument in the following summarized form (with “E” for “Explanation”):

E : p′ ∧ [O(p′) = OM ] ∴ OM . (2)

(There are, indeed, similarities between this account of an explanation and that developed in [28]—we
will further elaborate on this connection in Sec. 5.2.)

As argued by Azhar and Loeb [2], we justify the use of a finite parameter space by noting that the
types of physical models for which our schema applies typically have finite regimes of applicability.6 In
such cases, these regimes of applicability limit the ranges of parameters. If there are no such available
constraints, then we must advert to our expectations about what would comprise a reasonable range—
of course, there is a degree of subjectivity in this assessment, but one that, we contend, can still play
a useful role.

3.2 A global perspective on fine-tuning

As we mentioned above, we link an aspect of the depth of an explanation to a measure for fine-tuning.
Azhar and Loeb [2] recently introduced two perspectives on fine-tuning—a local perspective and a
global perspective—with corresponding measures for fine-tuning in each case. The perspective on
fine-tuning that is relevant for our discussion is the global perspective. We now rehearse and adapt
that account for our purposes.

We will construct a measure for fine-tuning that allows one to compute the degree of fine-tuning of
the observables with respect to each parameter independently (we focus on the ith parameter in what

6 As we will discuss in Sec. 5.1, our schema is applicable to physical settings described more generally by effective
field theories (and, in particular, dynamical systems derived from such theories). These theories come with an energy
cutoff that delimits the regime of applicability of the theory.
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follows). (Our measure of depth will then combine these independent measures into a single one.)
The measure makes a simple intuition precise. In short, the measure for fine-tuning of the observables
with respect to the ith parameter compares (i) the range of values of the ith parameter that does not
lead to a significant change in the values of the observables with (ii) the total possible range of values
that the parameter can take. The smaller the range in (i), relative to the range in (ii), the greater the
degree of fine-tuning.

Consider then, at some point p′ in parameter space P, a direction, denoted by the unit vector
v̂+
i , where this vector points in the (positive) ith direction in parameter space. We need to find the

minimum length of the vector, v+
i , that points in this direction, such that a significant change in

the observables, computed at the point p′ + v+
i , occurs. One way in which we can quantify such a

change is, for example, via an order-unity fractional change in the observables (as defined in [2]). To
be precise, we need to find |v+

i | such that

|O(p′ + v+
i )−O(p′)|

|O(p′)|
∼ O(1). (3)

Another way in which we can consider a change in the observables to be significant is when any one
of the observables that comprise O lies outside bounds established by experimental considerations.7

In our examples in Sec. 4, we will indeed study such scenarios.8

Having chosen a means to characterize changes in observables as significant, one then repeats the
construction for the negative ith direction. Thus we find the length of the vector, v−i , that points in
this direction that leads to a significant change in the observables. The sum of the lengths of these
two vectors will then correspond to the total range along the ith parameter direction over which
observables do not change by a significant amount. Denote the size of this range by |v±i |, where

|v±i | ≡ |v
+
i |+ |v

−
i |. (4)

Furthermore, let∆[p′, v̂+
i ] denote the size of the range of allowed parameter values (as encoded in one’s

definition of P) in the positive ith direction starting at p′, with ∆[p′, v̂−i ] denoting the corresponding
size in the negative ith direction. The sum of these two sizes, which we will denote by ∆[p′, v̂±i ],
where

∆[p′, v̂±i ] ≡ ∆[p′, v̂+
i ] +∆[p′, v̂−i ], (5)

is the size of the allowed range considering both directions. The degree of global fine-tuning of the
observables with respect to the ith parameter is then given by

Gi(O;p′) ≡ log10

(
∆[p′, v̂±i ]

|v±i |

)
. (6)

Following [2], we invoke the convention that if in some direction in parameter space, one reaches the
edge of parameter space and no significant change in the observables has occurred, then the length
of the vector that is encoded in the above formalism is the full distance that one can indeed travel in
that direction.

This measure of (global) fine-tuning [in Eq. (6)] has the following features.

(a) Gi(O;p′) ≥ 0 since, by construction, |v±i | ≤ ∆[p′, v̂±i ].
(b) The minimum value of Gi(O;p′) (namely, zero), occurs when |v±i | = ∆[p′, v̂±i ]; the maximum

value is unbounded. The minimum value corresponds to what we will call the order-0 case—in
which the observables exhibit no fine-tuning, with regard to the corresponding parameter. The
level of fine-tuning of the observables increases as Gi(O;p′) increases.

7 At first glance, this definition of a “significant change” may seem problematic, in that it will lead to scenarios
in which the smaller the experimental bounds on some observable—namely, the more precisely we can pinpoint its
value—the more finely tuned will be that observable. We wish to make two points about this issue. First, as indeed
pointed out in [29, p. 211] there is a tradeoff between precision (of the explanandum) and sensitivity: “This is simply
because smaller causal deviations are needed to disrupt the dependency between the explanans and a fine-grained
explanandum than coarser-grained ones”. Second, an important dimension of our account is the comparative role that
our account of depth can play. In particular, comparing the depth of two different explanations (supported by two
different underlying models), for some observable whose value is determined within certain experimental bounds, is an
important pragmatic aspect of our account.

8 Note that in the case where |O(p′)| = 0 [so that Oi(p
′) = 0 for each i] one would need to modify the schema above.

In particular, a “significant change” in the observables then arises when a shift to the point p′ + v+
i yields a value

for |O(p′ + v+
i )|, which is a significant fraction of the total distance that one could travel in the resultant direction in

O(P), namely, in the image of the map O [in Eq. (1)].
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(c) The use of the logarithm is so that (for example) order unity differences in the value of Gi(O;p′)
can be thought of as being ‘significantly’ different. For example, a case in which Gi(O;p′) = 2 is
an order of magnitude more finely tuned than a case in which Gi(O;p′) = 1.

Note that fine-tuning of a phenomenon is often cast in terms of a low probability for that phe-
nomenon. Our account of fine-tuning does not ostensibly involve probabilistic structure. A benefit
of this approach is that it is often difficult to justify probability distributions over parameters. It
is perhaps unsurprising that given a probability distribution over parameter space and, say, a prob-
abilistic ‘law’ that connects parameters to observables, one can generalize the above measure of
global fine-tuning. For the sake of completeness, we present such a generalization in Appendix A.
Of course, ambiguities that are averted by avoiding the introduction of probabilistic structure are
replaced by a need to justify our use of a Euclidean measure over parameter space (and the space in
which observables take values). Our choice of such Euclidean structure is largely guided by pragmatic
considerations—namely, such structure is simple (and simple to implement) and, we contend, features
in the types of assessments that occur (at least implicitly) in the course of model development (see,
for example, the displayed quote in Sec. 2 and the ensuing discussion).

