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Abstract. Bayesian epistemology has struggled with the problem of
regularity: how to deal with events that in classical probability have
zero probability. While the cases most discussed in the literature, such
as infinite sequences of coin tosses or continuous spinners, do not actu-
ally come up in scientific practice, there are cases that do come up in
science. I shall argue that these cases can be resolved without leaving
the realm of classical probability, by choosing a probability measure that
preserves “enough” regularity. This approach also provides a resolution
to the McGrew, McGrew and Vestrum normalization problem for the
fine-tuning argument.

1. Introduction

The problem of regularity in Bayesian epistemology is that we would like
our probability distributions to assign non-zero probability to every event
that is possible. Perhaps the main reason for this condition is that that
in science our evidence appears to be is given in terms of events that have
non-zero probability, and a zero probability event stays at zero probabil-
ity after Bayesian conditionalization on non-zero probability evidence E,
thereby ruling out the possibility of ever learning that A is true. And if we
try to overcome this by insisting that we have some zero probability evi-
dence, we run into serious technical problems with conditionalizing on that
evidence as the usual ratio formula P (A | E) = P (A ∩ E)/P (E) turns into
zero-divided-by-zero, and solutions to this difficulty in turn tend to lead to
the Borel-Kolmogorov paradox (Borel 1909) as well as problems with preser-
vation of intuitive symmetries (e.g., Pruss 2015 and Pruss 2020). And when
we have uncountably many mutually incompatible events, such as when a
dart is thrown at a continuous target, it is mathematically impossible to
assign a positive real number probability to all of them: most such events
will have to get probability zero given finite additivity (Hájek 2003).

The problem of normalization comes up perhaps most vividly in the con-
text of the McGrew, McGrew and Vestrup (2001) [MMV] coarse-tuning
critique of fine-tuning arguments. Suppose some physical constant λ can in
principle take on any real number value, but in order for life to occur that
constant must have a value in some narrow interval, say [1.977, 1.979]. It
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is intuitive to think that on a single-universe no-designer hypothesis it is
unlikely that the constant should have been observed to land in that nar-
row interval, while it seems rather more likely to do so on a life-friendly
hypothesis such as of a large multiverse (taking into account the anthropic
principle that only universes with life are observed) or of a benevolent de-
signer. However, MMV cleverly observe that the ratio of the length of
a “narrow” interval to the length of the whole real line is zero, and the
same is true for any finite interval, be it narrow or wide. Moreover, the
difference between a narrow and a wide interval is just a matter of affine
transformation—sometimes, just a choice of unit system. Thus, MMV insist
that if we think that the need for a constant to fall in the “narrow” inter-
val like [1.977, 1.979] for life to be possible is support for some intrinsically
life-friendly hypothesis, we should also think that the need for a constant

to fall in some “wide” but still finite interval like [−1010
100
, 1010

100
] provides

equal support for that hypothesis. In short, if fine-tuning is evidence for a
life-friendly hypothesis, so is coarse-tuning, contrary to intuition.

While fine-tuning arguments are the locus classicus of the normalization
problem, the problem can come up in other contexts of scientific reasoning.
If a scientific theory predicts that some value λ is in a narrow range, and we
observe it to be in that narrow range, then that can be significant evidence
for the theory; on the other hand, if it predicts λ to be in a much a wider
range, an observation of λ in that range would not be impressive.1 And yet
relative to the real line (−∞,∞), all finite ranges a are infinitely narrow.

There is a natural connection between the regularity and normalization
problems: both seem to deal with zero probability events. The MMV
critique suggests that the prior probability of a constant lying in a finite
interval of length L of real numbers should be L/∞ = 0, and hence in
fine- (and coarse-) tuning reasoning we seem to be conditionalizing on zero
probability events. Because of this, both problems have been approached
via non-classical probabilities, such as hyperreal-valued ones (e.g., Benci,
Horsten and Wenmackers 2018; Pruss 2005). Unfortunately, non-classical
probabilities arguably suffer from at least three technical problems: non-
conglomerability with multiple resulting paradoxes (e.g., Pruss 2012), loss
of symmetries (e.g., Parker 2019; for a precise characterization of what
symmetries are lost, see Pruss 2020) and underdetermination (Hájek 2003;
Pruss 2018).

I shall argue, however, that there are unified in-principle solutions to
both problems within the scope of classical countably-additive real-valued
probability theory. This solution involves a defensible weakening of the
regularity constraint.

At the same time, the in-principle solutions have a serious practical limi-
tation: I do not know how to actually do calculations with them. Thus we
should look at them as a model of how one might reason, rather than as a

1I am grateful to Robin Collins for this point.
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model of how we in fact do reason. But at least we will know that regularity
and normalization are not insurmountable obstacles.

The focus of this paper will be on assigning a probability to a single
real-valued physical parameter. We start with a concrete example. This
concrete example concerns an important episode from the history of physics,
and in this respect should be more worrying to a Bayesian than the infinite
sequences of coin tosses (Williamson 2007), infinitely precise darts thrown at
targets, or uniform spinners with precisely defined outputs (e.g., Pruss 2013
and Parker 2019) that are staples of the Bayesian regularity literature but
yet do not occur in real scientific practice except as idealized models. The
approach of this paper is not intended to apply to such idealized cases.

2. The exponent in the law of gravitation and a restricted
regularity

Newton’s law L of gravitation states that there is a constant G > 0 such
that masses m1 and m2 exert an attractive force on each other equal in
magnitude to Gm1m2/r

2. I take it that during the first half of the 19th
century, after Cavendish’s laboratory measurement of gravitational attrac-
tion and before Le Verrier’s observation of the precession of the perihelion of
Mercury (and probably for a significant period of time prior and after that
half century as well) it was reasonable for scientists to assign a credence
greater than 1/2 to Newton’s law of gravitation, and they typically did so.
(My argument does not require a lower credence bound as big as 1/2: any
non-zero credence will do, though for vividness I will use 1/2.)

But now consider the regularity problem. The primary evidence gathered
for Newtonian gravitation from Kepler to Cavendish consisted of claims
that had non-zero prior probability. The main astronomical evidence, for
instance, involved careful measurements of the positions of solar system ob-
jects in the imaginary celestial sphere, all of which measurements had non-
zero error bars. Prior to these careful measurements and with Newtonian
theory bracketed, there was a non-zero probability that the measurements
would fall into these ranges. There is no normalization problem here be-
cause the positions in the celestial sphere are given by angles—the right
ascension and declination—which have finite ranges (from 0 to 24 hours in
right ascension and −180◦ to 180◦ in declination), and the error bars occupy
a non-zero fraction of these ranges. And other evidence—such as perhaps
that given by differences in brightness or Cavendish’s observations of the
movement of lead spheres—also involved non-zero error bars over a finite
range of observable effects (e.g., movements of the lead spheres beyond a
certain range would have destroyed the apparatus).

