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Abstract

Dynamical models of cognition have played a central role in recent cog-
nitive science. In this paper, we consider a common strategy by which
dynamical models describe their target systems neither as purely static
or purely dynamic, but rather using a hybrid approach. This hybrid-
ity reveals why dynamical models should not be understood as provid-
ing unstructured descriptions of a system’s dynamics, and is important
for understanding the relationship between dynamical and non-dynamical
representations of a system.
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1 Introduction

Timothy van Gelder’s seminal paper, “What might cognition be if not com-
putation?” (van Gelder, 1995) was an important salvo in the debate between
those who take the mind to be a digital computer and those seeking alternative
characterizations. As an alternative to the standard computational picture, van
Gelder argued that a dynamical systems approach could account for various as-
pects of real-time cognitive performance, while avoiding various complications
and commitments of the computational picture (see also Thelen and Smith
(1996) and contributions to Port and van Gelder (1995)). Dynamical modeling
of cognitive processes has subsequently become a significant research area and
has inspired philosophical developments both in accounts of cognition (Clark,
1998) and of explanation (Bechtel, 1998; Zednik, 2011). In this paper, we argue
that these discussions have neglected a key aspect of dynamical modeling that
is important for assessing dynamicist claims about cognition.

The conception of computation to which van Gelder was reacting involves
machines going through sequences of discrete states in response to discrete in-
puts. This conception is at the foundation of modern computer science and
cognitive science. It was developed into a philosophy of mind via Putnam’s
machine-state functionalism (Putnam, 1960, 1967), and more generically as
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the computational theory of mind, further elaborated as the computational-
representational theory of mind (Fodor, 1981). In developing a dynamical al-
ternative to standard computational accounts, philosophers have emphasized
the application of coupled differential equations to model continuous changes
through time. Such models reveal how complex patterns of self-regulation can
arise from continuous feedback loops in which it is difficult to isolate particular
parts as making distinct contributions to the overall behavior. This is claimed
to be at odds with the picture provided by standard computational accounts.

Van Gelder’s paradigm example of a dynamical system—the Watt governor—
is not itself taken to be a cognitive system, but rather is put forward as providing
insights into how cognitive tasks could be performed non-computationally. But
which features of dynamical representations make them a promising basis for
modeling cognition? It might seem like answering such a question would re-
quire an account of what makes a system cognitive, but one can make headway
without such an account. It enough to compare the simpler models thus far em-
phasized by philosophers with dynamical models for the performance of tasks
that more closely resemble cognitive ones, in order to see whether the features
that have been viewed as significant for cognition are also significant for under-
standing the performance of the more complex tasks. Towards this aim we will
discuss papers by Randall Beer and collaborators (Phattanasri et al., 2007; Beer
and Williams, 2015), in which they evolve “minimally cognitive” agents able to
perform tasks related to learning and categorization, and then model them us-
ing both dynamical and non-dynamical representations. The dynamical models
for these agents serve as a basis for evaluating whether philosophical discus-
sions of simple dynamical systems “scale up” to more complex and cognitively
interesting ones.

Here we argue that features that have been emphasized by philosophers—
specifically those by which dynamical models describe continuous changes and
reciprocal agent-environment interactions—are less significant for understanding
cognition than other features that have been neglected. In dynamically modeling
a system, the longer-term stability properties of the system are typically as
important as facts about which quantities are changing, and the representation
of certain quantities as either constant or as variable itself depends on decisions
about how to model the system. In the following, we will particularly emphasize
a standard representational device by which a model will represent the same
quantity alternately as a time-varying variable in one equation and as a fixed
parameter in another. This device enables the modeler to track the dynamical
evolution of a system in the context of a broader “attractor” landscape, such that
the instantaneous change in the system’s trajectory at each moment depends
on the abstract position of the system within the larger landscape (e.g., how
far it is from equilibrium). For now we will refer to representations employing
this device as hybrid representations. In section 3.3 we will characterize this
phenomenon more precisely using the concept of a “quasistatic approximation”
(Beer and Williams, 2015).

The dynamical model of the Watt governor and the dynamical models de-
veloped by Phattanasri et al. (2007) and Beer and Williams (2015) employ qua-
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sistatic approximations. We will argue that as the systems considered become
more complex, the use of quasistatic approximations becomes more significant
for understanding their ability to perform cognitive tasks. Since all three cases
employ representational hybridity, it is clear enough that such hybridity alone
is insufficient for describing a system as cognitive. Whether a system performs
a cognitive task cannot be read off from the formal features of its dynamical
models. Nevertheless, we will describe several ways in which our discussion of
hybridity leads to a better understanding both of dynamical models and of their
relationships to non-dynamical models. To start, it helps dispel a naive picture
on which dynamical models provide an spatiotemporally unstructured charac-
terization of a system. This in turn eliminates a worry that any discretization or
modularization of a system must be arbitrary, since a proposed way of carving
up a system can be justified by its tracking features already present dynamics.
Finally, it makes salient an important subtlety in the way that dynamical mod-
els represent their target systems. Many of the choices going into developing a
standard computational model—such as the division of a system into functional
modules—are easy to see in the model itself. But dynamical models are just as
much representational devices as standard computational models, even if they
do not wear the modeler’s representational choices as much on their sleeves.