3.3 Describing a measure of depth

Our measure of the depth of the explanation E, which we denote by DE(O;p′), combines the degree
of fine-tuning of the observables with respect to each parameter direction into a single number. This
is done in such a way that, ceteris paribus, adding a single parameter cannot increase the depth of
the explanation. The measure is given by

DE(O;p′) ≡ 1
n∏
i=1

[1 + Gi(O;p′)]

, (7)

and has the following features.

(i) It ranges between 0 and 1, namely, 0 < DE(O;p′) ≤ 1. The lower bound is approached as the
degree of fine-tuning of the observables is large with respect to at least one of the parameters
[that is, for example, G1(O;p′) → ∞ =⇒ DE(O;p′) → 0]. The upper bound is saturated when
the order-0 case is satisfied for each parameter [namely, ∀i, Gi(O;p′) = 0 ⇐⇒ DE(O;p′) = 1].

(ii) Within the range described in (i),DE(O;p′) is strictly monotonically decreasing with an increasing
level of fine-tuning with respect to any parameter.

(iii) As mentioned above, ceteris paribus, adding another parameter (indexed by k, say) to the ex-
planation, always reduces the depth of the explanation, unless the observables satisfy the order-0
case with respect to that parameter [namely, unless Gk(O;p′) = 0]. So, ceteris paribus, adding a
parameter with respect to which the observables are (effectively) insensitive does not change the
depth of the resulting explanation.

(iv) The form of our measure of depth is general. If we have two different models, say, with a common
set of observables Oc (where, say, Oc is a proper subset of the observables described by each
model), one could use our measure to compare the depth of the explanation provided by each
model for (measured values of) just those observables. One could also use our measure to compare,
for a single model that describes some vector of observables O = {O1, O2, . . . }, the depth of the
explanation provided for different observables in that vector: as in, for example, a comparison of
the depth of the explanation for (the measured value of) O1 vs. the depth of the explanation for
O2.

(v) The precise functional form of the measure that preserves the features listed above [namely, (i)–
(iv)] is not unique. A monotonically increasing function f , say, could be inserted in the denominator
in Eq. (7) and the features described above would continue to hold (so that one can identify a
family of measures of depth). So we could have defined, for example,

DE(O;p′) ≡

(
n∏
i=1

f [1 + Gi(O;p′)]

)−1
, (8)

and maintained the above features. Our choice of definition in Eq. (7) has been made for the sake
of simplicity.
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This measure captures salient features of intuitive accounts of explanatory depth as they arise in
the types of physical settings described in Sec. 3.1. We have avoided specifying desiderata of such a
measure in such a way as to attempt to uniquely fix the measure—this, we contend, leads to a false
sense of rigor. Our measure captures the practical, context-dependent sense in which physicists often
make assessments about fine-tuning and about the depth of an explanation. This last claim will be
further supported via the explication of two distinct examples, to which we now turn.

4 Applications of our schema

Our examples correspond to two (very) different settings in which explanations arise in physical set-
tings. The first setting corresponds to one in which there is a theoretical framework for describing the
system of interest—from which a dynamical system can be used to extract observables. The example
we will pursue in this context is from cosmology—where we will compare two separate explanations
for the Euclidean nature of spatial slices of our universe today. The second setting corresponds to
one in which such theoretical frameworks do not (yet) exist but where phenomenological character-
izations of observables have been developed. The example we will pursue in this context compares
two explanations that characterize a stream of data using maximum entropy techniques. For both
examples, we show that the explanation that one might expect to furnish a deeper explanation is
indeed the one favored by an application of our schema.

4.1 The flatness problem in cosmology

The universe today is consistent with being spatially flat, that is, the geometry of space can be
described as a three-dimensional Euclidean space. There are two different explanations of this ob-
servation that we will probe in this section. The first arises in the context of the big-bang model
(BBM) of cosmology as it had been developed by the early 1970s—this model traces the evolution of
the universe back to a singularity without invoking a period of cosmic inflation. The second arises,
indeed, for a general model of cosmic inflation, in which the very early universe undergoes accelerated
expansion for a short period of time [9]. A key motivation for the introduction of cosmic inflation
was to overcome perceived explanatory shortcomings in the BBM: one of those being the finely tuned
nature of the spatial flatness of the universe today. This comparison thus serves as a particularly
appropriate setting in which to probe our account of explanatory depth.

In describing both of these models, we will assume, for the sake of simplicity that spatial sections
of the universe are homogeneous and isotropic from the outset. Newton’s gravitational constant will
be denoted by G and we will set the speed of light to be unity, namely, c ≡ 1. We begin by first
describing how the geometry of space evolves according to the BBM (see also [4]), before connecting
this description to the schema introduced in Sec. 3. We will then repeat this analysis for the case of
cosmic inflation.

In our discussion of the BBM, we will consider an idealized setting in which the universe undergoes
two sequential phases, where in each phase there is, in effect, a single (fluid) source that drives (and
is driven by) the expansion of the universe. The first phase will be a radiation-dominated phase and
this will be followed by a matter-dominated phase (where “matter” refers to pressureless ‘dust’). The
radiation-dominated phase will last from some initial time ti until tT , which will denote the time
of matter-radiation equality (an equality of mass/energy density). The matter-dominated phase will
last from tT until today, denoted by t0.

The evolution of a homogeneous and isotropic space in any such phase can be described, in
the context of general relativity, by Friedmann’s equations. If, as is conventional, we let the physical
(spatial) separation of points be determined by the scale factor, a(t), then the first Friedmann equation
describes how the evolution of the scale factor is related to the mass density of the universe, ρ(t), as
well as the curvature of spatial sections, represented by k (k = 0 corresponds to the situation where
space is Euclidean). In particular let H(t) ≡ ȧ(t)/a(t) denote the Hubble expansion rate, where
overdots will denote derivatives with respect to time. Then the first Friedmann equation is given by

H2(t) =
8πG

3
ρ(t)− k

a2(t)
. (9)
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We denote the critical density by ρcrit(t) ≡ 3H2(t)/(8πG) [namely, the density such that spatial
sections, according to Eq. (9), are flat]. Then we can define the key variable that will be relevant in
our discussion below, namely, the dimensionless density parameter Ω(t):

Ω(t) ≡ ρ(t)

ρcrit(t)
. (10)