So, if the prior probability of L were zero, the posterior would have been
zero as well. But there is reason to think the prior probability was zero.
After all, for every real number p, there is a law Lλ that says that there is a
constant G > 0 such that masses m1 and m2 exert an attractive force force
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on each other equal in magnitude to Gm1m2/r
λ. Our Newtonian law L is

just L2 then. All of these uncountably many laws are incompatible (at least
given the accepted background fact that there are at least two objects of
non-zero mass). Thus, they cannot all have non-zero prior probability. But
if we assign prior probability zero to all the laws Lλ, the posterior probability
of L2 on the evidence available in the first half of the nineteenth century
will still be zero, and so the scientists assigning credence greater than 1/2
were unreasonable—which is implausible.

The non-classical probability solutions to the regularity problem leave
this problem unsolved. For instance, the hyperreal approach might allow
us to assign an infinitesimal prior probability to L2. But the evidence for
Newtonian gravity consisted of claims whose probability was non-zero and
non-infinitesimal: the error bars on right ascension and declination measure-
ments were never infinitesimal. And when we conditionalize something with
infinitesimal priors on an event with non-zero non-infinitesimal probability,
we get something an infinitesimal posterior.2 And so the hyperreal approach
would at best allow the scientists to have infinitesimal credence, and not the
credence greater than 1/2 that they actually had. Similar points apply to
other non-classical approaches, as long as they stay faithful to something
like Bayesian conditionalization.

But there is in fact a simple and natural solution. While it is impossible
that all the Lλ have non-zero real-valued priors, there is nothing mathemat-
ically barring the way for L2 to have a non-zero real-valued prior. Granted,
if we let L∗ be the disjunction of all the Lλ, i.e., the law that there is some
G > 0 and some real p such that the force is Gm1m2/r

λ, and if we insist that
all possible values of p are equally likely given L∗, then by finite additivity
we either have to assign zero probability to all the Lλ or to none of them.
But in fact it is unlikely that any reasonable scientist had a uniform distribu-
tion of the exponent p conditionally on L∗. After all, we discern reasonable
people’s priors from their posteriors and their evidence, and these simply do
not indicate a uniform distribution of p, given that clearly reasonable people
did in fact have credence greater than 1/2 that p = 2.

It would be ad hoc, of course, to say that p = 2 is the only exponent
value that has non-zero conditional probability given L∗. We could, indeed,
imagine the following scenario. In 1859, Le Verrier discovers that the motion
of Mercury departs from Newton’s law L2 but in fact fits very nicely with the
law L2+1/232 . He hypothesizes that the exponent p is in fact exactly equal

to 2 + 1/232. Increasingly precise measurements of the motions of solar
and extra-solar objects fit with this hypothesis. Einstein comes up with the
General Theory of Relativity as a logical curiosity, but it simply does not
fit the data as well as L2+1/232 . In this scenario, it would be reasonable for

2Suppose P (H) is an infinitesimal α > 0 and P (E) ≥ r for some strictly positive real
number r. Then P (H | E) = P (H ∩ E)/P (E) ≤ α · (1/r), which is infinitesimal since an
infinitesimal multiplied by any positive real yields an infinitesimal.
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scientists to assign a credence greater than 1/2 to L2+1/232 , and hence their
priors for L2+1/232 had to have been non-zero (and non-infinitesimal).

It may seem that the same thought experiment could be run for every
value of p, leading to the conclusion that all the uncountably many possible
exponent values had non-zero non-infinitesimal priors, which is impossible
for a coherent probability distribution. But in fact the argument cannot
be run for every value of p. It can only be run for every value of p that
satisfies the condition that scientists could have hypothesized that value as
the exponent. But not every value can be so hypothesized. Indeed it seems
right to say that the set of numbers science is capable of thinking is at most
countable. After all, all our mathematical expressions are finite in length
and written in a finite alphabet, and there are at most countably many such
expressions, and hence at most countably many “expressible” mathematical
objects. One can then restrict regularity to hypotheses positing such objects.
(There are some still serious technical problems with this proposal as it
stands which will be discussed below.)

There is in principle no problem with assigning a non-zero classical real-
valued countably-additive probability to every member of a countable set E
of real numbers. For instance, we can enumerate the numbers as λ1, λ2, . . .
and then assign probability 2−n to λn. That’s not quite what we want to
do in the case of the exponent in the law of gravitation, however. For there
is no countable set E of real numbers with the property that it is rational
to be certain that if L∗ holds, then the exponent is in E. Even if E is all
the real numbers we can express, there should be a serious possibility that
the exponent is something that we cannot express.

But what we can do is to fix a real 0 < ρ < 1, and assign probability
2−nρ to the exponent being λn (for each n) and probability 1 − ρ to the
exponent being in the complement of E. Moreover, if we so desire, we could
even suppose some continuous distribution conditional on the complement
of E. For instance, if φ is some probability density (say, a normal one), we
could suppose that

P (p ∈ [a, b]− E) = (1− ρ)

∫ b

a
φ(x) dx.

Of course, there is still the problem that the choice of the credence to
be assigned to each λn ∈ E (conditionally on the exponent being in E)
as well as the choices of the overall credence ρ of E and of the density φ
all look objectionably arbitrary. More will be said on this in subsequent
sections. However, for now it is worth noting that in worrying about this
arbitrariness we are no longer in the territory of the regularity problem,
but in the territory of the general problem of priors for Bayesianism. The
subjective Bayesian can simply say that we have the priors we do, and
that reverse engineering of scientists’ priors yields something like the above
model. The objective Bayesian can say that there are objective norms that
constrain or even pick out specific choices of answers to these problems,
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but that the above argument shows that there is no evident impossibility in
satisfying such norms.

It thus seems, though we have yet to discuss some serious technical diffi-
culties), we have a simple solution to the regularity problem for Bayesianism:
only countably many hypotheses can in fact be expressed, and there is no
mathematical impossibility in a non-zero classical probability to countably
many hypotheses. Perhaps it would be nice if we could provide an algorithm
to assign non-zero probabilities to hypotheses that we cannot in fact think,
but our inability to do so does no harm to our epistemic lives.