2 Representations, Mechanisms and Explanations

Van Gelder’s (1995) paper has been very influential among philosophers work-
ing on a variety of issues, from metaphysics of mind (e.g., whether minds are
representational, computational, etc.) to the nature of explanation in cognitive
science (e.g., whether dynamical models fit criteria for being explanations). Van
Gelder deploys the Watt governor for regulating steam engines as a metaphor for
the causal relationships operating in brains and the bodies that contain them.
The Watt governor consists of a spindle with two hinged arms whose rotation
is coupled to a steam engine. As the rotational speed of the spindle increases or
decreases, the arms go up or down, respectively closing or opening a valve (i.e.,
a throttle) that controls the flow of steam, thus regulating the speed of the en-
gine. This negative feedback loop serves to stabilize the otherwise rather erratic
behavior of steam engines that were due to factors such as fluctuations in the
heat produced by burning coal and changes in the external load on the engine.
The mathematical analysis of governors took considerable work by Maxwell
and others, to develop a set of continuous differential equations whose shared
parameters model the couplings across the system.

Van Gelder argues that standard computational theories with their com-
mitment to internal symbolic representations are inadequate to describe the
workings of the engine-governor system. He emphasizes the continuous and re-
ciprocal nature of the causal interaction between the angle of the arms and the
speed of the engine, and he claims that this relationship is “much more sub-
tle and complex than the notion of representation can handle” (1995, p.353).
Instead, he maintains, this framework requires the “mathematical language of
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dynamics” (ibid.) within which these quantities are coupled. He concludes this
discussion by stating: “The real problem with describing the governor as a rep-
resentational device, then, is that the relationship of representing—something
standing for some other state of affairs—is too simple to capture the actual
interaction between the governor and the engine” (ibid.).

It is worth highlighting van Gelder’s inference from the claim that a par-
ticular relationship is described using the mathematical language of dynamics,
to the claim that any computational-representational model would be too sim-
ple to capture the actual interactions. But what is the relationship between
this mathematical language and the target system it represents? To say that
computational-representational models are too simple to capture the actual in-
teractions in the system is to presuppose that there is some minimal standard
for what counts as adequately representing the system. But from the fact that
one can represent interesting features of the governor’s behavior using models
from dynamical systems theory, it does not follow that one must represent those
features in order to adequately represent the system for some purpose. Neither
does it follow that the differential equations by themselves provide the minimal
standard.1

Van Gelder’s use of features of the dynamical representation to argue that the
Watt governor cannot be understood on a standard computational-representational
model is most salient in the following passage:

[In the Watt governor, n]ot only are there no representations to be
manipulated, there are no distinct manipulatings that might count as
computational operations. There are no discrete, identifiable steps
in which one representation gets transformed into another. Rather,
the system’s entire operation is smooth and continuous; there is
no possibility of non-arbitrarily dividing its changes over time into
distinct manipulatings, and no point in trying to do so. (van Gelder,
1995, p. 354)

In focusing on smoothness and continuity, van Gelder is appealing to math-
ematical features arising in the application of differential equations. We will
argue that the question of whether a dynamical system can be non-arbitrarily
decomposed cannot be resolved by appealing to such mathematical features.

Aside from smoothness and continuity, van Gelder also emphasizes that the
governor’s activities “are happening continuously and at the very same time”
(van Gelder, 1995, p. 354). While this is not an inaccurate description of the
system, it neglects important subtleties in the way that time is represented in
dynamical models, as we will explain. Grush (1997) has already noted a mis-
match between the temporal features highlighted by proponents of the dynamic
approach and those of the models they consider. In particular, while propo-
nents emphasize “real-time” dynamics, many models used to demonstrate the

1In criticizing van Gelder for not attending to the relationship between the dynamical
representation and the target system, we are not directly addressing his position that the
target system should not be understood as processing representations. We flag the use of
these two notions of representation to prevent possible confusion.
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promise of the approach are not in real-time, but involve discrete time-steps
corresponding to task-sequences.

Before proceeding, it will be useful to differentiate the questions we will be
addressing from those that have been considered elsewhere. There has been
considerable discussion in the philosophical literature about whether dynami-
cist cognitive science excludes representational accounts of mind (Bechtel, 1998)
and whether it provides an alternative view of computation or is incompatible
with computational theories of mind (e.g., Wheeler, 2005). Authors in this de-
bate have been concerned with such questions as whether dynamical models
are genuinely explanatory or merely descriptive of target systems, and if ex-
planatory, whether they conform to patterns of mechanistic explanation, causal
explanation or something else (see, e.g., Clark, 1998; Bechtel, 1998; Wheeler,
2005; Chemero and Silberstein, 2008; Wilkenfeld, 2014; Kaplan, 2015).

In this paper, we do not engage with the vast debate on the nature of scien-
tific explanation in general or of model-based explanation more specifically (e.g.,
Bokulich, 2011). Nevertheless, we will briefly illustrate how participants in this
debate have largely focused on the features of dynamical models emphasized
by van Gelder. For instance, debates over the explanatory status of dynamical
models have concerned their purported inability to explain a phenomenon by
decomposing its mechanism into localized components (Bechtel, 1998; Chemero
and Silberstein, 2008; Kaplan and Craver, 2011). These debates direct one’s at-
tention to features of dynamical models that supposedly threaten localization.
This is just one way in which van Gelder’s emphasis on decomposition has had
long-lasting influences.

Zednik (2011) provides a good example of the extent of this influence. Zednik
has argued that dynamical explanations in cognitive science, despite sharing
the common feature of being formulated via differential equations, do not, in
fact, constitute a single explanatory type. Some models (e.g., those of Thelen
and Smith (1996) and Beer 2003) do, he maintains, support decomposition
into parts and their activities that allows them to be characterized as providing
mechanistic explanations, whereas others (e.g., Haken et al., 1985) do not, rather
providing a covering law explanation (Hempel and Oppenheim, 1948; Bechtel,
1998).