Note that Ω(t) = 1 corresponds to flat spatial sections.9 A useful quantity for our analysis below
will be the deviation of Ω(t) from unity (namely, the deviation of spatial sections from flatness). A
straightforward calculation gives, from Eqs. (9) and (10), that the fractional deviation from unity, of
the dimensionless density parameter, is given by

Ω(t)− 1

Ω(t)
=

3k

8πGρ(t)a2(t)
. (11)

The other equation we will require follows from the law of conservation of stress-energy and
describes how the mass density of some (fluid) source evolves with time. This equation is given by

ρ̇(t) + 3H(t) [ρ(t) + P (t)] = 0, (12)

where P (t) is the pressure of the fluid. In what follows we will assume that for any fluid source the
pressure is related to the mass density by an equation of state in which P (t) = wρ(t), where w = 1/3
for radiation and w = 0 for dust. Assuming that we know, at some final time tf , the values of ρ(tf )
and a(tf ), we can integrate Eq. (12) to show, for t < tf , that

ρ(t) = ρ(tf )

[
a(tf )

a(t)

]3(1+w)

. (13)

We can now combine Eqs. (11) and (13) to show that for t < tf ,

Ω(t)− 1

Ω(t)
=

[
a(t)

a(tf )

]1+3w
Ω(tf )− 1

Ω(tf )
. (14)

We now apply the above machinery to an analysis of our idealized version of the BBM, beginning
from the present time, namely, t0, and working our way back in time. Invoking Eq. (14) for the
matter-dominated phase we have

Ω(tT )− 1

Ω(tT )
=
a(tT )

a(t0)

Ω(t0)− 1

Ω(t0)
. (15)

For the matter-dominated phase it is straightforward to show, combining Eqs. (9) and (13), that

a(t)

a(t0)
=

(
t

t0

)2/3

, (16)

so that Eq. (15) becomes

Ω(tT )− 1

Ω(tT )
=

(
tT
t0

)2/3
Ω(t0)− 1

Ω(t0)
. (17)

[Note that for the sake of simplicity, in deriving the evolution of the scale factor in Eq. (16) we have
assumed that k = 0—such an assumption will suffice for our purposes in this section.] We can now
connect the left-hand side of Eq. (17) to the earliest time we will consider in the context of the BBM,
namely, ti, by an application of Eq. (14) to the radiation-dominated phase. We find

Ω(ti)− 1

Ω(ti)
=

[
a(ti)

a(tT )

]2
Ω(tT )− 1

Ω(tT )
. (18)

9 Note also that in later connecting these introductory remarks to our account of explanation, the value of the
dimensionless density parameter at some initial time will correspond to the “parameter” in the corresponding explana-
tion (what we have earlier called p′), whereas the value of the dimensionless density parameter today will correspond
to the “observable” (what we have earlier called O). In what follows—keeping with conventions in the cosmology
literature—we will continue to refer to the function defined in Eq. (10) as a (dimensionless density) parameter.
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For the radiation-dominated phase, one can show, from Eqs. (9) and (13) (again assuming k = 0),
that

a(t)

a(tT )
=

(
t

tT

)1/2

, (19)

so that Eq. (18) becomes
Ω(ti)− 1

Ω(ti)
=

ti
tT

Ω(tT )− 1

Ω(tT )
. (20)

Combining Eqs. (17) and (20) we thus obtain an expression for the fractional deviation from unity,
of the density parameter, at the initial time ti, as it relates to such a deviation today:

Ω(ti)− 1

Ω(ti)
=

ti
tT

(
tT
t0

)2/3
Ω(t0)− 1

Ω(t0)
. (21)

To determine tT , namely, the time corresponding to matter-radiation equality, we apply Eq. (13)
to each component separately, so that (using the subscripts “R” for radiation and “M” for matter)

ρR(t) = ρR(t0)

[
a(t0)

a(t)

]4
, (22)

ρM(t) = ρM(t0)

[
a(t0)

a(t)

]3
. (23)

Dividing these equations we find that

ρR(t)

ρM(t)
=
ρR(t0)

ρM(t0)

a(t0)

a(t)
. (24)

At tT , the left-hand side of the above equation is unity (by definition of tT ), whereas a(t) on the
right-hand side can be treated as though we are in the matter-dominated phase [as for Eq. (16)].
Thus we find that

tT =

(
ΩR,0

ΩM,0

)3/2

t0, (25)

where we have used the convention that Ωi,0 ≡ ρi(t0)/ρcrit(t0). Each term on the right-hand side of
Eq. (25) can either be read off or estimated from recent cosmological data.10 We find, using the above
approximations, that tT ≈ 3.1× 104 years.

Recent cosmological data allows us to find an upper bound for the size of the density parameter
today, Ω(t0). In particular, the Planck Collaboration’s most recent results on cosmological parame-
ters [19] imply, for our purposes, that

1−Ω(t0) = 0.001± 0.002. (26)

This implies that the magnitude of the fractional deviation from unity of the density parameter today
[namely, the right-most term on the right-hand side of Eq. (21)] must be constrained in the following
way so that the present-day value of the density variable agrees with cosmological observations:∣∣∣∣Ω(t0)− 1

Ω(t0)

∣∣∣∣ < 0.003

0.997
≡
∣∣∣∣Ω(t0)− 1

Ω(t0)

∣∣∣∣
max

. (27)

Thus from Eq. (21) we obtain a constraint on the initial density variable:∣∣∣∣Ω(ti)− 1

Ω(ti)

∣∣∣∣ < ti
tT

(
tT
t0

)2/3 ∣∣∣∣Ω(t0)− 1

Ω(t0)

∣∣∣∣
max

≡ ε. (28)

Note that assuming the time ti refers to a time that is very early in the history of the universe, the
upper bound, ε, expressed in Eq. (28) is small. One finds therefore that

1

1 + ε
< Ω(ti) <

1

1− ε
. (29)

10 The computation of ΩR,0 is a little subtle. To estimate this latter quantity from recent cosmological data we assume
that the energy density in radiation today, ρR,0, can be related to the temperature, T0, of radiation today (in the cosmic
microwave background). One finds that ΩR,0 ∝ T 4

0 /H
2
0 .
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Thus the size of the entire range of values ofΩ(ti) that yield agreement with cosmological observations,
which we will denote by ∆Ωi, is given by

∆Ωi ≡
2ε

1− ε2
. (30)