One might object that the above example is artificial. We can reformulate
Newton’s Law of Gravitation in an intuitive way as F = G′m1m2/S, where S
is the surface area of the sphere centered on one of the masses and reaching
the other mass and G′ is a redefined gravitational constant (G′ = 4πG).
This reformulation fits with the intuition about the gravitational influence
getting uniformly spread out over space, and in the reformulated law there
is no exponent given. However, of course, the exponent is still there. The
new law is equivalent to F = G′m1m2/S

1. It is true that 1 is an intuitively
very special exponent. But so was 2. And seeing things this way shows that
in fact there are more constants in the Law of Gravitation than met the eye.
For instance, we can formulate the original law as F = G(m1)

1(m2)
1/r2.

This shows that any mathematical law can be seen as part of a continuum
of laws, and the problem of hypotheses claiming intuitively privileged values
for constants needing to have non-zero non-infinitesimal probabilities is not
an isolated one.

For another historical episode, there is a long history of hypotheses about
the exact value of the fine-structure constant α, with it being currently
believed that α is approximately 1/137.035999206 with an uncertainty of
±11 in the last two digits of the denominator (Morel et al. 2020). There
has been a long history of speculation about possible exact values of this
constant (Kragh 2003). Eddington had a theory suggesting a value of 1/136.
Then, for a while, 1/137 was a serious possibility. Thus, in the 1930s, Pauli
expressed a belief that a future physics theory will yield “a numerical value of
the fine-structure constant α = e2/~c = 1/137” (quoted in Kragh 2003, 410).
Other “nice” values have been proposed. And while it appears reasonable to
be sceptical of such proposals on the basis of the current understanding of
the physical meaning of the fine-structure constant (Carroll 2018), to assign
zero or even infinitesimal credence to the 1/137 hypothesis in the 1930s
would have been unreasonable. We could imagine a sequence of more and
more precise measurements leading to our best value being 1/137.00000004
with an uncertainty of ±8 in the last digit of the denominator, in which case
it would be very reasonable to assign a not insignificant credence, perhaps
even higher than 1/2, to the hypothesis that the exact value is 1/137.

Observe also that while our focus in this paper is on the credence as-
signment for a single real-valued parameter, the basic point generalizes to
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arbitrary families of hypotheses: only countably many of the arbitrary fam-
ily of hypotheses are actually expressible, and then we can have a catch-all
hypothesis that some non-expressible hypothesis is correct.

3. Normalization

The above model in principle offers a solution to the normalization prob-
lem. The probability distribution for some real-valued constant λ is given
as follows. We have a countably infinite set E of expressible values. There
is some probability 0 < ρ < 1 that λ lies in E = {λ1, λ2, . . . }, and for each
λn ∈ V there is a non-zero probability ρpn that λ equals λn. And there is a
continuous probability density function φ such that:

P (λ ∈ U − V ) = (1− ρ)

∫
U
φ(x) dx

for every measurable subset U of R. It is reasonable to suppose, further, that
φ(x) > 0 for almost all x (i.e., everywhere outside of some set of Lebesgue
measure at most zero).

In general, then, we can say:

P (λ ∈ [a, b]) = ρ
∑

n∈{n:λn∈[a,b]}

pn + (1− ρ)

∫ b

a
φ(x) dx.

As long as a < b, P (λ ∈ [a, b]) will be bigger than zero, for two reasons.
First, every rational number is expressible, and hence in E, and if a < b are
real, there are infinitely many rational numbers in the interval [a, b]. Second,

if φ is almost everywhere positive, then
∫ b
a φ(x) dx > 0 for a < b. Similarly,

if [a, b] is a subset of a strictly larger interval [c, d], then P (λ ∈ [a, b]) <
P (λ ∈ [c, d]). Thus we do not have the MMV coarse-tuning problem that
all finite intervals are equally unlikely.

Moreover, our probability distribution is a classical countably additive
one. This implies that

lim
b→∞

P (λ ∈ [−b, b]) = 1

and
lim
ε→0+

P (λ ∈ [−b− ε, b+ ε]) = P (λ = b).

If b ∈ E, then P (λ = b) = ρpn for some n and if b 6∈ E, then P (λ = b) =
0. We would expect each ρpn to be relatively small. Going back to the
gravitational example, while there is something particularly elegant about
the exponent 2 in Newton’s Law, and it fits neatly with the idea of forces
at a distance r being inversely proportional to the area of a sphere of radius
r, this still is just one of infinitely many options, and so we should expect
P (L2 | L∗) � 1. Thus, in either case, the limit as we shrink the interval
around b is much less than the limit as we grow the interval around b. Hence,
not only is it false that small intervals are as likely as large ones, sufficiently
small intervals are much smaller than sufficiently large ones.
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McGrew, McGrew and Vestrup (2001) in their normalizability objection
to fine tuning assumed that the probabilities for constants were governed by
the Principle of Indifference. The gravitational exponent and fine-structure
constant examples showed that this assumption is false of the epistemic
priors of working scientists. Without this assumption, the way is clear to a
solution.

4. A somewhat more elegant model

However, the above model suffers from a surfeit of arbitrariness: we need
an assignment of non-zero probabilities to infinitely many expressible physi-
cal parameters, we need a value ρ to control how likely it is that the param-
eter falls in the set of expressibles, and finally we need a probability density
function φ.

Here is a different approach, which is mathematically slightly more el-
egant. Let F be all Borel subsets of real numbers. This is the smallest
collection of subsets of the reals that contains all intervals and is closed un-
der complements and countable unions. Let B be the set of all probability
measures on F—i.e., the set of all Borel measures. Let EB be the set of all
expressible members of B. This will be a countable set: EB = {µ1, µ2, . . . }.
For each µn let there be a strictly positive real parameter qn and suppose
that

∑∞
n=1 qn = 1. Then we can make our credence that our parameter λ

lies in a set A be:

P (λ ∈ A) =

∞∑
n=1

qnµn(A).

This defines a countably-additive probability function.
This model has the property that for any possible expressible value λn

for λ, the probability that λ = λn is a positive real number. For if λn
is expressible, then the measure that assigns probability 1 to the singleton
{λn} will also be expressible, and hence equal to some measure µmn in M.
And then:

P (λ = λn) ≥ qmnµmn({λn}) = qmn > 0.

What makes this model more elegant is that it does not separate out
hypotheses positing specific values λn from the hypothesis of a distribution
over the other values. Instead of having three families of parameters, namely
the values pm, the single value ρ and the values of the density function φ(x)
for x ∈ R, there is now a single unified set of parameters in the model, the
values qm.