Zednik is correct to highlight the plurality of dynamical models and to put
pressure on hasty arguments for why such models cannot provide mechanistic
explanations. But he is uncritical in his assumptions about what it is that mod-
els of dynamical systems must explain. He considers two primary challenges
for modeling certain dynamical systems mechanistically. One is that dynamical
models involve an agent-environment interaction. The other is that coupled
dynamical systems involve continuous reciprocal causation and thus allegedly
cannot be decomposed into localized parts with localized functions. Regarding
the second claim, Zednik assumes that for systems involving reciprocal contin-
uous causes it will be “difficult or impossible to allocate responsibility for any
particular operation to one part of the system” (p.259), and thus must be rep-
resented using the models of dynamic systems theory. He merely disputes that
this entails that dynamic models cannot be given a mechanistic interpretation.
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For all that he moves the discussion forward by distinguishing different types of
dynamical models, he nevertheless accepts van Gelder’s characterization of the
features of dynamical representations that merit philosophical discussion.

Our criticisms notwithstanding, philosophers since van Gelder have consid-
ered a wide range of dynamical models that are significantly more complex than
that for the governor. A notable example is Eliasmith (2010), who posits an
important cognitive difference between dynamical systems that can and cannot
be modeled using the tools of control systems theory. Nevertheless, our dis-
cussion in this section motivates a more general discussion of the features of
dynamical systems that are relevant to cognition. One advantage of focusing on
Beer and colleagues’ “minimally cognitive” agents is that the agents are evolved
without making any a priori assumptions about how they should perform the
task. They thus provide a good basis for an empirically grounded discussion of
which modeling frameworks are suitable for modeling their dynamics.

3 Hybridity in Dynamical Representations

Van Gelder and subsequent writers have emphasized the use of differential equa-
tions to represent the continuous evolution through time of a system of closely
interacting parts. This emphasis is the result of focusing on the derivatives in
differential equations, which are well defined for all values of a function when
that function is smooth (in the sense of being everywhere differentiable). Yet a
myopic focus on derivatives can lead philosophers to miss the range of modeling
decisions that go into modeling a system dynamically. These decisions include:
the specifications of initial conditions, boundary conditions, and rigidity con-
straints, as well as the choice to model certain quantities using variables and
others using time-invariant parameters. These decisions reveal that dynamic
modeling is not merely a matter of specifying what quantities are changing, but
also which remain stable over a time-period of interest.

In this paper we focus on the way that dynamical models rely on assumptions
about the equilibrium or attractor states of a system, and how such assump-
tions are employed in modeling the system’s evolutionary dynamics. In the
models we will consider, the dynamic models cannot be understood as “pure”
representations of a systems dynamics, but rather as “hybrid” representations
in assumptions about the longer-term stability of a system play a role in mod-
eling the shorter-term transient dynamics. After highlighting a few examples
of such hybridity, we will show how it is more rigorously characterized through
the concept of a quasi-static representation (Beer and Williams, 2015).

In this section we will provide three examples of hybrid representations.
The first is based on a closer inspection of van Gelder’s treatment of the Watt
governor. The second and third are from more recent work by Randy Beer
and his collaborators. By beginning with van Gelder, we aim to show that the
modeling device we are describing is employed (and typically ignored) even in
widely-discussed examples from the literature. Crucially, in highlighting formal
similarities across the three examples, we are not suggesting that the examples

6



are all similarly relevant for modeling cognition. The behaviors modeled for
the agents in the last two examples are more complex and relevant to cognition
than that of the Watt governor. Nevertheless, our focus on hybridity provides
a useful lens through which to compare the models. In the section 4 we will
further discuss the relevance of hybridity for cognition, and will explain why
it becomes even more significant as one considers models for more complex
cognitive behaviors.

While here we focus on cognition, it is important to note that the features of
dynamic models we identify are ubiquitous across the sciences. The philosophers
Jordi Cat Cat (2005), Mark Wilson Wilson (2017), Sarah Green and Robert
Batterman Green and Batterman (2017) have been particularly attentive to the
way that dynamical models in areas as diverse as physics and biology use subtle
representational devices to incorporate information about a system’s steady-
state and equilibrium behaviors. Accordingly, a virtue of the present discussion
is that it creates a potential bridge between work on dynamical systems in
cognitive science and the more general study of how dynamical models function
across the sciences.

3.1 Modeling the Watt Governor

We have already described the basic structure of the Watt governor above as
consisting of a spindle with flywheel arms connected to a throttle controlling the
amount of steam flowing in the engine. The dynamical model of the governor
represents the behavior of the system using terms that explicitly represent the
angle of the arms from the vertical, the speed of the engine, and the throttle
setting. The governor’s key dynamical feature is the feedback loop by which
it regulates the speed of the engine so that the speed does not substantially
deviate from a desired value. The dynamical model captures this through linked
equations sharing the common terms just mentioned. Although Maxwell’s model
is more complicated, van Gelder, following Beltrami (1987), boils it down to a
pair of equations (or, more accurately, one equation and one schema for an
equation).

The first of these equations describes the current acceleration of the angle
of the arms given the current value and velocity of the angle.

(1)
d2θ

dt2
= (nω)2cos(θ)sin(θ)︸ ︷︷ ︸

(i)

− g

l
sin(θ)︸ ︷︷ ︸
(ii)

− r
dθ

dt︸︷︷︸
(iii)

Here θ is the angle of the arms, ω is the speed of the engine and n, g, l, and r
are constants. The acceleration of the angle is given as a function of three terms
(which we have labeled (i), (ii), and (iii) above), the first two of which involve
the current angle of the arms (θ) and the third involves its velocity (dθ/dt). The
current value of θ influences its acceleration by determining the outward effect
of the force exerted by the engine (term (i)) and the inward effect of gravity
(term (ii)—l is for arm length). The velocity of θ influences the acceleration of
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θ by producing friction at the hinges of the device linking the governor to the
throttle valve (term (iii)). This dampening influence of friction is necessary for
the system to stabilize (just as without friction or air resistance a pendulum
will continue to swing indefinitely). The construction of the model is based on
Maxwell’s original work in which he explicitly invoked the notions of kinetic
energy, potential energy, and friction (or resistance) corresponding to the three
terms respectively, adapting the equations for a pendulum (terms (i) and (ii))
that is damped (term (iii)).