We can now explicitly connect this analysis with the formalism described in Sec. 3. In particular,
the parameters involved in the BBM’s explanation of the flatness of the universe today, namely,
p′ → Ω(ti) and O→ Ω(t0). (Of course, the mapping between parameters and observables that enters
into this explanation has a dynamical character.) Denote the maximum possible value of Ω(ti) by
Ωmax (where we will later consider situations in which Ωmax ≥ 10), the degree of global fine-tuning
of the observable is given by [adapting Eq. (6)]

G(Ω(t0);Ω(ti)) = log10

(
Ωmax

∆Ωi

)
= log10

(
Ωmax

2ε/(1− ε2)

)
, (31)

so that the depth of the explanation provided by the BBM, which we will denote by DBBM is [adapting
Eq. (7)]

DBBM(Ω(t0);Ω(ti)) =

[
1 + log10

(
Ωmax

2ε/(1− ε2)

)]−1
. (32)

For the case of cosmic inflation, we assume that there is a period of N e-folds of inflation that
occur just before ti, beginning at the time tInf, so that a(ti) = eNa(tInf). Over this period of time, we
will assume that the mass/energy density of the universe was constant. Thus, invoking Eq. (11) with
ρ(tInf) = ρ(ti), we find that

Ω(tInf)− 1

Ω(tInf)
= e2N

Ω(ti)− 1

Ω(ti)
, (33)

so that we have the following present-day observational bound on the density parameter at the
beginning of inflation: ∣∣∣∣Ω(tInf)− 1

Ω(tInf)

∣∣∣∣ = e2N
∣∣∣∣Ω(ti)− 1

Ω(ti)

∣∣∣∣ < e2N ε, (34)

where the right-hand side of Eq. (34) uses Eq. (28). We see immediately that to obtain agreement with
cosmological observations today, the fractional deviation from unity, of the density parameter at the
beginning of inflation, can be significantly greater than the deviation at ti. Indeed, more specifically,
if there is any inflation (N > 0), then the initial allowable fractional deviation from unity of the
density parameter, is greater for inflation than in the case of the BBM.

From Eq. (34), we can bound admissible values for Ω(tInf) depending on the size of e2N ε relative
to unity:

1

1 + e2N ε
< Ω(tInf) <


Ωmax e2N ε ≥ 1 (35)

min

{
1

1− e2N ε
,Ωmax

}
e2N ε < 1. (36)

When e2N ε ≥ 1, namely, N ≥ (1/2) ln(ε−1), the total number of e-folds of inflation will be said
to be “large” (N → NL). When e2N ε < 1, namely, N < (1/2) ln(ε−1), the total number of e-folds
of inflation will be said to be “small” (N → NS). A value of N = (1/2) ln(ε−1) will correspond to
the “critical number” of e-folds (N → Ncritical). As we shall see shortly (in a particular case), for
N > Ncritical, the depth of the explanation provided by inflation jumps to be close to unity (compared
with N < Ncritical), thus effectively solving the flatness problem.

We can now connect this inflationary analysis with the formalism described in Sec 3. The relevant
parameter involved in the explanation, provided by cosmic inflation, for the flatness of the universe
today, is p′ → Ω(tInf) and the observable of interest is, as for the case of the BBM, O → Ω(t0).
(Again, the mapping between parameters and observables that enters into this explanation has a
dynamical character.) The degree of global fine-tuning of the observable depends on whether the
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total number of e-folds is large or small (according to our convention in the previous paragraph). We
find [adapting Eq. (6)] that

G(Ω(t0);Ω(tInf)) =


log10

(
Ωmax

Ωmax − 1
1+e2N ε

)
e2N ε ≥ 1 (37)

log10

 Ωmax

min
{

1
1−e2N ε , Ωmax

}
− 1

1+e2N ε

 e2N ε < 1. (38)

The depth of the explanation provided by inflation, which we will denote by DINF is thus [adapting
Eq. (7)]

DINF(Ω(t0);Ω(tInf)) =



[
1 + log10

(
Ωmax

Ωmax − 1
1+e2N ε

)]−1
e2N ε ≥ 1 (39a)

1 + log10

 Ωmax

min
{

1
1−e2N ε , Ωmax

}
− 1

1+e2N ε

−1 e2N ε < 1. (39b)

In computing numerical estimates of the depth of the explanation for the flatness of the universe
today, as described by the BBM and by cosmic inflation, we need to first estimate ε as it appears in
Eq. (28). Using t0 = 13.8Gyr and a fiducial value of ti = 10−34s (which is a rough estimate of the
time at which inflation ends), we find that ε = O(10−52). This yields Ncritical ≈ 60.

Figure 1 compares depths for the BBM and cosmic inflation as computed from Eqs. (32), (39a),
and (39b). We note that the depth of the BBM (in blue) is always (that is, for all chosen values of
Ωmax) less than the depth as computed in the case of inflation (gold and green lines). The gold lines
represent the depth as it appears in Eq. (39b), namely, in cases where the number of e-folds of inflation
is small (that is, less than the critical number of e-folds, Ncritical ≈ 60). The green lines represent the
depth as it appears in Eq. (39a), namely, in cases where the number of e-folds of inflation is large (and
greater than the critical number of e-folds).11 Cosmic inflation thereby provides a deeper explanation
for the flatness of our universe today compared with the BBM (as is commonly claimed).

4.2 Model selection in maximum-entropy modeling

We now turn to another example with a different character from the one described in Sec. 4.1. In
particular, this example probes the depth of explanations provided by phenomenological models of
data. The basic problem is as follows: one observes data presented as a sequence of M samples, say,
x1, x2, . . . , xM , where we know that each sample is drawn independently from the same underlying
probability distribution P (x). The question of interest is: what is the probability distribution? In the
absence of any further information we have no way of determining a unique distribution. But we can
imagine constraining possibilities for such distributions by demanding that they satisfy constraints
derived from the data. Of course, the set of such possible distributions is biased by the chosen
constraints, but there is a class of distributions—known as maximum entropy distributions—that
provide a useful (and relatively principled) guide.

Maximum entropy distributions, in short, are those that maximize the classical, Shannon-information
theoretic entropy, subject to specified constraints. More formally, when the (random) variable of in-
terest is defined over some continuous domain D, the maximum entropy distribution is constructed
by maximizing, over all functions P (x) ≥ 0, the differential entropy S[P (x)], where

S[P (x)] ≡ −
∫
D
dx P (x) lnP (x), (40)

11 Note that increasing the number of e-folds of cosmic inflation well beyond the critical value (Ncritical ≈ 60) does
not (and indeed cannot) lead to a noticeable increase in the depth of the explanation (that is, the green lines in Fig. 1
effectively lie on top of each other near the maximum value of unity). This is consistent with the fact that the observable
universe today circumscribes a horizon corresponding to the (last) 60 e-folds of inflation.