Moreover, we can give a somewhat natural picture of how to generate
this model. We consider an infinite number of hypotheses about possible
stochastic processes that could generate the constant λ, where these hy-
potheses correspond to different measures µ in EB. Each such hypothesis
then gets a non-zero credence. Among the stochastic processes are trivial
processes that select a single expressible value with probability 1.
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5. Two limitations

There are, however, two technical limitations that both the original and
the revised model face. A natural weakening of the regularity condition is
to require that all expressible coherent hypotheses get non-zero credence.
The two models above are guaranteed to satisfy this condition in the special
case of the hypotheses Hλn that say that λ is precisely equal to λn for an
expressible λn.

But our models fail to assign any credence to hypotheses according to
which our physical constant lies in a set that is not Borel-measurable, and
in particular do not assign a non-zero credence to such hypotheses. The
problem of non-measurable sets is often considered to be a different problem
from that of regularity, however, and hence it will be beyond the scope of
this paper.3

And there is a second potential problem. Imagine that we have a Borel-
measurable set U that is itself expressible but has no expressible members
and letH be the hypothesis that our physical constant is inA. If U contained
some expressible value λn, then our models would have assigned a non-zero
credence to H, since they assign a non-zero credence to the hypothesis Hλn

that entails H. So, the difficulty lies in the case where U is an expressible
set but does not contain any expressible values. Such a set will have to
be infinite, since if U were finite then we could precisely express one of
its values, say using the description “The smallest value in U .” Further,
since every algebraic number is expressible, such a problematic set U cannot
contain any algebraic numbers, and hence it cannot contain any interval of
positive length. If expressibility is understood in the technical sense of set-
theoretic definability (see Section 7, below), and ZF is consistent, then it is
consistent with ZFC that there is such a set and it is also consistent that
there isn’t (Kanovei and Lyubetski 2017; Dorais and Hamkins 2019).

I acknowledge these limitations of the proposed model, but claim they are
limitations that do not affect scientific practice. In practice, science tries to
confirm two kinds of specific hypotheses about the values of constants: hy-
potheses about them being equal to a specific expressible number, say 2 or
1/137, and hypotheses about them lying in some interval of numbers of pos-
itive length, say [1/137.035999217, 1/137.035999195]. While no doubt some
physicists have idly speculate about whether the exact value of a constant
falls into some concrete weird set, such speculation does not seem to actually
appear in real scientific research.

3Note, however, that often when one talks of non-measurable sets, one talks of Lebesgue
non-measurable sets. I have chosen to work with measures on the σ-algebra of Borel sets
rather than the larger σ-algebra Lebesgue sets in order to allow for the possibility of more
measures in our set EB. The trade-off here is that these measures will measure fewer
sets. One can also go for the other trade-off and replace the Borel sets with the Lebesgue
measurable sets throughout the paper. It is a question for further investigation which
approach is superior.



10 ALEXANDER R. PRUSS

It would be nice to show there is a prior probability assignment that
assigns non-zero credence to every expressible hypothesis. I do not know of
a way of doing so. But what we have here appears to be a close second-best:
the existence of a probability assignment that assigns non-zero credence to
the kinds of hypotheses about constants that come up in science, and that
is at least in principle amenable to the evaluation of fine-tuning arguments.

But we cannot declare victory yet. We need to discuss two further chal-
lenges. The first is to come up with a proposal for the weights qn that is
not objectionably ad hoc and the second is to deal with thorny logical issues
around the concept of expressibility.

6. A random-description proposal for weights

In this section we give a model proposal for the weights pn assigned to
an enumeration of expressible reals or the weights qn assigned to an enu-
meration of expressible Borel measures. Readers will note a resemblance
between this proposal and Solomonoff priors (e.g., Solomonoff 1978) as well
as Kolmogorov measures of complexity (e.g., Kolmogorov 1963). There are
multiple ways to vary the details of the proposal, but rather than seeking
full generality as to the types of proposal possible, I will pursue one specific
example.

We can consider expressible numbers and Borel probability measures to be
set-theoretic objects that can be finitely defined in some fixed mathematical
language L with a finite set Σ of symbols, where an object a is definable in L
just in case there is well-formed formula (wff) φ of L with one free variable
such that a is the only object that satisfies φ. Let F be the countably infinite
set of all the finite sequences of symbols in L: every wff will be a member
of F , but F will also contain infinitely many non-wffs, and indeed infinitely
many completely nonsensical sequences.

There is a natural probability measure PF on F that models the following
stochastic process. Let Σ∗ = Σ ∪ {$} where $ is a symbol not in Σ. Now,
uniformly randomly and independently choose a sequence of symbols from
Σ∗, stopping when you pick $, and letting the symbols prior to the $ define
the (possibly empty) member of F . (By the Strong Law of Large Numbers,
with probability one you will eventually hit $.) More explicitly,

PF ({s1s2 . . . sn}) =
1

(N + 1)n+1

if s1s2 . . . sn is a sequence of symbols from Σ and N is the number of elements
of Σ.

Let A be either the reals R or the set B of Borel probability measures on
R. Now, let MA be the infinite subset of F consisting of those sequences that
are grammatically correct formulas with one free variable that have a unique
satisfier where that unique satisfier is a member of A. Then a member x of
A is expressible in L just in case it satisfies some formula in MA.
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Now suppose x1, x2, ... are the expressible members of A. Fix n. Let
d1, d2, . . . be all the formulas in MA that are satisfied by xn. Then let:

rAn =
∑
i

PF ({di} |MA).

We can now let pn = rRn and qn = rBn .
Another way to describe what we are doing is that we are choosing a

random member of A by repeatedly and independently generating random
finite sequences of symbols from Σ, stopping as soon as we have generated a
grammatically correct wff that has a unique satisfier and where that satisfier
is an object in A, and letting the random member of A be that satisfier. The
probability of xn thus being generated is then defined as the weight rn.

Intuitively, the weights here can be expected to strongly favor those math-
ematical objects that can be more briefly described, in light of the fact that
PF depends inversely exponentially on the length of the sequence. In the
real number case, and using a standard mathematical language, numbers
like 2 in the Newtonian example that can be more briefly described can be
expect to get higher weight than numbers that are harder to express. In
the Borel measure case, every measure that assigns probability one to an
expressible singleton has non-zero weight, but when that expressible single-
ton can be described in a relatively simple way, as {2} can, the weight can
be expected to be rather higher than the weight of many other singletons.
The measure thus is likely to fit with scientific preferences for more elegant
theories.