As van Gelder notes, in equation (1) ω is treated not as a time-dependent
variable, but as a fixed parameter. This may seem puzzling, since it is crucial
to the functioning of the governor that the speed of the engine changes as a
function of θ. In discussing equation (1), van Gelder temporarily considers the
case in which the governor is detached from the throttle valve so that the engine
speed no longer depends on θ. Under such a scenario the engine speed could
be constant, but we still need an explanation for why equation (1) remains
applicable to the case in which the link between the governor and the throttle
value is not broken. Here the key is to focus on the role of equation (1) in
predicting the stability of the system. Think of (1) as providing a snapshot
of the system at a time. Does the snapshot represent the system at a stable
equilibrium point? We can determine this by imagining that the acceleration
and the velocity of the angle equal zero—as they would when the system is
at steady state. Doing so reveals that the system will be at equilibrium only
when the first and second terms are equal. Additionally, whether the difference
between these terms at points near equilibrium is positive or negative in the
neighborhood around equilibrium will determine whether the equilibrium point
is a stable one.

While the engine speed ω is given in equation (1) as a parameter (understood
in this context to be a non-time-dependent variable), in the second equation it is
modeled as a time-dependent variable. This is essential for modeling it dynam-
ically, since if it were modeled as a constant rather than as a variable, then its
derivative would be zero at all times. Van Gelder presents the second equation
for the influences on the derivatives of ω in the dynamical model schematically:

(2)
dnω

dtn
= f(ω, ..., τ, ...)

where τ is the setting of the throttle valve. Van Gelder does not fill in the details
of this equation (e.g., the order of the derivative or the additional variables in
the function) and we are willing to grant him that for the sake of modeling the
feedback loop in this system that these details do not particularly matter – i.e.
they can be safely black-boxed. Yet the fact that ω is represented alternately as a
parameter and as a time-dependent variable is important for understanding the
representational division of labor underlying the dynamical model. In modeling
ω as a parameter, one represents the change in the acceleration of θ resulting
from the current state of the system, in particular how far the system is out of
equilibrium. One can then take the individual snapshots of the instantaneous
influence of ω on the acceleration of θ and combine this with information about
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Figure 1: Dynamic Causal Model for the Watt Governor: Solid arrows indicate causal
arrows, dashed arrows (labeled “I”) indicate integration links (see text for details)

how ω varies as a function of θ (via the throttle setting) in order to model the
evolution of the system. This requires modeling ω using a time-varying variable.

A useful framework for modeling self-regulating systems such as the governor
is provided by Iwasaki and Simon’s dynamic causal models (Iwasaki and Simon,
1994). These models take a causal modeling framework that was designed for
static sets of equations giving the causal relationships between simultaneous
variables, generalizing the framework to model a system in which some of the
variables are away from equilibrium. Here we won’t dwell too much on the causal
interpretation of these models (Rescher and Simon, 1966; Dash and Druzdzel,
2001; Weinberger, 2019), but will use them primarily as a way to keep track of
the temporal relationships among the variables for the governor.

In figure 1 we have applied Iwasaki and Simon’s technique to provide a
visualization of the relationships among the differential equations in the model
of the governor. The influence of θ, θ′and ω on θ′′ is read off of (1) and the
influence of τ on ω is given by (2). We have also added a causal arrow from
θ to τ , as the influence of the governor on the engine speed is essential to
its functioning. Solid causal arrows model “simultaneous” relationships, and
dashed arrows, or integration links, correspond to the mathematical operation
of integration—that is, of taking the integral of the derivative function. The
so-called simultaneous relationships in the model need not be taken as entailing
that the causal influences represented in fact take no time. Rather, they may
be understood as indicating that the effect variable has had sufficient time to
respond to any changes in its cause(s) at the point at which both variables
are measured. For instance, the mechanical coupling between spindle arms and
throttle is not modeled dynamically, with the underlying assumption being that
this connection is effectively rigid enough to be treated as instantaneous given
the modeler’s interest in what happens at the given time scale. This contrasts
with variables that are linked via derivatives and integration-links. Through
integration, one can take the value of a variable at a time-step and give a
discrete approximation of its value at the next time-step. The integration links
are from higher-order derivatives to lower-order derivatives. All of the solid
causal arrows are straightforwardly derived from interpreting equations (1) and
(2) as equations in which the variable on the left-hand side is an effect of the
variables on the right-hand side.

One useful feature of the representation in figure 1 is that it enables one
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to easily check that a necessary condition for the system’s stability is met.
Specifically, for a system to be stable, the highest-order derivative of any variable
must be a function of the variable’s lower-order derivatives. If, for example,
the angular acceleration d2θ/dt2 did not change with velocity, it could not be a
feature of the dynamics that it would be pushed back towards zero once the arms
were in motion. It is straightforward to see that the dependence of the highest
order derivatives on the lower orders is met in the present model (although this
alone does not guarantee stability).