12



1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

log10 Ωmax

D

Fig. 1 The depth, D, of the explanation for the flatness of spatial slices of our universe today as a function of the
maximum possible value of the initial density parameter. The depth can vary, in principle, over the range (0, 1]. The
blue line corresponds to the depth as computed for the big-bang model (BBM) from Eq. (32). The gold lines correspond
to the depth as computed for different inflationary scenarios in which each successive gold line starting from the bottom
of the figure corresponds to an increasing number of assumed e-folds of inflation, N , from N = 30 through to N = 60
(in steps of two e-folds). The green lines display the depth as computed for inflationary scenarios in which N ranges
from N = 61 through to N = 91 (in steps of 10 e-folds). We see that there is a distinct jump in the depth of the
explanation when the number of e-folds is increased beyond a critical value (referred to as Ncritical in the main text).
For the parameters chosen in the main text, Ncritical ≈ 60, in agreement with the generally accepted value for the total
number of e-folds of inflation that is thought to solve various fine-tuning problems with the BBM (namely, problems
that include the flatness problem). (See [1] for further discussion of this point.)

subject to K constraints defined through some K functions fi(x):∫
D
dx P (x)fi(x) = µi, (41)

for i = 1, 2, . . . ,K. In addition, we must also enforce the usual normalization constraint:∫
D
dx P (x) = 1. (42)

A well-known theorem (see [6, Ch. 11]) provides the answer to this optimization problem:

P (x;α0, α1 . . . , αK) = eα0+
∑K

i=1 αifi(x), (43)

where α0, α1, . . . , αK need to be chosen so that Eqs. (41) and (42) are satisfied. Note that in what
follows, we use semicolons to delimit values of the underlying random variable (that is, x, above),
from parameters on which the distribution depends (that is, α0 . . . , αK , above).

From an interpretative point of view, these distributions [as represented by Eq. (43)] are the
distributions that maximize our uncertainty (understood in information theoretic terms) about the
underlying data given the constraints. In this sense they are the ‘least structured’ distributions,
consistent with the constraints. There has been renewed interest in their use, for example, in the
biophysical sciences, especially in the case of underlying random variables that are discrete, and
where the constraints of interest are of a particularly simple type.12

We will describe a toy example that captures the sense in which our measure of explanatory depth
can play a role in choosing between maximum entropy models. Consider the scenario in which we draw

12 We refer here to maximum entropy distributions that are consistent with one- and two-point correlation functions
derived from the data (we will indeed probe such scenarios in the main text—though where the underlying random
variable is continuous). There are a variety of biophysical systems that have been explored in this way, including: neural
systems, proteins, the immune system, and even aggregations of birds (see [22] for a review).
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M samples, x1, x2, . . . , xM , from a known continuous probability distribution P (x). The distribution
we choose is the exponential distribution and takes the form

P (x) = µ exp (−µx) x ≥ 0, µ > 0. (44)

In what follows, to be concrete, we choose µ = 1. We will look to fit two different maximum entropy
distributions to the data and will compare the depth of the explanations—about which we will say
more shortly—provided by these distributions. The first distribution will be the maximum entropy
distribution consistent with the empirical mean of the sample, denoted by 〈x〉e (“e” for “empirical”).
This distribution thus maximizes Eq. (40), for D ≡ [0,∞), subject to a single constraint, as in Eq. (41)
with f1(x) ≡ x and µ1 ≡ 〈x〉e. From Eq. (43), this distribution takes a form that we will write as

P1(x;λ0, λ1) = exp (−1− λ0 − λ1x) . (45)

Of course, this distribution has the same functional form as that from which the data are drawn
[namely, Eq. (44)], and so we expect (given that there is a clear sense in which this is the ‘correct’
distribution) the depth of the explanation of the data, derived from this distribution, to be relatively
high.

The second distribution we will consider will be a maximum entropy distribution consistent with
the first two empirically derived moments, namely, 〈x〉e and 〈x2〉e. This distribution thus maximizes
Eq. (40), again for D ≡ [0,∞), subject to two constraints that take the form of Eq. (41): one constraint
has f1(x) ≡ x and µ1 ≡ 〈x〉e, whereas the second constraint has f2(x) ≡ x2 and µ2 ≡ 〈x2〉e. From
Eq. (43), this maximum entropy distribution takes the form

P2(x;λ0, λ1, λ2) = exp
(
−1− λ0 − λ1x− λ2x2

)
. (46)

In each case, the empirically derived moments will also have empirically derived standard devia-
tions associated with them so that each moment that we consider is properly represented as

〈xk〉e ± σk, (47)

where

σk ≡

[
1

M(M − 1)

M∑
i=1

(
x ki − 〈xk〉e

)2]1/2
, (48)

and where x ki refers to the ith sample (out of the M samples) raised to the kth power.
In what sense, now, do maximum entropy distributions furnish an explanation of the data? The

explanandum in which we will be interested will not correspond to the exact set of samples obtained
but corresponds to the statistics of the sequence of samples as characterized by the first two moments.
The rationale for this is that the precise set of samples are representative of the underlying distribution
and what is salient about those samples is aggregate properties as captured by statistics that are
deemed relevant. The first two moments represent two particularly simple features of the statistics of
the data.

In the case of the first maximum entropy model, represented by P1(x;λ0, λ1), the parameters
involved in the explanation are given by p′ → (λ0, λ1) and the observables are given by O →(
〈x〉e, 〈x2〉e

)
. The explanation is non-dynamical and phenomenological in character. One can represent

the explanation, denoted by E1, in the following way:

E1 : (λ0, λ1) ∧
[∫ ∞

0

dx P1(x;λ0, λ1) = 1,

∫ ∞
0

dx P1(x;λ0, λ1)x = 〈x〉e
]
∴ (〈x〉e, 〈x2〉e ± σ2). (49)

Note that in this first case, we relax the precision with which one needs to account for the second
moment 〈x2〉e, as P1(x;λ0, λ1) is not defined in such a way as to demand agreement with the precise
value of the second moment [unlike in the case of P2(x;λ0, λ1, λ2)]. Thus in what follows, we allow
for the explananda in this first case to correspond, effectively, to O→ O1 ≡

(
〈x〉e, 〈x2〉e ± σ2

)
.