In practice, it is of course very difficult to figure out the values of the
weights given the above assignment. And, interestingly, details of our set
theoretic constructions of entities such as real numbers will matter.

For instance, there are multiple set-theoretic ways of handling the rela-
tionship between the natural numbers and the reals. One common approach
is to start with a construction of the natural numbers, often using the re-
cursive definition 0 = ∅ and sn = n∪{n}, where s is the successor function,
so that 1 = {∅}, 2 = {∅, {∅}}, and so on. Then one constructs negative
integers by using a set-theoretic way of marking a sign (e.g., if n is a posi-
tive integer, we can let −n be the ordered pair (∅, n)), rational numbers as
equivalence classes of ordered pairs of integers with the second one non-zero
(under the relation (a, b) ∼ (c, d) if and only if ad = bc), and real numbers
as equivalence classes of Cauchy sequences of rational numbers. If one does
this, then any description of any real number, however simple, will have to
reprise an enormous amount of set theoretic detail. Even the real number
zero will be an equivalence class of sequences of equivalence classes of pairs
of objects.

The unconditional probability that a randomly chosen member of F will
describe the real number zero will then be extremely small. (We can get a
lower bound on that probability by writing out the details in the definitions,
but that is a difficult task.) However, when we conditionalize on MR—i.e.,
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conditionalize on the random description being the random description of
some real number—the probability will be much higher, and the weight rRn
corresponding to the real number zero can intuitively be expected to be non-
negligible, because zero is significantly easier to describe than most other
numbers.

Another approach, however, is to modify the above constructions. Thus,
instead of making every rational number an equivalence class of ordered pairs
of integers, in the case of a number whose equivalence class includes (n, 1) for
some integer n, we replace the equivalence class by n itself, thereby making
it be the case that some rational numbers literally are integers. And instead
of making every real number be an equivalence class of Cauchy sequences of
rationals, we replace those equivalence classes of Cauchy sequences of ratio-
nals that include a constant rational number sequence (e.g., 3/4, 3/4, 3/4, ...)
with the rational number in that constant sequence. If we proceed in this
way, then among the reals, the integers and rationals will have relatively
simple set-theoretic descriptions, and it will be much easier to obtain lower
bounds for the unconditional probability that a member of F describes zero
or two. For instance, zero will be ∅ and hence will be described by the
formula

∀x′∼(x′ ∈ x)

and two will be {∅, {∅}} which can be described by the formula

∀x′(x′ ∈ x↔ (∀x′′∼(x′′ ∈ x′) ∨ ∀x′′(x′′ ∈ x′ ↔ ∀x′′′∼(x′′′ ∈ x′′)))).
Thus, the unconditional probability of picking a sequence of symbols de-
scribing zero is at least (N + 1)−11 and of picking a sequence describing
two is at least (N + 1)−56 (there are 10 and 55 tokens in the two displayed
expressions above, respectively), where N is the number of symbols in the
language. If our language consists of two quantifiers, five truth-functional
operators, one variable, one prime and two parentheses, then we can take
N = 11, and our lower bounds will respectively be the small and very small
numbers 12−11 and 12−56. These are also lower bounds for the probability
conditional on MR, but it is intuitively likely that after conditioning on MR,
the probability will be much, much higher—and indeed it needs to be for
our physics applications.

In practice, for further computations it would make sense to switch to a
language where grouping is handled by Polish notation rather than paren-
theses, which would reduce the length of the two sample expressions by
2 and 10, respectively. Alternately, we might choose to work with some
language further from set theory and closer to the mathematical languages
that scientists actually work with, languages with abbreviations for many
quantities commonly occurring in our mathematics, such as “2” and “π”,
as well for mathematically natural operations, such as multiplication, in-
tegration, and so on. The alphabet will be larger, but we will have much
shorter expressions. For instance, we could then express 2 very simply with
the formula x = 2.
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It could even make some sense to combine the idea behind Solomonoff
priors with the above approach. Thus, we could replace the measure PF on
strings of symbols from L by a measure induced by randomly generating
computer programs in some fixed computer language, which programs gen-
erate strings of symbols from L. Thus, the probability of a number or Borel
probability measure would then be the probability of a random computer
program producing a description of that number or measure conditionally
on the program producing a description of some number or measure.

7. Technical problems with expressibility

There is, however, another serious technical problem with the seemingly
plausible proposals so far. One way to see the problem is to note that the ar-
gument that there are only countably many expressible reals—an argument
known as the “Math Tea argument” in mathematical folklore—has serious
gaps. To spell out the faulty but suggestive argument in greater precision,
we might proceed as follows. Let expressibility be set-theoretic definability.
A set4 a is definable provided that there is a wff φ in the language of set
theory (a first order language with one predicate ∈) with one free variable
x such that a satisfies φ when substituted for x, and nothing else satisfies φ
when substituted for x.

Let W be the set of wffs in the language of set theory with at most one
free variable expressed in some coding scheme like Gödel numbering. Let
MR be the subset of W corresponding to wffs satisfied by exactly one object
and where that object is a real number. Let λR : MR → R be the function
defined by letting λR(n) be the real number that satisfies the formula with
code n. Then W is a countably infinite set, and MR is a subset of it, so it
is also countable. The expressible reals E are then the range of λR, and the
range of a function with a countable domain is countable.5

This argument as it stands commits two related technical errors. First,
there is no reason given to think there exists a set of the codes corresponding
to the wffs satisfied by exactly one object and where that object is a real
number. If set theory is consistent, then by Tarski’s Indefinability of Truth,
the concept of truth cannot be defined in the language of set theory. And
since truth can be defined in terms of satisfaction, neither can satisfaction
be defined.6 And without defining satisfaction in set theoretic language, we
have no way to guarantee the existence of the set MR. Similarly, and actually

4In set theory, real numbers, probability measures and other such objects are all sets.
5If f : A→ B with A countable, then A bijects with a subset of the natural numbers,

so there is a well-ordering ≺ on A derived from arithmetic ordering on the naturals. For
y in the range of f , let g(y) be the ≺-least x such that f(x) = y. Then g is a one-to-one
function from B to a countable set, so B is countable.

6Normally, we would define a wff as true provided it has no free variables and is satisfied.
Above, however, we are only interested in the satisfaction of formulas with a free variable.
But the satisfaction of formulas with a free variable can also define truth: a wff φ is true
provided that it has no free variables and something satisfies φ&(x = x).
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more seriously, even if MR were to exist, the existence of the function λR has
also not been shown, since we “defined” that function using satisfaction.