In figure 1, θ, but not ω, is modeled along with its time-derivatives. This
corresponds to the same division of labor involved in treating ω alternatively
as a parameter and as a variable. Representing θ’s velocity and acceleration
enables one to capture the feedback loop by which the system as a whole tends
towards a constant speed. Including derivatives for a variable enables one to
represent that variable (in this case θ) as having been perturbed from a stable
state and as not having had adequate time to return to that state. Note that
changes to a variable’s velocity or acceleration at a time do not change that
variable’s value at that time, although they will influence that variable’s value
an arbitrarily short period of time later (as can be calculated using integration).
In contrast, ω is represented without a time-derivative, and thus as if it responds
instantaneously to any change in the value of θ. As long as θ has not reached
its long-term steady-state value, neither will ω, but the model attributes the
system’s being away from equilibrium to the “stickiness” of θ. Given enough
time for θ to adjust to prior perturbations ω can be treated as immediately
following suit.

The dynamic model for the Watt governor highlights the way that the cou-
pled differential equations for the system do not provide a pure unstructured de-
scription of its dynamics, but are specifically designed to model its equilibrium-
preserving behavior. This is done via a hybrid form of representation in which
ω is alternately treated as a parameter and variable in the two equations. We
now turn to more complex dynamical models involving similar hybridity.

3.2 Phattanasri and Beer

We now turn to two papers by Randall Beer and his collaborators coming out
of their sustained effort to understand and defend the application of dynamical
models in cognitive science. We will focus on Beer’s projects in which he evolves
simulated neural network agents to perform relatively simple tasks related to
learning and categorization. These agents’ neural networks are constituted by
sets of dynamical models in which the parameters are tuned through a genetic
algorithm simulating the natural selection of the agents over many generations,
where fitness is defined in terms of their abilities to perform the relevant task.
The systems developed barely register as “cognitive”—they are, in Beer’s par-
lance, “minimally cognitive agents”. Nevertheless, their capacities and their
dynamics are considerably more complex than the centrifugal governor. While
the governor has been seen as providing insights into cognition, few have sug-
gested that it is in fact a cognitive system.
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This subsection considers an experiment by Phattanasri et al. (2007) aiming
to understand the dynamics of an evolved artificial agent selected for its ability
to adjust its behavior to a contingent, changing relationship between a cue stim-
ulus and a reward. In the experiment, the cues were labeled as “smells”, which
were predictive of two kinds of “food”, but where the relationship between the
smells and the food was reversed unpredictably. Artificial selection was applied
to simple agents with up to six internal neurons on the basis of whether they
successfully timed the opening of their “mouths” to obtain the “edible” food,
or kept their mouths closed to avoid ingesting “inedible” foods. Because the re-
lationship between cues and the positive or negative reinforcement provided by
edible and inedible food was reversed during the agents’ “lifetimes”, successful
agents following a variable response strategy had to change behavior as a result
of experience (a capacity Phattanasri et al. refer to as “learning”).

Phattanasri et al. focus their analysis on the simplest successful agents,
which had three neurons. To study the internal dynamics of a successfully
evolved agent in this task, they applied a couple of techniques: (A) They tested
the agent under conditions that were not part of its “evolutionary history”,
such as clamping an input to the network (holding it constant) as if a smell
cue appears but does not disappear. This enables them to identify attractor
basins in the state space defined over the activation levels of the agents’ three
neurons, which they represent using “phase portraits” (not pictured here, see
Phattanasri et al., 2007, 386). (B) They then map a trajectory of the non-
equilibrium dynamics by which the agent’s position in the state space changes
as a result of new inputs such as smells or positive/negative reinforcement (see
figure 2).

The two-step process just described involves hybridity analogous to the dual
treatment of ω in the two equations for the Watt governor. Just as with the
governor, where the initial treatment of ω as a parameter was not to indicate
that ω is constant, but rather as a basis for then calculating how the system
changes as ω changes exogenously, Phattanasri et al. begin with these phase
portraits in order to then consider how the neuronal states will evolve as the
inputs shift. In both cases, this representational division of labor should not be
taken to indicate that certain parts of the system are stable and others varying,
but rather to capture both equilibrium and non-equilibrium dynamics within a
single representational framework.

Because the exact behavior of the agent varies from trial to trial, Phattanasri
et al. use a “strobing” technique to build a composite picture of the non-
equilibrium dynamics over multiple trials, showing that the agent’s states tend
to cluster in localizable regions of the state space just after key events such as
the appearance of a cue or the appearance of a reinforcer (Phattanasri et al.,
2007, 388)(see part A of figure 2 below).

Using the results of these techniques, they identified regions of state space in
which the systems tend to be found under actual and possible input conditions.
By mapping and linking the strobed regions of state space which the system
tends to be passing through at critical points during the task, and treating
those regions as states of a finite state machine (FSM), they constructed a
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Figure 2: Figure from Phattanasri et al. p. 388. The axes y1, y2, and y3 refer to the
states of neurons 1, 2, and 3, respectively. The system was strobed at the end of each
smell and reinforcement signal. Figure (A) uses ovals to divide the strobed regions into
distinct clusters. (B) depicts a trajectory through the state space in a trial involving
multiple changes of environment. (C) provides a finite state machine representation
for how the system responds to signals with ↑ and ↓ denoting the two different “smells”
and + and − denoting to positive and negative reinforcement signals.