Similarly, in the case of the second maximum entropy model, represented by P2(x;λ0, λ1, λ2), the
parameters are given by p′ → (λ0, λ1, λ2) and the observables are given by O →

(
〈x〉e, 〈x2〉e

)
. One

can represent the explanation, denoted by E2, in the following way:

E2 : (λ0, λ1, λ2)∧
[∫ ∞

0

dx P2(x;λ0, λ1, λ2) = 1,

∫ ∞
0

dx P2(x;λ0, λ1, λ2)x = 〈x〉e,∫ ∞
0

dx P2(x;λ0, λ1, λ2)x2 = 〈x2〉e
]
∴ (〈x〉e, 〈x2〉e). (50)
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Our goal then is to compare the depth of the explanations provided by E1 and E2, which we will
denote by DE1

and DE2
, respectively.

Let us begin by analyzing E1. In this case, one can solve for the parameter values λ0 and λ1
analytically. In particular, we’ll rewrite the distribution in Eq. (45) in the following way:

P1(x;Z1, λ1) ≡ 1

Z1
exp (−λ1x) , (51)

where Z1 ≡ exp (1 + λ0). Enforcing the normalization constraint [namely, the first equation in square
brackets in Eq. (49)] gives Z1 → Z1:sol(λ1) ≡ 1/λ1; then enforcing the remaining constraint [namely,
the second equation in square brackets in Eq. (49)] yields λ1 → λ1:sol ≡ 1/〈x〉e. Thus we find

P1(x;Z1:sol(λ1:sol), λ1:sol) =
1

〈x〉e
exp

(
− x

〈x〉e

)
. (52)

Now, we interpret this distribution as explaining the data if (and only if) it is also the case that the
second moment of this distribution satisfies the corresponding experimental constraint, namely, that∫∞
0
dx P1(x;Z1:sol(λ1:sol), λ1:sol)x

2 ∈ 〈x2〉e ± σ2. Assuming this condition is satisfied (which it indeed
will be in the numerical work that follows), we can compute the depth of the resulting explanation
by computing the range of λ1-values over which the empirical constraints continue to hold. We can
determine this range through the following steps.

(i) Fix δ to be some small positive real-valued number (small enough so that the following steps do
not terminate at the first iteration in k).

(ii) Fix k = 1 and compute each of the following quantities:

λ∗1 ≡ λ1:sol + kδ,

〈x〉P∗
1
≡
∫ ∞
0

dx P1(x;Z1:sol(λ
∗
1), λ∗1) x,

〈x2〉P∗
1
≡
∫ ∞
0

dx P1(x;Z1:sol(λ
∗
1), λ∗1) x2.

(iii) If 〈x〉P∗
1
6∈ 〈x〉e± σ1 and/or 〈x2〉P∗

1
6∈ 〈x2〉e± σ2 then the range of admissible values of λ1 (greater

than λ1:sol) is delineated by λ∗1 as determined from the last value of k for which the constraints
were satisfied.

If the constraints are satisfied at this step, increment k by 1 and repeat steps (ii) and (iii) until
at least one of the constraints is indeed violated.

(iv) Repeat steps (i) to (iii) starting at k = −1 and decrementing k with each iteration to determine
the range of admissible values of λ1 less than λ1:sol.

This yields a range, δλ1, around the value λ1:sol, over which the empirical constraints hold. The depth
of the explanation is then given by

DE1 =

[
1 + log10

(
1

δλ1

)]−1
, (53)

where a fiducial value of unity for the possible range of λ1 has been chosen to facilitate comparison.
Let us now move on to the case of E2. We rewrite the distribution in Eq. (46) in the following

way:

P2(x;Z2, λ1, λ2) =
1

Z2
exp

(
−λ1x− λ2x2

)
, (54)

where Z2 ≡ exp (1 + λ0). Enforcing the normalization constraint [namely, the first equation in square
brackets in Eq. (50)] allows us to consider Z2 expressly as a function of λ1 and λ2, namely, Z2 →
Z2:sol(λ1, λ2). In solving for the remaining free parameters in Eq. (54) (namely, in computing λ1:sol and
λ2:sol) note the theorem by Dowson and Wragg [7, Theorem 3, p. 691] that states, in our context, that
if 〈x2〉e > 2〈x〉2e , there is no distribution that maximizes the entropy. So in cases where 〈x2〉e ≤ 2〈x〉2e
we implement a simple numerical procedure to establish the desired maximum entropy distribution,
which we denote by

P2(x;Z2:sol(λ1:sol, λ2:sol), λ1:sol, λ2:sol) =
1

Z2:sol(λ1:sol, λ2:sol)
exp

(
−λ1:solx− λ2:solx2

)
. (55)
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Random seed 1 Random seed 2
Number of samples

M
DE1 DE2 DE1 DE2

102 0.578 + 0.538 0.312
103 0.450 + 0.439 0.166
104 0.362 0.111 0.347 0.111
105 0.312 + 0.312 +
106 0.251 + 0.270 +
107 0.222 + 0.228 +

Table 1 Depth of two explanations (DE1
and DE2

) in our maximum entropy toy example. We probe scenarios
where the number of samples ranges over five orders of magnitude. For a fixed number of samples, we sample from the
exponential distribution in Eq. (44) (in one of two ways, using different random seeds to generate the sequence) and
then look to explain statistics of the samples. In particular, we look to explain the first and second moments via one of
two explanations, E1 or E2, as described in Eqs. (49) and (50), respectively. Results quoted as ‘+’ refer to cases where
a maximum entropy distribution (and hence an explanation) does not exist (see the discussion in the main text). In
each case, we see that E1 provides a deeper explanation than E2, or else E2 does not furnish an explanation at all.
The decrease in the depth of the explanation as the number of samples increases arises because of the manner in which
we have constrained errors in the statistics of samples [see Eq. (48)]: larger samples have smaller standard deviations,
and thus a smaller target range for the observables (which the underlying parameters help to explain). (See fn. 7 for a
related discussion.)

With such a distribution in hand, one can now compute the depth of the resulting explanation of
the first two empirically derived moments by separately computing the range of λ1-values over which
the empirical constraints continue to hold (that is, while holding λ2 fixed), followed by the range
of λ2-values over which the empirical constraints continue to hold (that is, holding λ1 fixed). The
procedure we follow mimics, in a straightforward way, the procedure we outlined for E1, and yields
ranges over which the constraints hold, namely, δλ1 around the value λ1:sol, and δλ2 around the value
λ2:sol. The depth of the explanation is then given by

DE2 =

[
1 + log10

(
1

δλ1

)]−1 [
1 + log10

(
1

δλ2

)]−1
, (56)

where, again, a fiducial value of unity for the possible range of λi (with i = 1, 2) has been chosen to
facilitate comparison.