A similar problem afflicts the alleged set of expressible Borel probability
measures. Moreover, the proposal in Section 6 for the weights that real num-
bers and Borel probability measures are to be assigned requires a function
like to λR between codes for wffs with unique satisfiers and these satisfiers.

Admittedly there is more than a whiff of paradox about the above cri-
tiques. For instance, there is no difficulty in defining the set W in Zermelo-
Fraenkel (ZF) set theory for an appropriate coding scheme, like Gödel num-
bersing: wffs with a free variable are definable purely syntactically. And
assuming realism about mathematics, it is then true that some but not all
members of W are codes of wffs satisfied by exactly one object and where
that object is a real number. Surely, then, there should be a subset of W
consisting of precisely such codes. Admittedly, we can concede that not
every collection of objects satisfying some predicate is a set—otherwise we
fall into the Russell Paradox—but the idea that a “small” infinite set, like
the countably infinite set W , should be “missing” a precisely described sub-
collection like MR seems very strange.

Nonetheless, the critique is logically sound: no proof has been given for
the existence of the mathematical objects involved in the constructions.
Moreover, if ZF is consistent, then ZFC (ZF plus Choice) has a model M
in which every object is the unique satisfier of some wff with one free vari-
able (Hamkins, Linetsky, and Reitz 2013) In particular, in M the set E of
expressible real numbers is uncountable, since it is equal to R. Again, this
seems impossible: Isn’t E in one-to-one correspondence with a subset of the
wffs, and isn’t the set of all wffs countable? But there is no contradiction
here. For the alleged one-to-one correspondence between E and a subset of
the wffs is simply missing from the model M, whether or not it is a member
of the true or intended model of set theory.

Here is one way to work around the above issue. Start with ZFC (one
can also work with ZF if one prefers). For every wff ψ with exactly one free
variable, add to ZFC the symbol Sψ. Then add the following axiom schema:

∃!xψ(x)→ ∀x[ψ(x)→ ∀y[(pφq, y) ∈ Sψ ↔ (y ∈ x&φ(y))]],

where φ and ψ have exactly one free variable, φ(x) and ψ(y) are respectively
what one gets upon substituting x and y for the free variables, and pφq is
the code for the wff φ. This says that if ψ uniquely describes some set x
and φ is some formula, then Sψ is a subset of x such that if m is the code of
a formula with exactly one free variable and y ∈ x, then (m, y) is a member
of Sψ if and only if that formula is satisfied by y. In other words, Sψ is a
set that can define a satisfaction predicate for members of x. Let ZFCS be
the resulting theory. An easy compactness argument shows that ZFCS is
consistent if and only if ZFC is consistent. And once we have the symbol
Sψ, we can rigorously define our probability measures. See the Appendix
for details.
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So, as we saw, confining ourselves to ZFC, it seems we cannot decide
whether our constructions make sense or not. However, it is more intuitive
to think that they do: that we are not “missing” subcollections like MR or
mappings like λR. We can just add the needed assumptions as additional
axiom schemas for our mathematical theories. At this point we have two
choices. First, we can say that these schemas are simply true. After all, it
is intuitively plausible that at least for any set y definable by a formula ψ
there is a satisfaction set Sψ. Second, we can take a version of the Hamkins’
set-theoretic multiverse approach (Hamkins 2012) and say that there are
many universes of sets, and we will simply choose to do our mathematics in
one in which the assumptions are true.

Either approach will let us define a probability distribution over those
members of A (reals or Borel probability measures) that can be defined in
the original language of ZFC (i.e., without the added symbols Sψ). Now, in
fact, our physics is first-order in the sense that its mathematical formulas
make no reference to satisfaction or truth, but can all be expressed in ZFC.
Thus, if all we want is regularity restricted to the kinds of hypotheses that
come up in a physics like ours, this approach will do the job. But if we want,
we can expand further, repeating the above construction to include objects
definable in terms of ZFCS , by using a further extended theory (ZFCS)S—
we leave the logical details to the reader. This will allow us to extend our
restricted regularity further.

And we can iterate this construction several more times if we so desire.
Granted, some things that are intuitively expressible in ordinary English will
always escape us. For English, unlike ZFC or any of our iterated extensions
of it, contains its own satisfaction predicate. However, that satisfaction
predicate is also a source of paradox: it can be used to express liar sentences.
And we do not appear to lose anything of scientific interest by restricting
our attention to what is definable in ZFC or at most in some finite iteration
of our construction.

If we do not like the idea of extending set theory, there is a different
solution to the technical problems: we contract our attention to a fixed
level in the Lévy hierarchy. Say that the quantifiers ∀x ∈ y(· · · ) and ∃x ∈
y(· · · ), which are short for ∀x(x ∈ y → · · · ) and ∃x(x ∈ y& · · · ), are
restricted quantifiers, and that a wff of set theory is restricted provided all
its quantifiers are restricted. Let Σ0 and Π0 be the collection of all restricted
wffs of set theory. Inductively, let Σn+1 be the set of wffs of the form ∃xρ
for a variable x and a wff ρ in Πn and let Πn+1 be the set of wffs of the
form ∀xρ for a variable x and a wff ρ in Σn. A Σn (respectively, Πn) wff is
then a sequence of n unrestricted quantifiers, the left-most being existential
(universal), the next one being universal (existential), and continuing to
alternate in type, all followed by a restricted wff.

Every wff of set theory can be proved to be equivalent to a Σn or Πn

wff for some finite n. Moreover, for an appropriate coding scheme, and
for a fixed n, the satisfaction of a Σn ∪ Πn wff, appropriately encoded,
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can be defined in the language of set theory; indeed, by a Σn+1 ∪ Πn+1

wff (Lévy 1965). In practice, all mathematical formulas that come up in
physics are equivalent to a Σn ∪ Πn wff for some moderate finite value of
n. If we are willing to restrict our regularity assumption to n-expressible
hypotheses, i.e., hypotheses expressible by wffs from Σn∪Πn, for some fixed
finite n (say, n = 1000 to be really conservative), then we will still be able to
deal with a countable infinity of n-expressible constants or Borel probability
distributions, including all the ones expressible in a physics remotely like
ours, but our set theoretic difficulties will disappear (for some more detail,
see the Appendix).

The above solutions assume that expressibility is definability in the lan-
guage of set theory. But one may wish to have a potentially broader notion
of expressibility. One can specify numbers such as 5,

√
2 and −(log π)e in

the language of set theory. But one can also specify physical quantities in
terms of other physical quantities. Thus, one might have hypothesized that
the exponent in the law of gravitation is p = 274α, where α is the fine-
structure constant. And it might have been the case that α is not one of
the set theoretically definable numbers, in which case p wouldn’t have been
either on this hypothesis. However, we can think about the number 274α
because we can think about the number α, since we can gain reference to α
through its physical significance.