FSM representation that switches between two different cycles depending on
which of two “smell” cues is currently predictive of the “edible” reward. They
variously refer to this FSM as “embedded” (Phattanasri et al., 2007, 388, fig.
7) in the evolved neural circuitry and “extracted” (ibid.) from the dynamics,
and they go on to explain that the circuits “work by implementing finite state
machines that capture the sensation-action-reinforcement structure of this task”
(Phattanasri et al., 2007, 391). Below we will provide some critical discussion of
the precise relationship between the dynamics and the FSM representations, and
will argue that the hybridity of the representation is relevant to understanding
this relationship.
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3.3 Beer and Williams on Quasistatic Approximations

In a paper that has implications both for the present discussion as well as
the debate that motivates it, Beer and Williams (2015) compare approaches to
cognition using information theory (IT) to those using dynamic systems theory
(DST). Beer and Williams analyze a set of artificial agents who were evolved
to make a behavioral decision (intercept or avoid) based upon an asynchronous
comparison of the relative size of two objects which move towards the agent.
While DST approaches track the evolution of the agents’ neuronal activity, IT
provides tools for determining how information about the sizes of the cue and
probe is distributed through the neurons over time. Beer and Williams view
the IT and DST representations of the agents not as competitors, but rather
complementing one another, and we are sympathetic to this position.

Before presenting the details of the experiment, we will first convey their
notion of a quasi-static approximation, which provides a more rigorous way to
understand the form of representational hybridity we have been discussing. Beer
and Williams explain how one and the same dynamical system can be repre-
sented either as a single system governed by a time-invariant set of equations,
or as two or more coupled systems in which the output of one determines the
values of the parameters in the equations of the others at a given time. While in
the former case, the dynamical law governing the system is autonomous, mean-
ing that it is fixed, in the latter case, the laws governing each subsystem are
non-autonomous, meaning that the parameters in their dynamical laws change
over time. The autonomous and non-autonomous perspectives can be com-
bined into a quasistatic approximation (Beer and Williams, 2015, 13) in which
one represents the non-autonomous dynamics of a part of the system as the
result of a series of snapshots, in each of which the dynamics are treated as au-
tonomous. This is what was going on in the Beltrami/van Gelder model of the
Watt governor, where ω in equation (1) was treated as a fixed input rather than
as time-varying, and thus as if the dynamics were autonomous. Phattanasri,
Chiel and Beer similarly rely on a quasistatic approximation when they appeal
to phase portraits describing the dynamics of the system given fixed inputs,
prior to using these autonomous representations of the dynamics to account for
the system’s transitory non-autonomous dynamics when away from attractor
states (Phattanasri et al., 2007, 384).

Beer and Williams evolved agents to perform a task consisting of two stages.
In the first stage, the agent passively observes a falling “cue”. In the second
stage, the agent must either catch or avoid a falling “probe” depending on
whether it is bigger or smaller than the cue. In their dynamical representations,
the state space of the agent maps the relationships among the activation levels
of the agent’s different neurons as a function of time or a proxy of time. Dif-
ferent trajectories correspond to different trials with different cue sizes. One of
their aims in dynamically modeling the systems is to understand the different
trajectories of the system in the cases where the agent either catches or avoids
the probe.

The bundles of trajectories in which the agent either avoids or catches the
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probe correspond to different attractor states in the dynamical landscape. Beer
and Williams (2015, 16, figure 7) provide several graphs displaying the different
bundles and pinpointing when they diverge towards the different attractors.
Yet, as they emphasize, it is crucial not to think about the attractor landscape
as a fixed map through which the trajectories travel—the attractor landscape
changes both simultaneously with and in response to the changing trajectories
of the neurons through the state space. In the early moments of the probe’s
descent all of the trajectories are all heading towards a single attractor point,
but over time the attractor landscape changes to one in which there are two
distinct attractors towards which the different bundles tend. Such a change in
the attractor landscape is called a bifurcation.

Beer and Williams’ use of bifurcation diagrams to explain the split in the
trajectories involves a use of the quasistatic approach (Beer and Williams, 2015,
p.13). Both the agent and its environment change as a function of time, and in
principle one could model the agent-environment system as a single dynamical
system with a fixed dynamical law. Instead, Beer and Williams model the
agent and its environment as two dynamical systems with dynamical laws that
change over time. While the agents’ neuronal dynamics are constantly changing
in response to the changing sensory inputs, at each point in time the sensory
input is represented as fixed. In this manner, one can represent the way that
the agents’ states change in response to the sensory input without explicitly
representing how the sensory inputs change over time. This representational
choice makes it possible to visualize a bifurcation diagram in which one can
transparently represent both how particular trajectories change over time and
also how different trajectories fall into different attractor basins. While the
sensory inputs are also changing over time in response to the agents’ movement,
the quasistatic approach enables the modeler to model this independently and
to thus gain an understanding of the splitting of the trajectories that would be
unavailable otherwise.

The way in which Beer and Williams take the time-dependent variable for the
sensory input and model it as a parameter in the agent’s differential equations is,
from a formal perspective, identical to the way in which ω functions alternately
as a variable and a parameter in the equations for the Watt governor. Yet the
behaviors illuminated by the use of the quasistatic approach are much more
interesting in the former case than in the latter. Now that we have illustrated
the common use of the approach in the three different cases, we now use this
commonality to illuminate the features of Beer’s agents that make them more
suitable than the governor as models for cognitive processes.

4 Quasistatic Models of Cognitive Processes

The Watt governor is, of course, entirely boring from a cognitive perspective;
because of the design of the system it can only be just slightly out of equilibrium,
and it is always tending towards a fixed equilibrium point in the absence of
further input or inherent minor fluctuations in state. While the “snapshots” of
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the governor employed in the quasistatic approximation are informative about
how far the system is away from equilibrium, and thus about how long it will
take to return to equilibrium, such snapshots will at most provide a cumulative
record of the prior perturbations to the system, with no way of distinguishing
between different types of perturbations—e.g. a decrease in the total workload
as opposed to a change in the combustion driving the engine.