The results of our trials are summarized in Table 1. We note that for any number of samples M , E1

provides a deeper explanation than does E2, and in many cases E2 does not furnish an explanation at
all. Thus the explanation that references the distribution from which the samples are actually drawn
is comparatively better—and increasing the number of parameters by a single parameter (as for E2)
decreases the depth of the explanation (or, indeed, invalidates it entirely).

5 Discussion

In this paper, we have analyzed the intuition that an increased level of (global) fine-tuning of
observables—and thus (by definition) of fine-tuning of the model that describes those observables—
is associated with a deficiency in the explanation provided by the model. In particular, we claim
that such fine-tuning signals a lack of depth of the explanation. The schema we have developed is
general in that it can be applied to a broad range of scenarios across the physical sciences, where
established theoretical frameworks exist and also in phenomenological settings where established the-
oretical frameworks do not yet exist. In this final section, we will (i) further describe aspects of the
physical settings in which, we contend, our schema applies; (ii) comment on how our schema relates
to work by Hitchcock and Woodward [10] on explanatory depth; and (iii) highlight further conceptual
issues.

5.1 Pertinent physical settings

A natural question that arises is: what are the “broad range of scenarios” in which our schema applies?
We contend that our schema is suited to the analysis of non-fundamental theories or, for example,
effective theories (so, theories that aren’t presented as ‘final theories’), where we are uncertain about
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the nature of the theory that applies at higher energy scales. In such cases, a less-finely tuned effective
theory—namely, one that is less-finely tuned by virtue of the allowance of a greater range of parameter
values that yield some value for an observable—is one that presents a larger target in its parameter
space, into which some future higher-energy theory can ‘flow’. Of course, we contend that if we knew
the higher-energy theory, it would provide a rationale (indeed, an explanation) for the particular
parameter values that must be assumed for the effective theory to yield the correct value for the
observable of interest. But when we do not know the higher-energy theory, it seems prudent to favor
those effective theories that seem more flexible, in their capacity to describe observables of interest.
Of course there is no guarantee that this is the right strategy, but it is one worthy of consideration.

Does, then, our schema apply to ‘final theories’? There are two cases to consider here. First, if the
theory has no free parameters then there is no fine-tuning and the depth of the explanation provided
by the theory for any phenomenon (indeed, according to our measure for depth) is, as one might
expect, unity. Secondly, if such a theory has free parameters then it is not possible for our schema
to assign a level of fine-tuning or depth. This is because it is difficult to justify the assignment of a
range of possible values that could be taken by these parameters. This limitation of our approach
reinforces our claims in the previous paragraph. Namely, restrictions on ranges of parameters that
arise for effective theories relate to our expectations about higher-energy theories. For example, as
described in [2], the standard model of particle physics is not expected to apply at energy scales higher
than the Planck energy scale, where we expect effects due to quantum gravity to be dominant. This
expectation allows us to reasonably set an upper limit on the maximum energy scale for the standard
model (which then translates into limits on parameters in the model). Now, if there is no expectation
of the existence of a higher-energy theory—which is a defining feature of a final theory—and this final
theory has free parameters, then it isn’t clear that we can sensibly constrain the free parameters: our
schema does not then provide a guide to computing levels of fine-tuning or of depth.

5.2 A contrast with Hitchcock and Woodward [10]

An interesting feature of our account of explanatory depth is its relationship to work by Woodward
and Hitchcock [28] (on explanation) and Hitchcock and Woodward [10] (on explanatory depth). In
short, their approach complements part of our construction while differing in other respects and it
will be instructive to develop this comparison. Roughly, they define an explanation through a set of
explanans variables, {X1, X2, . . . , Xn}, that enter into an explanatory generalization, g, which relates
the explanandum variable, Y , to the explanans variables, where Y = g(X1, X2, . . . , Xn). In particular,
an explanation for the explanandum variable taking the specific value y is an argument in which the
explanans variables take some set of values, say {x1, x2, . . . , xn}, such that when they enter into
the explanatory generalization, one obtains the value y, namely, y = g(x1, x2, . . . , xn). A defining
feature of explanatory generalizations is that they are “invariant under testing interventions” [28,
p. 17]. The invariance refers to a condition in which the explanatory generalization remains intact
for counterfactual values of the explanans variables. The intervention is a process that brings about
such a change in the values of the explanans variables (without directly affecting the explanandum
variable), such as one that might be implemented by an experimenter (but an intervention does not
have to invoke human agency). A testing intervention is an intervention that does not lead to the
same value of the explanandum variable (y in the example above). The depth of an explanation is
tied to the “range of invariance” [10, p. 182] of the relevant explanatory generalization. A comparison
of the depth of two explanations could advert to an assessment of, for example, the relative range of
values of explanans variables over which their explanatory generalizations hold (or some comparison
related to the topology of that range) or the accuracy of the two explanatory generalizations over
their respective ranges of invariance (see [10] for a more complete account).

There is a clear sense in which there is a correspondence between our approach and the one just
described. One can interpret our parameters, p, as corresponding to the explanans variables while
our observables, O, correspond to (a higher-dimensional version of) the explanandum variable. A
difference between these approaches arises in that we focus on particular types of relationships between
parameters and observables (namely, what one may interpret as particular types of explanatory
generalizations) and, moreover, in developing a notion of explanatory depth, we focus on a specific
feature of such relationships. In particular, we focus on relationships such as those that one commonly
finds for dynamical systems (see Sec. 4.1) or in certain phenomenological settings (see Sec. 4.2). We
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then analyze an aspect of depth that is not captured, we contend, by their subsequent work on
depth (in [10]). That is, for any fixed number of parameters (and for a single observable, say), an
important consideration (as regards depth) is the ranges of values of these parameters that do not
yield significant changes in the value of the observable. In other words, the effective invariance of
the value of the explanandum variable itself, for counterfactual values of the explanans variables, is a
marker of a deep explanation. This sense of depth, we contend, closely follows the types of intuitions
that are captured in theoretical developments in a broad range of physical settings.

5.3 Further conceptual issues

Finally, let us highlight (and reiterate) some conceptual issues that are captured by our schema.
Ceteris paribus, if the value of some explanandum is significantly affected by the addition of a single
extra parameter to the explanans, the depth of the explanation decreases. It is only the case, according
to our measure, that the depth of the explanation stays the same if the value of the explanandum
is not significantly affected by values that the extra parameter can take. This is a desirable feature
of our schema for it says that the depth of the explanation is not affected by the introduction of
parameters in the explanans, with respect to which the explanandum is, in effect, independent.