Because of this, it might help to extend the above approaches to allow for
what set theorists call definability with parameters. If B is a set, then we say
can that a is definable from the parameters in B just in case there is a formula
φ of set theory with free variables x, y1, ..., yn such that there are elements
b1, ..., bn of B and a is the unique set that satisfies φ(y1/b1) . . . (yn/bn)(x/a),
where ψ(z/c) says that c satisfies ψ when substituted for z. In other words,
we are allowed to help ourselves to the objects from B when defining a, even
if these objects themselves cannot be defined using pure set theory. In our
example above, p = 274α is definable from the parameter in {α}, or, more
briefly, definable by α. The parameters, furthermore, need not be funda-
mental constants. For instance, in classical mechanics, if we could precisely
specify which particles are constituent of two macroscopic objects, we could
thereby gain reference to the distance (in some unit system) between the
centers of mass of the two objects, and then could formulate hypotheses
about the values of fundamental constants as expressed in terms of param-
eters that include that distance.

There is some finite collection B of mathematical objects such as real
numbers, but perhaps not only real numbers7, that describe features we
have identified in the real world and to which we have gained reference by

7For instance, if quantum mechanics is the correct theory of the world, then we have
gained reference to some cardinal κ as the cardinality of the Hilbert space of the global
wavefunction. That cardinality is often thought to be ℵ0, which is definable in set theory
without parameters, but it might turn out to be some higher cardinal, in which case our
expressive resources might increase when we use κ.
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methods such as those suggested in the previous paragraph. It is natural to
suggest that quantities definable with parameters from B should also count
as expressible. And in the literal English sense of “expressible”, they are
expressible. However, for the purposes of the construction of our probabil-
ity measures, such inclusion is not a good idea. For suppose that we are
considering hypotheses about the value of α. But among the mathematical
objects that our scientific practices have given us reference to is α itself:
α ∈ B. So it’s trivial that α is definable from parameters in B. Moreover,
while we can extend the proposal about weights described in Section 6 to
consider wffs with parameters from B, the result is apt to be inscrutable,
since the weights assigned to different reals or Borel measures will depend
on how these reals or measures can be defined in terms of the parameters
from B, the exact values of which parameters we do not know.

A better approach, then, is probably to restrict expressibility in the con-
struction of the probability measures to the a priori expressibility given by
set theoretic definability without parameters. And if we wish to consider
hypotheses about the relationships between constants, we can do that in
other ways. We can, for instance, define a secondary constant γ = p/α,
and consider hypotheses about the values of that constant, including the
hypothesis that γ = 274.

8. Uniformity and independence

As noted, much of the Bayesian regularity literature deals with cases such
as infinite sequences of coin flips, spinners and dart throws. In these cases
there is a very natural classical probability distribution that we can think
of either as coming from an independence assumption, as in coin flip cases,
or from a Principle of Indifference in continuous cases. This classical proba-
bility measure that assigns zero probability to various expressible outcomes,
such as all the coins landing heads or the spinner stopping at zero degrees,
and hence the present approach will not work to help save regularity as long
as that probability measure is insisted on.

However, two things can be said about these cases. First, these cases are
idealizations that simply do not appear to come up in the course of seri-
ous scientific theorizing. Moreover, the zero probability outcomes are not
something we actually conditionalize on, because they are not something we
are capable of observing. We do not have any facility for observing infinite
sequences of coin flips or for measuring precise outcomes of continuous pro-
cesses. The outcomes we actually observe—such as a long finite sequence of
coin flips or an outcome of a continuous process with non-zero error bars—
have non-zero classical probabilities. So as long as our interest is in saving
scientific practice, we need not worry about these kinds of cases.

Second, if we think of the probabilities in theses cases as genuine epis-
temic probabilities, it is plausible that we really should not have the epis-
temic probability distributions that create the regularity problems. Suppose
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we come across an actual infinite coin flip sequence. If we have observed a
million coin-tosses in the sequence and found that they were all heads, then
it seems quite reasonable to suppose that, contrary to what we had previ-
ously thought, every result in the sequence is actually heads. This inference
can only work if our prior probability for all the tosses in the infinite se-
quence being heads is strictly bigger than zero, and indeed is not merely
infinitesimal. For our evidence, namely a million coin tosses landing heads,
is something that has non-zero non-infinitesimal probability, so that if the
prior were zero or infinitesimal, the posterior would remain zero or infinitesi-
mal. Perhaps, instead, our priors should have been a probability distribution
analogous to the ones in this paper, such as (1−ρ)P1 +ρP2, where ρ is some
small positive real constant, P1 is the distribution resulting from treating
the coin tosses as fair and independent, and P2 is some distribution that
assigns non-zero weight to expressible outcomes, such as all-heads, all-tails,
heads-on-even-and-tails-on-odd, and so on.

9. Subjective and objective Bayesianism

On subjective Bayesianism, the above models show that it is possible
to save enough regularity for typical scientific applications and for fine-
tuning arguments. And subjective Bayesians can indeed adopt the proposed
random-description weights, though they might instead wish to adopt some
other system of weights.

Objective Bayesianism divides into a version on which there is a unique
correct set of priors, and a version on which there are objective constraints,
beyond consistency and regularity, on the priors, but these constraints do
not uniquely determine one correct set of priors. On the unique priors
version, we have some difficulties for our solution. First, the approaches
where we restrict to some high but ultimately arbitrary level Σn∪Πn of the
Lévy hierarchy or to a specified number of iterations of the construction that
went from ZFC to ZFCS are going to be too arbitrary. Second, the random-
description weights depend on the precise choice of language and notation.
A version of set theory with a different set of fundamental predicates than ∈
or even a notational change such as that between parentheses, dot notation
and Polish notation is apt to affect the weights, and so it is very difficult to
be confident that one has got the unique right version.

But if the objective Bayesianism simply holds that there are objective
constraints on priors, and one is willing to allow for weakened versions of
regularity among these constraints, then our proposals may well be compat-
ible with that.

10. Conclusions

If we restrict regularity to hypotheses that are in some precisely specified
sense “expressible”, and there are only countably many such hypotheses,
the mathematical problems associated with the regularity requirement for
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Bayesianism shrink considerably. We have offered two proposals for proba-
bility measures in the special case of a single real-valued constant, one priv-
ileging expressible numbers and the other privileging expressible probability
measures. These proposals also offer a novel solution to the coarse-tuning
objection to fine-tuning arguments. These proposals do not solve all regu-
larity problems, but they do appear to solve the ones that actually occur in
scientific practice.