Phattanasri et al.’s dynamical models are more complex in that they describe
systems with multiple attractor states. Different regions of the state space in
the vicinity of different attractors are associated with different responses to the
same smell, and the agent’s position in the state space shifts from one region to
another in response to negative reinforcement signals. While the purpose of the
governor is to make the behavior of a device relatively invariant to changes in
its environment, the task performed by Phattanasri et al.’s agents requires them
to change their behavior based on signals they receive from their environments.
The position of the agent near a particular attractor in the state space is thus
discriminative among different possible causal histories—e.g. whether the agent
is in an environment where a particular smell is to be pursued or avoided. It is
important to realize, however, that it is not important—or optimal—that that
the system ever settles into a particular attractor, and its doing so would in fact
hinder the agents’ abilities to respond quickly and adaptively to subsequent
stimuli.

As a result of the increased complexity of Phattanasri et al.’s dynamical
models, as compared to the Watt governor, the “snapshots” of the quasistatic
approximation are more informative. The location of the agent in the abstract
state space relative to an attractor state provides information about its causal
history and thus of the environment that it is in. Representations of the system
at a single point in time are thus both informative about its transitory and
longer term dynamics.

The dynamical models for the agents developed by Beer and Williams (2015)
are even more complex, in the sense that the dynamical attractor landscape
changes over time and involves a bifurcation. Although in all of the cases where
quasistatic approximations are employed, it is important to realize that the
parameters that are treated as unchanging at a time are not in fact unchanging,
this feature is especially crucial for understanding the activities of these agents
in catching or avoiding the probe. While it would be possible to model the agent
and its environment as a single system in which both are constantly changing as
a function of a single dynamical law, the use of the quasistatic approximation
enables one to model the agent’s internal dynamics (semi-)independently of the
broader attractor landscape in a way that (as we will further explain) enables
one to better understand its decision-making behavior.

All three models considered are dynamical and all three employ the qua-
sistatic approach. Yet the Beer agents perform tasks that more closely resemble
paradigmatic cognitive tasks. Phattanasri et al.’s agents were able to learn
and relearn regularities linking signals to fitness-relevant features of their envi-
ronment. Beer and Williams’ agents needed to maintain information about a
previously observed object and then to compare this to a novel object regarding
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which they were receiving and responding to information over time. In each case,
the use of a quasistatic approximation played a different role in understanding
how the agents’ performed their tasks. For Phattanasri’s agents, it was relevant
to seeing how the agents’ optimal strategies depended both on their transitory
dynamics as well as their position relative to an attractor state. For Beer and
Williams’ agents, it illuminated how agents perform a task during which they
need to alter their behavior to respond to constantly updating information.

This brief comparison between the three dynamical models highlights a
point that should be obvious, but which is nevertheless worth making explicit.
Namely, the mere fact that a system can be modeled dynamically tells one little
about whether it exhibits cognition-like behavior. Given that van Gelder does
not claim that the governor is a cognitive system, it is clear enough that more
work needs to be done to differentiate (more) cognitive from (less, or) non-
cognitive systems. But taking this point seriously requires more attention to
the differences among dynamical models than is typically paid in philosophical
discussions of dynamical models or explanations.

5 The Relationship Between Dynamical and Non-
dynamical Models

The discussions in Phattanasri et al. (2007) and Beer and Williams (2015) are of
philosophical interest not merely because they consider cognitively-illuminating
dynamical systems, but further because they explicitly compare their dynamical
representations to non-dynamical ones. While Phattanasri et al. use their dy-
namical models to derive a finite state machine (FSM) representation, Beer and
Williams contrast their dynamical models with information theoretic ones. In
this section we describe how the analysis of the dynamical systems as involving
hybridity matters for understanding the relationships between these dynamical
and non-dynamical representations.

Recall that Phattanasri et al. (2007) derive the FSM representation by strob-
ing the system at various times. There is a tension in the way that they describe
this representation. On the one hand, they claim that “It is important to em-
phasize that the extracted FSMs merely summarize the normal operation of
the circuit dynamics, and are not equivalent to this dynamics” (388). On the
other hand, as noted above, they talk about the FSM as being “embedded”
(Phattanasri et al., 2007, 388, fig. 7) in the evolved neural circuitry and “ex-
tracted” (ibid.) from the dynamics, and of the circuits as “implementing” (291)
the FSM. These comments suggest that the FSM representation is more than a
mere summary of the dynamics.

So what is going on here? Should we think of the FSM representation as
merely a partial and practical summary of the underlying dynamics, or as cap-
turing a privileged pattern that is “embedded” in the neural circuitry of the
minimal cognitive agents? We believe that this apparent tension can be re-
solved by thinking further about how the dynamical representation functions.
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If one were to think of the differential equations describing a dynamical system
as a pure unstructured description of the way the system evolves continuously
through time, then the finite state representation will seem like a cheap repro-
duction of a much richer representation. Additionally, if the (so-called) under-
lying dynamics of the system lacked internal structure, then any discretization
or decomposition would be arbitrary in the sense that it would be conceptually
confused to try to carve the system at its (non-existent) joints. But the analysis
of the dynamics of the system does not proceed like this.

Far from providing an unstructured description of the system’s evolutionary
dynamics, Phattanasri et al. employed a quasi-static approximation in which
they first created phase portraits of the attractor states of the system when its
inputs are held constant and then traced the out-of-equilibrium dynamics as the
system moves through its (abstract) state space in response to typical changes
in the inputs. The FSM model (fig. 2c) provides an adequate representation
of they dynamics insofar as it captures the transitions of the dynamical system
from one attractor state towards another. The key point is that although the
FSM representation introduces a discretization that did not exist in the dynam-
ical representation, the success of this discretization can be judged based on the
ability of the FSM model to capture features that are already present in the
dynamical representation. Notably, the characterization of the system as in-
volving distinct attractor states corresponding to distinct inputs and responses
is an essential part of the quasi-static approximation. It is because of this fea-
ture of the modeling that it is not arbitrary to ask whether the particular finite
state model delivered by strobing appropriately represents the behavior of the
system, and why it is explanatory to claim that the dynamics “implement” the
discrete finite state machine.