There is a comparative role that can be played by our measure, in that two different explanations
for common explananda can be compared. And when one can parse the observables of a model into,
for example, distinct sets of observables, namely, distinct explananda, the depth of the explanations
of these explananda can also be compared. In this way, our schema highlights a general functional
role for explanatory depth, namely, it can be used in an operational setting to discriminate between
models or to evaluate how well a single model explains different observables.13 [On this front, the
examples we have selected in this paper refer to modern scientific models, but we expect our approach
to work well in other cases from the history of science (see fn. 5).] A further operational role for our
measure is as a catalyst for the search for new models. For example, if one was to find an upper
bound on the depth of an explanation that was significantly less than unity, this would motivate the
question of whether there is room for improvement using a different model.

It appears from our definition of the measure of depth [in Eq. (7)], that a marker of a particularly
deep explanation is one in which the observables are largely independent of the parameters, and so one
might wonder why such parameters are to be included in our schema. On the other hand, it appears
that the inclusion of parameters that are manifestly irrelevant to the system of interest (for example,
the inclusion of parameters that track the prices of stocks, in a description of the evolution of spatial
slices of the universe) does not affect the depth of the explanation; and so one might wonder why the
inclusion of such parameters doesn’t somehow decrease the depth of the explanation. Such objections
ignore the context in which our account of explanatory depth has been developed. The parameters
that we include play a salient role in the models in which they arise. For a dynamical system, the
parameters are either initial conditions for dynamical variables that are necessary to describe the
(physical) system of interest or else they are constants that are needed to make (physical) sense
of the model, either internally or with respect to other models with which the model is supposed
to cohere. For the types of phenomenological models we have explored above, each parameter can
be thought of as tracking one of the empirical constraints that the system is deemed to satisfy.
Parameters that are not included are those not thought to contribute to our understanding of the
system of interest as described by the model. We admit there are choices to be made in leaving out
such parameters, but such choices are part of the practice of model building.14

More broadly, our schema for fine-tuning and explanatory depth can also be understood as one
that relates ‘theoretical virtues’ in the sciences (namely, a lack of fine-tuning and depth). Such a
schema thus charts a middle ground between subjective elements (in that it refers to ‘virtues’ or

13 Note that in considering effective theories, our schema properly applies to the comparison of two such theories that
are thought to apply at similar energy scales. We leave for future work the question of whether and how our approach
could be adapted to compare the depth of two explanations, where one explanation involves a theory that reduces, in
some limit, to the other theory. (See [24] for a related discussion of this general issue.)
14 One goal that such model building (and scientific theorizing more broadly) seems attuned to is the pursuit of

parsimonious descriptions of previously collected data, with a view to accurate future predictions. This was a major
accomplishment of quantum chromodynamics, which explained a large amount of phenomenological data on nuclear
physics (as mentioned in Sec. 2); and quantum electrodynamics, which achieved similar successes for electromagnetic
phenomena. This goal also underlies the effort to find a theory that unifies all the forces of nature.
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‘values’) and objective elements (in that such virtues are related to the construction of models that,
at best, describe real features of the world). (See [18] for an elegant account of the tensions that arise in
charting such a middle ground.) Unsurprisingly, there are context-dependent features of our account:
one must choose a parameterization for a model and specify a range over which parameters may vary.
Choices must also be made in determining which observables are salient. But having identified and
fixed such choices, our schema endorses a simple quantitative way to connect fine-tuning and depth.
It does so, we contend, in a way that is free from unnecessary complications and in a way that reflects
the types of considerations that enter into the practice and development of the physical sciences.
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A Observables from probabilistic maps

The schema we have developed in Sec. 3 can naturally be extended to the case where observables are probabilistically
related to parameters (in a way that is distinct from our phenomenological account in Sec. 4.2). In particular, in the
context of some physical model, M, one can construct a probability density function for the observables given the
parameters: P (O|p,M). We assume also that we have access to a prior over parameters, namely, P (p|M). Instead of
now restricting, to be finite, the domain over which p can take values, we assume, for the sake of simplicity, that p ∈ Rn
but that the prior, P (p|M), is nonzero only over a finite region. Similarly we assume that in principle, O ∈ Rm, but
P (O|p,M) is nonzero over some finite region.

In this case therefore, an explanation of the vector of observables taking the value OM (more specifically, taking a
value in some small m-dimensional box, ∆OM

, centered on OM ) will comprise an argument in which the probability
of the observables taking these values is larger than some fiducial value µ.15 We can represent the resulting argument
that comprises the explanation in the following summarized form:

Ē : p′ ∧ [P (OM |p′,M)∆OM
> µ] ∴ OM . (57)

The depth of this explanation can be computed via the following steps.

(i) For the ith parameter direction about the point p′, we construct the range, δi, of parameter values over which
observables do not change significantly. That is, the range over which the probability that the vector of ob-
servables takes values in the same small m-dimensional box described above, centered on OM , remains high:
P (OM |p,M)∆OM

> µ.16

(ii) Next we find the probability of parameters lying in this range as gleaned from the appropriate marginal distribution:

Pi(δi) ≡

∏
k 6=i

∫
R
dpk

 ∫
δi

dpi P (p|M). (58)

(iii) Finally we define a corresponding measure of global fine-tuning, Ḡi(O;p′), extending the treatment in Sec. 3 and
in [2]:

Ḡi(O;p′) ≡ log10

(
1

Pi(δi)

)
. (59)

This measure is manifestly non-negative, with the minimum value (namely, zero) occurring when the probability
of the observables lying in ∆OM

, centered on OM , is greater than the fiducial value µ, independent of the value of
the ith parameter.

Our measure of the depth of the explanation in Eq. (57), which we denote by D̄Ē(O;p′) is then defined by the
following:

D̄Ē(O;p′) ≡
1

n∏
i=1

[
1 + Ḡi(O;p′)

] . (60)

This measure has analogous features to the measure described in Sec. 3.3 [see points (i)–(v) under Eq. (7)] with
appropriate reassignments, for example, G → Ḡ and DE → D̄Ē .

15 Of course, we need to make precise how one determines this value. The variable µ is a stand-in for a ‘high value’ and
precisely what this value is (or should be) is a determination best made in the specific context in which an explanation
is being constructed. We will not need to specify such a value to describe our scheme.
16 Here we have assumed a small shift in the point in parameter space determined by a shift solely in the ith direction.

We have represented the new point thus obtained by p instead of p′. By convention, limits of the range δi are determined
by the first point in parameter space such that the probability of observables lying in ∆OM

is less than or equal to µ.
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