There are some thorny set-theoretic issues involved. These can be reme-
died by extensions to the ZFC axioms or by further restrictions of express-
ibility. The latter approach is much more innocent from the mathematical
point of view, and fits with all the physics theories that are being taken
seriously, but is also less elegant due to the arbitrary choice of level in the
Lévy hierarchy.

Finally, just as in case of Kolmogorov complexity and Solomonoff priors,
doing actual probability calculations with random description probabilities
is difficult. We may be stuck with intuitive approximations for a while.
That shouldn’t bother the subjective Bayesian, but the objective Bayesian
will presumably be less happy. However, at least we can now have some-
thing mathematically coherent that we are approximating with our intu-
itions. And typical Bayesian applications to the real world are, after all, all
handwavy approximations: we do not, after all, have exact priors for all,
and perhaps any, of the scientific hypotheses we meet up with. Bayesianism
can best be thought of as a model of reasoning. But now we have models
that incorporate enough regularity to reconstruct episodes from the history
of science and in principle distinguish fine- from coarse-tuning. That is
progress.

Appendix: Some set-theoretic machinery

Say a formula φ in a language L with one free variable defines an object
a in a model M (which we shall assume includes an interpretation of L)
provided that o satisfies φ in M when substituted for the free variable and
nothing other than o does.

Let L be the language of set theory (i.e., a first order language with a
single binary predicate ∈) formulated in such a way that the alphabet is
finite (so, to have infinitely many variables, we will have to resort to allow
for variables made out of multiple symbols, for instance using primes). Let
LS be the language of L together with a new symbol Sψ for every formula ψ
with exactly one free variable. Work with a coding system pφq for a formula
φ where the codes are natural numbers, and where there are formulas of ZFC
that can decide whether a code is the code of a formula that is a wff with
exactly one free variable, and whether some other natural number is the
length of the formula with the given code. Let ZFCS be the theory whose
axioms are all the axioms of ZFC together with the Satisfaction Schema:

∃!xψ(x)→ ∀x[ψ(x)→ ∀y[(pφq, y) ∈ Sψ ↔ (y ∈ x&φ(y))]],
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for all formulas ψ and ψ with one free variable, and where ρ(z) is ρ with all
instances of its free variable replaced by z.

Suppose ZFC is consistent (if not, all bets are off) and hence by the
completeness theorem has a model M. I claim that ZFCS is a consistent
theory. To see this, let F be a finite subset of the axioms of ZFCS . Then F
consists of a finite number of axioms of ZFC and a finite number of instances
of the Satisfaction Schema, S1, ..., Sn, where Si is the sentence:

∃!xψi(x)→ ∀x[ψi(x)→ ∀y[(pφiq, y) ∈ Sψi ↔ (y ∈ x&φi(y))]].

Let I be the subset of {1, ..., n} consisting of indices i such that ∃!xψi(x) is
true in M. We will let M′ be a model of LS that has the same objects and
relations as M, and whose interpretation of LS agrees with the interpretation
of L given by M, but which additionally interprets the symbols Sψ as follows.
First, if ψ is not one of the ψi for i ∈ I, then Sψ can have any interpretation
we like in M. Now, fix i ∈ I and suppose ψ = ψi. Let j1, ..., jm be those
indices in I such that ψjk is the same formula as ψi for 1 ≤ k ≤ m. Let
nk = pφkq. Then because M satisfies the ZF axioms, M contains a unique
object si satisfying (when substituted for x) the formula:

∀z

[
z ∈ x↔ ∃n∃y

(
z = (n, y) &

m∨
k=1

(n = njk &φjk(y))

)]
.

Now interpret Sψi as si in M′. The instances of the Satisfaction Schema with
indices j1, ..., jm will be satisfied under this interpretation. Hence, we now
have an interpretation of LS under which all the axioms in F are satisfied.
Hence every finite subset of the axioms of ZFCS is consistent, and so ZFCS

is consistent.
The real numbers R as well as the set B of all Borel probability measures

on R can both be defined in ZFC. Let A be either R or B. Let ψA be the
defining formula of A. Work in ZFCS . Let F (n) be a formula of set theory
that is true just in case n is the code of a formula which is a wff with exactly
one free variable. Let:

MA = {n ∈ N : F (n) &∃!x[(n, x) ∈ SψA ]}

be the set of codes of formulas that have exactly one satisfier and where
that satisfier is in A. Let

λA = {(n, x) ∈ SψA : n ∈MA}.

Then λA is a function from MA to A such that λA(n) = x just in case n the
code for a formula uniquely satisfied by x ∈ A. As usual, for U ⊆ A, let

λ−1A [U ] = {n ∈MA : λA(n) ∈ U}

be the pre-image of the set U .
We can now rigorously define our random-description measure on A. Let

`(n) be the length of the formula with code n (we assume the codes are
assigned in such a way that the length of a formula can be read off from it
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using the tools in ZFC—this is true for Gödel numbering). Let N be the
number of symbols in L. Define:

αn =
1

(N + 1)`(n)+1
.

This is the probability of randomly generating a sequence of symbols with
code n. Now, for U ⊆ A, we can let

PA(U) =

∑
n∈λ−1

A [U ] αn∑
n∈MA

αn
.

This is the conditional probability that a randomly chosen sequence of sym-
bols generates a definition satisfied by a member of U conditionally on its
generating a definition satisfied by some (necessarily definable) member of
A.

We can let EA be the range of λA: this is the set of expressible members
of A, and it is a countable set since the domain of λA is a subset MA of
the natural numbers. If x1, x2, ... is an enumeration of ER, then we can
now define the weight pn of xn to be PR({xn}). Similarly, if µ1, µ2, ... is an
enumeration of EB, we can define the weight qn of µn to be PB({µn}).

For any fixed level N of the Lévy hierarchy, and an appropriate coding
scheme like Gödel numbering, one can express a satisfaction predicate SN
for that level in ZFC such that SN (n, a) just in case a satisfies the level N
formula with code n. One can, of course, also express a predicate FN that
says that a formula has exactly one free variable and is at level N . If A is
R or B, let

MA,N = {n ∈ N : FN (n) &∃!xSN (n, x)}.
Define

λA,N = {(n, x) : SN (n, x) &n ∈MA,N}.
We can now define our probability measures as above, but using MA,N and
λN,A in place of MA and λA.
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