In contrast to the comparison between the FSM and dynamical represen-
tations in Phattanasri et al. (2007), in which the relationships between the
representations was relatively transparent, Beer and Williams dynamical and
information theoretical models do not allow for such straightforward compar-
isons. Unsurprisingly, there are clear links between features of their information
theoretic models and features of the dynamic models employing quasi-static
approximations. But there are some key differences in how the dynamic and
information theoretic representations function, and it is due to these differences
that they are able to play complementary but distinct roles in illuminating how
the neural agents perform their tasks. We submit that careful attention to the
differences in how DST and IT are used to represent their target systems will
help one avoid the temptation to view one type of representation as abstracting
away from the other.

We begin with an overview of how Beer and Williams use the tools of IT
to model their agents. They measure the mutual information between different
variables for the agents (e.g. particular neurons) and the sizes of the cues and
probes. Here, the mutual information is not a relationship between the size of
a particular cue in a particular trial and the activation of the neuron in that
trial. Rather it depends on the different levels of the activation of the neuron
corresponding to different sizes of the cue/probe across trials, and on how a
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particular level of activation at a given time reduces uncertainty about the size
of the cue or probe. Using the tools of IT, Beer and Williams represent the way
that the information about the size of the cue is transmitted through different
parts of the system through both the cue and probe stages. For instance, in
the cue stage they are able to trace how the cue size information in each of the
agents’ internal neurons changes over time, and to thus determine where this
information is maintained at the end of the cue stage.

In tracing the way that the mutual information between two variables changes
over time, Beer and Williams extend information theory beyond its standard ap-
plication. By providing IT approaches with a dynamic formulation, they make
it easier to draw comparisons between DST approaches, which also characterize
the evolution of a system. But this similarity between them potentially obscures
important differences in the way that they each represent a single system. As
emphasized, the mutual information between (e.g.) the cue size and a neuron’s
state depends on the degree to which variation in the neuron’s state (at a time)
tracks variation in the cue size across trials (at that time), and thus cannot be
understood by reference to a trajectory in any single trial. We emphasize this
point not because there is any lack of clarity in Beer and Williams’ discussion,
but because we believe that such nuances are easily glossed over in philosophical
discussions of cognition.

As Beer and Williams describe, there are important relationships between
the dynamical and informational representations of the system. For example,
in representing the probe-stage dynamics, they model the mutual information
between a particular neuron and a variable for the relative sizes of the cue and
the probe (p. 22, fig. 10). This neuron provides the most information about
relative size during the interval when the dynamic trajectories corresponding
to whether the agent catches or avoids the probe are most distinct from one
another (to speak somewhat imprecisely). The degree of divergence among the
trajectories is an emergent property of the system corresponding to the time at
which bifurcation occurs in the non-autonomous dynamics.

In Beer and Williams’ discussion, IT methods serve as a proxy for computa-
tional approaches more generally. Although there is no simple way to character-
ize the relationships between their dynamic and information theoretic models,
the relationship is certainly not what one would expect based on the philo-
sophical literature on dynamical models. In particular, the decision to model
the agent and its environment separately already exists within the quasi-static
approximation employed in the dynamical models, rather than being some ab-
straction introduced at the computational level. The main difference we’ve
highlighted here between DST and IT representations—that the former involve
a trajectory from a single trial and the latter require cross-trial comparisons—
has received no attention. This difference is important for seeing why the differ-
ent methods use different bases for categorization, and thus why one cannot be
understood as derived by simply abstracting way from the details of the other.
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6 Dynamical Models and Cognition

Twenty-five years after van Gelder’s seminar paper, it is time for a more nuanced
picture of dynamical models. While the Watt governor is a paradigmatic dy-
namical system, it is not a cognitive one, and not all claims about its dynamical
model generalize to models of systems performing even “minimally cognitive”
tasks. Even if van Gelder is correct that the Watt governor does not support a
non-arbitrary division into discrete operational phases, it would not follow that
other more complex dynamical systems fail to support such analyses. Whether
a system can be fruitfully modularized is settled not by looking at whether a
dynamical system describes smooth trajectories, but by careful attention to the
model and the task. The dynamical models reviewed here, although simple, are
significantly more complex than that of the Watt governor, and these complexi-
ties matter for determining whether they can be modeled using a more standard
computational approach.

In focusing on the use of quasistatic approaches, we have made salient one
way in which dynamical models are tools for representing a system. Although
this point that dynamical models are themselves tools for representing a system
may seem obvious, we have suggested that it gets lost in the setup of current
debates. While philosophers defending a particular computational or mechanis-
tic model need to be explicit about how the model divides up the system, the
representational choices underlying dynamical models are typically left implicit.
Yet dynamical models do not, in general, provide unstructured descriptions of a
system’s temporal evolution, and careful attention to the devices by which time
is modeled yields insights into the conditions under which the models apply.

What, ultimately, is the relationship between dynamical and non-dynamical
representations of a cognitive system? There is no general answer to this ques-
tion. Dynamical and non-computational models are not mutually exclusive, and
very little can be inferred from the mere fact that a system can be modeled in
one framework or the other. This, in fact, requires philosophers to pay more
attention to the formal features of particular models, since whether a system
ought to be modeled computationally can only be resolved by extended atten-
tion to how the agent’s dynamics enable it to perform its task. Dynamical
models of cognition will not replace computational ones, but promise a deeper
understanding of how computational systems work.
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